KR101567039B1 - Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same - Google Patents

Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same Download PDF

Info

Publication number
KR101567039B1
KR101567039B1 KR1020130135106A KR20130135106A KR101567039B1 KR 101567039 B1 KR101567039 B1 KR 101567039B1 KR 1020130135106 A KR1020130135106 A KR 1020130135106A KR 20130135106 A KR20130135106 A KR 20130135106A KR 101567039 B1 KR101567039 B1 KR 101567039B1
Authority
KR
South Korea
Prior art keywords
active material
cathode active
secondary battery
lithium secondary
positive electrode
Prior art date
Application number
KR1020130135106A
Other languages
Korean (ko)
Other versions
KR20140081663A (en
Inventor
최문호
김직수
신종승
윤진경
전석용
정재용
이승호
성용철
김현태
Original Assignee
주식회사 에코프로
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에코프로 filed Critical 주식회사 에코프로
Publication of KR20140081663A publication Critical patent/KR20140081663A/en
Application granted granted Critical
Publication of KR101567039B1 publication Critical patent/KR101567039B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 리튬 이차 전지용 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질에 관한 것으로서, 더욱 상세하게는 수세공정 및 금속 코팅을 도입하여 양극활물질 미반응 리튬의 양을 감소시키고, 수세시 열화되는 특성을 개선하여 니켈 리치(Ni rich) 양극활물질의 경우에도 표면 미반응 리튬 이온의 양을 감소시키면서도 고용량 및 안정성을 확보한 리튬 이차 전지용 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질에 관한 것이다. The present invention relates to a method for producing a positive electrode active material for a lithium secondary battery and a positive electrode active material for a lithium secondary battery produced thereby. More particularly, the present invention relates to a method for reducing the amount of unreacted lithium in a positive electrode active material by introducing a water- A method of manufacturing a positive electrode active material for a lithium secondary battery having a high capacity and stability while reducing the amount of unreacted lithium ions even in the case of a nickel rich positive electrode active material by improving deterioration characteristics and a positive electrode for a lithium secondary battery Lt; / RTI >

Description

리튬 이차 전지용 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질{MANUFACURING METHOD OF CATHODE ACTIVE MATERIAL FOR LITHIUM RECHARGEABLE BATTERY, AND CATHODE ACTIVE MATERIAL MADE BY THE SAME} BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a method for producing a positive electrode active material for a lithium secondary battery, and a positive electrode active material for a lithium secondary battery,

본 발명은 리튬 이차 전지용 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질에 관한 것으로서, 더욱 상세하게는 수세 공정 및 금속 도핑에 의해 양극활물질 내의 미반응 리튬의 양을 감소시키고, 종래 잔류 리튬을 개선하기 위한 수세 공정 도입시 오히려 문제가 되는 열화되는 특성을 개선하여 고용량 및 안정성을 확보한 리튬 이차 전지용 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질에 관한 것이다.
The present invention relates to a method for producing a positive electrode active material for a lithium secondary battery and a positive electrode active material for a lithium secondary battery produced thereby. More particularly, the present invention relates to a method for reducing the amount of unreacted lithium in a positive electrode active material by a washing process and metal doping, The present invention relates to a method for producing a positive electrode active material for a lithium secondary battery and a positive electrode active material for a lithium secondary battery produced by the method, thereby improving deterioration characteristics which are rather problematic when introducing a washing process for improving lithium and securing a high capacity and stability.

모바일 기기에 대한 기술과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차전지 중 높은 에너지 밀도와 작동 전위를 나타내고, 사이클 수명이 길며, 자기 방전율이 낮은 리튬 이차전지가 상용화 되어 널리 사용되고 있다.As the technology and demand for mobile devices increase, the demand for secondary batteries as energy sources is rapidly increasing. Lithium secondary batteries, which exhibit high energy density and operating potential, long cycle life and low self-discharge rate among such secondary batteries, It has been commercialized and widely used.

리튬 이차전지의 양극 활물질로는 리튬 함유 코발트 산화물(LiCoO2)이 주로 사용되고 있고, 그 외에 층상 결정 구조의 LiMnO2, 스피넬 결정구조의 LiMn2O4 등의 리튬 함유 망간 산화물과, 리튬 함유 니켈 산화물인 LiNiO2의 사용도 고려되고 있다.Lithium-containing cobalt oxide (LiCoO 2 ) is mainly used as a positive electrode active material of a lithium secondary battery, and a lithium-containing manganese oxide such as LiMnO 2 having a layered crystal structure and LiMn 2 O 4 having a spinel crystal structure, The use of LiNiO 2 , which is a non-aqueous electrolyte, is also considered.

상기 양극 활물질들 중 LiCoO2은 수명 특성 및 충방전 효율이 우수하여 가장 많이 사용되고 있지만, 용량이 작고 원료로서 사용되는 코발트의 자원적 한계로 인해 고가이므로 전기자동차 등과 같은 중대형 전지분야의 동력원으로 대량 사용하기에는 가격 경쟁력에 한계가 있다는 단점이 있다. LiMnO2, LiMn2O4 등의 리튬 망간 산화물은 원료로서 사용되는 망간 자원이 풍부하여 가격이 저렴하고, 환경 친화적이며, 열적 안전성이 우수하다는 장점이 있지만, 용량이 작고, 고온 특성 및 사이클 특성 등이 열악한 문제가 있다.Of the above cathode active materials, LiCoO 2 is most widely used because of its excellent lifetime characteristics and charge / discharge efficiency. However, LiCoO 2 is expensive because of its small capacity and resource limitations of cobalt used as a raw material. Therefore, it is used as a power source for mid- There is a disadvantage in that price competitiveness is limited. Lithium manganese oxides such as LiMnO 2 and LiMn 2 O 4 are advantageous in that they are rich in manganese resources used as raw materials, are inexpensive, environmentally friendly, and excellent in thermal stability. However, they have small capacity, high temperature characteristics, This is a poor problem.

이러한 단점을 보완하기 위해 이차 전지 양극 활물질로서 니켈 리치 시스템(Ni rich system)의 수요가 늘어나기 시작하였으나, 이러한 니켈 리치 시스템(Ni rich system)의 활물질은 고용량을 내는 우수한 장점을 가지고 있는 반면, 미반응리튬이 높아 스웰링 현상 유발 및 전해액과의 반응에 따른 가스발생 등의 문제점을 가지고 있다.
In order to overcome such disadvantages, demand for a nickel rich system as a cathode active material of a secondary battery has begun to increase. However, the active material of the nickel rich system has an advantage of providing a high capacity, The reaction lithium is high, causing problems such as generation of a swelling phenomenon and generation of gas due to reaction with an electrolyte solution.

리튬 복합 산화물을 제조하는 방법은 일반적으로 전이 금속 전구체를 제조하고, 상기 전이 금속 전구체와 리튬 화합물을 혼합한 후, 상기 혼합물을 소성하는 단계를 포함한다. 이때, 상기 리튬 화합물로는 LiOH 및/또는 Li2CO3가 사용된다. 일반적으로 양극활물질의 Ni함량이 65% 이하일 경우에는 Li2CO3를 사용하며, Ni 함량이 65% 이상일 경우에는 저온 반응이기에 LiOH를 사용하는 것이 바람직하다. 그러나, Ni 함량이 65% 이상인 니켈 리치 시스템(Ni rich system)은 저온 반응이기에 양극활물질 표면에 LiOH, Li2CO3 형태로 존재하는 잔류 리튬량이 높다는 문제점이 있다. 이러한 잔류 리튬 즉, 미반응 LiOH 및 Li2CO3는 전지 내에서 전해액 등과 반응하여 가스 발생 및 스웰링(swelling) 현상을 유발함으로써, 고온 안전성이 심각하게 저하되는 문제를 야기시킨다. 또한, 미반응 LiOH는 극판 제조 전 슬러리 믹싱시 점도가 높아 겔화를 야기시키기도 한다.A method for producing a lithium composite oxide generally comprises preparing a transition metal precursor, mixing the transition metal precursor and a lithium compound, and then calcining the mixture. At this time, LiOH and / or Li 2 CO 3 is used as the lithium compound. In general, when the Ni content of the cathode active material is less than 65%, Li 2 CO 3 is used. When the Ni content is more than 65%, LiOH is preferably used because it is a low-temperature reaction. However, since the Ni rich system having a Ni content of 65% or more is a low-temperature reaction, there is a problem that the residual lithium amount existing in the form of LiOH and Li 2 CO 3 on the surface of the cathode active material is high. Such residual lithium, that is, unreacted LiOH and Li 2 CO 3 react with an electrolyte or the like in the battery to cause gas generation and swelling phenomenon, thereby causing a problem that the high-temperature safety is seriously deteriorated. In addition, the unreacted LiOH may cause gelation due to high viscosity in slurry mixing before preparation of the electrode plate.

이러한 미반응 Li을 제거하기 위하여 일반적으로 수세 공정을 도입하지만, 이 경우 수세시 양극 활물질 표면 손상이 발생하여 용량 및 율 특성이 저하되고 또한 고온 저장시 저항이 증가하는 또 다른 문제를 야기시킨다.
In order to remove such unreacted Li, a water washing process is generally employed. However, in this case, surface damage of the cathode active material occurs during water washing, resulting in deterioration of capacity and rate characteristics and increase of resistance at high temperature storage.

대한민국 공개특허 제 10-2012-0117822 호Korean Patent Publication No. 10-2012-0117822

본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 수세 공정을 도입하여 미반응 리튬의 양을 감소시키면서도 수세 공정에서 열화되는 특성을 개선하여 고용량 및 안정성을 확보할 수 있는 리튬 이차 전지용 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질을 제공하는 것을 목적으로 한다.
Disclosure of Invention Technical Problem [8] In order to solve the problems of the conventional art as described above, the present invention provides a positive electrode active material for a lithium secondary battery, which is capable of reducing the amount of unreacted lithium and improving deterioration characteristics in a washing process, And a cathode active material for a lithium secondary battery produced by the method.

