KR101095027B1 - Alumina bonded unshaped refractory and manufacturing method thereof - Google Patents

Alumina bonded unshaped refractory and manufacturing method thereof Download PDF

Info

Publication number
KR101095027B1
KR101095027B1 KR20100023385A KR20100023385A KR101095027B1 KR 101095027 B1 KR101095027 B1 KR 101095027B1 KR 20100023385 A KR20100023385 A KR 20100023385A KR 20100023385 A KR20100023385 A KR 20100023385A KR 101095027 B1 KR101095027 B1 KR 101095027B1
Authority
KR
South Korea
Prior art keywords
alumina
parts
weight
amorphous refractory
sic
Prior art date
Application number
KR20100023385A
Other languages
Korean (ko)
Other versions
KR20110104310A (en
Inventor
임경란
박상환
김창삼
양진오
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR20100023385A priority Critical patent/KR101095027B1/en
Priority to PCT/KR2010/008502 priority patent/WO2011115353A1/en
Publication of KR20110104310A publication Critical patent/KR20110104310A/en
Application granted granted Critical
Publication of KR101095027B1 publication Critical patent/KR101095027B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • C04B35/6365Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/322Transition aluminas, e.g. delta or gamma aluminas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

본 발명은 알루미나 결합제 부정형 내화물 및 이의 제조방법에 관한 것으로서, 보다 구체적으로는 Al2O3, SiC, 알루미나 전구체 분말 및 물을 포함하는 알루미나 결합제 부정형 내화물에 관한 것으로서 본 발명에 따른 알루미나 결합제 부정형 내화물은 시멘트를 사용하지 않고도 충분한 취급 강도를 줄 수 있고, 열처리 후 수축이 거의 일어나지 않으며, 낮은 기공율과 높은 강도를 나타내는 등의 우수한 특성을 나타낸다.The present invention relates to an alumina binder amorphous refractory and a method for preparing the same, and more particularly to an alumina binder amorphous refractory including Al 2 O 3 , SiC, alumina precursor powder and water. It can provide sufficient handling strength without using cement, hardly shrink after heat treatment, and exhibits excellent properties such as low porosity and high strength.

Description

알루미나 결합제 부정형 내화물 및 이의 제조 방법 {ALUMINA BONDED UNSHAPED REFRACTORY AND MANUFACTURING METHOD THEREOF}Alumina Binder Indeterminate Refractory and Manufacturing Method Thereof {ALUMINA BONDED UNSHAPED REFRACTORY AND MANUFACTURING METHOD THEREOF}

본 발명은 알루미나 결합제 부정형 내화물 및 이의 제조 방법에 관한 것으로, 보다 구체적으로는 시멘트 없이 높은 강도를 주는 내화물로 용광로, 슬래그 접촉부, 자유형 내화물에 사용 가능한 알루미나 결합제 부정형 내화물 및 이의 제조 방법에 관한 것이다.
The present invention relates to an alumina binder amorphous refractory and a method for producing the same, and more particularly, to an alumina binder amorphous refractory that can be used in a furnace, slag contact portion, free form refractory, and a method for producing the same.

내화물은 연소노, 가스화기, 용광로에서 열충격, 침식 및 부식 등에 대한 저항력을 높이기 위하여 사용되며 내화 벽돌이나 부정형 내화물의 형태로 사용된다. 부정형 내화물은 일반적으로 벽돌간의 틈새가 문제되는 내화 벽돌보다 더 선호되고 있으며 수명, 재료 및 시공방법 면에서 개선이 도모되어 오고 있다. Refractories are used to increase resistance to thermal shock, erosion and corrosion in combustion furnaces, gasifiers, furnaces, and in the form of refractory bricks or amorphous refractory materials. Indeterminate refractory materials are generally preferred over refractory bricks, where the gap between bricks is a problem, and improvements have been made in terms of service life, materials and construction methods.

부정형 내화물은 내화 골재와 미분을 바인더로 결합하여 사용하며, 바인더로는 주로 칼슘 알루미나 시멘트가 사용되어 왔다. 그러나 사용 환경이 고온, 고압 등으로 혹독하여 짐에 따라 저칼슘 알루미나 시멘트가 선호되고 있으며, 근래에 와서는 열 마모와 침식에 대한 내성을 향상시키기 위해 칼슘이 미량인 수화성 알루미나(Hydratable alumina)가 부정형 내화물에 사용되고 있다. 그러나 이 내화물 역시 800 ~ 1200℃에서는 결합을 유지하던 수분이 탈수되고, 세라믹간의 결합이 생성되지 못하여 강도가 1.2 MPa ~ 2.0 MPa 까지 낮아지는 단점이 있으며, 소결체의 굽힘 강도도 20 MPa 이하이다.In amorphous refractory materials, refractory aggregates and fine powders are used as binders, and calcium alumina cement has been mainly used as a binder. However, as the use environment is severely affected by high temperature and high pressure, low calcium alumina cement is preferred. In recent years, a low amount of calcium-hydride hydratable alumina is used to improve resistance to thermal abrasion and erosion. It is used for amorphous refractory materials. However, this refractory also has a disadvantage in that the water retaining the bond is dehydrated at 800 ~ 1200 ℃, the bond between the ceramics are not produced, the strength is lowered to 1.2 MPa ~ 2.0 MPa, the bending strength of the sintered body is also 20 MPa or less.

근래 효율이 높고 친환경 발전시스템으로 주목받고 있는 석탄가스화 복합발전(Integrated Coal Gasification Combined Cycle, IGCC)의 가스화기는 혹독한 환경에서 운용된다. 이 가스화기의 내벽에 사용되는 부정형 내화물은 냉각수가 흐르는 스테인리스 관에 부착되는 것으로 스테인리스 관에 잘 접착되어야하고, 열전도도가 좋아야하며, 표면에서 첫 슬래그 층이 잘 생성되어야 한다.The gasifier of the Integrated Coal Gasification Combined Cycle (IGCC), which has recently gained attention as a highly efficient and eco-friendly power generation system, operates in harsh environments. The amorphous refractory used for the inner wall of this gasifier is attached to the stainless steel pipe through which the coolant flows and should adhere well to the stainless steel pipe, have good thermal conductivity, and have a good first slag layer on the surface.

부정형 내화물은 일반적으로 내화 골재, 지립 및 미분을 알루미나 시멘트로 결합하는 것으로 시멘트를 적게 사용하면 성형 밀도가 낮아지고 다루기가 힘들어지며 건조되는 시간을 제어하는 것이 어렵다는 단점이 있으나, 슬래그에 대한 내침식성이 향상되고 침투는 늦어진다는 장점이 있다. 이는 시멘트에 함유된 CaO가 고온에서 슬래그와 반응하여 슬래그의 점도를 낮추게 되는데, 이로 인해 슬래그가 내화물로 쉽게 침투하게 되어 내화물의 침식을 촉진시키기 때문이다. 따라서 시멘트의 양을 적게 사용하고자 하는 경향이 있다. 또한 시멘트를 사용 시 수분의 증발이 느리게 되므로 실온 건조 시간이 오게 걸린다는 단점이 있다.Amorphous refractory materials generally combine refractory aggregates, abrasive grains and fine powder with alumina cement. The use of less cement results in lower molding density, difficulty in handling, and difficulty in controlling the drying time. It has the advantage of being improved and slowing in penetration. This is because the CaO contained in the cement reacts with the slag at a high temperature to lower the viscosity of the slag, which causes the slag to easily penetrate into the refractory to promote erosion of the refractory. Therefore, there is a tendency to use a small amount of cement. In addition, when the cement is used, the evaporation of moisture is slow, so that room temperature drying takes a long time.

