KR20110102130A - Iron-based flocculant and method for iron-based flocculant - Google Patents

Iron-based flocculant and method for iron-based flocculant Download PDF

Info

Publication number
KR20110102130A
KR20110102130A KR1020100126203A KR20100126203A KR20110102130A KR 20110102130 A KR20110102130 A KR 20110102130A KR 1020100126203 A KR1020100126203 A KR 1020100126203A KR 20100126203 A KR20100126203 A KR 20100126203A KR 20110102130 A KR20110102130 A KR 20110102130A
Authority
KR
South Korea
Prior art keywords
iron
hydrogen peroxide
sulfuric acid
sulfate
amount
Prior art date
Application number
KR1020100126203A
Other languages
Korean (ko)
Other versions
KR101280550B1 (en
Inventor
야스이에 미카미
Original Assignee
씨에그린 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨에그린 주식회사 filed Critical 씨에그린 주식회사
Publication of KR20110102130A publication Critical patent/KR20110102130A/en
Application granted granted Critical
Publication of KR101280550B1 publication Critical patent/KR101280550B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

본 발명은 철계 응집제 및 철계 응집제 제조방법에 관한 것으로, 철 농도가 50 ∼ 200g/ℓ이고, 총 황산근(T-SO4)과 총 철(T-Fe)의 몰비값(T-SO4/T-Fe)이 0.5 < T-SO4/T-Fe < 1, 시성식은 [Fe2(OH)n(SO4)3-n/2]m 이며, 염기도인 n은 0 < n < 6, 중합도인 m은 100이상 이고, 산화제는 0.5pH이하인 과산화수소(H2O2)를 이용하되, 철(Fe)을 용해하기 위한 황산(H2SO4)과 산화제인 액상의 과산화수소(H2O2)를 동시에 투입해 철의 용해 및 산화를 동시에 행하여 황산이온(SO4)의 양을 줄이면서 철(Fe) 및 OH기의 양이 다량 함유되어 있는 염기성 황산 제2철의 용액으로 이루어져 있어, 철의 용해 및 산화반응을 행하기 위한 황산과 산화제인 액상의 과산화수소를 동시에 투입시킴으로써, 철이 황산에 용해되는 산화 반응시 발생하는 수소이온과 철의 환원반응을 억제하여 응집력을 위한 OH기의 함유량을 다량 형성하여 응집도를 높이고, 중합도를 높여 플록의 크기를 크게 형성할 수 있도록 작용하여 응집효율을 향상시킬 수 있고, 철의 용해 및 산화시 황산 및 과산화수소를 동시에 투입하여 황산이온(SO4)의 양을 줄이면서 철의 양을 다량 투입시킬 수 있어 철농도가 과포화된 상태의 염기성 황산 제2철을 제조할 수 있어 응집효율성을 향상시킬 수 있으며, 과산화수소를 산화제로 이용하여 염기성 제2 황산철에 질소의 양을 100ppm이하로 줄여 응집력을 향상시킬 수 있는 철계 응집제 및 철계 응집제 제조방법을 제공한다.The present invention relates to an iron-based coagulant and a method for producing an iron-based coagulant, the iron concentration is 50 ~ 200g / L, the molar ratio value of the total sulfate (T-SO 4 ) and the total iron (T-Fe) (T-SO 4 / T-Fe) is 0.5 <T-SO 4 / T-Fe <1, the formula is [Fe 2 (OH) n (SO 4 ) 3-n / 2 ] m , the basicity n is 0 <n <6, The degree of polymerization, m, is 100 or more, and the oxidizing agent uses hydrogen peroxide (H 2 O 2 ) of 0.5pH or less, but sulfuric acid (H 2 SO 4 ) for dissolving iron (Fe) and liquid hydrogen peroxide (H 2 O 2) ) the committed at the same time subjected to a dissolution and oxidation of iron at the same time, it consists of a solution of sulfuric acid ions (SO 4) both the reducing iron (Fe), and OH groups the basic ferric sulfate in the amount of the large amount of iron By dissolving sulfuric acid and liquid hydrogen peroxide, which is an oxidizing agent, to dissolve and oxidize at the same time, it is possible to suppress the reduction of hydrogen ions and iron generated during the oxidation reaction in which iron is dissolved in sulfuric acid. Coagulation efficiency can be improved by forming a large amount of one OH group to increase the cohesiveness and increase the degree of polymerization to increase the size of flocs.Sulfate ions can be added simultaneously with sulfuric acid and hydrogen peroxide during iron dissolution and oxidation. The amount of iron can be added while reducing the amount of (SO 4 ), so that basic ferric sulfate can be prepared in a state where the iron concentration is supersaturated, thereby improving the cohesive efficiency, and using hydrogen peroxide as the oxidizing agent. It provides an iron-based coagulant and iron-based coagulant manufacturing method that can improve the cohesive force by reducing the amount of nitrogen to 100ppm or less in the second iron sulfate.

Description

철계 응집제 및 철계 응집제 제조방법{Iron-based flocculant and method for iron-based flocculant}Iron-based flocculant and method for manufacturing iron-based flocculant {Iron-based flocculant and method for iron-based flocculant}

본 발명은 응집 효율성이 좋은 철계 응집제 및 철계 응집제 제조방법에 관한 것으로, 더욱 상세하게는, 철의 용해 및 산화반응을 행하기 위한 황산과 산화제인 액상의 과산화수소를 동시에 투입시킴으로써, 철이 황산에 용해되는 산화 반응시 발생하는 수소이온과 철의 환원반응을 억제하여 응집력을 위한 OH기의 함유량을 다량 형성하여 응집도를 높이고, 중합도를 높여 플록의 크기를 크게 형성할 수 있도록 작용하여 응집효율을 향상시킬 수 있고, 철의 용해 및 산화시 황산 및 과산화수소를 동시에 투입하여 황산이온(SO4)의 양을 줄이면서 철의 양을 다량 투입시킬 수 있어 철농도가 과포화된 상태의 염기성 황산 제2철을 제조할 수 있어 응집효율성을 향상시킬 수 있으며, 과산화수소를 산화제로 이용하여 염기성 제2 황산철에 질소의 양을 100ppm이하로 줄여 응집력을 향상시킬 수 있는 철계 응집제 및 철계 응집제 제조방법에 관한 것이다.
The present invention relates to a method for producing an iron-based coagulant and an iron-based coagulant having good coagulation efficiency, and more particularly, by dissolving iron and sulfuric acid at the same time by injecting sulfuric acid and a liquid hydrogen peroxide, which is an oxidizing agent, for iron dissolution and oxidation reaction. By suppressing the reduction of hydrogen ions and iron generated during the oxidation reaction, it forms a large amount of OH group for cohesion, thereby increasing the cohesiveness and increasing the degree of polymerization, thereby increasing the floc size. When dissolving and oxidizing iron, sulfuric acid and hydrogen peroxide can be simultaneously added to reduce the amount of sulfate ions (SO 4 ) and a large amount of iron can be added to produce basic ferric sulfate with a supersaturated iron concentration. Coagulation efficiency can be improved, and the amount of nitrogen is less than 100ppm in basic ferric sulfate using hydrogen peroxide as oxidant Reducing relates to an iron-based coagulant and flocculant iron manufacturing method that can improve cohesion.