본 발명은 상기와 같은 과제를 해결하기 위하여 The present invention has been made to solve the above problems

아래 화학식 1로 표시되는 리튬 이차 전지용 양극활물질 전구체를 제조하는 제 1 단계; A first step of preparing a precursor of a cathode active material for a lithium secondary battery represented by the following Chemical Formula 1;

[화학식 1] Nia1Cob1Xc1(OH)2 ???????? Ni a1 Co b1 X c1 (OH) 2 ?????

(상기 화학식 1에서 X 는 Mn, Al 혹은 Mn 및 Al이고, 0.50≤a1≤0.95, 0.02≤b1≤0.25, 0.01≤c1≤0.20, 2.8≤a1/b1≤19) (And in Formula 1 X is Mn, Al, or Mn and Al, 0.50≤a 1 ≤0.95, 0.02≤b 1 ≤0.25, 0.01≤c 1 ≤0.20, 2.8≤a 1 / b 1 ≤19)

상기 양극활물질 전구체를 리튬 화합물과 반응시키고 제1 열처리하여 양극활물질을 제조하는 제 2 단계; A second step of reacting the cathode active material precursor with a lithium compound and subjecting the precursor to a first heat treatment to produce a cathode active material;

상기 양극활물질을 증류수 또는 알칼리 수용액으로 수세하는 제 3 단계; A third step of washing the cathode active material with distilled water or alkaline aqueous solution;

상기 수세된 양극활물질을 Co, Al, B, Ba, Cr, F, Li, Mo, P, Sr, Ti 및 Zr으로 이루어진 그룹에서 선택되는 금속 Y1 을 포함하는 화합물과 반응시키는 제 4 단계;A fourth step of reacting the washed positive electrode active material with a compound containing a metal Y1 selected from the group consisting of Co, Al, B, Ba, Cr, F, Li, Mo, P, Sr, Ti and Zr;

상기 양극활물질 입자를 건조시키는 제 5 단계; 및 A fifth step of drying the cathode active material particles; And

건조된 양극활물질을 Co, Al, B, Ba, Cr, F, Li, Mo, P, Sr, Ti 및 Zr으로 이루어진 그룹에서 선택되는 금속 Y2 를 포함하는 화합물과 반응시키는 제 6 단계; 및 A sixth step of reacting the dried cathode active material with a compound containing a metal Y2 selected from the group consisting of Co, Al, B, Ba, Cr, F, Li, Mo, P, Sr, Ti and Zr; And

상기 건조된 양극활물질을 제 2 열처리하여 상기 Y1 및 Y2 를 입자 내부로 도핑시키는 제 7 단계;A seventh step of subjecting the dried cathode active material to a second heat treatment to dope Y1 and Y2 into the particles;

로 구성되고, 아래 화학식 2로 표시되는 리튬 이차 전지용 양극활물질의 제조 방법을 제공한다. And a process for producing a cathode active material for a lithium secondary battery represented by the following chemical formula (2).

[화학식 2] LiNia2Cob2Xc2Y1d1Y2d2O2 [Chemical Formula 2] LiNi Co a2 b2 c2 X Y1 Y2 d2 d1 O 2

(상기 화학식 2에서 X는 Mn, Al 또는 Mn 및 Al 이고, Y1, Y2 는 Co, Al, B, Ba, Cr, F, Li, Mo, P, Sr, Ti 및 Zr으로 이루어진 그룹에서 선택되는 금속이고, 0.50≤a2≤0.95, 0.02≤b2≤0.25, 0.01≤c2≤0.20, 0.01≤d1≤0.20, 0.01≤d2≤0.20, 2≤a2/b2≤20)Wherein X is Mn, Al or Mn and Al and Y1 and Y2 are metals selected from the group consisting of Co, Al, B, Ba, Cr, F, Li, Mo, P, Sr, Ti and Zr. and, 0.50≤a 2 ≤0.95, 0.02≤b 2 ≤0.25 , 0.01≤c 2 ≤0.20, 0.01≤d1≤0.20, 0.01≤d2≤0.20, 2≤a 2 / b 2 ≤20)

본 발명에 있어서, 상기 제 4 단계 내지 제 6 단계에서 Co, Al, B, Ba, Cr, F, Li, Mo, P, Sr, Ti 및 Zr으로 이루어진 그룹에서 선택되는 금속 Y1, Y2 의 도입량이 전체 활물질 질량에 대해 1 내지 20 mol% 인 것을 특징으로 한다. In the present invention, the introduction amounts of metals Y1 and Y2 selected from the group consisting of Co, Al, B, Ba, Cr, F, Li, Mo, P, Sr, Is 1 to 20 mol% based on the total mass of the active material.

본 발명에 있어서, 상기 제 4 단계에서 도입되는 금속 Y1 과 제 6 단계에서 도입되는 금속 Y2 는 동일한 금속인 것이 가능하다. In the present invention, the metal Y1 introduced in the fourth step and the metal Y2 introduced in the sixth step may be the same metal.

본 발명에 있어서, 상기 수세 공정 이후 제 4 단계 및 제 6 단계에서 Co 를 도입함으로써 활물질 입자 내의 Co 함량이 제 2 단계에서의 Co 함량에 비해 1 내지 20 mol% 증가하는 것이 바람직하다. In the present invention, it is preferable that the Co content in the active material particles is increased by 1 to 20 mol% with respect to the Co content in the second step by introducing Co in the fourth and sixth steps after the water washing step.

본 발명에 있어서, 상기 제 2 단계에서 상기 양극활물질 전구체를 리튬 화합물과 반응시킬 때 Ca, Mg, Ba, Ti, Zr, B 및 Sr으로 이루어진 그룹에서 선택되는 물질을 더 첨가하는 것을 특징으로 한다. 상기 제 2 단계에서 상기 Ca, Mg, Ba, Ti, Zr, B 및 Sr로 이루어진 그룹에서 선택되는 물질을 더 첨가하는 경우 전지 특성이 향상된다. In the second step, a material selected from the group consisting of Ca, Mg, Ba, Ti, Zr, B and Sr is further added when the cathode active material precursor is reacted with the lithium compound. When the material selected from the group consisting of Ca, Mg, Ba, Ti, Zr, B, and Sr is further added in the second step, battery characteristics are improved.

본 발명에 있어서, 상기 제 1 열처리는 700 내지 850 ℃ 에서 6시간 내지 20시간 동안 열처리 되는 것을 특징으로 한다. In the present invention, the first heat treatment is performed at 700 to 850 ° C for 6 to 20 hours.

본 발명에 있어서, 상기 제 5 단계에서 상기 양극활물질 입자를 건조시키는 단계에서는 100 내지 250 ℃ 에서 1 시간 내지 10 시간 동안 건조시키는 것을 특징으로 한다. In the fifth step, in the step of drying the cathode active material particles, the cathode active material particles are dried at 100 to 250 ° C for 1 to 10 hours.

본 발명에 있어서, 상기 제 6 단계에서 상기 제 2 열처리는 300 내지 800 ℃ 에서 1 시간 내지 10 시간 동안 열처리 되는 것을 특징으로 한다. In the present invention, in the sixth step, the second heat treatment is performed at 300 to 800 ° C for 1 to 10 hours.

본 발명은 또한, 본 발명의 제조 방법에 의하여 제조된 리튬 이차 전지용 양극활물질을 제공한다. The present invention also provides a cathode active material for a lithium secondary battery produced by the production method of the present invention.

본 발명의 리튬 이차 전지용 양극활물질은 미반응 LiOH가 0.25 중량% 이하, 미반응 Li2CO3 가 0.30 중량 % 이하로 포함하는 것을 특징으로 한다. The positive electrode active material for a lithium secondary battery of the present invention is characterized in that the unreacted LiOH is contained in an amount of 0.25 wt% or less and the unreacted Li 2 CO 3 is contained in an amount of 0.30 wt% or less.

본 발명의 리튬 이차 전지용 양극활물질은 상기 제 4 단계 내지 제 6 단계에서 Co 를 선택하는 경우 XRD 에서 2θ 가 45° 내지 46° 사이의 LiCoO2 해당 피크를 나타내는 것을 특징으로 한다. 이는 상기 제 4 단계 내지 제 6 단계에서 선택된 Co 가 표면 코팅 후 열처리에 의하여 LiCoO2 형태로 표면에서 검출되는 것을 의미한다.
The cathode active material for a lithium secondary battery of the present invention is characterized in that, when Co is selected in the fourth to sixth steps, 2θ of XRD represents a peak corresponding to LiCoO 2 between 45 ° and 46 °. This means that the Co selected in the fourth to sixth steps is detected on the surface in the form of LiCoO 2 by heat treatment after surface coating.

본 발명에 의한 리튬 이차 전지용 양극활물질의 제조 방법은 양극활물질 제조시 리튬 화합물과 전구체를 반응시킨 후 표면 수세를 통해 미반응 리튬량을 감소시키고, 금속을 추가로 도핑하고, 열처리함으로써 표면 미반응 리튬의 양을 감소시키면서도 고용량 특성을 나타내는 니켈 리치(Ni-rich) 리튬 이차 전지용 양극활물질을 제조할 수 있다.
The method for producing a cathode active material for a lithium secondary battery according to the present invention comprises reacting a lithium compound with a precursor in the production of a cathode active material, reducing the amount of unreacted lithium through surface washing, further doping the metal, A negative electrode active material for a nickel-rich lithium secondary battery exhibiting a high capacity characteristic while reducing the amount of the negative electrode active material.