이러한 시멘트 대신으로 포스페이트(Phosphate) 부정형 내화물이 사용되고 있는 데, 이는 모노 알루미늄 포스페이트(Mono-aluminum phosphate)를 바인더로 사용하고 MgO를 경화제로 사용하는 것으로서 연소로에서는 사용이 가능하지만 산소가 부족한 가스화기에서는 사용하기에 어려움이 있다. 또한 P2O5-MgO계에서는 저융점 화합물들이 생성되고, 모노 알루미늄 포스페이트(Mono-aluminum phosphate)는 수용성이므로 계속 표면으로 이동하게 되어 강도가 불균일하게 된다는 단점이 있다. 또한 고온 환원 분위기에서는 P2O5가 휘발하게 되어 강도가 저하되며 불균일해 진다는 문제점이 있다. 따라서 이러한 내화물들은 내화 구조를 형성하는 데 적합하지 않다.Phosphate amorphous refractory is used instead of cement, which uses mono-aluminum phosphate as a binder and MgO as a curing agent. Difficult to use In addition, low melting point compounds are generated in the P 2 O 5 -MgO system, and mono aluminum phosphate is mono-aluminum phosphate, and thus it is continuously moved to the surface, resulting in uneven strength. In addition, there is a problem that P 2 O 5 is volatilized in a high-temperature reducing atmosphere, whereby the strength is lowered and becomes uneven. Thus, these refractory materials are not suitable for forming a refractory structure.

근래에는 수화성 알루미나가 무기 바인더로 사용되고 있으며 상업화된 예로 Almatis Alcoa Industrial Chemicals Division 社의 Alphabond 100, 300, 500 등이 있다. 일반적으로 수화성 알루미나 바인더는 혼합하는 시간이 오래 걸리는 단점이 있는 데, Alphabond 500의 경우 300 보다 좀 더 큰 알루미나 입자를 사용하여 혼합 시간을 줄였다. 부정형 내화물의 유동성은 미세분말 양에 많이 영향을 받는다. 일반적으로 수화성 알루미나 바인더는 3 내지 7 중량%가 사용된다. 현재 사용되고 있는 수화성 알루미나는 α-알루미나 분말이 주를 이루고 있으며, 쉽게 물과 반응하는 ρ-알루미나와 소량의 CaO와 SiO2가 포함되어 있다. Alphabond 300의 경우 알루미나의 평균입도가 2.3 ㎛ 이며 CaO가 0.1중량% 미만이며, 500의 경우는 5.2 ㎛ 이며 0.6 중량%의 CaO가 포함되어 있다. CaO의 양이 적으면 성형 강도가 낮아진다는 단점이 있다. 수화성 알루미나는 그 자체로 쓰거나, 미분의 실리카나 소량의 칼슘 알루미네이트 시멘트와 함께 사용된다. 수화성 알루미나는 공기 중의 수분에 노출될 때 성능이 저하되며, 15℃ 이하에서 작업하는 경우 성형강도가 낮아진다는 단점이 있다. Recently, hydrated alumina is used as an inorganic binder, and commercialized examples include Alphabond 100, 300, and 500 of Almatis Alcoa Industrial Chemicals Division. In general, the water-soluble alumina binder has a disadvantage in that it takes a long time to mix. In the case of Alphabond 500, the mixing time is reduced by using alumina particles larger than 300. The flowability of amorphous refractory is greatly influenced by the amount of fine powder. Generally 3 to 7% by weight of the water hydratable alumina binder is used. Hydrated alumina currently used is mainly composed of α-alumina powder, and includes ρ-alumina which reacts easily with water, and a small amount of CaO and SiO 2 . In the case of Alphabond 300, the average particle size of alumina is 2.3 ㎛, CaO is less than 0.1 wt%, and in case of 500, 5.2 ㎛ is included and 0.6 wt% CaO is included. If the amount of CaO is small, there is a disadvantage that the molding strength is lowered. Hydrated alumina is used by itself or in combination with finely divided silica or small amounts of calcium aluminate cement. Hydrated alumina has a disadvantage in that its performance is degraded when exposed to moisture in the air, and its molding strength is lowered when it is operated at 15 ° C. or lower.

이와 같이 종래의 내화물들은 고온, 고압 하에서의 사용이 힘들고, 취급하기가 어려우며 성형시 강도가 낮은 등의 문제점을 가지고 있었다.
As such, conventional refractory materials have problems such as difficulty in use at high temperatures and pressures, difficulty in handling, and low strength during molding.

이에 본 발명자들은 상기와 같은 종래기술의 문제점들을 극복하기 위해서 연구한 결과 종래 사용되던 시멘트 대신으로 알루미나 전구체 분말을 이용하여 알루미나 결합제 부정형 내화물을 제조함으로써, 시멘트를 사용하지 않고도 충분한 취급 강도를 줄 수 있고, 열처리 후 수축이 거의 일어나지 않으며, 낮은 기공율과 높은 강도를 나타낸다는 사실을 밝혀내고 본 발명을 완성하게 되었다.
Therefore, the present inventors have studied to overcome the problems of the prior art as a result of manufacturing the alumina binder amorphous refractory using alumina precursor powder instead of the cement used in the prior art, can give sufficient handling strength without using cement and After the heat treatment, the shrinkage hardly occurs, and the low porosity and high strength were found to complete the present invention.

본 발명은, Al2O3, SiC, 알루미나 전구체 분말 및 물을 포함하는 알루미나 결합제 부정형 내화물 및The present invention provides an alumina binder amorphous refractory comprising Al 2 O 3 , SiC, alumina precursor powder and water and

(a) Al2O3, SiC 및 알루미나 전구체 분말을 함께 섞어 혼합 내화물을 만드는 단계; (a) mixing Al 2 O 3 , SiC and alumina precursor powder together to make a mixed refractory;

(b) 상기 혼합 내화물에 물을 첨가하여 혼합물을 만드는 단계;(b) adding water to the mixed refractory to form a mixture;

(c) 상기 혼합물을 양생 및 건조하는 단계; 및(c) curing and drying the mixture; And

(d) 상기 양생 및 건조된 혼합물을 열처리하는 단계(d) heat treating the cured and dried mixture

를 포함하는 것을 특징으로 하는 알루미나 결합제 부정형 내화물의 제조 방법에 관한 것이다.
It relates to a method for producing an alumina binder amorphous refractory comprising a.

본 발명에 따른 알루미나 결합제 부정형 내화물은 건조가 빠르고, 건조 및 열처리 시 금(Crack)이 생기지 않는 장점이 있으며, CaO가 함유되지 않아 고온 사용이 가능하며, 내화물과의 소결이 일어나 강도가 높으며, 소결밀도 또한 높은 특성을 가지고 있어 기존의 시멘트를 사용한 부정형 내화물을 대체하여 사용할 수 있을 것으로 예상된다.The alumina binder amorphous refractory according to the present invention has the advantage of fast drying, cracking does not occur during drying and heat treatment, can be used at high temperature because it does not contain CaO, sintering with the refractory is high strength, sintering Its density is also high, and it is expected that it can be used as an alternative to amorphous refractory using cement.