일반적으로, 상, 하수도 그 밖의 배수처리에 사용되는 응집제는 무기전해질로서 소석회, 백반, 염화알루미늄, 산화철, 황산철 등을 이용하여 액체 속의 입자 표면전위를 거의 0에 가깝게 하여 존재하는 입자 상호간의 전기적 반발력을 없애 줌으로써 응집을 일으키는 무기 응집제와, 녹말류나 폴리아크릴아마이드와 그 유도체로 이루어진 유기고분자화합물을 이용하는 유기 응집제로 분류된다.In general, flocculants used for water, sewage, and other wastewater treatment are inorganic electrolytes, using slaked lime, alumina, aluminum chloride, iron oxides, iron sulfate, etc., so that the particle surface potential in the liquid is nearly zero, and thus the electrical power between particles exists. Inorganic flocculants which cause aggregation by removing the repulsive force, and organic flocculants using organic polymer compounds composed of starch, polyacrylamide and derivatives thereof are classified.

특히, 상기 무기 응집제는 알루미늄계로써 황산밴드, 폴리염화알루미늄 등이 있으며, 이것에 대응하는 철계로는 황산 제1철, 염화 제2철, 폴리황산 제2철 등이 있다.In particular, the inorganic flocculant includes aluminum-based sulfate, polyaluminum chloride, and the like. Examples of the iron-based coagulant include ferrous sulfate, ferric chloride, and ferric polysulfate.

알루미늄계의 황산밴드는 그 역사도 오래되었으며 널리 사용되고 있으나 응집력이 약하고, 다량으로 사용하여야 하기 때문에 발생하는 슬러지가 많아, 슬러지를 제거하는데 비용이 많이 드는 문제점이 있었다.Aluminum sulfate band has a long history and has been widely used, but the cohesive strength is weak, a lot of sludge generated because of the large amount of use, there was a problem that the cost of removing the sludge.

이러한 문제점을 보완하기 위해 근래에는 폴리염화알루미늄이 개발되었다.To overcome this problem, polyaluminum chloride has been recently developed.

상기 폴리염화알루미늄은 전술한 황산밴드에 비해 응집력은 개선되었으나 슬러지가 발생하는 문제점은 개선되지 않았으며, 더구나 최근 알루미늄이 알츠하이머병의 원인의 하나로 보고가 발표되어 사용이 감소하고 있는 추세이다.The polyaluminum chloride has improved cohesiveness compared to the above-described sulfate band, but the problem of sludge generation has not been improved, and more recently, aluminum has been reported as one of the causes of Alzheimer's disease, and its use is decreasing.

한편, 종래의 철계 응집제인 황산 제1철은 응집 pH가 9이상으로 pH가 높고, 알칼리의 사용량이 많으며 처리비용이 높다는 결점이 있었다.On the other hand, ferrous sulfate, which is a conventional iron-based flocculant, has a drawback in that the pH is higher than 9, the pH is high, the amount of alkali is used, and the treatment cost is high.

또한, 염화 제2철은 철계 응집제의 대표적인 것이었으나 설비의 부식이 심하고 염소(Cl)와 발생 오니간에서 200 ∼ 900℃의 고온으로 처리 중에 다이옥신이 발생되어 현재는 많이 사용하고 있지 않다.In addition, ferric chloride was representative of iron-based coagulants, but the corrosion of the equipment is severe, and dioxin is generated during the treatment at a high temperature of 200 to 900 ° C. in chlorine (Cl) and the generated onigan, and is currently not used much.

이에 근래에는 폴리황산 제2철을 통한 무기 응집제를 제안한 바 있다.Recently, an inorganic flocculant through ferric polysulfate has been proposed.

대표적인 것으로, 일본 특개2000-16816호는 산화제로서 과산화수소를 사용하고 부영양화의 원인 물질인 질소 및 침전물 형상의 원인인 나트륨(Na)의 함유량을 줄일 수 있도록 발명되었다.As a representative example, Japanese Patent Application Laid-Open No. 2000-16816 has been invented to use hydrogen peroxide as an oxidizing agent and to reduce the content of sodium (Na), which is the cause of the formation of nitrogen and precipitate, which is the cause of eutrophication.

이를 살펴보면, 시성식은 [Fe2(OH)n(SO4)3-n/2]m 이고, 총 황산근(T-SO4)과 총 철(T-Fe)의 몰비값(T-SO4/T-Fe)이 1 < T-SO4/T-Fe < 1.5이 되도록 황산 제1철을 제조하고, 상기 황산 제1철을 포함한 황산 용액에 pH가 0.5 ∼ 1의 조건하에 과산화수소를 첨가하여 철의 산화를 할 수 있도록 하고 있다.
Looking at this, the formula is [Fe 2 (OH) n (SO 4 ) 3-n / 2 ] m , the molar ratio (T-SO 4 ) of the total sulfate root (T-SO 4 ) and total iron (T-Fe) Ferrous sulfate was prepared so that 1 <T-SO 4 / T-Fe <1.5, and hydrogen peroxide was added to the sulfuric acid solution containing ferrous sulfate under the condition of pH 0.5-1. It allows the oxidation of iron.

하지만, 상기에서 언급한 일본 특개2000-16816호는 황산과 철을 통해 황산 제1철을 제조하는 과정에서 산화와 환원이 반복적으로 이루어져 철과 황산의 비율이 항상 1 : 1로 혼합하여 황산 제1철(FeSO4)이 생성되기 때문에 응집력인 OH기가 최대 n=2밖에 들어가지 않아 응집력이 약한 문제점이 있었다.However, in the above-mentioned Japanese Patent Laid-Open No. 2000-16816, oxidation and reduction are repeatedly performed during the production of ferrous sulfate through sulfuric acid and iron, and the ratio of iron and sulfuric acid is always mixed at 1: 1. Since iron (FeSO 4 ) is produced, the cohesive force of OH group is only n = 2, so there is a weak cohesion problem.

즉, 철(Fe)은 +2가의 양이온이고, 황산이온(SO4)은 -2가의 음이온으로, 철(Fe)이온과 황산이온(SO4)이 결합하여 형성되는 황산 제1철(FeSO4)로 생성되는데, 이때에, 상기 Fe+2 + (SO4)- 2이온의 분자식을 맞추기 위해서는 상기와 같이 Fe+2과 (SO4)-2이 1 : 1 반응하여 황산 제1철을 생성하게 되어, 황산 제1철에 포함된 철이온의 농도는 항상 일정하게 이루어지게 되어 Fe의 과포화상태를 형성할 수 없는 문제점이 있었다.That is, iron (Fe) is a bivalent cation, and sulfate ion (SO 4 ) is a -divalent anion, and ferrous sulfate (FeSO 4 ) formed by the combination of iron (Fe) ion and sulfate ion (SO 4 ). ) are produced by, in this case, the Fe +2 + (SO4) - 2 to adjust the molecular formula of the Fe +2 ion and (SO 4) -2. 1 as described above: the first reaction to produce a ferrous sulfate Thus, the concentration of iron ions contained in the ferrous sulfate is always made constant, there was a problem that can not form a supersaturated state of Fe.