도 1은 본 발명에 의한 미반응 LiOH 및 Li2CO3을 측정하는 방법과 관련된 도면을 나타낸다.
도 2는 본 발명의 일 실시예에서 제조된 양극활물질의 표면 전체 및 세 지점(point)에 대해 EDX를 측정한 결과를 나타낸다.
도 3은 본 발명의 일 실시예 및 비교예에서 제조된 양극활물질에 대해 XRD 를 측정한 결과를 나타낸다.
도 4는 본 발명의 일 실시예 및 비교예에서 제조된 양극활물질을 포함하는 코인셀에 대해 충방전 실험을 수행한 결과를 나타낸다.
도 5 및 도 6은 본 발명의 일 실시예 및 비교예에서 제조된 양극활물질을 포함하는 코인셀에 대해 c-rate를 측정한 결과를 나타낸다.
도 7은 본 발명의 일 실시예 및 비교예에서 양극활물질을 포함하는 코인셀 제조시 슬러리 믹싱 후 점도를 측정한 결과를 나타낸다.
도 8 본 발명의 일 실시예 및 비교예에서 제조된 양극활물질을 포함하는 코인셀에 대해 초기 충방전 실험을 수행한 결과를 나타낸다.
도 9는 본 발명의 일 실시예 및 비교예에서 제조된 양극활물질을 포함하는 코인셀에 대해 c-rate를 측정한 결과를 나타낸다.
도 10 내지 도 12는 본 발명의 일 실시예 및 비교예에서 제조된 양극활물질을 포함하는 코인셀에 대해 60 ℃ 고온에서 7 일간 보관한 후, 저장 전후의 임피던스의 변화를 측정한 결과를 나타낸다.
도 13은 본 발명의 일 실시예 및 비교예에서 제조된 양극활물질을 포함하는 코인셀에 대해 HCl 소모량에 따른 pH 변화를 측정한 결과를 나타낸다.
도 14는 본 발명의 일 실시예 및 비교예에서 제조된 양극활물질을 포함하는 코인셀에 대해 60 ℃ 고온에서 7일간 보관한 후, 저장 후의 임피던스 및 c-rate를 측정한 결과를 나타낸다.
도 15는 본 발명의 일 실시예 및 비교예에서 제조된 양극활물질을 포함하는 코인셀에 대해 사이클 테스트를 측정한 결과를 나타낸다.
도 16은 본 발명의 일 실시예 및 비교예에서 제조된 양극활물질의 DSC를 측정한 결과를 나타낸다.
1 shows a diagram relating to the method for measuring the unreacted LiOH and Li 2 CO 3 according to the present invention.
FIG. 2 shows the results of measurement of EDX on the entire surface and three points of the cathode active material prepared in one embodiment of the present invention.
FIG. 3 shows the results of XRD measurements of the cathode active material prepared in one embodiment and the comparative example of the present invention.
FIG. 4 shows a result of a charge / discharge test on a coin cell including a cathode active material according to an embodiment of the present invention and a comparative example.
FIGS. 5 and 6 show the results of measuring the c-rate for a coin cell comprising the cathode active material prepared in one embodiment of the present invention and the comparative example.
7 shows the result of measuring viscosity after slurry mixing in the production of a coin cell including a cathode active material in one embodiment and a comparative example of the present invention.
8 shows the result of performing an initial charge-discharge test on a coin cell including the cathode active material of the present invention and Comparative Example.
FIG. 9 shows the results of measuring the c-rate for a coin cell including a cathode active material prepared in an embodiment of the present invention and a comparative example.
FIGS. 10 to 12 show the result of measuring the change in impedance before and after the storage of the coin cell including the cathode active material prepared in one embodiment of the present invention and the comparative example, after storage at a high temperature of 60.degree. C. for 7 days.
FIG. 13 shows the results of measurement of pH change according to consumption of HCl in a coin cell comprising the cathode active material prepared in one embodiment and the comparative example of the present invention.
FIG. 14 shows the result of measuring impedance and c-rate after storage for 7 days at a high temperature of 60.degree. C. for a coin cell comprising a cathode active material prepared in one embodiment of the present invention and a comparative example.
15 shows a result of a cycle test on a coin cell including a cathode active material prepared in an embodiment of the present invention and a comparative example.
16 shows the results of DSC measurement of the cathode active material prepared in one example and comparative example of the present invention.

이하에서는 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 그러나, 본 발명이 이하의 실시예에 의하여 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail by way of examples. However, the present invention is not limited by the following examples.

<< 실시예Example 1>  1> NCANCA 계열의  Family 양극활물질Cathode active material 제조 Produce

<< 실시예Example 1-1> 1-1>

NCA 계열의 양극활물질을 제조하기 위하여 먼저 공침반응에 의하여 NiCoAl(OH)2 전구체를 제조하였다. 제조된 전구체에 리튬 화합물로서 LiOH를 첨가하고 제 1 열처리하여 Li1 .02Ni0 .91Co0 .08Al0 .014O2 로 표시되는 리튬 이차 전지용 양극활물질을 제조하였다. The precursor of NiCoAl (OH) 2 was prepared by first coprecipitation reaction to prepare NCA series cathode active material. Was added LiOH as a lithium compound to the prepared precursor and a first heat treatment to Li 1 .02 Ni 0 .91 Co 0 .08 Al 0 .014 O 2 To prepare a positive electrode active material for a lithium secondary battery.

증류수를 준비하고, 온도를 일정하게 유지한 후, 상기 제조된 리튬 이차 전지용 양극활물질을 증류수에 투입하여 온도를 유지시키면서 수세하였다. 이후 상기 양극활물질 수세액에 코발트 수용액을 일정한 비율로 1시간 동안 투입하면서 교반하여 표면을 코발트로 코팅하였다. Distilled water was prepared and kept at a constant temperature. The prepared cathode active material for a lithium secondary battery was put into distilled water and was rinsed while maintaining the temperature. Thereafter, cobalt aqueous solution was added to the aqueous solution of the cathode active material at a constant rate for 1 hour while stirring to coat the surface with cobalt.

제조된 양극활물질을 진공에서 150 ℃에서 건조시킨 후, 500 ℃에서 제 2 열처리하여 표면에 코팅된 코발트가 도핑되도록 하여 코발트 함량이 증가된 Li1 .02Ni0 .88Co0 .11Al0 .014O2 로 표시되는 리튬 이차 전지용 양극활물질을 제조하였다.
The prepared cathode active material was dried in a vacuum at 150 ° C. and then subjected to a second heat treatment at 500 ° C. to dope the coated cobalt to thereby increase the cobalt content of Li 1 .02 Ni 0 .88 Co 0 .11 Al 0 . 014 O 2 To prepare a positive electrode active material for a lithium secondary battery.

<< 실시예Example 1-2> 1-2>

Li1 .01Ni0 .91 Co0 .08 Al0 .014O2 로 표시되는 양극활물질을 제조하고 수세한 후, 수세액에 첨가되는 코발트 수용액의 농도를 변경한 것을 제외하고는 상기 실시예 1-1과 동일하게 하여 Li1 .02Ni0 .89Co0 .09Al0 .014O2 로 표시되는 리튬 이차 전지용 양극활물질을 제조하였다
Li 1 .01 Ni 0 .91 Co 0 .08 Al 0 .014 O 2 After washing with water and prepared the positive electrode active material represented by, and is in Example 1-1 In the same manner as Li 1 .02 Ni 0 .89 Co 0 .09 , except that the number of changing the concentration of the cobalt solution to be added to the tax Al 0 .014 O 2 To prepare a cathode active material for a lithium secondary battery

<< 비교예Comparative Example 1> 1>

상기 실시예 1-1과 동일하게 Li1 .01Ni0 .91Co0 .079Al0 .014O2 로 표시되는 리튬 이차 전지용 양극활물질을 제조하고, 증류수에 투입하여 수세한 후, 코발트 수용액으로 코팅을 실시하지 않고 리튬 이차 전지용 양극활물질을 제조하였다.
In the same manner as in Example 1-1, Li 1 .01 Ni 0 .91 Co 0 .079 Al 0 .014 O 2 The positive electrode active material for a lithium secondary battery was prepared without adding a cobalt aqueous solution after washing with water.

<< 비교예Comparative Example 2> 2>

상기 실시예 1-1과 동일하게 하여 공침 반응에 의하여 Co의 농도가 0.1 이상인 Li1 .01Ni0 .86 Co0 .12 Al0 .013O2 로 표시되는 리튬 이차 전지용 양극활물질을 제조하고, 증류수에 투입하여 수세한 후, 코발트 수용액으로 코팅을 실시하지 않고 리튬 이차 전지용 양극활물질을 제조하였다.
0.12 in Example 1-1 in the same manner as the Co Li 1 .01 Ni 0 .86 concentration of 0.1 or more, by co-precipitation reaction of Co 0 Al 0 .013 O 2 The positive electrode active material for a lithium secondary battery was prepared without adding a cobalt aqueous solution after washing with water.

<< 실시예Example 1-3> 1-3>

NCA 계열의 양극활물질을 제조하기 위하여 먼저 공침반응에 의하여 NiCoAl(OH)2 전구체를 제조하고, 리튬 화합물로서 LiOH 및 이종 금속으로 Ba 을 첨가하고 제 1 열처리하여 Li1 .03Ni0 .91 Co0 .079Al0 .014Ba0 .002O2 로 표시되는 리튬 이차 전지용 양극활물질을 제조하였다. By first co-precipitation reaction to produce a positive electrode active material of the NCA series NiCoAl (OH) preparing a second precursor, and the addition of LiOH and Ba as dissimilar metal as the lithium compound, and a first heat treatment to Li 1 .03 Ni 0 .91 Co 0 .079 Al 0 .014 Ba 0 .002 O 2 To prepare a positive electrode active material for a lithium secondary battery.

이후 상기 실시예 1-1과 동일하게 수세, 코발트 수용액으로 코팅 및 2차 열처리하여 Li1 .02Ni0 .88Co0 .11Al0 .014Ba0 .002O2 로 표시되는 리튬 이차 전지용 양극활물질을 제조하였다.
Then, the Examples 1-1 in the same manner as washing with water, an aqueous solution of cobalt coating and a secondary heat treatment to Al 0 .014 .11 Li 1 .02 Ni 0 .88 Co 0 to 0 .002 O 2 Ba To prepare a positive electrode active material for a lithium secondary battery.

<< 비교예Comparative Example 3> 3>

공침반응에 의하여 NiCoAl(OH)2전구체를 제조하고, 리튬 화합물로서 LiOH만을 첨가하고 제 1 열처리만 시행하여 Li1 .02Ni0 .88Co0 .11Al0 .014O2 로 표시되는 리튬 이차 전지용 양극활물질을 제조하였다.
Producing a NiCoAl (OH) 2 precursor by a coprecipitation reaction, adding only LiOH as the lithium compound, and a first heat treatment performed only by Li 1 .02 Ni 0 .88 Co 0 .11 Al 0 .014 O 2 To prepare a positive electrode active material for a lithium secondary battery.