본 발명은 알루미나 결합제 부정형 내화물에 관한 것으로서, 더욱 구체적으로 본 발명은 Al2O3 와 SiC 혼합물에 결합성을 주고, 여기에 건조 및 소결 강도를 줄 수 있는 무기바인더 전구체인 알루미나 전구체를 분말로 혼합하여, 분말이 내화물 표면에 고르게 분포되게 한 다음, 물 또는 물과 첨가제를 넣어 알루미나 결합제 부정형 내화물을 얻는 것을 그 특징으로 한다.The present invention relates to an alumina binder amorphous refractory material, and more particularly, the present invention relates to Al 2 O 3 And alumina precursors, which are inorganic binder precursors that can give dryness and sintering strength, into powders, so that the powders are evenly distributed on the surface of the refractory, and then water or water and additives are added to the alumina It is characterized by obtaining a binder amorphous refractory material.

이하 상기와 같은 기술적 특징을 갖는 본 발명을 제조 단계에 따라 상세하게 설명하면 다음과 같다.
Hereinafter, the present invention having the technical features as described above will be described in detail according to the manufacturing steps.

본 발명은 Al2O3, SiC 및 알루미나 전구체 분말을 함께 섞어 혼합 내화물을 만드는 단계; 상기 혼합 내화물에 물을 첨가하여 혼합물을 만드는 단계; 상기 혼합물을 양생 및 건조하는 단계; 및 상기 양생 및 건조된 혼합물을 열처리하는 단계를 거쳐 높은 강도를 발현시키는 알루미나 결합제 부정형 내화물을 제조하는 방법을 제공하는 것을 그 특징으로 한다.The present invention comprises the steps of mixing together Al 2 O 3 , SiC and alumina precursor powder to make a mixed refractory; Adding water to the mixed refractory to form a mixture; Curing and drying the mixture; And heat treating the cured and dried mixture to provide a method for producing an alumina binder amorphous refractory material having high strength.

본 발명에서 상기 혼합 내화물은 Al2O3(Aluminum oxide)와 SiC(Silicon carbide)에 무기바인더 전구체 역할을 하는 알루미나 전구체 분말을 함께 넣어 혼합하여 생성한다.In the present invention, the mixed refractory is produced by mixing together the alumina precursor powder serving as an inorganic binder precursor to Al 2 O 3 (Aluminum oxide) and SiC (Silicon carbide).

상기 Al2O3는 내화물에서 골격을 이루는 골재 성분의 하나로 알루미나 결합제 부정형 내화물 제조시 높은 굽힘 강도를 유지하는데 유효한 역할을 하는 성분이다. 본 발명에서 상기 Al2O3의 입자지름 및 입자간의 배합 비율은 제한되지 않는다.Al 2 O 3 is one of the aggregate components constituting the skeleton in the refractory is a component that plays an effective role in maintaining a high bending strength in the manufacture of alumina binder amorphous refractory. In the present invention, the particle diameter of the Al 2 O 3 and the mixing ratio between the particles are not limited.

상기 SiC는 내화물에서 골격을 이루는 골재 성분의 하나로 특히 물이나 산에 녹지 않고 화학적으로도 비활성이며 매우 단단하다는 특성을 지니고 있어 용광로, 슬래그 접촉부 등에 사용 시 용융슬래그가 내화물 벽을 흐를 때 침식과 마모가 생기는 것을 막아주어 내구성을 유지하는데 매우 유용한 성분이다.The SiC is one of the aggregate components constituting the skeleton in the refractory, and in particular, it is insoluble in water or acid, chemically inert, and has a very hard property. It is a very useful ingredient to prevent the occurrence and maintain durability.

상기 SiC로써 조립(입자 지름 : 6 mm ~ 1 mm), 미립(입자 지름 : 1 mm ~ 50 ㎛) 및 미분(입자 지름 : 50 ㎛ 이하)의 입자로 구성되는 것을 사용할 수 있으며, 입자간의 배합 비율은 제한되지 않는다.As the SiC, granulated (particle diameter: 6 mm to 1 mm), fine particles (particle diameter: 1 mm to 50 μm) and fine particles (particle diameter: 50 μm or less) may be used, and the mixing ratio between the particles may be used. Is not limited.

본 발명에서 상기 Al2O3와 SiC를 혼합하여 사용하며, 이들의 혼합비는 제한되지 않는다. 바람직하게는 10 : 90 내지 30 : 70 의 중량비가 되도록 혼합하여 사용하는 것이 좋다.In the present invention, the Al 2 O 3 and SiC are mixed and used, and the mixing ratio thereof is not limited. Preferably it is good to mix and use so that it may become a weight ratio of 10: 90-30: 70.

이후, 상기 Al2O3 와 SiC의 혼합물에 알루미나 전구체 분말을 혼합시킨 후 고르게 분포시킨다. 무기바인더 전구체 역할을 하는 알루미나 전구체 분말은 실온에서 물에 쉽게 분산되어 반투명한 알루미나 졸을 형성한다. 따라서 알루미나 전구체 분말을 Al2O3 및 SiC와 함께 혼합한 다음 물을 첨가하면 알루미나 전구체의 가수분해 및 중합이 일어나 무기바인더 역할을 하게 됨으로서 부정형 내화물을 쉽게 제조할 수 있게 된다.Afterwards, the Al 2 O 3 The alumina precursor powder is mixed with the mixture of and SiC and then evenly distributed. The alumina precursor powder, which acts as an inorganic binder precursor, is readily dispersed in water at room temperature to form a translucent alumina sol. Therefore, when the alumina precursor powder is mixed with Al 2 O 3 and SiC, and then water is added, hydrolysis and polymerization of the alumina precursor occur, which acts as an inorganic binder, thereby making it possible to easily prepare amorphous refractory materials.

상기 알루미나 전구체 분말은 바람직하게는 ρ- 알루미나 또는 보헤마이트가 사용될 수 있으며, 가장 바람직하게는 보헤마이트를 사용한다.As the alumina precursor powder, ρ-alumina or boehmite may be preferably used, and most preferably boehmite is used.

본 발명에서 알루미나 전구체 분말은 Al2O3와 SiC의 총 사용량 100 중량부에 대하여 1 내지 10 중량부가 되도록 사용하는 것이 바람직하며, 보다 바람직하게는 1 내지 6 중량부를 사용한다. 알루미나 전구체 분말이 1 중량부 미만일 경우는 결합력이 낮아지는 문제점이 있고, 10 중량부를 초과할 경우는 혼합을 위한 물의 양이 많아져 건조 시간이 길어지며, 수분의 휘발에 의한 기공이 많아지며, 기공율이 높아지며, 또한 결합층이 두꺼워져 슬래그 침식이 일어나기 쉽게 되는 문제점이 있다.In the present invention, the alumina precursor powder is preferably used to 1 to 10 parts by weight based on 100 parts by weight of the total amount of Al 2 O 3 and SiC, more preferably 1 to 6 parts by weight. If the alumina precursor powder is less than 1 part by weight, there is a problem that the bonding strength is lowered. If the alumina precursor powder is more than 10 parts by weight, the amount of water for mixing is increased, the drying time is long, the porosity is increased by volatilization of moisture, porosity This increases, and there is a problem that the bond layer is thickened, so that slag erosion easily occurs.