또한, 상기와 같은 황산 제1철을 액상의 과산화수소(H2O2)를 이용하여 산화하는 과정은 과산화수소가 철의 존재하에 H+, O, OH(-)이온으로 파괴되어 OH기에 의해 난분해성 물질이 산화 분해되는 팬톤반응에 의해 분해가 이루어지게 되어 산화하는 과정을 거치게 되는데, 이때에, 상기 H+, O, OH(-)이온의 대부분이 0로 생성되고 일부 남은 H+, O-2, OH-는 OH기로 결합하게 된다.In addition, the process of oxidizing ferrous sulfate as described above using liquid hydrogen peroxide (H 2 O 2 ) is hydrogen peroxide is destroyed in H + , O, OH (-) ions in the presence of iron, and difficult to decompose by OH groups The material is oxidized to be decomposed by a pantone reaction, which undergoes a process of oxidizing. At this time, most of the H + , O, and OH (-) ions are generated as 0 and some remaining H + and O -2 are oxidized. , OH - is bonded to an OH group.

이렇게 산화를 거친 황산 제1철은 황산 제2철[Fe2(SO4)3]로 변환이 이루어지게 된다.This ferrous sulfate is converted to ferric sulfate [Fe 2 (SO 4 ) 3 ].

상기 황산 제2철[Fe2(SO4)3]의 시성식을 살펴보면 [Fe2(OH)n(SO4)3-n/2]m 으로 표현이 된다.Looking at the formula of the ferric sulfate [Fe 2 (SO 4 ) 3 ] is expressed as [Fe 2 (OH) n (SO 4 ) 3-n / 2 ] m .

여기서, (+)이온인 Fe와 반응하는 (-)이온이 OH, 황산이온(SO4)이 이온 결합을 통해 황산 제2철을 형성하여야 하는데, Fe와 SO4는 1 : 1의 비율로 반응하는 다시 말해, 황산이온(SO4)은 항상 일정하기 때문에 최초 황산 제1철의 제조시 아무리 철농도를 상승시키기 위해 철을 많이 첨가하여도 황산과의 반응은 1 : 1의 비율로 이루어짐으로써 철이 과포화된 황산 제1철을 제조할 수 없게 되고, 따라서, 황산 제2철의 염기도인 OH기의 양은 최대 n=2 밖에 생성되지 않기 때문에 응집력이 항상 일정하게 되는 문제점이 있었다.Here, the (-) ion reacting with Fe, which is a (+) ion, is OH, and the sulfate ion (SO 4 ) must form ferric sulfate through an ionic bond. Fe and SO 4 react at a ratio of 1: 1. In other words, since the sulfate ion (SO 4 ) is always constant, even if a large amount of iron is added to increase the iron concentration during the production of the first ferrous sulfate, the reaction with sulfuric acid is in a ratio of 1: 1 The supersaturated ferrous sulfate could not be produced, and therefore, the amount of OH groups, which are the basicity of ferric sulfate, was generated at most n = 2, so there was a problem in that cohesion was always constant.

특히, 상기 황산 제2철의 제조시 과산화수소를 통한 철의 산화과정에서 발생하는 H는 다시 철과 환원하는 과정이 발생하기 때문에 산화율이 85%이상으로 진행할 수 없는 문제점이 있었다.
In particular, H produced during the oxidation of iron through hydrogen peroxide during the production of ferric sulfate has a problem that the oxidation rate can not proceed to more than 85% because the process of reducing with iron again occurs.

상기와 같은 문제점을 해결하기 위한 본 발명의 철계 응집제는 철 농도가 50 ∼ 200g/ℓ이고, 총 황산근(T-SO4)과 총 철(T-Fe)의 몰비값(T-SO4/T-Fe)이 0.5 < T-SO4/T-Fe < 1, 시성식은 [Fe2(OH)n(SO4)3-n/2]m 이며, 염기도인 n은 0 < n < 6, 플록의 크기인 m은 100이상 이고, 산화제는 0.5pH이하인 과산화수소(H2O2)를 이용하되, 철(Fe)을 용해하기 위한 황산(H2SO4)과 산화제인 액상의 과산화수소(H2O2)를 동시에 투입해 철의 용해 및 산화를 동시에 행하여 황산이온(SO4)의 양을 줄이면서 철(Fe) 및 OH기의 양이 다량 함유되어 있는 염기성 황산 제2철의 용액으로 이루어진 것을 특징으로 한다.Iron-based flocculant of the present invention for solving the above problems is the iron concentration is 50 ~ 200g / L, the molar ratio value of total sulfate (T-SO 4 ) and total iron (T-Fe) (T-SO 4 / T-Fe) is 0.5 <T-SO 4 / T-Fe <1, the formula is [Fe 2 (OH) n (SO 4 ) 3-n / 2 ] m , the basicity n is 0 <n <6, The size of the floc m is 100 or more, and the oxidizing agent uses hydrogen peroxide (H 2 O 2 ) of 0.5pH or less, sulfuric acid (H 2 SO 4 ) to dissolve iron (Fe) and liquid hydrogen peroxide (H 2) It is made up of a solution of basic ferric sulfate containing a large amount of iron (Fe) and OH groups while reducing the amount of sulfate ion (SO 4 ) by simultaneously adding O 2 ) to dissolve and oxidize iron simultaneously. It features.

본 발명의 철계 응집제는 액상의 과산화수소(H2O2)를 통해 철(Fe)을 산화시킬 때에 발생하는 과산화수소(H2O2) 가스를 포집한 후 액상의 과산화수소(H2O2)에 용해시켜 과산화수소(H2O2)의 산화효율을 향상시키도록 이루어진 것을 특징으로 한다.An iron-based flocculant of the present invention collects the hydrogen peroxide (H 2 O 2) gas generated in the oxidized iron (Fe) with a hydrogen peroxide liquid (H 2 O 2) was dissolved in hydrogen peroxide (H 2 O 2) of the liquid It is characterized in that made to improve the oxidation efficiency of hydrogen peroxide (H 2 O 2 ).

본 발명의 철계 응집제 제조방법은 농도가 50 ∼ 200g/ℓ인 철(Fe)과 황산이온(SO4)의 몰비가 0.5 < T-SO4/T-Fe < 1이 되도록 준비한 후, 0.5pH이하인 액상의 과산화수소(H2O2)가 들어있는 산화장치에 동시에 투입하여 용해 및 팬톤반응에 의한 산화를 행하되, 황산(H2SO4)을 소량씩 첨가하여 50 ∼ 80℃ 범위의 반응 온도 내에서 용해 및 산화시켜, 과포화상태의 철(Fe)에 의한 다량의 OH기가 함유된 염기성 황산 제2철의 용액을 제조하는 것을 특징으로 한다.In the iron-based flocculant manufacturing method of the present invention, the molar ratio of iron (Fe) and sulfate ion (SO 4 ) having a concentration of 50 to 200 g / L is 0.5 <T-SO 4 / T-Fe <1, and then 0.5 pH or less. Simultaneously input into an oxidizer containing liquid hydrogen peroxide (H 2 O 2 ) to perform oxidation by dissolution and pantone reaction, and add sulfuric acid (H 2 SO 4 ) in small portions within the reaction temperature in the range of 50 ~ 80 ℃. It is characterized by preparing a solution of basic ferric sulfate containing a large amount of OH groups by supersaturated iron (Fe) by dissolution and oxidation.

본 발명의 철계 응집제 제조방법에서 액상의 과산화수소(H2O2)를 통해 철(Fe)을 산화시킬 때에 발생하는 과산화수소(H2O2) 가스를 포집한 후 액상의 과산화수소(H2O2)에 용해시켜 과산화수소(H2O2)의 산화효율을 향상시키도록 이루어진 것을 특징으로 한다.
Hydrogen peroxide (H 2 O 2) hydrogen peroxide (H 2 O 2) of the liquid and then collecting the gas generated in the oxidized iron (Fe) with hydrogen peroxide (H 2 O 2) of the liquid in the iron-based coagulant production method of the present invention It is characterized by being made to improve the oxidation efficiency of hydrogen peroxide (H 2 O 2 ) by dissolving in.