<< 비교예Comparative Example 4> 4>

공침반응에 의하여 NiCoAl(OH)2 전구체를 제조한 후, 여기에 리튬 화합물로서 LiOH 및 이종 금속으로서 Ba 첨가하고 제 1 열처리하여 Li1 .03Ni0 .90Co0 .08Al0 .014 Ba0.002O2 로 표시되는 리튬 이차 전지용 양극활물질을 제조하였다. NiCoAl by the co-precipitation reaction (OH) After preparing a precursor, Ba added as LiOH, and different metal as the lithium compound herein, and the first heat treatment by Li 1 .03 Ni 0 .90 Co 0 .08 Al 0 .014 Ba 0.002 O &lt; 2 & gt ;.

증류수로 수세한 후, 코발트 수용액으로 코팅을 실시하지 않은 것을 제외하고는 상기 실시예 1-3과 동일하게 하여 리튬 이차 전지용 양극활물질을 제조하였다.
A positive electrode active material for a lithium secondary battery was prepared in the same manner as in Example 1-3, except that the coating was not performed with a cobalt aqueous solution after being rinsed with distilled water.

<< 실험예Experimental Example 1> 미반응 리튬 측정 1> Measurement of unreacted lithium

미반응 리튬의 측정은 pH 적정에 의해 pH 4 가 될 때까지 사용된 0.1M HCl의 양으로 측정한다. 먼저, 양극 활물질 5 g을 DIW 100 ml에 넣고 15 분간 교반 한 뒤 필터링하고, 필터링 된 용액 50 ml를 취한 후 여기에 0.1M HCl을 가하여 pH 변화에 따른 HCl 소모량을 측정하여 도 1과 같이 나타내었다. 도 1에서 Q1, Q2를 결정하고, 아래 계산식에 따라 미반응 LiOH 및 Li2CO3 을 계산하였다. The measurement of unreacted lithium is determined by the amount of 0.1 M HCl used until pH 4 by pH titration. First, 5 g of the cathode active material was added to 100 ml of DIW, stirred for 15 minutes, and filtered. 50 ml of the filtered solution was taken, and 0.1 M HCl was added thereto to measure the consumption of HCl according to the pH change. . In Figure 1 Q1, Q2, and determines, according to the following formula unreacted LiOH and Li 2 CO 3 Respectively.

M1 = 23.94 (LiOH Molecular weight) M1 = 23.94 (LiOH Molecular weight)

M2 = 73.89 (Li2CO3 Molecular weight) M2 = 73.89 (Li 2 CO 3 Molecular weight)

SPL Size = (Sample weight × Solution Weight) / Water Weight SPL Size = (Sample weight × Solution Weight) / Water Weight

LiOH(wt %) = [(Q1-Q2)×C×M1×100]/(SPL Size ×1000)LiOH (wt%) = [(Q1-Q2) x C x M1 x 100] / (SPL Size x 1000)

Li2CO3(wt%)=[2×Q2×C×M2/2×100]/(SPL Size×1000)Li 2 CO 3 (wt%) = [2 x Q 2 x C x M2 / 2 x 100] / (SPL Size x 1000)

이와 같은 방법을 적용하여 상기 실시예 및 비교예에서 제조된 NCA 계열 리튬 복합 산화물에 있어서 미반응 LiOH 및 Li2CO3 의 농도를 측정한 결과는 다음 표 1 과 같다.
The results of measurement of the concentrations of unreacted LiOH and Li 2 CO 3 in the NCA-based lithium composite oxide prepared in the above Examples and Comparative Examples are shown in Table 1 below.

제조된 양극활물질The prepared cathode active material 미반응 Li 측정Measurement of unreacted Li LiOH(ppm)LiOH (ppm) Li2CO3(ppm)Li 2 CO 3 (ppm) total Li(%)total Li (%) 실시예 1-1Example 1-1 Li1 .02Ni0 .88Co0 .11Al0 .014O2 .11 Li 1 .02 Ni 0 .88 Co 0 Al 0 .014 O 2 16301630 14551455 0.01070.0107 실시예 1-2Examples 1-2 Li1 .01Ni0 .89Co0 .09Al0 .014O2 Li 1 .01 Ni 0 .89 Co 0 .09 Al 0 .014 O 2 16681668 13611361 0.01060.0106 실시예 1-3Example 1-3 Li1 .02Ni0 .88Co0 .11Al0 .014Ba0 .002O2 Li 1 .02 Ni 0 .88 Co 0 .11 Al 0 .014 Ba 0 .002 O 2 22302230 14951495 0.01340.0134 비교예 1Comparative Example 1 Li1 .01Ni0 .91Co0 .079Al0 .014O2 Li 1 .01 Ni 0 .91 Co 0 .079 Al 0 .014 O 2 18601860 13501350 0.01140.0114 비교예 2Comparative Example 2 Li1 .01Ni0 .86Co0 .12Al0 .013O2 Co 0 .12 Li 1 .01 Ni 0 .86 Al 0 .013 O 2 15951595 10101010 0.00940.0094 비교예 3Comparative Example 3 Li1 .02Ni0 .88Co0 .11Al0 .014O2 .11 Li 1 .02 Ni 0 .88 Co 0 Al 0 .014 O 2 42504250 60006000 0.03400.0340 비교예 4Comparative Example 4 Li1 .02Ni0 .90Co0 .08Al0 .014Ba0 .002O2 Li 1 .02 Ni 0 .90 Co 0 .08 Al 0 .014 Ba 0 .002 O 2 24002400 23302330 0.01630.0163

상기 표 1에서 증류수로 수세 처리 및 Co 후도핑 공정을 모두 실시하지 않은 비교예 3의 경우 미반응 LiOH 및 Li2CO3가 가장 높게 측정되었으며, 본 발명의 실시예에 의하여 수세 처리 및 Co 후도핑을 실시하는 경우 미반응 LiOH 및 Li2CO3가 감소하는 것을 알 수 있다.
In the case of Comparative Example 3 in which both the water washing treatment with the distilled water and the Co-doping treatment were not performed in Table 1, unreacted LiOH and Li 2 CO 3 were the highest measured. According to the embodiment of the present invention, It can be seen that unreacted LiOH and Li 2 CO 3 decrease.

<< 실험예Experimental Example 2>  2> SEMSEM 사진 측정 및  Photo measurement and EDXEDX 측정 Measure

상기 실시예 1-1에서 제조된 양극활물질의 표면 전체 및 3가지 지점(point) 에 대해서 SEM 사진 및 EDX를 측정한 결과를 도 2 및 표 2에 나타내었다.
SEM photographs and EDX measurements of the entire surface and three points of the cathode active material prepared in Example 1-1 are shown in FIG. 2 and Table 2.

pointpoint 표면 전체Whole surface point 1point 1 point 2point 2 point 3point 3 NiNi 86.486.4 76.476.4 76.476.4 79.479.4 CoCo 11.211.2 20.920.9 20.920.9 10.510.5 AlAl 2.52.5 2.72.7 2.72.7 2.12.1

도 2 및 표 2에서 코발트 수용액으로 코팅하는 경우 표면에서 국부적으로 코발트의 몰분율이 높게 측정되는 지점이 나타나는 것을 알 수 있다.
2 and Table 2, it can be seen that a point where the mole fraction of cobalt is locally high on the surface appears when coating with a cobalt aqueous solution.

<< 실험예Experimental Example 3>  3> XRDXRD 측정 Measure

상기 실시예 1-1과 비교예 1에서 제조된 양극활물질에 대해 XRD 를 측정하고 그 결과를 도 3에 나타내었다. XRD was measured for the cathode active material prepared in Example 1-1 and Comparative Example 1, and the results are shown in FIG.

도 3에서 코발트 수용액으로 코팅을 실시한 실시예 1-1의 경우 표면에서 2θ 가 45°내지 46°사이에서 LiCoO2 피크가 관찰되는 것을 알 수 있다.
In FIG. 3, in Example 1-1 in which the coating was performed with the aqueous solution of cobalt, LiCoO 2 peaks were observed at 45 ° to 46 ° at 2θ on the surface.

<< 실험예Experimental Example 4>  4> 충방전Charging and discharging 특성 평가 Character rating

상기 실시예 1-1, 실시예 1-2, 및 비교예 1, 비교예 2에서 제조된 양극활물질을 각각 양극으로 사용하고, 리튬 금속을 음극으로 사용하여 코인 셀을 제조하고 C/10 충전 및 C/10 방전 속도(1 C = 150 mA/g)로 3 ~ 4.3 V 사이에서 충방전 실험을 수행한 결과를 도 4, 도 5 및 표 3에 나타내었다.
Coin cells were prepared by using the cathode active materials prepared in Examples 1-1, 1-2 and Comparative Examples 1 and 2 as positive electrodes and lithium metal as negative electrodes, 4 and 5 and Table 3 show the results of charging / discharging experiments at a discharge rate of C / 10 (1 C = 150 mA / g) between 3 and 4.3 V. FIG.

구분division 실시예 1-1Example 1-1 실시예 1-2Examples 1-2 비교예 1Comparative Example 1 비교예 2Comparative Example 2
4.3 V ~ 3.0 V

4.3 V to 3.0 V
충전charge mAh/gmAh / g 239.8239.8 240.7240.7 243.3243.3 233.5233.5
방전Discharge 214.5214.5 214.8214.8 211.8211.8 206.1206.1 효율efficiency %% 89.4%89.4% 89.2%89.2% 87.0%87.0% 88.3%88.3%

도 4, 도 5 및 표 3에서 양극활물질 제조 후 수세 과정 및 코발트 수용액으로 코팅한 실시예 1-1, 실시예 1-2의 경우 비교예 1 및 비교예 2에 비해서 충방전 효율이 향상되는 것을 알 수 있다.
4, 5 and Table 3 show that the charging / discharging efficiency is improved as compared with Comparative Example 1 and Comparative Example 2 in Example 1-1 and Example 1-2, which were coated with a water washing process and a cobalt aqueous solution after the preparation of the cathode active material Able to know.