상기 Al2O3 , SiC 및 알루미나 전구체 분말로 이루어진 혼합 내화물에 스피넬, 마그네시아 또는 지르코니아를 Al2O3와 SiC의 총 사용량 100 중량부에 대하여 0.1 내지 1.0 중량부 만큼 추가로 포함할 수 있다. 본 발명에서는 상기 스피넬, 마그네시아 또는 지르코니아를 사용함으로써, 제조된 알루미나 결합제 부정형 내화물의 굽힘강도를 높여 주는 역할을 한다.Spinel, magnesia or zirconia may be additionally included in the mixed refractory material consisting of Al 2 O 3 , SiC and alumina precursor powder in an amount of 0.1 to 1.0 parts by weight based on 100 parts by weight of the total amount of Al 2 O 3 and SiC. In the present invention, by using the spinel, magnesia or zirconia, serves to increase the bending strength of the prepared alumina binder amorphous refractory.

상기 혼합 내화물에 물을 첨가하여 혼합물을 만든다. 상기 물은 알루미나 전구체의 가수분해 및 중합반응을 도와주어 알루미나 전구체가 무기바인더 역할을 할 수 있게 해주는 역할을 한다. 본 발명에서 물은 상기 Al2O3 와 SiC의 총 사용량 100 중량부에 대하여 3 내지 15 중량부를 사용하는 것이 바람직하며, 보다 바람직하게는 4 내지 10 중량부를 사용한다. 물을 3 중량부 미만으로 사용할 경우 혼합 및 가수분해가 충분히 일어나지 못하는 문제점이 있고, 15 중량부를 초과하여 사용하는 경우 건조 시간이 오래 걸리며, 내화제의 유동이 일어나 층 분리가 생길 수 있으며, 수분의 증발로 생기는 기공으로 인하여 기공율이 높아지는 것과 같은 문제점이 있다.Water is added to the mixed refractory to form a mixture. The water serves to help the hydrolysis and polymerization of the alumina precursor to act as an inorganic binder. In the present invention, the water is preferably used 3 to 15 parts by weight, more preferably 4 to 10 parts by weight based on 100 parts by weight of the total amount of Al 2 O 3 and SiC used. When using less than 3 parts by weight of water there is a problem that the mixing and hydrolysis does not occur sufficiently, when using more than 15 parts by weight takes a long drying time, the flow of the refractory agent may occur due to the separation of the layer, There are problems such as higher porosity due to porosity generated by evaporation.

상기 물이 첨가된 혼합물에 유기 바인더를 추가로 포함시킬 수 있다. 상기 유기 바인더는 결합을 도와주는 역할을 하며 이를 사용 시 본 발명에서 취급강도가 높아지며, 좀 더 균일한 구조의 알루미나 결합제 부정형 내화물을 얻을 수 있다는 이점이 있다. 본 발명의 유기 바인더는 상기 Al2O3와 SiC의 총 사용량 100 중량부에 대하여 0.01 내지 5 중량부를 사용하는 것이 바람직하며, 보다 바람직하게는 0.02 내지 3 중량부를 사용한다. 0.01 중량부 미만으로 사용시 결합력이 약한 문제점이 있으며 5 중량부를 초과하여 사용시 열처리 과정에서 분해와 연소로 생기는 기공이 높아지는 문제점이 생긴다.The organic binder may be further included in the mixture to which the water is added. The organic binder serves to assist the bonding, and when used, the handling strength is increased in the present invention, and there is an advantage that an alumina binder amorphous refractory having a more uniform structure can be obtained. The organic binder of the present invention is preferably used 0.01 to 5 parts by weight, more preferably 0.02 to 3 parts by weight based on 100 parts by weight of the total amount of Al 2 O 3 and SiC used. When using less than 0.01 parts by weight, there is a problem that the bonding strength is weak, and when using more than 5 parts by weight, there is a problem that the pores generated by decomposition and combustion in the heat treatment process increases.

상기 유기 바인더는 수용액 형태로도 사용될 수 있으며, 바람직하게는 하이드록시에틸셀룰로오스(Hydroxyethylcellulose, HEC), 메틸셀룰로오스(Methylcellulose), 하이드록시메틸셀룰로오스(Hydroxymethylcellulose), 하이드록시프로필셀룰로오스 (Hydroxypropylcellulose) 또는 라텍스(Latex)가 사용될 수 있다. 가장 바람직하게는 하이드록시에틸셀룰로오스를 사용한다.The organic binder can also be used in the form of an aqueous solution, preferably hydroxyethyl cellulose (Hydroxyethylcellulose, HEC), methyl cellulose (Methylcellulose), hydroxymethyl cellulose (Hydroxymethylcellulose), hydroxypropyl cellulose (Hydroxypropylcellulose) or latex (Latex ) Can be used. Most preferably hydroxyethyl cellulose is used.

이후 상기 제조된 알루미나 결합제 부정형 내화물을 양생 및 건조한다. 상기 양생은 실온(5℃ 내지 40℃)에서 2 내지 6 시간 동안 한다. 이후 60 내지 100℃에서 3 내지 4 시간 동안 건조하여 항량이 된다.Thereafter, the prepared alumina binder amorphous refractory is cured and dried. The curing is performed at room temperature (5 ° C. to 40 ° C.) for 2 to 6 hours. After drying at 60 to 100 ℃ for 3 to 4 hours to give a dosage.

다음으로 상기 건조된 알루미나 결합제 부정형 내화물을 열처리한다. 상기 열처리는 1350 ℃ 내지 1400℃ 조건에서 2 내지 4 시간 동안 한다.
Next, the dried alumina binder amorphous refractory material is heat-treated. The heat treatment is performed for 2 to 4 hours at 1350 ℃ to 1400 ℃ conditions.

이하, 본 발명의 실시예를 다음과 같이 나타내었으나 본 발명이 실시예에 한정되는 것은 아니다.
Hereinafter, examples of the present invention are shown as follows, but the present invention is not limited to the examples.

<< 실시예Example 1> 1>

혼합 내화물을 하기 표 1에 나타낸 조성비로 폴리프로필렌 용기 안에서 혼합하였다. 하기 조성 2를 50g 취하여 종이컵에 넣고 증류수 6.48g을 첨가한 다음 탭핑(tapping)으로 부정형 성형체를 제조하였다. 실온(25℃)에서 2시간 동안 건조한 후, 60℃ 건조기에 넣어 4시간 동안 추가로 건조한 다음, 1400℃에서 2시간 동안 공기 중에서 소결하여 알루미나 결합제 부정형 내화물을 제조하였다. 제조된 알루미나 결합제 부정형 내화물의 굽힘강도와 밀도를 측정하여 그 결과를 하기 표 2에 나타내었다.Mixed refractory materials were mixed in a polypropylene container at the composition ratios shown in Table 1 below. 50 g of the following Composition 2 was taken, placed in a paper cup, 6.48 g of distilled water was added, and an amorphous molded body was prepared by tapping. After drying for 2 hours at room temperature (25 ℃), and further dried for 4 hours in a 60 ℃ dryer, and then sintered in air at 1400 ℃ for 2 hours to prepare alumina binder amorphous refractory. The bending strength and density of the prepared alumina binder amorphous refractory were measured and the results are shown in Table 2 below.