본 발명의 철계 응집제 및 철계 응집제 제조방법은 철의 용해 및 산화반응을 행하기 위한 황산과 산화제인 액상의 과산화수소를 동시에 투입시킴으로써, 철이 황산에 의해 용해되는 산화 반응시 발생하는 수소이온과 철의 환원반응을 억제하여 응집력을 위한 OH기의 함유량을 다량 형성하여 응집도를 높이고, 중합도를 높여 플록의 크기를 크게 형성할 수 있도록 작용하여 응집효율을 향상시킬 수 있다.In the iron-based flocculant and the iron-based flocculant production method of the present invention, by simultaneously adding sulfuric acid and a liquid hydrogen peroxide as an oxidizing agent for dissolving and oxidizing iron, hydrogen ions and iron generated during the oxidation reaction in which iron is dissolved by sulfuric acid are reduced. By suppressing the reaction to form a large amount of OH group for cohesion to increase the degree of cohesion, and to increase the degree of polymerization to increase the size of the floc can improve the cohesive efficiency.

또한, 철의 용해 및 산화시 황산 및 과산화수소를 동시에 투입하여 황산이온(SO4)의 양을 줄이면서 철의 양을 다량 투입시킬 수 있어 철농도가 과포화된 상태의 염기성 황산 제2철을 제조할 수 있어 응집효율성을 향상시킬 수 있다.In addition, sulfuric acid and hydrogen peroxide can be simultaneously added to dissolve and oxidize the iron, thereby reducing the amount of sulfate ions (SO 4 ), and a large amount of iron can be added to produce basic ferric sulfate with a supersaturated iron concentration. Can improve the cohesive efficiency.

아울러, 과산화수소를 산화제로 이용하여 염기성 제2 황산철에 질소의 양을 100ppm이하로 줄여 응집력을 향상시킬 수 있는 유용한 발명이다.
In addition, the use of hydrogen peroxide as an oxidizing agent is a useful invention that can improve the cohesive force by reducing the amount of nitrogen to less than 100ppm in basic ferric sulfate.

이하, 본 발명의 구성을 더욱 상세히 살펴보면 다음과 같다.Hereinafter, the configuration of the present invention in more detail.

철 농도가 50 ∼ 200g/ℓ이고, 총 황산근(T-SO4)과 총 철(T-Fe)의 몰비값(T-SO4/T-Fe)이 0.5 < T-SO4/T-Fe < 1이고, 시성식이 [Fe2(OH)n(SO4)3-n/2]m 이며,Iron concentration is 50-200 g / l and molar ratio (T-SO 4 / T-Fe) of total sulfate (T-SO 4 ) and total iron (T-Fe) is 0.5 <T-SO 4 / T- Fe <1, the formula is [Fe 2 (OH) n (SO 4 ) 3-n / 2 ] m ,

염기도인 n은 0 < n < 6이고 플록의 크기인 m은 100이상 이고, 산화제는 0.5pH이하인 과산화수소(H2O2)를 이용하되, 철(Fe)을 용해하기 위한 황산(H2SO4)과 산화제인 액상의 과산화수소(H2O2)를 동시에 투입하되, 황산(H2SO4)을 소량씩 첨가하여 반응 온도가 50 ∼ 80℃ 범위 내에 형성되도록 하여 철의 용해 및 산화를 동시에 반응시켜, 철(Fe)과 과산화수소(H2O2)에 의한 팬톤반응에 의해 철(Fe)을 용해하는 황산(H2SO4)의 양을 줄이면서, 다량의 철(Fe)이 과포화 상태이면서 황산이온(SO4)의 양이 적고, 염기도인 OH기가 상대적으로 많이 포함되어 있는 염기성 황산 제2철(Fe2(SO4)3)의 용액을 생성할 수 있게 된다.The basicity of n is 0 <n <6 and the size of the floc m is 100 or more, and the oxidizing agent uses hydrogen peroxide (H 2 O 2 ) of 0.5pH or less, but sulfuric acid (H 2 SO 4 ) to dissolve iron (Fe) ) And the liquid hydrogen peroxide (H 2 O 2 ), which is an oxidizing agent, are added at the same time, and sulfuric acid (H 2 SO 4 ) is added in small amounts so that the reaction temperature is formed within the range of 50 to 80 ° C. to simultaneously dissolve and oxidize iron. While reducing the amount of sulfuric acid (H 2 SO 4 ) that dissolves iron (Fe) by a pantone reaction with iron (Fe) and hydrogen peroxide (H 2 O 2 ), while a large amount of iron (Fe) is supersaturated It is possible to produce a solution of basic ferric sulfate (Fe 2 (SO 4 ) 3 ) containing a small amount of sulfate ions (SO 4 ) and a relatively large amount of basic OH groups.

여기서, 상기 철은 철 부스러기나 쇳가루 등을 이용할 수 있고, 상기 액상의 과산화수소(H2O2)를 통해 철(Fe)을 산화시킬 때에 발생하는 과산화수소(H2O2) 가스를 포집하여 다시 액상의 과산화수소(H2O2)로 용해시켜 과산화수소(H2O2)의 산화효율을 향상시키도록 구성된다.Here, the iron will be used such as iron chips or soetgaru and, by trapping the hydrogen peroxide (H 2 O 2) gas generated in the oxidized iron (Fe) with hydrogen peroxide (H 2 O 2) of the liquid back to the liquid phase was dissolved in a hydrogen peroxide (H 2 O 2) is configured to increase the oxidation efficiency of the hydrogen peroxide (H 2 O 2).

특히, 본 발명에서 철 농도는 50 ∼ 200g/ℓ인데, 철농도가 하한치 미만일 경우에는 철 농도가 너무 적어 실용화시 제조비용이 상승하는 문제점이 발생하고, 상한치를 초과하게 되면 절출현상으로 인해 제품의 안정성이 저하되는 문제점이 있다.In particular, the iron concentration in the present invention is 50 ~ 200g / ℓ, if the iron concentration is less than the lower limit, the iron concentration is too small, the production cost rises during practical use, if the upper limit is exceeded, the product of the product due to the breakout phenomenon There is a problem that the stability is lowered.

또한, 과산화수소의 pH 농도값은 본 발명에서 생산되는 제품의 안전성을 위해 염기성 황산 제2철의 농도가 동일하게 형성한 것이다.In addition, the pH concentration value of hydrogen peroxide is formed by the same concentration of basic ferric sulfate for the safety of the product produced in the present invention.

아울러, 상기에서 반응온도는 임계치인 50℃ 희석열을 이용하기 위함이고, 80℃는 이를 초과하였을 경우 염기성 황산철의 침전이 발생하기 때문이다.In addition, the reaction temperature in the above is to use a heat of 50 ℃ dilution, which is a threshold value, because 80 ℃ is because the precipitation of basic iron sulfate occurs.