<< 실험예Experimental Example 5>  5> 충방전Charging and discharging 특성 평가 Character rating

이종 금속으로서 Ba 을 도핑한 상기 실시예 1-3 및 비교예 4의 양극활물질을 각각 양극으로 사용하고, 리튬금속을 음극으로 사용한 코인 셀에 대해서 상기와 동일하게 충방전 실험을 수행하고, 그 결과를 표 4 및 도 6에 나타내었다.Charge-discharge experiments were carried out on the coin cells using lithium metal as the anode and the cathode active materials of Examples 1-3 and Comparative Example 4 doped with Ba as the dissimilar metals as the anode and the cathode Are shown in Table 4 and FIG.

구분division 실시예 1-3Example 1-3 비교예 4Comparative Example 4
4.3 V ~ 3.0 V

4.3 V to 3.0 V
충전charge mAh/g
mAh / g
234.1234.1 239.2239.2
방전Discharge 213.9213.9 211.1211.1 효율efficiency %% 91.4%91.4% 83.3%83.3%

상기 표 4에서 이종 금속 Ba을 도핑하고 Co로 코팅, 열처리한 실시예 1-3의 경우 충방전 효율이 크게 향상되는 것을 확인할 수 있다.
In Table 4, it can be seen that the charge-discharge efficiency is greatly improved in Examples 1-3 in which different metal Ba is doped and coated with Co and heat-treated.

<< 실험예Experimental Example 6> C- 6> C- raterate 측정 결과 Measurement result

상기 실험예 4에서 제조된 실시예 1-1 및 비교예 1, 비교예 2의 양극활물질을 포함하는 코인 셀에 대해서 c-rate를 측정하고 그 결과를 표 5에 나타내었다. The c-rate of the coin cell including the cathode active material of Example 1-1, Comparative Example 1, and Comparative Example 2 prepared in Experimental Example 4 was measured, and the results are shown in Table 5.

ItemItem 실시예 1-1Example 1-1 비교예 1Comparative Example 1 비교예 2Comparative Example 2 DCH, mAh/gDCH, mAh / g 0.1 C0.1 C 214.5214.5 211.8211.8 206.1206.1 0.2 C0.2 C 208.0208.0 203.8203.8 199.1199.1 0.5 C0.5 C 199.5199.5 195.1195.1 189.8189.8 1.0 C1.0 C 192.7192.7 188.7188.7 182.4182.4 1.5 C1.5 C 188.3188.3 183.2183.2 177.4177.4 2.0 C2.0 C 184.8184.8 178.6178.6 173.2173.2 Retention, %Retention,% 0.1 C0.1 C 100%100% 100%100% 100%100% 0.2 C0.2 C 97.0%97.0% 96.2%96.2% 96.6%96.6% 0.5 C0.5 C 93.0%93.0% 92.1%92.1% 92.1%92.1% 1.0 C1.0 C 89.8%89.8% 89.1%89.1% 88.5%88.5% 1.5 C1.5 C 87.8%87.8% 86.5%86.5% 86.1%86.1% 2.0 C2.0 C 86.2%86.2% 84.3%84.3% 84.0%84.0%

<< 실험예Experimental Example 7> 저장 안정성 -  7> Storage stability - SlurrySlurry 점도 측정 Viscosity measurement

실시예 1-1 및 비교예 3의 양극활물질을 도전재 및 바인더와 93:3:3의 비율로 혼합하고 상온에서 3 일간 보관하면서 점도의 변화를 측정하여 슬러리 점도를 측정하였으며, 그 결과를 도 7에 나타내었다. The cathode active materials of Example 1-1 and Comparative Example 3 were mixed with a conductive material and a binder in a ratio of 93: 3: 3, and the viscosity of the slurry was measured while changing the viscosity at room temperature for 3 days. 7.

도 7에서 비교예 3의 경우 점도가 급격하게 증가하여 실시예 1-1 이 비교예 3 보다 슬러리 점도가 개선되는 것을 알 수 있다.
7, the viscosity of Comparative Example 3 increased sharply, indicating that the slurry viscosity of Example 1-1 was improved compared with Comparative Example 3.

<< 실시예Example 2>  2> NCMNCM 계열의  Family 양극활물질Cathode active material 제조 Produce

NCM 계열의 양극활물질을 제조하기 위하여 먼저 공침반응에 의하여 NiCoMn(OH)2전구체를 제조하였다. 리튬 화합물로서 LiOH를 첨가하고 제 1 열처리하여 Li1 .0Ni0 .85Co0 .10Mn0 .05O2로 표시되는 리튬 이차 전지용 양극활물질을 제조하였다. 증류수를 준비하고, 온도를 일정하게 유지한 후, 상기 제조된 리튬 이차 전지용 양극활물질을 증류수에 투입하여 온도를 유지시켜서 수세하고, 다시 코발트 수용액을 일정한 비율로 1시간 동안 투입하면서 교반하여 양극활물질의 표면을 코팅하였다. 이후 양극활물질을 증류수로 수세하고 진공에서 150 ℃에서 건조시킨 후, 500 ℃에서 제 2 열처리하여 코발트 함량이 증가된 리튬 이차 전지용 Li1.0Ni0.83Co0.12Mn0.049O2 양극활물질을 제조하였다.
To prepare NCM series cathode active material, NiCoMn (OH) 2 precursor was first prepared by coprecipitation reaction. Was added LiOH as a lithium compound to prepare a first heat treatment to a lithium secondary battery positive electrode active material represented by Li 1 .0 Ni 0 .85 Co 0 .10 Mn 0 .05 O 2. After the distilled water was maintained at a constant temperature, the prepared cathode active material for a lithium secondary battery was charged into distilled water, and the mixture was washed with water while being maintained at a temperature. Again, the cobalt aqueous solution was stirred at a constant rate for 1 hour while stirring, The surface was coated. Thereafter, the cathode active material was washed with distilled water, dried at 150 ° C. in a vacuum, and then subjected to a second heat treatment at 500 ° C. to produce Li 1.0 Ni 0.83 Co 0.12 Mn 0.049 O 2 cathode active material for a lithium secondary battery having an increased cobalt content.

<< 비교예Comparative Example 5> 5>

실시예 2 와 동일하게 하여 Li1 .0Ni0 .85Co0 .10Mn0 .05O2로 표시되는 리튬 이차 전지용 양극활물질을 제조한 후, 코발트 코팅을 실시하지 않고 비교예 5로 하였다.
Example 2 after the same manner as to prepare a lithium secondary battery positive electrode active material represented by Li 1 .0 Ni 0 .85 Co 0 .10 Mn 0 .05 O 2, does not have a cobalt coating was determined as Comparative Example 5.

<< 실험예Experimental Example 8> 초기  8> Initial 충방전Charging and discharging 특성 평가 Character rating

상기 실시예 2 및 비교예 5에서 제조된 양극활물질을 각각 양극으로 사용하고, 리튬 금속을 음극으로 사용하여 코인 셀을 제조하고 C/10 충전 및 C/10 방전 속도(1 C = 150 mA/g)로 3.0 내지 4.3 V 사이에서 충방전 실험을 수행한 결과를 도 8 및 표 6에 나타내었다. Coin cells were prepared using the cathode active materials prepared in Example 2 and Comparative Example 5 as positive electrodes and lithium metal as negative electrodes, respectively, and C / 10 charging and C / 10 discharge rates (1 C = 150 mA / ) And 3.0 to 4.3 V, respectively. The results are shown in FIG. 8 and Table 6.

구분division 실시예 2Example 2 비교예 5Comparative Example 5
4.3 V ~ 3.0 V

4.3 V to 3.0 V
충전charge mAh/g
mAh / g
231.1231.1 235.4235.4
방전Discharge 210.3210.3 204.2204.2 효율efficiency %% 91.0%91.0% 86.7%86.7%

도 8 및 표 6에서 양극활물질 제조 후 수세 과정을 통해 잔류 리튬을 감소시키고, 코발트 수용액으로 표면을 코팅한 실시예 2의 경우 수세 과정만 실시한 비교예 5에 비해서 초기 충방전 효율이 향상되는 것을 알 수 있다.
8 and Table 6 show that the initial charge and discharge efficiency was improved as compared with Comparative Example 5 in which the residual lithium was reduced through the flushing process after the preparation of the cathode active material and the surface was coated with the cobalt aqueous solution, .

<< 실험예Experimental Example 9> C- 9> C- raterate 측정 결과 Measurement result

상기 실험예 8에서 제조된 양극활물질을 포함하는 코인 셀에 대해서 c-rate 를 측정하고 그 결과를 도 9 및 표 7에 나타내었다.
The c-rate of the coin cell including the cathode active material prepared in Experimental Example 8 was measured, and the results are shown in FIG. 9 and Table 7. FIG.

ItemItem 실시예 2Example 2 비교예 4Comparative Example 4 DCH, mAh/gDCH, mAh / g 0.1 C0.1 C 209.7209.7 204.3204.3 0.2 C0.2 C 204.3204.3 198.7198.7 0.5 C0.5 C 196.9196.9 190.8190.8 1.0 C1.0 C 190.8190.8 184.3184.3 1.5 C1.5 C 186.1186.1 179.0179.0 2.0 C2.0 C 183.1183.1 173.2173.2 Retention, %Retention,% 0.1 C0.1 C 100%100% 100%100% 0.2 C0.2 C 97.4%97.4% 97.2%97.2% 0.5 C0.5 C 93.9%93.9% 93.4%93.4% 1.0 C1.0 C 91.0%91.0% 90.2%90.2% 1.5 C1.5 C 88.8%88.8% 87.6%87.6% 2.0 C2.0 C 87.3%87.3% 84.8%84.8%

<< 실험예Experimental Example 10> 저장안정성 - 임피던스 측정 결과 10> Storage stability - Impedance measurement result

상기 실시예 1-1, 실시예 1-3 및 비교예 1에서 제조된 전지에 대해 60 ℃ 고온 에서 7일간 보관한 후, 저장 전후의 임피던스의 변화를 측정하여 그 결과를 도 10 내지 도 12에 나타내었다. The batteries prepared in Examples 1-1 and 1-3 and Comparative Example 1 were stored at a high temperature of 60 ° C. for 7 days, and the change in impedance before and after storage was measured. The results are shown in FIGS. 10 to 12 Respectively.