혼합 내화물의 조성비 및 첨가된 Composition ratio of mixed refractory and added 보헤마이트의Bohemite  amount Al2O3 (g)Al 2 O 3 (g) SiC (g)SiC (g) 보헤마이트 (g)Bohemite (g) d50 d 50 3-5㎜3-5 mm 0.3㎛0.3 μm 1.25㎜1.25 mm 750㎛750㎛ 90㎛90 μm 20㎛20 탆 5㎛5㎛ 조성 1Composition 1 77 7.67.6 3838 2323 33 2020 1.41.4 00 조성 2Composition 2 77 7.67.6 3838 2323 33 2020 1.41.4 1.961.96 조성 3Composition 3 77 7.67.6 3838 2323 33 2020 1.41.4 4.114.11 조성 4Composition 4 77 7.67.6 3838 2323 33 21.421.4 00 6.06.0

<< 실시예Example 2> 2>

상기 조성 2를 50g 취하여 종이컵에 넣고 5중량%의 하이드록시에틸셀룰로오스(HEC) 수용액 8.5g을 첨가하여 1400 ℃에서 4시간 소결한 것을 제외하고는 실시예 1에 기술한 방법과 동일하게 알루미나 결합제 부정형 내화물을 제조하여 그 굽힘강도와 밀도를 측정한 후 그 결과를 하기 표 2에 나타내었다.
50 g of Composition 2 was taken in a paper cup, and the alumina binder amorphous form was the same as described in Example 1, except that 8.5 g of 5% by weight aqueous solution of hydroxyethyl cellulose (HEC) was added and sintered at 1400 ° C. for 4 hours. After the refractory was prepared and the bending strength and density were measured, the results are shown in Table 2 below.

<< 실시예Example 3> 3>

상기 조성 3을 50g 취하여 종이컵에 넣고 증류수 5.89g을 첨가하여 실시예 1에 기술한 방법과 동일하게 알루미나 결합제 부정형 내화물을 제조하여 그 굽힘강도와 밀도를 측정한 후 그 결과를 하기 표 2에 나타내었다.
50 g of the composition 3 was added to a paper cup, and 5.89 g of distilled water was added to prepare an alumina binder amorphous refractory material in the same manner as described in Example 1, and the bending strength and density thereof were measured. The results are shown in Table 2 below. .

<< 실시예Example 4> 4>

상기 조성 3을 50g 취하여 종이컵에 넣고 증류수 5.98g을 첨가하여 실시예 1에 기술한 방법과 동일하게 알루미나 결합제 부정형 내화물을 제조하여 그 굽힘강도와 밀도를 측정한 후 그 결과를 하기 표 2에 나타내었다.
50 g of the composition 3 was added to a paper cup, and 5.98 g of distilled water was added to prepare an alumina binder amorphous refractory material in the same manner as described in Example 1, and the bending strength and density thereof were measured. The results are shown in Table 2 below. .

<< 실시예Example 5> 5>

상기 조성 3을 50g 취하여 종이컵에 넣고 증류수 6.33g을 첨가하여 1400 ℃에서 4시간 소결한 것을 제외하고는 실시예 1에 기술한 방법과 동일하게 알루미나 결합제 부정형 내화물을 제조하여 그 굽힘강도와 밀도를 측정한 후 그 결과를 하기 표 2에 나타내었다.
50 g of the composition 3 was added to a paper cup, 6.33 g of distilled water was added, and the alumina binder amorphous refractory material was prepared in the same manner as in Example 1 except that the mixture was sintered at 1400 ° C. for 4 hours, and the bending strength and density thereof were measured. The results are shown in Table 2 below.

<< 실시예Example 6> 6>

상기 조성 3을 50g 취하여 종이컵에 넣고 5중량%의 하이드록시에틸셀룰로오스(HEC) 수용액 8.55g을 첨가하여 1400 ℃에서 4시간 소결한 것을 제외하고는 실시예 1에 기술한 방법과 동일하게 알루미나 결합제 부정형 내화물을 제조하여 그 굽힘강도와 밀도를 측정한 후 그 결과를 하기 표 2에 나타내었다.
50 g of Composition 3 was added to a paper cup, and the alumina binder was amorphous in the same manner as described in Example 1, except that 8.55 g of 5 wt% hydroxyethyl cellulose (HEC) aqueous solution was added and sintered at 1400 ° C. for 4 hours. After the refractory was prepared and the bending strength and density were measured, the results are shown in Table 2 below.

<< 실시예Example 7> 7>

상기 조성 4를 50g 취하여 종이컵에 넣고 증류수 6.81g을 첨가하여 실시예 1에 기술한 방법과 동일하게 알루미나 결합제 부정형 내화물을 제조하여 그 굽힘강도와 밀도를 측정한 후 그 결과를 하기 표 2에 나타내었다.
50 g of the composition 4 was added to a paper cup, and 6.81 g of distilled water was added to prepare an alumina binder amorphous refractory material in the same manner as described in Example 1, and the bending strength and density thereof were measured. The results are shown in Table 2 below. .

<< 실시예Example 8> 8>

상기 조성 4를 50g 취하여 종이컵에 넣고 증류수 7.67g을 첨가하여 1400 ℃에서 4시간 소결한 것을 제외하고는 실시예 1에 기술한 방법과 동일하게 알루미나 결합제 부정형 내화물을 제조하여 그 굽힘강도와 밀도를 측정한 후 그 결과를 하기 표 2에 나타내었다.
50 g of the composition 4 was added to a paper cup, and 7.67 g of distilled water was added thereto, and the alumina binder amorphous refractory material was prepared in the same manner as in Example 1 except that the mixture was sintered at 1400 ° C. for 4 hours. The results are shown in Table 2 below.

<< 비교예Comparative example 1> 1>

상기 조성 1을 50g 취하여 종이컵에 넣고 5중량%의 하이드록시에틸셀룰로오스(HEC) 수용액 10g을 첨가하여 실시예 1에 기술한 방법과 동일하게 알루미나 결합제 부정형 내화물을 제조하여 그 굽힘강도와 밀도를 측정한 후 그 결과를 하기 표 2에 나타내었다.50 g of the composition 1 was taken, placed in a paper cup, and 10 g of 5% by weight aqueous solution of hydroxyethyl cellulose (HEC) was added. The results are shown in Table 2 below.