상기와 같은 염기성 황산 제2철(Fe2(SO4)3)은 총 철(T-Fe)과 총 황산근(T-SO4)의 몰비를 0.5 < T-SO4/T-Fe < 1 사이로 맞출 수 있기 때문에 철(Fe)이 과포화상태인 염기성 황산 제2철(Fe2(SO4)3)의 제조가 가능하고, 이로 인해 염기도인 OH기를 다량 함유하여 응집력이 향상된 염기성 황산 제2철 [Fe2(OH)n(SO4)3-n/2]m을 얻을 수 있게 된다.The basic ferric sulfate (Fe 2 (SO 4 ) 3 ) as described above is the molar ratio of total iron (T-Fe) and total sulfate (T-SO 4 ) 0.5 <T-SO 4 / T-Fe <1 Since it can be interposed between the basic ferric sulfate (Fe 2 (SO 4 ) 3 ) It is possible to produce a basic iron sulphate (Fe 2 (SO 4 ) 3 ) is a supersaturated state, thereby containing a large amount of basic OH group ferric sulfate enhanced cohesion [Fe 2 (OH) n (SO 4 ) 3-n / 2 ] m can be obtained.

이는, (+)이온인 철(Fe)의 함유량을 많게 하고, (-)이온을 포함하고 있는 황산(H2SO4)의 투입량을 줄여 상대적으로 과산화수소(H2O2)의 팬톤반응시 발생하는 (-)이온인 OH기의 양(n값)이 더 많아지게 하여 응집력을 향상시킬 수 있게 되는 것이다.This occurs when the content of iron (Fe), which is (+) ions, increases, and the amount of sulfuric acid (H 2 SO 4 ) containing (-) ions decreases, thereby relatively reducing the pertonation of hydrogen peroxide (H 2 O 2 ). The amount (n value) of OH groups which are negative (-) ions is increased so that the cohesive force can be improved.

이를 상세히 살펴보면, 본 발명에서는 철(Fe)을 황산(H2SO4)으로 용해하여 황산 제1철을 제조하는 과정을 산화제인 액상의 과산화수소(H2O2)를 통한 산화과정(팬톤반응)과 동시에 실시하게 된다.Looking at this in detail, in the present invention, the process of preparing ferrous sulfate by dissolving iron (Fe) with sulfuric acid (H 2 SO 4 ) through the oxidation of liquid hydrogen peroxide (H 2 O 2 ) as an oxidizing agent (Panton reaction) Will be performed at the same time.

즉, 본 발명은 시성식 [Fe2(OH)n(SO4)3-n/2]m 이고, 염기성 황산 제2철의 분자식은 [Fe2(SO4)3]이다.That is, the present invention is the formula [Fe 2 (OH) n (SO 4 ) 3-n / 2 ] m , and the molecular formula of basic ferric sulfate is [Fe 2 (SO 4 ) 3 ].

여기서, 상기 시성식에서의 n값은 염기도와 대응되는 값으로 상기 n값의 수치가 높아질수록 OH기가 다량 함유되어 염기도가 높아져 응집력이 향상되는 효과를 얻을 수 있다.Here, the n value in the formula is a value corresponding to the basicity, and as the value of the n value is increased, a large amount of OH groups are contained, thereby increasing the basicity, thereby improving the cohesive force.

하기 그래프는 n값과 유기물 등의 오염물질을 산화제로 산화 분해시켜 정화하는데 소비되는 산소량을 ppm(part per milion 백만분율)또는 mg/ℓ로 나타낸 화학적산소요구량(COD : Chemical Oxygen Demand)과의 관계를 염색폐수를 예로 나타낸 것으로, n값 및 염기성 황산 제2철의 첨가량에 따라 COD의 제거율을 나타내고 있음을 알 수 있다.The graph below shows the relationship between the n value and the chemical oxygen demand (COD) expressed in parts per milion parts per million (ppm) or mg / l of the amount of oxygen consumed to oxidize and decontaminate contaminants such as organic matter. The dyeing wastewater is shown as an example, and it can be seen that the removal rate of COD is shown according to the n value and the amount of basic ferric sulfate added.

Figure pat00001
Figure pat00001

상기 그래프의 염색폐수는 600ppm, 가로축은 염기성 황산 제2철의 첨가량, 세로축은 COD의 제거율을 나타내고 있다.The dyeing wastewater in the graph is 600 ppm, the horizontal axis shows the amount of basic ferric sulfate added, and the vertical axis shows the removal rate of COD.

하지만, 종래의 기술에서와 같이 황산 제1철(F2SO4)을 먼저 제조할 경우, 황산 제1철(F2SO4)의 제조시 철(Fe)과 황산(H2SO4)는 항상 1 : 1 비율로 반응하게 되어, OH기의 생성량인 n값이 2를 초과할 수 없게 되지만, 본 발명에서는 철(Fe)과 황산(H2SO4) 및 액상의 과산화수소(H2O2)를 동시에 투입하되, 50 ∼ 80℃의 온도(바람직하게는 50 ∼ 60℃) 내로 반응 온도를 맞추기 위해 황산(H2SO4)의 양을 조금씩 투입하게 된다.However, when manufacturing the ferrous sulfate (F 2 SO 4), first, as in the prior art, ferrous sulfate (F 2 SO 4) iron (Fe) and sulfuric acid (H 2 SO 4) the preparation of the The reaction is always performed in a ratio of 1: 1, so that the n value, which is the amount of OH groups, cannot exceed 2, but in the present invention, iron (Fe), sulfuric acid (H 2 SO 4 ), and liquid hydrogen peroxide (H 2 O 2 ) At the same time, but the amount of sulfuric acid (H 2 SO 4 ) is added little by little in order to adjust the reaction temperature within a temperature of 50 ~ 80 ℃ (preferably 50 ~ 60 ℃).

그러면, 철(Fe)과 황산(H2SO4)의 용해과정 및 과산화수소(H2O2)와 철(Fe)과의 팬톤반응에 의한 산화과정이 동시에 이루어지게 되는 것이다.Then, the dissolution process of iron (Fe) and sulfuric acid (H 2 SO 4 ) and the oxidation process by the pantone reaction of hydrogen peroxide (H 2 O 2 ) and iron (Fe) is performed at the same time.

이를 반응식을 통해 설명하면, If this is explained through the reaction scheme,

1. Fe + H2SO4 → FeSO4 + 2H .... 용해Fe + H 2 SO 4 → FeSO 4 + 2H ....

2. H2O2가 철과 반응시... O, H+, OH-(팬톤반응)2. When H 2 O 2 and the iron reaction ... O, H +, OH - ( reaction Pantone)

상기 1, 2식에 의해 다음과 같은 식이 만들어지게 된다.The following formula is made by the above 1 and 2.

Fe + H2SO4 + H2O2 에서 황산(H2SO4)은 산화작용에 의해 분해되어 수소이온(H+)와 SO4 -2으로 분해된 후 황산이온(SO4)-2과 철이온(Fe2+)과 반응하게 되고, H2O2는 Fe에 의해 O, H+, OH-로 분해가 이루어지게 된다.In Fe + H 2 SO 4 + H 2 O 2 , sulfuric acid (H 2 SO 4 ) is decomposed by oxidation and decomposed into hydrogen ions (H + ) and SO 4 -2 , followed by sulfate ions (SO 4 ) -2 and Reaction with iron ions (Fe 2+ ), H 2 O 2 is decomposed into O, H + , OH - by Fe.