도 10 내지 도 12에서 본 발명에 의하여 제조된 양극활물질을 포함하는 전지의 경우 저장 전 비교예 1에 비하여 측정된 임피던스가 작을 뿐만 아니라, 저장 후 임피던스 증가량이 비교예 1에 비하여 작다는 것을 알 수 있다.
10 to 12, it can be seen that the battery including the cathode active material prepared according to the present invention has a smaller measured impedance than that of Comparative Example 1 before storage and an increase in impedance after storage compared to Comparative Example 1 have.

<< 실시예Example 3>  3> NCANCA 계열의  Family 양극활물질Cathode active material 제조 Produce

공침반응에 의하여 아래 표 8 과 같은 조성의 NixCoyAlz(OH)2전구체를 제조하였다. 리튬 화합물로서 LiOH 및 이종금속으로서 Ba, Mg, Ti, B 등을 첨가하고 제 1 열처리하여 리튬 이차 전지용 양극활물질을 제조하였다. A precursor of Ni x Co y Al z (OH) 2 having the composition shown in Table 8 below was prepared by coprecipitation reaction. LiOH as a lithium compound and Ba, Mg, Ti, B as a dissimilar metal were added and subjected to a first heat treatment to prepare a cathode active material for a lithium secondary battery.

Figure 112013101737221-pat00001
Figure 112013101737221-pat00001

증류수를 준비하고, 온도를 일정하게 유지한 후, 상기 제조된 리튬 이차전지용 양극활물질을 증류수에 투입하여 온도를 유지시키며 수세하였다. 수세 시 코팅하고자 하는 Co, P, F의 수용성 원료를 30 분 ~ 1 시간 동안 투입하면서 교반하여 양극활물질의 표면을 상기 표 8에서와 같이 코팅하였다.Distilled water was prepared and maintained at a constant temperature. Then, the prepared cathode active material for a lithium secondary battery was put into distilled water to maintain the temperature and was washed with water. The water-soluble raw materials of Co, P, and F to be coated at the time of washing were stirred for 30 minutes to 1 hour, and the surface of the cathode active material was coated as shown in Table 8 above.

이후 수세 및 코팅된 물질을 150 ℃ 진공에서 건조시킨 후 700 내지 850 ℃에서 2차 열처리하여 리튬 이차전지용 양극활물질을 제조하였다. The washed and coated materials were dried in a vacuum of 150 캜 and then subjected to a second heat treatment at 700 to 850 캜 to prepare a cathode active material for a lithium secondary battery.

비교예 3-1은 수세 및 금속의 후 도입을 모두 하지 않았고, 비교예 3-2 내지 3-5 및 실시예 3-11 내지 3-13은 수세는 하였으나 금속의 후 도입을 하지 않았다. In Comparative Example 3-1, neither water nor metal was introduced at all. In Comparative Examples 3-2 to 3-5 and Examples 3-11 to 3-13, the water was washed, but no metal was introduced.

<< 실험예Experimental Example 11> 미반응 리튬 측정  11> Measurement of unreacted lithium

상기 실험예 1 과 동일한 방법으로 pH 변화에 따른 HCl 소모량을 측정하고, Q1, Q2를 결정하고, 아래 계산식에 따라 미반응 LiOH 및 Li2CO3을 계산하고 아래 표 9에 나타내었다.
Experimental Example 1, and measuring the consumption of HCl according to the pH change in the same way, and Q1, Q2, and determines, was calculated unreacted LiOH and Li 2 CO 3, and are shown in Table 9 below according to the following formula.

Figure 112013101737221-pat00002
Figure 112013101737221-pat00002

상기 실시예 3-2, 실시예 3-4 및 비교예 3-1에 대해 pH 변화에 따른 HCl 소모량을 측정하고 그 결과를 도 13에 나타내었다. 도 13에서 수세를 하지 않은 비교예 3-1에 비해, 수세 및 금속 코팅을 한 상기 실시예 3-2, 실시예 3-4에서 잔류 리튬이 크게 감소되는 것을 확인할 수 있다.
The consumption of HCl according to the pH change was measured for Example 3-2, Example 3-4 and Comparative Example 3-1, and the results are shown in FIG. It can be confirmed that the residual lithium was significantly reduced in Examples 3-2 and 3-4, which were subjected to water washing and metal coating, as compared with Comparative Example 3-1 in which no rinsing was performed in Fig.

<< 실험예Experimental Example 12>  12> 충방전Charging and discharging 특성 평가 Character rating

상기 실시예 3-1 내지 3-29에서 제조된 양극활물질을 양극으로 사용하고, 리튬 금속을 음극으로 사용하여 각각의 코인 셀을 제조하고 C/10 충전 및 C/10 방전 속도(1 C = 150 mA/g)로 3 ~ 4.3 V 사이에서 충방전 실험을 수행한 결과를 도 14 및 상기 표 9에 나타내었다. Each of the coin cells was prepared by using the cathode active material prepared in Examples 3-1 to 3-29 as an anode and lithium metal as a cathode, and a C / 10 charge and a C / 10 discharge rate (1 C = 150 mA / g) were subjected to a charge-discharge test at a voltage of 3 to 4.3 V. The results are shown in FIG. 14 and Table 9.

도 14에서 금속의 후 도입이 없는 비교예 3-2 에 비해 Al이 후도입된 실시예 3-10의 저장 후 C-rate 결과가 우수한 것을 확인할 수 있다. Al, B 및 Ti를 후 도입한 실시예 3-18은 후 도입을 적용하지 않은 비교예 3-2와 Al을 후 도입한 실시예 3-10 보다 저장 후 C-rate 특성이 더 우수하게 나타난 것을 확인하였다.
14, it can be confirmed that the C-rate result after storage of Example 3-10 in which Al was introduced in comparison with Comparative Example 3-2 in which there is no post-introduction of the metal is superior. Example 3-18 in which Al, B and Ti were introduced later showed better C-rate characteristics after storage than in Comparative Example 3-2 in which post-introduction was not applied and in Example 3-10 in which Al was introduced Respectively.

<< 실험예Experimental Example 13> 저장 후 C- 13> After storage, C- raterate 및 임피던스 측정 결과 And impedance measurement results

상기 실시예 3-1 내지 3-29 에서 제조된 양극활물질을 각각 양극으로 포함하는 코인 셀에 대해서 저장 후 임피던스를 측정하고 그 결과를 표 9 및 도 14에 나타내었다. 도 14에서 후도입을 하지 않은 비교예 3-2에 비해 Al이 후 도입된 실시예 3-10의 저장 후 임피던스가 감소한 것을 확인할 수 있다.The impedance of the coin cell including the positive electrode active material prepared in each of Examples 3-1 to 3-29 as an anode was measured after storage and the results are shown in Table 9 and FIG. 14, it can be seen that the impedance after storage of Example 3-10 in which Al was introduced is decreased as compared with Comparative Example 3-2 in which Al was not introduced.

또한, 위의 저장 후 c-rate 특성 결과와 마찬가지로 Al, B 및 Ti를 후 도입한 실시예 3-18은 이종 금속을 후 도입을 하지 않은 비교예 3-2와 Al만을 후 도입한 실시예 3-10 보다 저장 후 임피던스가 더 낮게 측정되었다.
In addition, in Example 3-18 in which Al, B, and Ti were introduced after the above-mentioned storage results as in the case of the c-rate characteristic results, in Comparative Example 3-2 in which the dissimilar metals were not introduced afterward and in Example 3 Impedance after storage was measured lower than -10.

<< 실험예Experimental Example 14> 수명 특성 측정 14> Measurement of lifetime characteristics

상기 실시예 3-1 내지 3-29 에서 제조된 양극활물질을 각각 양극으로 포함하는 코인 셀에 대해서 수명 특성을 측정하고 그 결과를 상기 표 9 및 도 15 에 나타내었다. The life characteristics of the coin cells including the positive electrode active materials prepared in Examples 3-1 to 3-29 as anodes were measured and the results are shown in Table 9 and FIG.

도 15에서 Al 후 도입을 적용한 실시예 3-1과 실시예 3-10이 수세 후 이종 금속을 후도입하지 않은 비교예 3-2에 비해 수명 특성이 개선되는 것을 확인할 수 있다. Ti doping 및 Al과 B의 후 도입을 적용한 실시예 3-16은 후 도입을 적용하지 않은 비교예 3-2보다 우수한 수명 특성을 보이며, Al 후 도입을 적용한 실시예 3-1과 실시예 3-10 보다 수명 특성이 우수하게 나타났다.
It can be seen that the life characteristics are improved in Examples 15-1 and 15-2 in which the Al-doped introduction is applied in FIG. 15 and in Comparative Example 3-2 in which the dissimilar metal is not introduced after the water washing. Example 3-16, in which Ti doping and post-introduction of Al and B were applied, showed better lifetime characteristics than Comparative Example 3-2 in which post-introduction was not applied, and Example 3-1 and Example 3- 10.

<< 실험예15Experimental Example 15 > 열 안정성 특성 측정> Measurement of thermal stability properties

상기 실시예 3-1 내지 3-29에서 제조된 양극활물질을 각각 양극으로 포함하는 코인 셀에 대해 열 안정성을 평가하기 위해서 DSC 피크 온도를 측정하고 그 결과를 상기 표 9 및 도 16에 나타내었다.DSC peak temperatures were measured to evaluate the thermal stability of the coin cells comprising the positive electrode active materials prepared in Examples 3-1 to 3-29 as positive electrodes, and the results are shown in Table 9 and FIG.

도 16에서 Al 후도입을 실시하지 않은 비교예 3-2에 비하여 Al을 1 mol% 후도입한 실시예 3-7의 피크 온도가 더 높아 우수한 열 안정성을 나타냄을 확인할 수 있으며 Al을 2 mol% 후 도입한 실시예 3-21은 더 우수한 열적 안정성을 보이는 것으로 확인되었다.The peak temperature of Example 3-7 in which Al was introduced after 1 mol% was higher than that in Comparative Example 3-2 in which Al was not introduced in FIG. 16, It was confirmed that Example 3-21, which was introduced at a later stage, exhibited better thermal stability.

Claims (9)

아래 화학식 1로 표시되는 리튬 이차 전지용 양극활물질 전구체를 제조하는 제 1 단계;
[화학식 1] Nia1Cob1Xc1(OH)2
(상기 화학식 1에서 X 는 Mn 또는 Al 이고, 0.7≤a1≤0.95, 0.05≤b1≤0.25, 0.01≤c1≤0.05, 2.8≤a1/b1≤19)
상기 양극활물질 전구체를 리튬 화합물과 반응시키고 제 1 열처리하여 양극활물질을 제조하는 제 2 단계;
상기 양극활물질을 증류수 또는 알칼리 수용액으로 수세하는 제 3 단계;
상기 수세된 양극활물질을 Co, Al, B, Ba, Cr, F, Li, Mo, P, Sr, Ti 및 Zr 으로 이루어진 그룹에서 선택되는 금속 Y1 을 포함하는 용액과 반응시키는 제 4 단계;
상기 양극활물질 입자를 건조시키는 제 5 단계;
건조된 양극활물질을 Co, Al, B, Ba, Cr, F, Li, Mo, P, Sr, Ti 및 Zr 으로 이루어진 그룹에서 선택되는 금속 Y2 를 포함하는 화합물과 반응시키는 제 6 단계; 및
상기 건조된 양극활물질을 제 2 열처리하여 상기 Co, Al, B, Ba, Cr, F, Li, Mo, P, Sr, Ti 및 Zr 으로 이루어진 그룹에서 선택되는 금속 Y2 를 입자 내부로 도핑시키는 제 7 단계;로 구성되는,
아래 화학식 2로 표시되는 리튬 이차 전지용 양극활물질의 제조 방법.
[화학식2] LiNia2Cob2Xc2Y1d1Y2d2O2
(상기 화학식 2에서 X는 Mn, Al 혹은 두 원소의 합이고, Y1, Y2 는 Co, Al, B, Ba, Cr, F, Li, Mo, P, Sr, Ti 및 Zr 으로 이루어진 그룹에서 선택되는 금속이고, 0.50≤a2≤0.95, 0.02≤b2≤0.25, 0.01≤c2≤0.20, 0.01≤d1≤0.20, 0.01≤d2≤0.20, 2≤a2/b2≤20)
A first step of preparing a precursor of a cathode active material for a lithium secondary battery represented by the following Chemical Formula 1;
???????? Ni a1 Co b1 X c1 (OH) 2 ?????
(And in Formula 1 X is Mn or Al, 0.7≤a 1 ≤0.95, 0.05≤b 1 ≤0.25, 0.01≤c 1 ≤0.05, 2.8≤a 1 / b 1 ≤19)
A second step of reacting the cathode active material precursor with a lithium compound and subjecting the precursor to a first heat treatment to produce a cathode active material;
A third step of washing the cathode active material with distilled water or alkaline aqueous solution;
A fourth step of reacting the washed positive electrode active material with a solution containing a metal Y1 selected from the group consisting of Co, Al, B, Ba, Cr, F, Li, Mo, P, Sr, Ti and Zr;
A fifth step of drying the cathode active material particles;
A sixth step of reacting the dried cathode active material with a compound containing a metal Y2 selected from the group consisting of Co, Al, B, Ba, Cr, F, Li, Mo, P, Sr, Ti and Zr; And
The dried cathode active material is subjected to a second heat treatment to form a seventh conductive film which is doped with a metal Y2 selected from the group consisting of Co, Al, B, Ba, Cr, F, Li, Mo, P, Sr, Comprising:
A method for producing a cathode active material for a lithium secondary battery,
[Chemical Formula 2] LiNi Co a2 b2 c2 X Y1 Y2 d2 d1 O 2
(Wherein X is a sum of Mn, Al or two elements and Y1 and Y2 are selected from the group consisting of Co, Al, B, Ba, Cr, F, Li, Mo, P, Sr, Ti and Zr metal and, 0.50≤a 2 ≤0.95, 0.02≤b 2 ≤0.25 , 0.01≤c 2 ≤0.20, 0.01≤d1≤0.20, 0.01≤d2≤0.20, 2≤a 2 / b 2 ≤20)
제 1 항에 있어서,
상기 제 4 단계 내지 제 7 단계에서 Co, Al, B, Ba, Cr, F, Li, Mo, P, Sr, Ti 및 Zr으로 이루어진 그룹에서 선택되는 금속 Y1, Y2 의 도핑량이 1 내지 20 mol% 인 리튬 이차 전지용 양극활물질의 제조 방법.
The method according to claim 1,
The doping amount of the metals Y1 and Y2 selected from the group consisting of Co, Al, B, Ba, Cr, F, Li, Mo, P, Sr, Ti and Zr is 1 to 20 mol% Wherein the positive electrode active material is a lithium secondary battery.
제 1 항에 있어서,
상기 제 2 단계에서 상기 양극활물질 전구체를 리튬 화합물과 반응시킬 때 Ca, Mg, Ba, Ti, Zr, B 및 Sr 으로 이루어진 그룹에서 선택되는 물질을 더 첨가하는 것을 특징으로 하는 리튬 이차 전지용 양극활물질의 제조 방법.
The method according to claim 1,
Wherein when the cathode active material precursor is reacted with the lithium compound in the second step, a material selected from the group consisting of Ca, Mg, Ba, Ti, Zr, B, and Sr is further added to the cathode active material precursor. Gt;
제 1 항에 있어서,
상기 제 2 단계에서 제 1 열처리는 700 내지 850 ℃ 에서 6 시간 내지 20 시간 동안 열처리 되는 것인 리튬 이차 전지용 양극활물질의 제조 방법.
The method according to claim 1,
Wherein the first heat treatment in the second step is performed at 700 to 850 캜 for 6 to 20 hours.
제 1 항에 있어서,
상기 제 5 단계에서 건조는 100 내지 250 ℃ 에서 1 시간 내지 10 시간 동안 건조시키는 것인 리튬 이차 전지용 양극활물질의 제조 방법.
The method according to claim 1,
Wherein the drying is performed at 100 to 250 ° C for 1 to 10 hours in the fifth step.
제 1 항에 있어서,
상기 제 7 단계에서 제 2 열처리는 300 내지 800 ℃ 에서 1 시간 내지 10 시간 동안 열처리 되는 것인 리튬 이차 전지용 양극활물질의 제조 방법.
The method according to claim 1,
And the second heat treatment in the seventh step is a heat treatment at 300 to 800 ° C for 1 hour to 10 hours.
제 1 항 내지 제 6 항 중 어느 하나의 제조 방법에 의하여 제조된 리튬 이차 전지용 양극활물질.
A cathode active material for a lithium secondary battery produced by the method of any one of claims 1 to 6.
제 7 항에 있어서,
상기 리튬 이차 전지용 양극활물질은 미반응 LiOH 가 0.25 중량% 이하, 미반응 Li2CO3 가 0.30 중량% 이하인 것을 특징으로 하는 리튬 이차 전지용 양극활물질.
8. The method of claim 7,
The positive electrode active material for a lithium secondary battery is characterized in that unreacted LiOH accounts for 0.25 wt% or less, unreacted Li 2 CO 3 Is 0.30% by weight or less based on the total weight of the positive electrode active material for lithium secondary battery.
제 7 항에 있어서,
상기 리튬 이차 전지용 양극활물질은 XRD 측정시 2θ 가 45°내지 46°사이에서 LiCoO2 해당 피크를 나타내는 것을 특징으로 하는 리튬 이차 전지용 양극활물질.
8. The method of claim 7,
Wherein the cathode active material for lithium secondary batteries exhibits a peak corresponding to LiCoO 2 at 2? Between 45 and 46 when XRD is measured.
KR1020130135106A 2012-12-13 2013-11-08 Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same KR101567039B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120145186 2012-12-13
KR20120145186 2012-12-13

Publications (2)

Publication Number Publication Date
KR20140081663A KR20140081663A (en) 2014-07-01
KR101567039B1 true KR101567039B1 (en) 2015-11-10

Family

ID=51732910

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130135106A KR101567039B1 (en) 2012-12-13 2013-11-08 Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same

Country Status (1)

Country Link
KR (1) KR101567039B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021015535A1 (en) * 2019-07-22 2021-01-28 주식회사 엘지화학 Lithium secondary battery

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102176654B1 (en) * 2014-12-22 2020-11-09 (주)포스코케미칼 Process for the production of lithium complex oxide and lithium complex oxide made by the same, and lithium ion batteries comprising the same
KR102436423B1 (en) * 2015-03-12 2022-08-25 삼성에스디아이 주식회사 Electrolyte for lithium battery and lithium battery including the electrolyte
KR101982790B1 (en) 2015-10-20 2019-05-27 주식회사 엘지화학 Positive Electrode Active Material Comprising Layered Lithium Metal Oxides and Positive Electrode having the Same
KR102473532B1 (en) 2015-12-31 2022-12-05 삼성전자주식회사 Positive active material, and positive electrode and lithium battery containing the material
KR102510885B1 (en) 2015-12-31 2023-03-16 삼성에스디아이 주식회사 Composite cathode active material, cathode and lithium battery containing composite cathode active material and preparation method thereof
KR102334080B1 (en) * 2016-02-08 2021-12-01 가부시키가이샤 무라타 세이사쿠쇼 Positive electrode active material for secondary battery, positive electrode for secondary battery, secondary battery, battery pack, electric vehicle, electric power storage system, power tool and electronic device
TWI633692B (en) * 2016-03-31 2018-08-21 烏明克公司 Lithium ion battery for automotive application
KR102665407B1 (en) * 2016-04-15 2024-05-09 삼성에스디아이 주식회사 Positive active material for rechargeable lithium battery and rechargeable lithium battery including same
KR102665406B1 (en) * 2016-04-15 2024-05-09 삼성에스디아이 주식회사 Positive active material for rechargeable lithium battery and rechargeable lithium battery including same
KR102665408B1 (en) * 2016-04-15 2024-05-09 삼성에스디아이 주식회사 Positive active material for rechargeable lithium battery and rechargeable lithium battery including same
KR101875868B1 (en) * 2016-07-11 2018-07-06 주식회사 에코프로비엠 Lithium complex oxide for lithium secondary battery positive active material and a method of preparing the same
US10693136B2 (en) * 2016-07-11 2020-06-23 Ecopro Bm Co., Ltd. Lithium complex oxide for lithium secondary battery positive active material and method of preparing the same
EP3490041A4 (en) * 2016-07-22 2020-01-08 Umicore Lithium metal composite oxide powder
KR101912202B1 (en) * 2016-08-02 2018-10-26 주식회사 에코프로비엠 Lithium complex oxide for lithium secondary battery positive active material and a method of preparing the same
US10903490B2 (en) 2016-08-02 2021-01-26 Ecopro Bm Co., Ltd. Lithium complex oxide for lithium secondary battery positive active material and method of preparing the same
KR101874340B1 (en) * 2016-08-02 2018-07-05 주식회사 에코프로비엠 Lithium complex oxide for lithium secondary battery positive active material and a method of preparing the same
PL3279977T3 (en) 2016-08-02 2020-08-24 Ecopro Bm Co., Ltd. Lithium complex oxide for lithium secondary battery positive active material and a method of preparing the same
EP3279978B1 (en) * 2016-08-02 2020-08-19 Ecopro Bm Co., Ltd. Lithium complex oxide for lithium secondary battery positive active material and method of preparing the same
HUE055988T2 (en) * 2016-08-02 2022-01-28 Ecopro Bm Co Ltd Lithium complex oxide for lithium secondary battery positive active material and a method of preparing the same
KR20180022161A (en) 2016-08-23 2018-03-06 삼성에스디아이 주식회사 Positive active material for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
KR20180023732A (en) 2016-08-26 2018-03-07 삼성에스디아이 주식회사 Composite positive electrode active material for lithium ion battery, preparing method thereof, and lithium ion battery including positive electrode comprising the same
KR101897365B1 (en) * 2016-11-23 2018-09-10 울산과학기술원 Positive active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
KR102081858B1 (en) * 2016-12-02 2020-02-26 주식회사 엘지화학 Positive electrode active material precursor for secondary battery and positive electrode active material for secondary battery prepared by using the same
CN110050367B (en) * 2016-12-05 2023-09-12 浦项股份有限公司 Positive electrode active material, method of preparing the same, and lithium secondary battery including the same
KR101919531B1 (en) * 2016-12-22 2018-11-16 주식회사 포스코 Cathode active material, method for manufacturing the same, and lithium ion battery including the same
KR102117621B1 (en) * 2016-12-28 2020-06-02 주식회사 엘지화학 Positive electrode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery including the same
KR102534607B1 (en) * 2016-12-28 2023-05-22 주식회사 엘지에너지솔루션 Positive electrode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery including the same
KR20180076647A (en) * 2016-12-28 2018-07-06 주식회사 엘지화학 Positive electrode active material for secondary battery, method for producing the same, positive electrode and secondary battery comprising the same
KR102086100B1 (en) * 2017-03-31 2020-03-06 (주)포스코케미칼 Manufacturing method of metal coated cathode active material And cathode active material made by the same
CN107243646A (en) * 2017-06-08 2017-10-13 桂林电子科技大学 A kind of high-ratio surface Co B alloy nano pieces and preparation method and application
KR102207523B1 (en) * 2017-06-21 2021-01-25 주식회사 엘지화학 Lithium secondary battery
CN107768619B (en) * 2017-09-26 2020-04-28 格林美(无锡)能源材料有限公司 High-capacity single-crystal high-nickel lithium battery positive electrode material and preparation method thereof
KR102165118B1 (en) 2017-10-26 2020-10-14 주식회사 엘지화학 Positive electrode active material for secondary battery, method for preparing the same and lithium secondary battery comprising the same
KR20190055700A (en) * 2017-11-15 2019-05-23 주식회사 에코프로비엠 Cathode Active Material for Lithium Secondary Battery and Lithium Secondary Battery Comprising the Same
PL3486220T3 (en) * 2017-11-15 2021-03-08 Ecopro Bm Co., Ltd. Cathode active material for lithium secondary battery and lithium secondary battery including the same
JP7289058B2 (en) 2017-11-17 2023-06-09 パナソニックIpマネジメント株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP7209714B2 (en) * 2017-11-22 2023-01-20 エー123 システムズ エルエルシー Method, method of forming cathode material
CN108134069A (en) * 2017-12-26 2018-06-08 深圳市贝特瑞纳米科技有限公司 A kind of composite modifying method of anode material for lithium-ion batteries
KR102010929B1 (en) * 2017-12-26 2019-08-16 주식회사 포스코 Positive electrode active material for rechargable lithium battery, and rechargable lithium battery including the same
CN111542496B (en) * 2018-02-28 2024-03-26 株式会社Lg化学 Positive electrode active material for secondary battery, method for preparing same, and lithium secondary battery comprising same
WO2019194609A1 (en) * 2018-04-04 2019-10-10 주식회사 엘지화학 Method for manufacturing cathode active material for lithium secondary battery, cathode active material for lithium secondary battery, cathode, comprising same, for lithium secondary battery, and lithium secondary battery comprising same
KR102313092B1 (en) * 2018-04-04 2021-10-18 주식회사 엘지화학 Method of manufacturing positive electrode active material for lithium secondary battery, positive electrode active material for lithium secondary, positive electrode for lithium secondary and lithium secondary comprising the same
KR102398689B1 (en) 2018-04-06 2022-05-17 주식회사 엘지에너지솔루션 Positive electrode active material for lithium secondary battery, preparing method of the same, positive electrode and lithium secondary battery including the same
US20210234164A1 (en) * 2018-05-04 2021-07-29 Lg Chem, Ltd. Method of Washing Positive Electrode Active Material, and Positive Electrode Active Material Prepared Thereby
KR102288293B1 (en) * 2018-06-20 2021-08-10 주식회사 엘지화학 Positive electrode active material for lithium secondary battery and lithium secondary battery
KR102177041B1 (en) * 2018-09-28 2020-11-10 주식회사 포스코 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
CN111180690B (en) * 2019-12-30 2021-11-26 北京当升材料科技股份有限公司 Modified nickel-cobalt lithium aluminate anode material and preparation method and application thereof
KR20220064792A (en) 2020-11-12 2022-05-19 현대자동차주식회사 Cathode active material mixing method
CN113845099B (en) * 2021-06-30 2024-04-26 南京邮电大学 Method for preparing CoSP sodium-electricity negative electrode material by arc discharge technology

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040382A (en) 2008-08-06 2010-02-18 Sony Corp Method of manufacturing positive electrode active material, and positive electrode active material
JP2012230898A (en) 2011-04-14 2012-11-22 Toda Kogyo Corp Li-Ni COMPLEX OXIDE PARTICLE POWDER, METHOD FOR MANUFACTURING THE SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040382A (en) 2008-08-06 2010-02-18 Sony Corp Method of manufacturing positive electrode active material, and positive electrode active material
JP2012230898A (en) 2011-04-14 2012-11-22 Toda Kogyo Corp Li-Ni COMPLEX OXIDE PARTICLE POWDER, METHOD FOR MANUFACTURING THE SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021015535A1 (en) * 2019-07-22 2021-01-28 주식회사 엘지화학 Lithium secondary battery

Also Published As

Publication number Publication date
KR20140081663A (en) 2014-07-01

Similar Documents

Publication Publication Date Title
KR101567039B1 (en) Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same
KR101550741B1 (en) Manufacturing method of positive active material for lithium rechargeable batteries and positive active material made by the same
JP4000041B2 (en) Positive electrode active material for lithium secondary battery
KR101746187B1 (en) Positive electrode active material for rechargable lithium battery, and rechargable lithium battery including the same
KR101892612B1 (en) Manufacturing method of cathod active material for lithium rechargeable batteries and cathod active material for lithium rechargeable batteries made by the same
KR101473322B1 (en) Cathode active material and cathode and lithium battery containing the material
KR101612601B1 (en) Cathod active material for lithium rechargeable battery
CN103490051B (en) One is applicable to high-tension multielement cathode lithium electric material and preparation method thereof
KR101378580B1 (en) Cathod active material, lithium rechargeble battery including the same, and method of activiting the same
KR101875868B1 (en) Lithium complex oxide for lithium secondary battery positive active material and a method of preparing the same
JP6771419B2 (en) Lithium composite oxide for lithium secondary batteries and its manufacturing method
JP2021059492A (en) Lithium complex oxide for lithium secondary battery, and method of preparing the same
JP7260573B2 (en) Composite positive electrode active material for lithium ion battery, manufacturing method thereof, and lithium ion battery including positive electrode containing the same
EP2736104A1 (en) Lithium-rich solid solution positive electrode composite material and method for preparing same, lithium ion battery positive electrode plate and lithium ion battery
KR101874340B1 (en) Lithium complex oxide for lithium secondary battery positive active material and a method of preparing the same
KR101970207B1 (en) Manufacturing method of cobalt coated precusor for cathod active material, cobalt coated precusor made by the same, and cathod active material made using the same
JP2018020951A (en) Lithium complex oxide for lithium secondary battery and method of producing the same
KR101934853B1 (en) Lithium complex oxide for lithium rechargeable battery positive active material and preparing method of the same
JP2018020950A (en) Lithium complex oxide for lithium secondary battery and method of producing the same
JP2018008866A (en) Lithium complex oxide for lithium secondary battery and method of preparing the same
KR101912202B1 (en) Lithium complex oxide for lithium secondary battery positive active material and a method of preparing the same
US20130330624A1 (en) Lithium titanate doped with barium oxide, manufacturing method thereof and lithium ion battery using the same
KR102174720B1 (en) Lithium metal complex oxide and manufacturing method of the same
CN112624209A (en) Na-Ti-Mg co-doped ternary material and preparation method and application thereof
KR102027460B1 (en) Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180816

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20191004

Year of fee payment: 5