KR20110104713A - Unshaped refractory composition added with alumina sol binder - Google Patents
Unshaped refractory composition added with alumina sol binder Download PDFInfo
- Publication number
- KR20110104713A KR20110104713A KR1020100023769A KR20100023769A KR20110104713A KR 20110104713 A KR20110104713 A KR 20110104713A KR 1020100023769 A KR1020100023769 A KR 1020100023769A KR 20100023769 A KR20100023769 A KR 20100023769A KR 20110104713 A KR20110104713 A KR 20110104713A
- Authority
- KR
- South Korea
- Prior art keywords
- refractory
- alumina sol
- alumina
- mixture
- binder
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/005—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing gelatineous or gel forming binders, e.g. gelatineous Al(OH)3, sol-gel binders
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/6303—Inorganic additives
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/636—Polysaccharides or derivatives thereof
- C04B35/6365—Cellulose or derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/66—Monolithic refractories or refractory mortars, including those whether or not containing clay
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/20—Resistance against chemical, physical or biological attack
- C04B2111/28—Fire resistance, i.e. materials resistant to accidental fires or high temperatures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3206—Magnesium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
- C04B2235/3218—Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
- C04B2235/3222—Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3241—Chromium oxides, chromates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3817—Carbides
- C04B2235/3826—Silicon carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5427—Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5463—Particle size distributions
- C04B2235/5472—Bimodal, multi-modal or multi-fraction
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Ceramic Products (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
본 발명은 Al2O3, SiC를 포함하는 내화제 혼합물에 알루미나 졸 바인더를 첨가한 부정형 내화물에 관한 것이다. 본 발명의 내화물은 알루미나 졸 바인더가 혼합 내화제에 결합성을 주고, CaO가 함유된 시멘트를 사용하는 것이 아니어서 고온에서 사용하더라도 CaO에 의한 침식이 일어나지 아니하며, 건조 후 형상을 유지하고, 충분한 취급강도를 갖추고 있으며, 열처리 후 수축이 거의 일어나지 않고, 기공율이 적으며, 높은 강도를 나타내므로 특히 가스화기에 사용될시 매우 유용하다.The present invention relates to an amorphous refractory material in which an alumina sol binder is added to a refractory mixture including Al 2 O 3 and SiC. The refractory material of the present invention is alumina sol binder is bonded to the mixed refractory agent, and does not use the cement containing CaO does not cause erosion by CaO even when used at high temperature, maintains the shape after drying, sufficient handling It has strength, hardly shrinkage after heat treatment, low porosity, and high strength, which is particularly useful when used in gasifiers.
Description
본 발명은 가스화기 내벽의 내화물로 사용될 수 있는 알루미나 졸 바인더가 첨가된 부정형 내화물에 관한 것이다.
The present invention relates to an amorphous refractory to which an alumina sol binder is added, which can be used as a refractory material for gasifier inner walls.
부정형 내화물이 벽돌간의 틈새가 문제되는 내화벽돌보다 선호되어, 수명, 재료, 시공방법의 면에서 개선이 도모되어 오고 있다. 무기바인더로 주로 칼슘 알루미나 시멘트가 사용되어 왔으나 고온, 고압 등 사용환경이 혹독하여 짐에 따라 저칼슘 알루미나 시멘트가 선호되고 있으며, 근래에는 열마모와 침식에 대한 내성을 향상시키기 위하여 칼슘이 미량인 수화성 알루미나(hydratable alumina)가 부정형 내화물에 사용되고 있다. 그러나 이 내화물은 결합을 유지하던 수분이 탈수되고, 세라믹간의 결합이 생성되지 않는 800 내지 1200℃에서는 강도가 낮은 (1.2-2.0 MPa) 단점이 있다. Indefinite refractory materials are preferred to refractory bricks, where the gap between bricks is a problem, and improvements have been made in terms of life, materials, and construction methods. Calcium alumina cement has been mainly used as an inorganic binder, but low calcium alumina cement is preferred due to severe usage conditions such as high temperature and high pressure. Recently, a small amount of calcium is used to improve resistance to thermal abrasion and erosion. Hydratable alumina is used for amorphous refractory materials. However, this refractory has a disadvantage of low strength (1.2-2.0 MPa) at 800 to 1200 ° C. in which water retaining a bond is dehydrated and no bond between ceramics is produced.
근래 효율이 높고 친환경 발전시스템으로 주목받고 있는 석탄가스화통합발전(Integrated Coal Gasification Combined Cycle, IGCC)의 가스화기는 혹독한 환경에서 운전된다. 이 가스화기의 내벽에 사용되는 부정형 내화물은 냉각수가 흐르는 스테인레스관에 부착되는 것으로 스테인레스관에 잘 접착되어 있어야하고, 열전도도가 좋아야하고, 표면에서 첫 슬래그층이 잘 생성되어야한다. 부정형 내화물은 일반적으로 내화제로 사용되는 산화물, 탄화물 또는 이들의 혼합물을 알루미나시멘트로 결합하게 하는 것으로 시멘트를 적게 사용하게 되면 성형밀도가 낮아지고, 다루기가 힘들며, 건조되는 시간 제어가 어려우나, 슬래그에 대한 내침식성은 향상되고, 침투는 늦어진다. 이는 시멘트에 함유된 산화칼슘(CaO)이 고온에서 슬래그와 반응하여 슬래그의 점도를 낮추게 되어 내화물로의 침투를 용이하게 하여 내화물의 침식을 촉진시키기 때문이다. 또한 시멘트는 수분의 증발이 느리므로 충분한 실온 건조가 필요한 단점이 있다. 이러한 시멘트 대신으로 인산염(phosphate) 부정형 내화물이 사용되고 있는 데, 이는 모노-알루미나 인산염(mono-aluminum phosphate)을 바인더로 사용하고, 산화마그네슘(MgO)을 경화제로 사용하는 것으로, 연소노에서는 사용되고 있으나, 산소가 부족한 가스화기에서는 바람직하지 못하다. P2O5-MgO계에서 저융점 화합물들이 생성되고, 모노-알루미나 인산염(mono-aluminum phosphate)이 수용성이어서 표면으로 이동하게 되므로, 강도가 불균일하게 되는 단점이 있다. 또한 고온 환원 환경에서 P2O5가 휘발하게 되어 강도가 저하되며 불균일하게 된다. 따라서 이러한 부정형은 내화구조를 형성하는 데 적합하지 않다. 근래에는 수화성 알루미나가 무기 바인더로 사용되고 있는 데, 상업화되어 있는 Almatis Alcoa Industrial Chemicals Division의 Alphabond 300, 500 등이 있다. 수화성 알루미나 바인더가 첨가된 내화물은 혼합하는 시간이 오래 걸리는 단점이 있었다. 또한 미분의 실리카, 콜로이드 알루미나를 알루미나 시멘트와 같이 사용하는 방법들이 보고되어 있으나, 실온 굽힘 강도가 5~17 MPa 정도이다.The gasifier of the Integrated Coal Gasification Combined Cycle (IGCC), which is recently attracting attention as an efficient and eco-friendly power generation system, operates in harsh environments. The amorphous refractory used for the inner wall of this gasifier is attached to the stainless steel pipe through which the coolant flows, it should be well adhered to the stainless steel pipe, have good thermal conductivity, and the first slag layer should be well formed on the surface. Amorphous refractories generally combine oxides, carbides, or mixtures of these used as a fire retardant with alumina cement, and use less cement, resulting in lower molding densities, handling difficulties, and difficult time control of drying. Corrosion resistance is improved and penetration is slowed down. This is because calcium oxide (CaO) contained in the cement reacts with the slag at a high temperature to lower the viscosity of the slag, thereby facilitating penetration into the refractory, thereby promoting erosion of the refractory. In addition, cement has a disadvantage in that sufficient room temperature drying is required because evaporation of moisture is slow. Instead of cement, phosphate amorphous refractories are used, which use mono-aluminum phosphate as a binder and magnesium oxide (MgO) as a curing agent. It is undesirable in gasifiers that lack oxygen. Low melting point compounds are generated in the P 2 O 5 -MgO system, and mono-alumina phosphate is water-soluble, and thus moves to the surface, resulting in uneven strength. In addition, P 2 O 5 is volatilized in a high temperature reducing environment, resulting in low strength and non-uniformity. Therefore, such irregularities are not suitable for forming a fireproof structure. Recently, water-soluble alumina is used as an inorganic binder, such as Alphabond 300 and 500 of Almatis Alcoa Industrial Chemicals Division. The refractory to which the water hydratable alumina binder is added has a disadvantage in that it takes a long time to mix. In addition, a method of using finely divided silica and colloidal alumina together with alumina cement has been reported, but the room temperature bending strength is about 5 to 17 MPa.
이와 같이 종래의 내화물들은 강도외에도 접착성, 열전도도, 건조 시간, 또는 내침식성 등에 문제가 있어 고온 고압 환경인 가스화기에서 사용되는데 문제가 있었다.
As described above, the conventional refractory materials have problems in adhesion, thermal conductivity, drying time, or erosion resistance, in addition to strength, and thus are used in gasifiers having high temperature and high pressure.
이에 본 발명자들은 고온 고압의 혹독한 환경인 가스화기에서도 사용할 수 있는 내화물을 연구한 결과 우수한 접착성 및 강도, 열전도도, 및 내침식성을 갖춘 내화물을 완성하는데 성공하였다. 본 발명의 목적은 이러한 내화물을 제공하는 것에 있다.