그러면, 상기 철이온(Fe2+)은 황산이온(SO4 -2)과 결합하여 황산 제2철(FeSO4)로 변환이 이루어지고, 나머지 O2 +, H+, OH-는 산화와 환원을 반복하여 일부는 물(H2O)로 나머지 일부는 OH기로 남게 되는 것이다.Then, the iron ion (Fe 2+ ) is combined with the sulfate ion (SO 4 -2 ) is converted to ferric sulfate (FeSO 4 ), the remaining O 2 + , H + , OH - is oxidized and reduced Repeating is part of the water (H 2 O) and the remainder will remain in the OH group.

즉, 본 발명은 과산화수소(H2O2)의 분해시 촉매로서 철(Fe)를 사용하기 때문에 철(Fe)의 양이 많아지게 되고, 상기와 같이 철(Fe)을 촉매로 사용하여 분해된 과산화수소(H2O2)의 O, H+, OH- 이온들은 산화와 환원을 반복하여 다량의 H2O와 OH기가 생성이 되며, 또한, 상기와 같은 반응들에 의해 황산(H2SO4)의 양을 많이 투입하지 않아도 철(Fe)이 과포화 상태를 유지할 수 있도록 작용하게 되는 것이다.That is, in the present invention, since iron (Fe) is used as a catalyst in the decomposition of hydrogen peroxide (H 2 O 2 ), the amount of iron (Fe) increases, and as described above, iron (Fe) is decomposed using the catalyst as a catalyst. O, H + and OH - ions of hydrogen peroxide (H 2 O 2 ) are repeatedly produced by the oxidation and reduction to generate a large amount of H 2 O and OH groups, and by the reactions described above, sulfuric acid (H 2 SO 4 Even if the amount of) is not added a lot of iron (Fe) will act to maintain the supersaturated state.

특히, [Fe2(OH)n(SO4)3-n/2]m 에서와 같이 (+)이온은 철(Fe)이고, 나머지 OH기 및 황산이온(SO4)은 (-)이온인 것을 알 수 있다.In particular, as in [Fe 2 (OH) n (SO 4 ) 3-n / 2 ] m , the (+) ion is iron (Fe), and the remaining OH group and sulfate ion (SO 4 ) are (-) ions. It can be seen that.

즉, (+)이온인 철(Fe)의 양이 많아질수록 철(Fe)과 이온 결합하기 위한 (-)이온들이 많아지게 되는데, 본 발명에서는 황산(H2SO4)의 양이 줄어드는 대신 과산화수소(H2O2)와의 반응을 통해 얻어진 (-)이온인 OH기가 상대적으로 많아지게 되어 상기 시성식에서의 n값을 2 이상으로 얻을 수 있게 되는 것이다.That is, as the amount of iron (Fe), which is (+) ion, increases, the number of (-) ions for ionic bonding with iron (Fe) increases. In the present invention, instead of decreasing the amount of sulfuric acid (H 2 SO 4 ) The OH group which is a (-) ion obtained through the reaction with hydrogen peroxide (H 2 O 2 ) becomes relatively large, so that the n value in the above formula can be obtained at 2 or more.

한편, 본 발명에서는 용해과정과 산화과정을 동시에 수행하기 때문에 황산(H2SO4)과 철(Fe)의 용해시 발생하는 수소이온(H+)이 철(Fe)과의 환원반응이 발생하지 않고, 과산화수소(H2O2)가 분해된 O, H+, OH-와 산화 및 환원이 반복적으로 발생하고, 특히, 과산화수소(H2O2)가 철(Fe)과 반응 후 발생하는 산소(O)에 의해 철(Fe)의 산화가 촉진되는데, 이때에, 본 발명에서는 황산(H2SO4)의 양을 줄여 철(Fe)과 반응하는 과산화수소(H2O2)의 양이 많아지게 되어 다량의 산소(O)가 생성되기 때문에 산화효율을 최대 95%까지 향상시킬 수 있게 된다.Meanwhile, in the present invention, since the dissolution process and the oxidation process are performed at the same time, hydrogen ions (H + ) generated during dissolution of sulfuric acid (H 2 SO 4 ) and iron (Fe) do not cause a reduction reaction with iron (Fe). And O, H + , OH - decomposed hydrogen peroxide (H 2 O 2 ) and oxidation and reduction repeatedly occur, and in particular, hydrogen peroxide (H 2 O 2 ) generated after reaction with iron (Fe) ( O) promotes the oxidation of iron (Fe), in which the present invention reduces the amount of sulfuric acid (H 2 SO 4 ) to increase the amount of hydrogen peroxide (H 2 O 2 ) to react with iron (Fe) Therefore, since a large amount of oxygen (O) is generated, the oxidation efficiency can be improved up to 95%.

특히, 상기 과산화수소(H2O2)에서 발생하는 산소라디칼(O)은 다른 산소를 활성화시켜 철(Fe)의 산화를 더욱 촉진시키게 된다.In particular, oxygen radicals (O) generated from the hydrogen peroxide (H 2 O 2 ) to further promote the oxidation of iron (Fe) by activating other oxygen.

여기서, 본 발명에서는 과산화수소(H2O2)을 통해 철(Fe)의 산화시 기화되는 과산화수소(H2O2)의 가스를 포집한 후 포집된 과산화수소(H2O2) 가스를 과산화수소(H2O2) 용액에 재 투입시킴으로써, 고가의 과산화수소(H2O2)를 적은량 투입하더라도 충분한 효과를 얻을 수 있다.Here, in the present invention, hydrogen peroxide (H 2 O 2) through the iron (Fe) of the hydrogen peroxide with hydrogen peroxide collected after collecting the gases (H 2 O 2) (H 2 O 2) gas of hydrogen peroxide (H vaporized during oxidation 2 O 2) to a solution by re-supply, even if the input of expensive hydrogen peroxide (H 2 O 2) Small quantities can be obtained a sufficient effect.

또한, 본 발명에서의 중합도를 나타내는 m값은 플록의 크기를 결정짓는 것으로 m값이 클수록 침전속도가 향상되는 효과를 얻게 된다.In addition, the m value indicating the degree of polymerization in the present invention determines the size of the floc, and the larger the m value, the better the precipitation rate is obtained.

특히, 상기 m값은 m=f(n)으로 n값에 의해 결정되는데, n값이 높아질수록 m값도 상승하게 된다.
In particular, the m value is determined by the n value of m = f (n), the higher the n value is to increase the m value.

[실시 예1]Example 1

농황산과 물을 혼합하여 100g/ℓ의 황산용액 1.8ℓ을 제조하고, pH0.5인 과산화수소에 철분320g과 농황산을 소량(2 ∼ 5cc)을 첨가하면서 반응온도를 60℃를 보존하면서 용해를 하여 염기성 황산 제2철 2ℓ를 제조하였다.1.8 g of sulfuric acid solution of 100 g / l was prepared by mixing concentrated sulfuric acid and water, and dissolved in the reaction temperature at 60 ° C. while adding 320 g of iron and concentrated sulfuric acid (2 to 5 cc) to hydrogen peroxide at pH 0.5. 2 L of ferric sulfate was prepared.

이때에, 총 철(T-Fe)의 몰비값(T-SO4/T-Fe)은 0.75였으며, 이때의 총철(T-Fe)은 160 g/ℓ, 총 황산(T-SO4)는 207g/ℓ이었다.At this time, the molar ratio (T-SO 4 / T-Fe) of the total iron (T-Fe) was 0.75, and the total iron (T-Fe) was 160 g / L and the total sulfuric acid (T-SO 4 ) was 207 g / l.