보헤마이트Bohemite 및 첨가제가 알루미나 결합제 부정형 내화물 물성에 미치는 영향 Effects of and Additives on Alumina Binder Indeterminate Refractory Properties 조성 (사용된 보헤마이트의 g)Composition (g of boehmite used) 첨가제 (g)Additive (g) 소결온도 (1400℃), 공기중 Sintering temperature (1400 ℃), in air 2시간2 hours 4시간4 hours 증류수Distilled water HEC 수용액
(5중량%)
HEC aqueous solution
(5% by weight)
밀도
(g/cm3)
density
(g / cm 3)
굽힘강도Bending strength
(( MPaMPa ))
밀도
(g/cm3)
density
(g / cm 3)
굽힘강도Bending strength
(( MPaMPa ))
조성 1
(0)
Composition 1
(0)
비교예 1Comparative Example 1 00 1010 2.462.46 <5<5
조성2
(1.96)
Composition 2
(1.96)
실시예 1Example 1 6.486.48 00 2.652.65 52.2652.26
실시예 2Example 2 00 8.58.5 2.542.54 35.1435.14 조성 3
(4.11)
Composition 3
(4.11)
실시예 3Example 3 5.895.89 00 2.622.62 42.4942.49
실시예 4Example 4 5.985.98 00 2.632.63 49.2449.24 실시예 5Example 5 6.336.33 00 2.642.64 42.1942.19 실시예 6Example 6 00 8.558.55 2.522.52 30.5530.55 조성 4
(6.0)
Composition 4
(6.0)
실시예 7Example 7 6.816.81 00 2.592.59 31.9431.94
실시예 8Example 8 7.677.67 00 2.582.58 38.3838.38

※ 굽힘강도는 스팬길이 20 mm의 3 점 방법으로 측정하였다.
※ Bending strength was measured by a three-point method with a span length of 20 mm.

상기 표 2에서 알 수 있듯이 본 발명의 보헤마이트 및 물이 포함된 알루미나 결합제 부정형 내화물의 경우 굽힘강도 30.55 MPa 내지 52.26 MPa 범위를 보이며, 이는 보헤마이트가 포함되지 않은 비교예 1의 굽힘강도 5 MPa 이하와 비교하여 볼 때 월등하게 우수한 결과이다.
As can be seen in Table 2, in the case of the alumina binder amorphous refractory including the boehmite and water of the present invention, the bending strength is in the range of 30.55 MPa to 52.26 MPa, which is 5 MPa or less in Comparative Example 1 without boehmite Compared with the result is excellent.

<< 실시예Example 9> 9>

스피넬(Spinel) 0.4g이 포함된 혼합 내화물을 하기 표 3에 나타난 조성비로 폴리프로필렌 용기 안에서 혼합하였다. 하기 조성 6을 50g 취하여 종이컵에 넣고 PVA(Polyvinyl alcohol) 0.08g을 첨가한 다음 실시예 1에 기술한 방법과 동일하게 알루미나 결합제 부정형 내화물을 제조하여 그 굽힘강도와 밀도를 측정한 후 그 결과를 하기 표 4에 나타내었다.Mixed refractory containing 0.4 g of spinel was mixed in a polypropylene container at the composition ratio shown in Table 3 below. 50 g of the following composition 6 was taken and placed in a paper cup. Then, 0.08 g of polyvinyl alcohol (PVA) was added. Table 4 shows.

스피넬이Spinel 포함된 혼합 내화물의 조성비 및 첨가된  Composition ratios of mixed refractory materials included and added 보헤마이트의Bohemite  amount Al2O3 (g)Al 2 O 3 (g) SiC (g)SiC (g) 스피넬 (g)Spinel (g) 보헤마이트
(g)
Bohemite
(g)
d50 d 50 3-5㎜3-5 mm 0.3㎛0.3 μm 1.25㎜1.25 mm 750㎛ 750㎛ 90㎛90 μm 20㎛20 탆 5㎛5㎛ <44㎛<44 μm 조성 5Composition 5 6.76.7 7.27.2 36.536.5 22.122.1 2.92.9 19.219.2 1.31.3 0.40.4 00 조성 6Composition 6 7.07.0 7.27.2 36.536.5 22.622.6 3.03.0 19.719.7 1.31.3 0.40.4 2.02.0 조성 7Composition 7 6.76.7 7.27.2 36.636.6 22.122.1 2.92.9 19.519.5 1.31.3 0.40.4 4.34.3

<< 실시예Example 10> 10>

상기 조성 6을 50g 취하여 종이컵에 넣고 증류수 6.66g을 첨가하여 실시예 1에 기술한 방법과 동일하게 알루미나 결합제 부정형 내화물을 제조하여 그 굽힘강도와 밀도를 측정한 후 그 결과를 하기 표 4에 나타내었다.
50 g of the composition 6 was added to a paper cup, and 6.66 g of distilled water was added to prepare an alumina binder amorphous refractory material in the same manner as described in Example 1, and the bending strength and density thereof were measured. The results are shown in Table 4 below. .

<< 실시예Example 11> 11>

상기 조성 6을 50g 취하여 종이컵에 넣고 증류수 6.25g을 첨가하여 실시예 1에 기술한 방법과 동일하게 알루미나 결합제 부정형 내화물을 제조하여 그 굽힘강도와 밀도를 측정한 후 그 결과를 하기 표 4에 나타내었다.
50 g of the composition 6 was added to a paper cup, and 6.25 g of distilled water was added to prepare an alumina binder amorphous refractory material in the same manner as described in Example 1, and the bending strength and density thereof were measured. The results are shown in Table 4 below. .

<< 실시예Example 12> 12>

상기 조성 7을 50g 취하여 종이컵에 넣고 증류수 5.55g을 첨가하여 실시예 1에 기술한 방법과 동일하게 알루미나 결합제 부정형 내화물을 제조하여 그 굽힘강도와 밀도를 측정한 후 그 결과를 하기 표 4에 나타내었다.
50 g of the composition 7 was added to a paper cup, and 5.55 g of distilled water was added to prepare an alumina binder amorphous refractory material in the same manner as described in Example 1, and the bending strength and density thereof were measured. The results are shown in Table 4 below. .

<< 실시예Example 13> 13>

상기 조성 7을 50g 취하여 종이컵에 넣고 증류수 7.7g 및 5중량%의 하이드록시에틸셀룰로오스(HEC) 수용액 0.08g을 첨가하여 실시예 1에 기술한 방법과 동일하게 알루미나 결합제 부정형 내화물을 제조하여 그 굽힘강도와 밀도를 측정한 후 그 결과를 하기 표 4에 나타내었다.
50 g of the composition 7 was taken into a paper cup, and 7.7 g of distilled water and 0.08 g of 5 wt% hydroxyethyl cellulose (HEC) aqueous solution were added to prepare an alumina binder amorphous refractory material in the same manner as described in Example 1. After measuring the density and the results are shown in Table 4 below.

<< 비교예Comparative example 2> 2>

보헤마이트가 첨가되지 않은 상기 조성 5를 50g 취하여 종이컵에 넣고 증류수 5중량%의 하이드록시에틸셀룰로오스(HEC) 수용액 8.8g을 첨가하여 실시예 1에 기술한 방법과 동일하게 알루미나 결합제 부정형 내화물을 제조하여 그 굽힘강도와 밀도를 측정한 후 그 결과를 하기 표 4에 나타내었다.50 g of the composition 5 without boehmite was added to a paper cup, and 8.8 g of a 5% by weight aqueous solution of hydroxyethyl cellulose (HEC) in distilled water was added. After measuring the bending strength and density, the results are shown in Table 4 below.

SpinelSpinel this 포합된Included 혼합내화물에Mixed refractories 첨가된  Added 보헤마이트Bohemite 양이  Sheep
알루미나 결합제 부정형 내화물의 물성에 미치는 영향Effect of Alumina Binder on the Physical Properties of Amorphous Refractories
조성 (사용된 보헤마이트의 g)Composition (g of boehmite used) 첨가제 (g)Additive (g) 소결온도 (1400℃),
공기 중에서 2시간
Sintering temperature (1400 ℃),
2 hours in air
증류수Distilled water HEC 수용액
(5중량%)
HEC aqueous solution
(5% by weight)
PVAPVA 밀도
(g/cm3)
density
(g / cm 3)
굽힘강도
(MPa)
Bending strength
(MPa)
조성 5
(0)
Composition 5
(0)
비교예 2Comparative Example 2 00 8.88.8 00 2.552.55 <5<5
조성 6
(2.0)
Composition 6
(2.0)
실시예 9Example 9 6.596.59 00 0.080.08 2.662.66 28.8428.84
실시예 10Example 10 6.666.66 00 00 2.632.63 39.0439.04 실시예 11Example 11 6.256.25 00 00 2.612.61 39.9839.98 조성 7
(4.3)
Composition 7
(4.3)
실시예 12Example 12 5.555.55 00 00 2.832.83 50.7150.71
실시예 13Example 13 7.77.7 0.080.08 00 2.682.68 52.7152.71

상기 표 4에서 알 수 있듯이, 본 발명에 따른 물에 분산되어 가수분해 및 중합이 이루워질 수 있는 알루미나 전구체, 즉 보헤마이트 첨가는 소결 시 알루미나 결합을 내화제 성분과 이루어 소결 밀도를 향상시키며, 즉 기공율이 낮아지며, 강도가 8 내지 10 배로 크게 되는 효과가 있다. 또한 본 발명에서 첨가제로 증류수를 첨가한 경우, 그렇지 않은 경우보다 월등한 굽힘강도를 나타내었으며, 또한 첨가제로 HEC 수용액이 첨가되었을 때 더 우수한 굽힘강도를 나타내는 것을 알 수 있다.As can be seen in Table 4, the addition of an alumina precursor, that is, boehmite, which is dispersed in water according to the present invention and can be hydrolyzed and polymerized, improves the sintering density by forming an alumina bond with the refractory component during sintering, that is, Porosity is lowered, there is an effect that the strength is increased to 8 to 10 times. In addition, when distilled water was added as an additive in the present invention, it showed superior bending strength, and when the HEC aqueous solution was added as an additive, it showed that excellent bending strength.

Claims (14)

Al2O3, SiC, 알루미나 전구체 분말 및 물을 포함하는 것을 특징으로 하는 알루미나 결합제 부정형 내화물.
An alumina binder amorphous refractory comprising Al 2 O 3 , SiC, alumina precursor powder and water.
제 1 항에 있어서, 상기 알루미나 전구체 분말은 ρ- 알루미나 또는 보헤마이트인 것을 특징으로 하는 알루미나 결합제 부정형 내화물.
The alumina binder amorphous refractory according to claim 1, wherein the alumina precursor powder is p-alumina or boehmite.
제 1 항 또는 제 2 항에 있어서, 상기 알루미나 전구체 분말은 상기 Al2O3 SiC의 총 사용량 100 중량부에 대하여 1 내지 10 중량부를 사용하는 것을 특징으로 하는 알루미나 결합제 부정형 내화물.
The alumina binder amorphous refractory according to claim 1 or 2, wherein the alumina precursor powder is used in an amount of 1 to 10 parts by weight based on 100 parts by weight of the total amount of Al 2 O 3 SiC.
제 1 항에 있어서, 상기 알루미나 결합제 부정형 내화물에 스피넬, 마그네시아 또는 지르코니아를 추가로 포함하는 것을 특징으로 하는 알루미나 결합제 부정형 내화물.
The alumina binder amorphous refractory according to claim 1, further comprising spinel, magnesia or zirconia in the alumina binder amorphous refractory.
제 1 항에 있어서, 상기 물은 상기 Al2O3와 SiC의 총 사용량 100 중량부에 대하여 3 내지 15 중량부를 사용하는 것을 특징으로 하는 알루미나 결합제 부정형 내화물.
The alumina binder amorphous refractory according to claim 1, wherein the water is used in an amount of 3 to 15 parts by weight based on 100 parts by weight of the total amount of Al 2 O 3 and SiC.
제 1 항에 있어서, 상기 Al2O3와 SiC의 총 사용량 100 중량부에 대하여 유기 바인더를 0.01 내지 5 중량부 추가로 포함하는 것을 특징으로 하는 알루미나 결합제 부정형 내화물.
The alumina binder amorphous refractory according to claim 1, further comprising 0.01 to 5 parts by weight of an organic binder based on 100 parts by weight of the total amount of Al 2 O 3 and SiC.
제 6 항에 있어서, 상기 유기 바인더는 하이드록시에틸셀룰로오스, 메틸셀룰로오스, 하이드록시메틸셀룰로오스, 하이드록시프로필셀룰로오스 또는 라텍스인 것을 특징으로 하는 알루미나 결합제 부정형 내화물.
7. The alumina binder amorphous refractory according to claim 6, wherein the organic binder is hydroxyethyl cellulose, methyl cellulose, hydroxymethyl cellulose, hydroxypropyl cellulose or latex.
(a) Al2O3, SiC 및 알루미나 전구체 분말을 함께 섞어 혼합 내화물을 만드는 단계;
(b) 상기 혼합 내화물에 물을 첨가하여 혼합물을 만드는 단계;
(c) 상기 혼합물을 양생 및 건조하는 단계; 및
(d) 상기 양생 및 건조된 혼합물을 열처리하는 단계
를 포함하는 것을 특징으로 하는 알루미나 결합제 부정형 내화물의 제조 방법.
(a) mixing Al 2 O 3 , SiC and alumina precursor powder together to make a mixed refractory;
(b) adding water to the mixed refractory to form a mixture;
(c) curing and drying the mixture; And
(d) heat treating the cured and dried mixture
Method for producing an alumina binder amorphous refractory comprising a.
제 8 항 있어서, 상기 (a) 단계의 알루미나 전구체 분말은 ρ- 알루미나 또는 보헤마이트인 것을 특징으로 하는 알루미나 결합제 부정형 내화물의 제조 방법.
The method of claim 8, wherein the alumina precursor powder of step (a) is p-alumina or boehmite.
제 8 항 또는 제 9 항에 있어서, 상기 알루미나 전구체 분말은 상기 Al2O3와 SiC의 총 사용량 100 중량부에 대하여 1 내지 10 중량부를 사용하는 것을 특징으로 하는 알루미나 결합제 부정형 내화물의 제조 방법.
The method of claim 8 or 9, wherein the alumina precursor powder is used in an amount of 1 to 10 parts by weight based on 100 parts by weight of the total amount of Al 2 O 3 and SiC used.
제 8 항에 있어서, 상기 (a) 단계의 혼합 내화물에 스피넬, 마그네시아 또는 지르코니아를 추가로 포함하는 것을 특징으로 하는 알루미나 결합제 부정형 내화물의 제조 방법.
The method of claim 8, wherein the mixed refractory of step (a) further comprises spinel, magnesia or zirconia.
제 8 항에 있어서, 상기 (b) 단계의 물은 상기 Al2O3와 SiC의 총 사용량 100 중량부에 대하여 3 내지 15 중량부를 사용하는 것을 특징으로 하는 알루미나 결합제 부정형 내화물의 제조 방법.
The method according to claim 8, wherein the water of step (b) is used in an amount of 3 to 15 parts by weight based on 100 parts by weight of the total amount of Al 2 O 3 and SiC.
제 8 항에 있어서, 상기 (b)단계의 혼합물에 유기바인더를 상기 Al2O3와 SiC의 총 사용량 100 중량부에 대하여, 0.01 내지 5 중량부 추가로 포함하는 것을 특징으로 하는 알루미나 결합제 부정형 내화물의 제조 방법.
The alumina binder amorphous refractory according to claim 8, further comprising 0.01 to 5 parts by weight of the organic binder in the mixture of step (b), based on 100 parts by weight of the total amount of Al 2 O 3 and SiC. Method of preparation.
제 13 항에 있어서, 상기 유기 바인더는 하이드록시에틸셀룰로오스, 메틸셀룰로오스, 하이드록시메틸셀룰로오스, 하이드록시프로필셀룰로오스 또는 라텍스인 것을 특징으로 하는 알루미나 결합제 부정형 내화물의 제조 방법.The method of claim 13, wherein the organic binder is hydroxyethyl cellulose, methyl cellulose, hydroxymethyl cellulose, hydroxypropyl cellulose, or latex.
KR20100023385A 2010-03-16 2010-03-16 Alumina bonded unshaped refractory and manufacturing method thereof KR101095027B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR20100023385A KR101095027B1 (en) 2010-03-16 2010-03-16 Alumina bonded unshaped refractory and manufacturing method thereof
PCT/KR2010/008502 WO2011115353A1 (en) 2010-03-16 2010-11-30 Alumina bonded unshaped refractory and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20100023385A KR101095027B1 (en) 2010-03-16 2010-03-16 Alumina bonded unshaped refractory and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20110104310A KR20110104310A (en) 2011-09-22
KR101095027B1 true KR101095027B1 (en) 2011-12-20

Family

ID=44649416

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20100023385A KR101095027B1 (en) 2010-03-16 2010-03-16 Alumina bonded unshaped refractory and manufacturing method thereof

Country Status (2)

Country Link
KR (1) KR101095027B1 (en)
WO (1) WO2011115353A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101303812B1 (en) * 2012-03-30 2013-09-04 한국과학기술연구원 Alumina coated spinel-silicon carbide refractory compositions with high corrosion resistivity to coal slag and manufacturing method thereof
WO2013147354A1 (en) * 2012-03-30 2013-10-03 한국과학기술연구원 Cementless high strength amorphous refractory material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3007880C (en) 2015-12-16 2023-12-19 Calderys France Castable refractory compositions comprising zeolithic microstructures and uses thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0211233A1 (en) 1985-07-02 1987-02-25 Nippon Shokubai Kagaku Kogyo Co., Ltd Exhaust gas cleaning catalyst and process for production thereof
US5165996A (en) 1990-05-08 1992-11-24 E. I. Du Pont De Nemours And Company Coated refractory compositions and method for preparing the same
JP2004063599A (en) 2002-07-25 2004-02-26 Matsushita Electric Ind Co Ltd Fireproof varistor and manufacturing method thereof
US20060266673A1 (en) 2005-05-25 2006-11-30 Rende Dean E Layered composition and processes for preparing and using the composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0211233A1 (en) 1985-07-02 1987-02-25 Nippon Shokubai Kagaku Kogyo Co., Ltd Exhaust gas cleaning catalyst and process for production thereof
US5165996A (en) 1990-05-08 1992-11-24 E. I. Du Pont De Nemours And Company Coated refractory compositions and method for preparing the same
JP2004063599A (en) 2002-07-25 2004-02-26 Matsushita Electric Ind Co Ltd Fireproof varistor and manufacturing method thereof
US20060266673A1 (en) 2005-05-25 2006-11-30 Rende Dean E Layered composition and processes for preparing and using the composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101303812B1 (en) * 2012-03-30 2013-09-04 한국과학기술연구원 Alumina coated spinel-silicon carbide refractory compositions with high corrosion resistivity to coal slag and manufacturing method thereof
WO2013147353A1 (en) * 2012-03-30 2013-10-03 한국과학기술연구원 Alumina coated spinel/silicon carbide refractory composition which is resistant to coal slag corrosion, and method for preparing same
WO2013147354A1 (en) * 2012-03-30 2013-10-03 한국과학기술연구원 Cementless high strength amorphous refractory material
KR101321944B1 (en) * 2012-03-30 2013-11-04 한국과학기술연구원 Cement-free High Strength Unshaped Refractories
US8815759B2 (en) 2012-03-30 2014-08-26 Korea Institute Of Science And Technology Cement-free high strength unshaped refractory

Also Published As

Publication number Publication date
WO2011115353A1 (en) 2011-09-22
KR20110104310A (en) 2011-09-22

Similar Documents

Publication Publication Date Title
EP3392226B1 (en) Magnesium aluminum spinel brick preparation method and magnesium aluminum spinel brick prepared using same
US8633291B2 (en) Reactive liquid ceramic binder resin
KR101995184B1 (en) Method for producing light ceramic materials
CN103819204B (en) Silicon carbide electrofused mullite matter wear-resistant castable
CN108516849B (en) Zirconium mullite brick for cement kiln and preparation method thereof
KR101334640B1 (en) Composition for high strength siliconoxycarbide bonded silicon carbide ceramics and the producing method of the silicon carbide ceramics
CN103755363A (en) Lightweight siliceous mullite composite brick and preparation method thereof
JP6499464B2 (en) Insulated refractory
CN109020520A (en) A kind of anti-thermal shock and the ceramic rod of high temperature creep-resisting and preparation method thereof
KR101095027B1 (en) Alumina bonded unshaped refractory and manufacturing method thereof
KR101152656B1 (en) Unshaped Refractory Composition Added with Alumina Sol Binder
KR101321944B1 (en) Cement-free High Strength Unshaped Refractories
KR101118607B1 (en) Silicon carbide ceramic compositions added strontium carbonate for high temperature filtration filters and preparing method of high temperature filtration filters using the same
JP5126984B2 (en) Method for producing SiC-containing castable refractory
KR101247691B1 (en) Spinel-Silicon Carbide Refractory compositions with High Corrosion Resistivity to Coal Slag and Manufacturing Method thereof
KR101262077B1 (en) Low Cement Corrosion-Resistive Unshaped Refractories
JP2756934B2 (en) Sinter from coal ash as raw material and method for producing the same
JP4967111B2 (en) Alumina-based porous ceramics and method for producing the same
CN111559906A (en) Anti-skinning castable for carbide slag cement kiln smoke chamber and preparation method thereof
JP4785824B2 (en) Shaped refractory brick with spalling resistance and erosion resistance, its manufacturing method and fire wall
KR101090275B1 (en) Ceramic compositions for mullite-bonded silicon carbide body, sintered body and its preparing method
JP3177200B2 (en) Method for producing low-permeability magnesia-chromium refractory
KR101123906B1 (en) Thermal insulating ceramics and method of manufacturing the same
KR100940869B1 (en) Clay Bricks for Interior Using Stone Sludge and Methods for Preparing Thereof
JP3109382B2 (en) Manufacturing method of permeable pavement material

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141201

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151126

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20161201

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20171201

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20181203

Year of fee payment: 8