Accordingly, the present inventors have studied the refractory material that can be used in a gasifier which is a harsh environment at high temperature and high pressure, and have succeeded in completing a refractory material having excellent adhesion and strength, thermal conductivity, and erosion resistance. An object of the present invention is to provide such a refractory.
본 발명은 Al2O3 및 SiC를 포함하는 내화제 혼합물에 알루미나 졸 바인더를 첨가한 부정형 내화물에 관한 것이다.
The present invention relates to an amorphous refractory having an alumina sol binder added to a refractory mixture comprising Al 2 O 3 and SiC.
본 발명의 내화물은 알루미나 졸 바인더가 혼합 내화제에 작업 유동성을 주고, CaO가 함유된 시멘트를 사용하는 것이 아니어서 고온에서 사용하더라도 CaO에 의한 침식이 일어나지 아니하며, 건조 후 형상을 유지하고, 충분한 취급강도를 갖추고 있으며, 열처리 후 수축이 거의 일어나지 않고, 기공율이 적으며, 높은 강도를 나타내므로 특히 가스화기에 사용될시 매우 유용하다. 알루미나 졸은 미분의 알루미나 분말과 혼합되어 풀 처럼 작용하여 내화제 분말의 표면을 코팅하게 되어 내화제 간의 접촉을 좋게 하며, 시멘트 사용한 것과는 다르게 졸이 겔로 되면서 물이 휘발하는 것이므로 건조가 빠르다. 소량의 알루미나 졸의 사용으로 알루미나 겔이 박막을 형성하게 되어, 건조시 금이 가지 않으며, 승온 속도가 빠르면서도 금이 발생하지 않으며, 또한 미분의 알루미나 분말의 소결을 촉진시켜 내화제 간의 세라믹 결합을 생성하게 되어 높은 강도를 나타낸다.
The refractory material of the present invention is alumina sol binder gives the working fluidity to the mixed refractory, does not use cement containing CaO does not cause erosion by CaO even when used at high temperature, maintains the shape after drying, and sufficient handling It has strength, hardly shrinkage after heat treatment, low porosity, and high strength, which is particularly useful when used in gasifiers. The alumina sol is mixed with the fine powder of alumina to act like a paste to coat the surface of the refractory powder to improve the contact between the refractory agents, and unlike the cement used, the sol becomes a gel and the water is volatilized, so it dries quickly. The use of a small amount of alumina sol causes the alumina gel to form a thin film, which does not crack when dried, does not generate gold at a fast temperature increase rate, and also promotes sintering of the finely divided alumina powder to promote ceramic bonding between the refractory materials. Resulting in high strength.
도 1은 실시예 2에 의하여 제조된 부정형 내화물의 광학사진 ( 60 배)이다.1 is an optical photograph (60 times) of an amorphous refractory prepared by Example 2. FIG.
본 발명은 Al2O3 및 SiC를 포함하는 내화제 혼합물에 알루미나 졸 바인더를 첨가한 부정형 내화물에 관한 것이다. 상기 내화제 혼합물은 산화마그네슘, 스피넬, 지르코니아, 크로미아, 산화하프늄을 추가로 포함할 수 있으나 이에 한정되지 않는다.The present invention relates to an amorphous refractory having an alumina sol binder added to a refractory mixture comprising Al 2 O 3 and SiC. The refractory mixture may further include, but is not limited to, magnesium oxide, spinel, zirconia, chromia, hafnium oxide.
졸이란 겔과 달리 액체중에 분산되어 있어 유동성을 나타내며 입자는 활발한 브라운 운동을 하는 물질을 일컬으며, 알루미나 졸이란 알루미나 입자가 액체중에 분산된 것을 말한다. 상기 알루미나 졸 바인더는 보헤마이트 슬러리에 산(질산, 염산, 초산, 개미산, 인산, 황산 등)을 소량 첨가하여 제조 할 수 있으나 이에 한정되지는 아니한다. 알루미나 졸은 미분의 알루미나 분말과 혼합되어 풀 처럼 작용하여 내화제 분말의 표면을 코팅하게 되어 내화제 간의 접촉을 좋게 하며, 시멘트 사용한 것과는 다르게 졸이 겔로 되면서 물이 휘발하는 것이므로 건조가 빠르다. 소량의 알루미나 졸의 사용으로 알루미나 겔이 박막을 형성하게 되므로, 건조시 금이 가지 않으며, 승온 속도가 빠르면서도 금이 발생하지 않으며, 또한 미분의 알루미나 분말의 소결을 촉진시켜 내화제 간의 세라믹 결합을 생성하게 되어 높은 강도를 나타낸다.A sol, unlike gels, is dispersed in a liquid and exhibits fluidity. Particles refer to an active browning material. Alumina sol is a dispersion of alumina particles in a liquid. The alumina sol binder may be prepared by adding a small amount of acid (nitric acid, hydrochloric acid, acetic acid, formic acid, phosphoric acid, sulfuric acid, etc.) to the boehmite slurry, but is not limited thereto. The alumina sol is mixed with the fine powder of alumina to act like a paste to coat the surface of the refractory powder to improve the contact between the refractory agents, and unlike the cement used, the sol becomes a gel and the water is volatilized, so it dries quickly. The use of a small amount of alumina sol causes the alumina gel to form a thin film, which does not cause gold during drying, does not generate gold with a high temperature increase rate, and promotes sintering of the finely divided alumina powder to promote ceramic bonding between the refractory materials. Resulting in high strength.
상기 내화물에서 알루미나 졸 바인더의 함량은 내화제 혼합물 대비 알루미나 양으로 0.2 내지 4 중량부일 수 있으며, 더욱 바람직하게는 0.3 내지 1.5 중량부인 것이 바람직하다. 알루미나 졸 바인더의 함량이 내화제 혼합물 대비 알루미나 양으로 0.2 미만인 경우 알루미나 졸의 함량이 적어 결합제 역활에 문제가 있을 수 있으며, 4 중량부를 초과하는 경우, 바인더 상이 많아져 내침식성 및 열전도도에 문제가 있을 수 있다.The content of the alumina sol binder in the refractory may be 0.2 to 4 parts by weight in an amount of alumina relative to the refractory mixture, and more preferably 0.3 to 1.5 parts by weight. When the content of the alumina sol binder is less than 0.2 in the amount of alumina relative to the refractory mixture, the content of the alumina sol may be low, which may cause a binder role. When the content of the alumina sol binder is greater than 4 parts by weight, the binder phase may increase, resulting in problems of corrosion resistance and thermal conductivity. There may be.
본 발명의 내화물은 알루미나 졸 바인더가 Al2O3, SiC를 포함하는 내화제 혼합물에 작업 유동성을 주고, CaO가 함유된 시멘트를 사용하는 것이 아니어서 고온에서 사용하더라도 CaO에 의한 침식이 일어나지 아니하며, 건조 후 형상을 유지하고, 충분한 취급강도를 갖추고 있으며, 열처리 후 수축이 거의 일어나지 않고, 기공율이 적으며, 높은 강도를 나타내므로 특히 가스화기에 사용될시 매우 유용하다.The refractory material of the present invention is alumina sol binder gives the working fluidity to the refractory mixture containing Al 2 O 3 , SiC, does not use the cement containing CaO does not cause erosion by CaO even when used at high temperatures, It maintains its shape after drying, has sufficient handling strength, hardly shrinkage after heat treatment, low porosity, and high strength, which is particularly useful when used in gasifiers.
또한 본 발명은 상기 알루미나 졸 바인더와 같은 무기 바인더 외에도, 히드록시에틸 셀룰로즈 (hydroxyethyl cellulose), 히드록시프로필 셀룰로즈 (hydroxypropyl cellulose), 메틸 셀룰로즈(methyl cellulose), 또는 라텍스(latex) 등의 유기 바인더를 추가로 포함할 수 있다. 유기 바인더의 함량은 내화제 혼합물 대비 0.03 내지 1.0 중량부가 될 수 있으며, 바람직하게는 0.05 내지 0.5 중량부인 것이 바람직하다. 유기바인더는 건조과정에서 일어날 수 있는 내화제의 유동을 억제하며 성형체의 강도를 향상시키나, 열처리 과정에서 분해되는 유기바인더는 기공을 만들어 강도 및 열전도도면에서 불리 할 수 때문에 가능한 한 소량을 사용하는 것이 바람직하다.In addition, the present invention, in addition to the inorganic binder such as the alumina sol binder, an organic binder such as hydroxyethyl cellulose (hydroxyethyl cellulose), hydroxypropyl cellulose (methyl cellulose), or latex (latex) is added It can be included as. The content of the organic binder may be 0.03 to 1.0 parts by weight relative to the refractory mixture, preferably 0.05 to 0.5 parts by weight. Organic binders suppress the flow of the refractory agent that may occur during drying and improve the strength of the molded body, but organic binders that decompose during the heat treatment process create pores and may be disadvantageous in terms of strength and thermal conductivity. desirable.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 하나, 하기한 실시예는 본 발명을 예증하기 위한 것일 뿐, 본 발명을 제한하는 것은 아님을 이해하여만 할 것이다.
Hereinafter, the present invention will be described in more detail with reference to examples, but the following examples are merely to illustrate the present invention, but it should be understood that the present invention is not limited thereto.
알루미나 졸 바인더의 제조Preparation of Alumina Sol Binder
보헤마이트 분말을 증류수에 약 15 중량% 되게 분산한 후, 70 내지 80℃에서 교반하면서 소량의 질산을 천천히 가하고 가열하여 알루미나로 약 10 중량% 농도의 반투명한 졸로 제조하였다. 이 졸을 스테인레스 기판에 입히고 실온 건조로 박막을 얻었고, 이것을 500℃로 가열된 노에 약 20분 넣었다 꺼내 금이 가지 않은 접착성이 우수한 막을 얻었다.
After boehmite powder was dispersed in distilled water to about 15% by weight, a small amount of nitric acid was added slowly and heated while stirring at 70 to 80 ° C to prepare a semi-transparent sol having a concentration of about 10% by weight with alumina. This sol was coated on a stainless substrate to obtain a thin film by drying at room temperature. The sol was put into a furnace heated at 500 ° C. for about 20 minutes, and taken out to obtain a film having excellent adhesion without cracking.
실시예 1Example 1
내화제 혼합물은 하기 표 1의 조성 1과 같이 폴리프로필렌 통에서 혼합하였다. 혼합물을 약 50g 취하여 종이컵에 넣고 알루미나 졸을 혼합물 대비 5.2 중량부(알루미나 졸 내의 알루미나로는 0.52 중량부) 첨가하여 혼합한 다음 탭핑(tapping)으로 부정형 성형체를 제조하였다. 실온에서 2시간 건조 후 60℃ 건조기에 넣어 건조 후 1350℃에서 2시간 공기중에서 소결하였다. 굽힘강도와 밀도를 측정하여 그 결과를 하기 표 2에 나타내었다.
The refractory mixture was mixed in a polypropylene barrel as in Composition 1 in Table 1 below. About 50 g of the mixture was taken and placed in a paper cup. 5.2 parts by weight of the alumina sol (0.52 parts by weight of alumina in the alumina sol) was added to the mixture, followed by tapping to prepare an amorphous molded body. After drying at room temperature for 2 hours, the resultant was placed in a 60 ° C dryer and sintered at 1350 ° C for 2 hours in air. The bending strength and density were measured and the results are shown in Table 2 below.
실시예 2Example 2
내화제 혼합물은 하기 표 1의 조성 1과 같이 폴리프로필렌 통에서 혼합하였다. 혼합물을 약 50g 취하여 종이컵에 넣고 알루미나 졸을 혼합물 대비 6.4 중량부(알루미나 졸 내의 알루미나로는 0.64 중량부) 첨가하여 혼합한 다음 탭핑(tapping)으로 부정형 성형체를 제조하였다. 실온에서 2시간 건조 후 60℃ 건조기에 넣어 건조 후 1350℃에서 2시간 공기중에서 소결하였다. 굽힘강도와 밀도를 측정하여 그 결과를 하기 표 2에 나타내었다.
The refractory mixture was mixed in a polypropylene barrel as in Composition 1 in Table 1 below. About 50 g of the mixture was taken into a paper cup, and 6.4 parts by weight of the alumina sol (0.64 parts by weight of alumina in the alumina sol) was added to the mixture, followed by tapping to prepare an amorphous molded body. After drying at room temperature for 2 hours, the resultant was placed in a 60 ° C dryer and sintered at 1350 ° C for 2 hours in air. The bending strength and density were measured and the results are shown in Table 2 below.
실시예 3Example 3
내화제 혼합물은 하기 표 1의 조성 2와 같이 폴리프로필렌 통에서 혼합하였다. 혼합물을 약 50g 취하여 종이컵에 넣고 알루미나 졸을 혼합물 대비 6.55 중량부(알루미나 졸 내의 알루미나로는 0.655 중량부) 첨가하여 혼합한 다음 탭핑(tapping)으로 부정형 성형체를 제조하였다. 실온에서 2시간 건조 후 60℃ 건조기에 넣어 건조 후 1350℃에서 2시간 공기중에서 소결하였다. 굽힘강도와 밀도를 측정하여 그 결과를 하기 표 2에 나타내었다.
The refractory mixture was mixed in a polypropylene barrel as in Composition 2 in Table 1 below. About 50 g of the mixture was taken into a paper cup, 6.55 parts by weight of the alumina sol (0.655 parts by weight with alumina in the alumina sol) was added, mixed, and then the amorphous molded body was prepared by tapping. After drying at room temperature for 2 hours, the resultant was placed in a 60 ° C dryer and sintered at 1350 ° C for 2 hours in air. The bending strength and density were measured and the results are shown in Table 2 below.
실시예 4Example 4
내화제 혼합물은 하기 표 1의 조성 3과 같이 폴리프로필렌 통에서 혼합하였다. 혼합물을 약 50g 취하여 종이컵에 넣고 알루미나 졸을 혼합물 대비 7.3 중량부(알루미나 졸 내의 알루미나로는 0.73 중량부) 첨가하여 혼합한 다음 탭핑(tapping)으로 부정형 성형체를 제조하였다. 실온에서 2시간 건조 후 60℃ 건조기에 넣어 건조 후 1350℃에서 2시간 공기중에서 소결하였다. 굽힘강도와 밀도를 측정하여 그 결과를 하기 표 2에 나타내었다.
The refractory mixture was mixed in a polypropylene barrel as in Composition 3 in Table 1 below. About 50 g of the mixture was taken into a paper cup, 7.3 parts by weight of the alumina sol (0.73 parts by weight of alumina in the alumina sol) was added to the mixture, followed by tapping to prepare an amorphous molded body. After drying at room temperature for 2 hours, the resultant was placed in a 60 ° C dryer and sintered at 1350 ° C for 2 hours in air. The bending strength and density were measured and the results are shown in Table 2 below.
실시예 5Example 5
내화제 혼합물은 하기 표 1의 조성 3과 같이 폴리프로필렌 통에서 혼합하였다. 혼합물을 약 50g 취하여 종이컵에 넣고 알루미나 졸을 혼합물 대비 9.8 중량부(알루미나 졸 내의 알루미나로는 0.98 중량부) 첨가하여 혼합한 다음 탭핑(tapping)으로 부정형 성형체를 제조하였다. 실온에서 2시간 건조 후 60℃ 건조기에 넣어 건조 후 1350℃에서 2시간 공기중에서 소결하였다. 굽힘강도와 밀도를 측정하여 그 결과를 하기 표 2에 나타내었다.
The refractory mixture was mixed in a polypropylene barrel as in Composition 3 in Table 1 below. About 50 g of the mixture was taken into a paper cup, and alumina sol was mixed with 9.8 parts by weight (0.98 parts by weight of alumina in the alumina sol) relative to the mixture, followed by tapping to prepare an amorphous molded body. After drying at room temperature for 2 hours, the resultant was placed in a 60 ° C dryer and sintered at 1350 ° C for 2 hours in air. The bending strength and density were measured and the results are shown in Table 2 below.
실시예 6Example 6
내화제 혼합물은 하기 표 1의 조성 3과 같이 폴리프로필렌 통에서 혼합하였다. 혼합물을 약 50g 취하여 종이컵에 넣고 알루미나 졸을 혼합물 대비 8.5 중량부(알루미나 졸 내의 알루미나로는 0.85 중량부), 히드록시에틸 셀룰로즈(hydroxyethyl cellulose, HEC)를 0.03 중량부를 첨가하여 혼합한 다음 탭핑(tapping)으로 부정형 성형체를 제조하였다. 실온에서 2시간 건조 후 60℃ 건조기에 넣어 건조 후 1350℃에서 2시간 공기중에서 소결하였다. 굽힘강도와 밀도를 측정하여 그 결과를 하기 표 2에 나타내었다.
The refractory mixture was mixed in a polypropylene barrel as in Composition 3 in Table 1 below. Approximately 50 g of the mixture is taken into a paper cup, and the alumina sol is mixed with 8.5 parts by weight (0.85 parts by weight with alumina in the alumina sol), 0.03 parts by weight of hydroxyethyl cellulose (HEC), followed by tapping. ) To form an amorphous molded body. After drying at room temperature for 2 hours, the resultant was placed in a 60 ° C dryer and sintered at 1350 ° C for 2 hours in air. The bending strength and density were measured and the results are shown in Table 2 below.
비교예 1Comparative Example 1
내화제 혼합물은 하기 표 1의 조성 1과 같이 폴리프로필렌 통에서 혼합하였다. 혼합물을 약 50g 취하여 종이컵에 넣고 증류수를 혼합물 대비 9.52 중량부 , 히드록시에틸 셀룰로즈(hydroxyethyl cellulose, HEC)를 0.5 중량부 첨가하여 혼합한 다음 탭핑(tapping)으로 부정형 성형체를 제조하였다. 실온에서 2시간 건조 후 60℃ 건조기에 넣어 건조 한 다음 1350℃에서 2시간 공기중에서 소결하였다. 굽힘강도와 밀도를 측정하여 그 결과를 하기 표 2에 나타내었다.
The refractory mixture was mixed in a polypropylene barrel as in Composition 1 in Table 1 below. About 50 g of the mixture was taken into a paper cup, distilled water was added to 9.52 parts by weight of the mixture, 0.5 parts by weight of hydroxyethyl cellulose (hydroxyethyl cellulose, HEC) was added, and then mixed to form an amorphous molded body by tapping. After drying for 2 hours at room temperature and dried in a 60 ℃ dryer, and then sintered in air at 1350 ℃ for 2 hours. The bending strength and density were measured and the results are shown in Table 2 below.
비교예 2Comparative Example 2
내화제 혼합물은 하기 표 1의 조성 3과 같이 폴리프로필렌 통에서 혼합하였다. 혼합물을 약 50g 취하여 종이컵에 넣고 증류수를 혼합물 대비 8.24 중량부 , 히드록시에틸 셀룰로즈(hydroxyethyl cellulose, HEC)를 0.43 중량부 첨가하여 혼합한 다음 탭핑(tapping)으로 부정형 성형체를 제조하였다. 실온에서 2시간 건조 후 60℃ 건조기에 넣어 건조 후 1350℃에서 2시간 공기중에서 소결하였다. 굽힘강도와 밀도를 측정하여 그 결과를 하기 표 2에 나타내었다.
The refractory mixture was mixed in a polypropylene barrel as in Composition 3 in Table 1 below. About 50 g of the mixture was taken into a paper cup, and distilled water was added to the mixture by adding 8.24 parts by weight of hydroxyethyl cellulose (HEC) and 0.43 parts by weight of hydroxyethyl cellulose (HEC), followed by tapping. After drying at room temperature for 2 hours, the resultant was placed in a 60 ° C dryer and sintered at 1350 ° C for 2 hours in air. The bending strength and density were measured and the results are shown in Table 2 below.
조성Refractory
Furtherance
(g/cm3)density
(g / cm 3)
(MPa)Bending strength
(MPa)
상기 표 2에서 나타난 것과 같이 알루미나 졸 바인더를 첨가할 시(실시예 1 내지 6) 알루미나 졸이 미분 알루미나의 소결을 촉진시켜 내화제간의 결합을 향상시키므로 소결밀도가 높아지며 즉 기공율이 적어지며, 높은 강도를 나타낸다. 알루미나 졸을 첨가하지 않고, 유기 바인더를 결합제로 사용할 경우(비교예 1, 2)에는 미분의 알루미나 결정 및 내화제간의 소결이 잘 일어나지 못하여 강도가 낮다. 알루미나 졸을 사용하면 사용하지 않은 경우에 비하여 굽힘강도가 약 9 내지 11배 증가하는 것을 확인할 수 있었다.When the alumina sol binder is added as shown in Table 2 (Examples 1 to 6), the alumina sol promotes the sintering of the finely divided alumina to improve the bonding between the refractory agents, thus increasing the sintering density, ie, the porosity, and the high strength. Indicates. When an organic binder is used as a binder without the addition of an alumina sol (Comparative Examples 1 and 2), sintering between the finely divided alumina crystal and the refractory agent does not occur easily, and thus the strength is low. Using alumina sol, it was confirmed that the bending strength increased by about 9 to 11 times compared with the case where it was not used.
Claims (6)
Al 2 O 3 and SiC refractory agents monolithic refractory mixture was added to the alumina sol binder comprising a.
The amorphous refractory according to claim 1, wherein the alumina sol binder is prepared by adding an acid to a boehmite slurry.
The amorphous refractory according to claim 1, wherein the refractory mixture comprising Al 2 O 3 and SiC further comprises magnesium oxide, spinel, zirconia, chromia, hafnium oxide or a mixture of two or more thereof.
The amorphous refractory according to claim 1, wherein the content of the alumina sol binder is 0.2 to 4 parts by weight in an amount of alumina relative to the refractory mixture including Al 2 O 3 and SiC.
The amorphous refractory according to claim 1, further comprising hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, or latex binder.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100023769A KR101152656B1 (en) | 2010-03-17 | 2010-03-17 | Unshaped Refractory Composition Added with Alumina Sol Binder |
PCT/KR2010/008500 WO2011115352A1 (en) | 2010-03-17 | 2010-11-30 | Unshaped refractory composition added with alumina sol binder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100023769A KR101152656B1 (en) | 2010-03-17 | 2010-03-17 | Unshaped Refractory Composition Added with Alumina Sol Binder |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20110104713A true KR20110104713A (en) | 2011-09-23 |
KR101152656B1 KR101152656B1 (en) | 2012-06-05 |
Family
ID=44649415
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020100023769A KR101152656B1 (en) | 2010-03-17 | 2010-03-17 | Unshaped Refractory Composition Added with Alumina Sol Binder |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101152656B1 (en) |
WO (1) | WO2011115352A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101303812B1 (en) * | 2012-03-30 | 2013-09-04 | 한국과학기술연구원 | Alumina coated spinel-silicon carbide refractory compositions with high corrosion resistivity to coal slag and manufacturing method thereof |
WO2013147354A1 (en) * | 2012-03-30 | 2013-10-03 | 한국과학기술연구원 | Cementless high strength amorphous refractory material |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9056791B2 (en) * | 2013-02-14 | 2015-06-16 | Sasol North America, Inc. | Cement compositions containing nano sized boehmite crystallites |
DE212016000023U1 (en) | 2015-12-16 | 2017-06-08 | Calderys France | Castable refractory compositions comprising zeolite microstructures, and uses thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0771634B2 (en) * | 1985-11-28 | 1995-08-02 | 株式会社日本触媒 | Exhaust gas purifying catalyst and its manufacturing method |
JP4051726B2 (en) * | 1996-07-24 | 2008-02-27 | 日産化学工業株式会社 | Method for producing acidic aqueous alumina sol |
JP3781871B2 (en) * | 1997-07-22 | 2006-05-31 | ズードケミー触媒株式会社 | Chloride absorber |
JP3873426B2 (en) * | 1997-11-06 | 2007-01-24 | 日新製鋼株式会社 | Refractories for spray repair and spray repair method |
-
2010
- 2010-03-17 KR KR1020100023769A patent/KR101152656B1/en not_active IP Right Cessation
- 2010-11-30 WO PCT/KR2010/008500 patent/WO2011115352A1/en active Application Filing
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101303812B1 (en) * | 2012-03-30 | 2013-09-04 | 한국과학기술연구원 | Alumina coated spinel-silicon carbide refractory compositions with high corrosion resistivity to coal slag and manufacturing method thereof |
WO2013147354A1 (en) * | 2012-03-30 | 2013-10-03 | 한국과학기술연구원 | Cementless high strength amorphous refractory material |
WO2013147353A1 (en) * | 2012-03-30 | 2013-10-03 | 한국과학기술연구원 | Alumina coated spinel/silicon carbide refractory composition which is resistant to coal slag corrosion, and method for preparing same |
US8815759B2 (en) | 2012-03-30 | 2014-08-26 | Korea Institute Of Science And Technology | Cement-free high strength unshaped refractory |
Also Published As
Publication number | Publication date |
---|---|
KR101152656B1 (en) | 2012-06-05 |
WO2011115352A1 (en) | 2011-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100436376C (en) | Ceramic Al203SiC refractory and preparation method thereof | |
CN103819204B (en) | Silicon carbide electrofused mullite matter wear-resistant castable | |
WO2017101827A1 (en) | Magnesium aluminum spinel brick preparation method and magnesium aluminum spinel brick prepared using same | |
KR102593723B1 (en) | High-temperature wear-resistant ceramic glaze, high-temperature wear-resistant ceramic coating layer preform and its manufacturing method and application | |
CN103664205B (en) | Thermal shock-resistant low-expansion andalusite castable | |
CN102701764A (en) | Sintered alumina-silica refractory material and preparation method thereof | |
CN101066878A (en) | Alumina-silica refractory brick containing light porous aggegate and its making process | |
CN103755363A (en) | Lightweight siliceous mullite composite brick and preparation method thereof | |
JP6499464B2 (en) | Insulated refractory | |
KR101152656B1 (en) | Unshaped Refractory Composition Added with Alumina Sol Binder | |
JP2022184544A (en) | High temperature wear-resistant ceramic glaze, high temperature wear-resistant ceramic coating layer preform, manufacturing method and use thereof | |
US20090149311A1 (en) | Monolithic refractory material having low expansibility, high strength, and crack extension resistance | |
KR101321944B1 (en) | Cement-free High Strength Unshaped Refractories | |
KR101095027B1 (en) | Alumina bonded unshaped refractory and manufacturing method thereof | |
JPH0653626B2 (en) | Zirconia composite fireproof insulation | |
KR101262077B1 (en) | Low Cement Corrosion-Resistive Unshaped Refractories | |
KR101247691B1 (en) | Spinel-Silicon Carbide Refractory compositions with High Corrosion Resistivity to Coal Slag and Manufacturing Method thereof | |
JP4220131B2 (en) | Amorphous refractory composition for ladle | |
CN109400145A (en) | A kind of manufacturing method of energy-saving aluminium water flow grooves prefabricated component | |
US8986598B2 (en) | Alumina-coated spinel-silicon carbide refractory composition with high corrosion resistance to coal slag and method for manufacturing the same | |
JP5174751B2 (en) | Silicon carbide and titanium carbide containing amorphous refractories | |
JP2004074241A (en) | Method for manufacturing continuous casting immersion nozzle hardly depositing alumina | |
CN111559906A (en) | Anti-skinning castable for carbide slag cement kiln smoke chamber and preparation method thereof | |
JPH0925155A (en) | Sintered body from coal ash as source material and its production | |
JPH03197356A (en) | Zirconia refractory and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20150430 Year of fee payment: 4 |
|
LAPS | Lapse due to unpaid annual fee |