[표 1]은 상기와 제작된 본원발명의 염기성 황산 제2철의 응집력을 확인하기 위해 총 질소(T-N : Total Nitrogen) 500ppm인 배수에 종래품(폴리테츠, 일철광업주식회사)과 같은 량을 각각 투입하여 배수에 남아있는 총 질소량을 측정한 결과값이다.[Table 1] is the same amount as the conventional products (Polytetsu, Iron Iron Mining Co., Ltd.) in the waste water of 500ppm total nitrogen (TN: Total Nitrogen) to confirm the cohesive force of the basic ferric sulfate of the present invention produced as described above It is the result of measuring the total amount of nitrogen remaining in the drainage by putting.

첨가량(ppm)Addition amount (ppm) 500500 20002000 50005000 T-NT-N 종래품Conventional 350350 300300 300300 본원발명Invention 200200 120120 7070

상기 결과값에서 알 수 있듯이 본원발명과 종래품 투입에 따른 배수에 남아있는 총 질소량의 차이가 현저히 발생됨을 알 수 있으며, 특히, 2000ppm 이후부터는 2배가 넘게 차이가 남을 알 수 있다.
As can be seen from the result, it can be seen that the difference in the total amount of nitrogen remaining in the drainage according to the present invention and the input of the conventional product is remarkably generated. In particular, it can be seen that the difference remains more than twice after 2000 ppm.

[실시 예2][Example 2]

농황산과 물을 혼합하여 100g/ℓ의 황산용액 1.8ℓ을 제조하고, pH0.5인 과산화수소에 철분320g과 농황산을 소량(2 ∼ 5cc)을 첨가하면서 반응온도를 60℃를 보존하면서 용해를 하여 염기성 황산 제2철 2ℓ를 제조하였다.1.8 g of sulfuric acid solution of 100 g / l was prepared by mixing concentrated sulfuric acid and water, and dissolved in the reaction temperature at 60 ° C. while adding 320 g of iron and concentrated sulfuric acid (2 to 5 cc) to hydrogen peroxide at pH 0.5. 2 L of ferric sulfate was prepared.

이때에, 총 철(T-Fe)의 몰비값(T-SO4/T-Fe)은 0.75였으며, 이때의 총철(T-Fe)은 160 g/ℓ, 총 황산(T-SO4)는 207g/ℓ이었다.At this time, the molar ratio (T-SO 4 / T-Fe) of the total iron (T-Fe) was 0.75, and the total iron (T-Fe) was 160 g / L and the total sulfuric acid (T-SO 4 ) was 207 g / l.

[표 2]는 상기와 같이 제작된 본원발명의 염기성 황산 제2철의 응집력을 확인하기 위해 COD가 3000인 배수에 종래품(폴리테츠, 일철광업주식회사)과 같은 량을 각각 투입하여 배수에 남아있는 총 질소량을 측정한 결과값이다.Table 2 shows the same amount of conventional products (Polytetsu, Ilchul Mining Co., Ltd.) in the drainage of COD of 3000 to confirm the cohesive force of the basic ferric sulfate of the present invention manufactured as described above, and remains in the drainage. This is the result of measuring the total amount of nitrogen present.

첨가량(ppm)Addition amount (ppm) 300300 10001000 20002000 50005000 CODCOD 종래품Conventional 10001000 200200 100100 3030 본원발명Invention 800800 100100 4040 33

상기 결과값에서 알 수 있듯이 본원발명과 종래품의 투입에 따른 배수의 COD값의 변화량이 현저히 차이남을 알 수 있으며 5000ppm에서는 10배 차이가 남을 알 수 있다.
As can be seen from the above results, it can be seen that the amount of change in the COD value of the drainage according to the present invention and the input of the conventional product is remarkably different, and the difference is 10 times at 5000 ppm.

[실시 예3][Example 3]

농황산과 물을 혼합하여 100g/ℓ의 황산용액 1.8ℓ을 제조하고, pH0.5인 과산화수소에 철분320g과 농황산을 소량(2 ∼ 5cc)을 첨가하면서 반응온도를 55℃를 보존하면서 용해를 하여 염기성 황산 제2철 2ℓ를 제조하였다.1.8 g of sulfuric acid solution of 100 g / l was mixed by mixing concentrated sulfuric acid and water, and dissolved in the reaction temperature at 55 ° C while adding 320 g of iron and concentrated sulfuric acid in small amounts (2 to 5 cc) to hydrogen peroxide at pH 0.5. 2 L of ferric sulfate was prepared.

이때에, 총 철(T-Fe)의 몰비값(T-SO4/T-Fe)은 0.75였으며, 이때의 총철(T-Fe)은 160 g/ℓ, 총 황산(T-SO4)는 207g/ℓ이었다.At this time, the molar ratio (T-SO 4 / T-Fe) of the total iron (T-Fe) was 0.75, and the total iron (T-Fe) was 160 g / L and the total sulfuric acid (T-SO 4 ) was 207 g / l.

[표 3]은 상기와 같이 제작된 본원발명의 염기성 황산 제2철의 응집력을 확인하기 위해 COD가 3000인 배수에 종래품(폴리테츠, 일철광업주식회사)과 같은 량을 각각 투입하여 배수에 남아있는 총 질소량을 측정한 결과값이다.Table 3 shows the same amount of conventional products (Polytetsu, Ilchul Mining Co., Ltd.) in the drainage with a COD of 3000 to confirm the cohesive force of the basic ferric sulfate of the present invention manufactured as described above, and remains in the drainage. This is the result of measuring the total amount of nitrogen present.

첨가량(ppm)Addition amount (ppm) 00 300300 10001000 20002000 50005000 CODCOD 종래품Conventional 30003000 10001000 200200 100100 3030 본원발명Invention 30003000 750750 120120 5050 44

상기 결과값에서 알 수 있듯이 본원발명과 종래품의 투입에 따른 배수의 COD값의 변화량이 현저히 차이남을 알 수 있다.
As can be seen from the above result, it can be seen that the amount of change in the COD value of the drainage according to the present invention and the input of the conventional product is significantly different.

Claims (4)

철 농도가 50 ∼ 200g/ℓ이고, 총 황산근(T-SO4)과 총 철(T-Fe)의 몰비값(T-SO4/T-Fe)이 0.5 < T-SO4/T-Fe < 1, 시성식은 [Fe2(OH)n(SO4)3-n/2]m 이며,
염기도인 n은 0 < n < 6, 중합도인 m은 100이상 이고,
산화제는 0.5pH이하인 과산화수소(H2O2)를 이용하되, 철(Fe)을 용해하기 위한 황산(H2SO4)과 산화제인 액상의 과산화수소(H2O2)를 동시에 투입해 철의 용해 및 산화를 동시에 행하여 황산이온(SO4)의 양을 줄이면서 철(Fe) 및 OH기의 양이 다량 함유되어 있는 염기성 황산 제2철의 용액으로 이루어진 것에 특징이 있는 철계 응집제.
Iron concentration is 50-200 g / l and molar ratio (T-SO 4 / T-Fe) of total sulfate (T-SO 4 ) and total iron (T-Fe) is 0.5 <T-SO 4 / T- Fe <1, the formula is [Fe 2 (OH) n (SO 4 ) 3-n / 2 ] m ,
Basicity n is 0 <n <6, polymerization degree m is 100 or more,
Oxidizer uses hydrogen peroxide (H 2 O 2 ) of 0.5pH or less, but sulfuric acid (H 2 SO 4 ) for dissolving iron (Fe) and liquid hydrogen peroxide (H 2 O 2 ) for dissolving iron And an iron-based coagulant comprising a solution of basic ferric sulfate containing a large amount of iron (Fe) and an OH group while simultaneously reducing the amount of sulfate ions (SO 4 ).
제 1항에 있어서, 상기 액상의 과산화수소(H2O2)를 통해 철(Fe)을 산화시킬 때에 발생하는 과산화수소(H2O2) 가스를 포집한 후 액상의 과산화수소(H2O2)에 다시 투입시켜 용해하여 과산화수소(H2O2)의 산화효율을 향상시키도록 이루어진 것에 특징이 있는 철계 응집제.
The method of claim 1 wherein the hydrogen peroxide (H 2 O 2) hydrogen peroxide (H 2 O 2) of the liquid and then collecting the gas generated in the course to be through hydrogen peroxide (H 2 O 2) in the liquid phase oxidation of iron (Fe) Iron-based flocculant, characterized in that made by adding again to dissolve to improve the oxidation efficiency of hydrogen peroxide (H 2 O 2 ).
농도가 50 ∼ 200g/ℓ인 철(Fe)과 황산이온(SO4)의 몰비가 0.5 < T-SO4/T-Fe < 1이 되도록 준비한 후, 0.5pH이하인 액상의 과산화수소(H2O2)가 들어있는 산화장치에 동시에 투입하여 용해 및 팬톤반응에 의한 산화를 행하되, 황산(H2SO4)을 소량씩 첨가하여 50 ∼ 80℃ 범위의 반응 온도 내에서 용해 및 산화시켜, 과포화상태의 철(Fe)에 의한 다량의 OH기가 함유된 염기성 황산 제2철의 용액을 제조하는 것을 특징으로 하는 철계 응집제 제조방법.
After preparing the molar ratio of iron (Fe) and sulfate ions (SO 4 ) having a concentration of 50 to 200 g / l to 0.5 <T-SO 4 / T-Fe <1, hydrogen peroxide (H 2 O 2 ) of 0.5 pH or less. At the same time to oxidize by dissolution and pantone reaction, adding sulfuric acid (H 2 SO 4 ) in small amounts to dissolve and oxidize within the reaction temperature in the range of 50 ~ 80 ℃. A method for producing an iron-based coagulant, comprising preparing a solution of basic ferric sulfate containing a large amount of OH groups by iron (Fe).
제 3항에 있어서, 액상의 과산화수소(H2O2)를 통해 철(Fe)을 산화시킬 때에 발생하는 과산화수소(H2O2) 가스를 포집한 후 액상의 과산화수소(H2O2)에 다시 투입시켜 용해하여 과산화수소(H2O2)의 산화효율을 향상시키도록 이루어진 것에 특징이 있는 철계 응집제 제조방법.The liquid peroxide (H 2 O 2 ) generated when oxidizing iron (Fe) through liquid hydrogen peroxide (H 2 O 2 ) is collected, and then back into the liquid hydrogen peroxide (H 2 O 2 ). Method for producing an iron-based coagulant, characterized in that made by adding to dissolve to improve the oxidation efficiency of hydrogen peroxide (H 2 O 2 ).
KR1020100126203A 2010-03-09 2010-12-10 Iron-based flocculant and method for iron-based flocculant KR101280550B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100020700 2010-03-09
KR20100020700 2010-03-09

Publications (2)

Publication Number Publication Date
KR20110102130A true KR20110102130A (en) 2011-09-16
KR101280550B1 KR101280550B1 (en) 2013-07-01

Family

ID=44954021

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100126203A KR101280550B1 (en) 2010-03-09 2010-12-10 Iron-based flocculant and method for iron-based flocculant

Country Status (1)

Country Link
KR (1) KR101280550B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101325180B1 (en) * 2013-03-20 2013-11-07 주식회사 이에프티 Method of preparation for high polymeric ferric salt coagulant and treating method of water/wastewater using the same
KR20200045146A (en) 2018-10-22 2020-05-04 케이지케미칼 주식회사 Manufacturing Methods of Coagulant and Coagulant Thereby

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101973986B1 (en) 2018-06-01 2019-08-23 염선화 Method of preparation for coagulant and treating method of water/wastewater using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3586566B2 (en) 1998-06-30 2004-11-10 日鉄鉱業株式会社 Method for efficiently producing high-purity ferric polysulfate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101325180B1 (en) * 2013-03-20 2013-11-07 주식회사 이에프티 Method of preparation for high polymeric ferric salt coagulant and treating method of water/wastewater using the same
KR20200045146A (en) 2018-10-22 2020-05-04 케이지케미칼 주식회사 Manufacturing Methods of Coagulant and Coagulant Thereby

Also Published As

Publication number Publication date
KR101280550B1 (en) 2013-07-01

Similar Documents

Publication Publication Date Title
CN103991987B (en) A kind of pretreatment high phosphorus waste water removes technique and the process system thereof of total phosphorus
TWI583635B (en) Treatment System of Coal Gasification Wastewater and Treatment Method of Coal Gasification Wastewater
CN103864247B (en) PCB (Printed Circuit Board) copper-containing wastewater treatment method with autocatalytic oxidation as core
KR100778754B1 (en) Method for chemical treatment of wastewater comprising cyanide compounds
CN110683676A (en) Copper-containing printed circuit board wastewater treatment method
CN106745613A (en) A kind of processing method of organic phosphine precipitating reagent and the waste water of organic phosphine containing high concentration
CN111003910A (en) Method for treating waste sulfonated mud from drilling
JP2017148728A (en) Wastewater treatment method, wastewater treatment apparatus and coal gasification power generation facility comprising same
CN106587456A (en) Advanced oxidation-flocculation water treatment method based on oxygen molecule activation
KR101280550B1 (en) Iron-based flocculant and method for iron-based flocculant
JP5179242B2 (en) Waste water treatment method and waste water treatment equipment
CN107381892A (en) A kind of handling process of high-concentration ammonia nitrogenous wastewater
JP4351867B2 (en) Fluorine or phosphorus-containing water treatment equipment
JP4920932B2 (en) Treatment method for wastewater containing heavy metals
CN106517587A (en) Thallium removing method for thallium-containing sintering flue gas desulfurization waste water
KR20120043832A (en) Inorganic coagulants for water treatment method
CN113087208A (en) Method for degrading copper ore wastewater by using synergistic catalytic oxidation system
CN104986805A (en) Production method for polyferric chloride sulfate
JP2018083172A (en) Wastewater treatment method, wastewater treatment apparatus and coal gasification power generation equipment with the same
CN111217477A (en) Method for treating wastewater from phosphorus trichloride production
CN110981031A (en) Chemical nickel waste water treatment method
KR20120074201A (en) Poly ferric sulfate solution and method for producing the same
CN112456673B (en) Method for improving biodegradability of organic silicon wastewater
KR101026715B1 (en) The fluorine ion and cyanide complexes and free cyanide a drug and the waste water treatment method which uses this
KR102116420B1 (en) Waste water treatment method of removing fluorine and cyanides

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170324

Year of fee payment: 4

R401 Registration of restoration
FPAY Annual fee payment

Payment date: 20171227

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee