KR20110072529A - 비닐기에 시아노기를 지닌 신규한 고분자 화합물 - Google Patents

비닐기에 시아노기를 지닌 신규한 고분자 화합물 Download PDF

Info

Publication number
KR20110072529A
KR20110072529A KR1020090129503A KR20090129503A KR20110072529A KR 20110072529 A KR20110072529 A KR 20110072529A KR 1020090129503 A KR1020090129503 A KR 1020090129503A KR 20090129503 A KR20090129503 A KR 20090129503A KR 20110072529 A KR20110072529 A KR 20110072529A
Authority
KR
South Korea
Prior art keywords
formula
polymer
chemical formula
represented
molecular weight
Prior art date
Application number
KR1020090129503A
Other languages
English (en)
Inventor
서홍석
김진우
진영읍
송수희
Original Assignee
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부산대학교 산학협력단 filed Critical 부산대학교 산학협력단
Priority to KR1020090129503A priority Critical patent/KR20110072529A/ko
Publication of KR20110072529A publication Critical patent/KR20110072529A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3241Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more nitrogen atoms as the only heteroatom, e.g. carbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3246Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and sulfur as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

본 발명은 다음의 화학식 1로 표시되는 고분자를 개시한다:
[화학식 1]
Figure 112009079596234-PAT00001
상기 식에서, 상기
Figure 112009079596234-PAT00002
는 화학식 2 또는 화학식 3으로 표시되고,
[화학식 2]
Figure 112009079596234-PAT00003
,
[화학식 3]
Figure 112009079596234-PAT00004
상기 식에서, R1, R2는 각각 독립적으로 C1 -20의 선형 또는 분지형 알킬기이다.

Description

비닐기에 시아노기를 지닌 신규한 고분자 화합물{Novel copolymers with cyano groups in vinylene units}
본 발명은 비닐기에 시아노기를 지닌 신규한 고분자 화합물에 관한 것으로, 보다 상세하게는 좁은 밴드 갭을 갖는 플러렌 및 카바졸의 시아노비닐기 유도체와 다이(2-싸이엔일-2-일)-2,1,3-벤조싸이아다이아졸 교대 고분자에 관한 것이다.
근래 들어 심각한 환경오염과 화석에너지 고갈로 인해 차세대 청정에너지 개발에 대한 중요성이 증대되고 있다. 그 중에서 태양전지는 공해가 적고 자원이 무한적이며 반영구적인 수명을 가지고 있어 미래의 에너지 문제를 해결할 수 있는 에너지원으로 기대되고 있다.
현재 태양전지 산업의 90%는 실리콘 태양전지가 차지하고 있다. 실리콘 태양전지는 변환효율이 다른 에너지에 비해 발전단가가 상대적으로 높은 편이다. 그러나 2000년 이후 실리콘 원재료 및 실리콘 기판 수급 문제가 발생하여 태양전지 제조단가가 상승하게 됨으로써, 태양전지는 효율 향상이라는 과제 외에도 원자재 수 급 및 제조단가 문제를 해결해야 하는 상황에 직면하고 있다. 실리콘 태양전지의 문제점을 개선하기 위한 방안으로 최근 유기 태양전지에 대한 관심이 증폭되면서 이에 대한 연구개발도 가속화되고 있다.
1992년 UCSB의 Heeger가 유기 고분자를 이용한 태양전지 가능성을 최초로 보여준 것을 효시로 현재까지 이에 대하여 많이 연구되고 있다. 이는 유기고분자와 C60를 이종접합 (Bulk Heterojunction)으로 만든 박막소자이며, 유기 고분자가 태양빛을 받은 후 발생한 전자를 전자친화성이 아주 높은 C60가 그 전자를 끌어당겨 이를 전기로 바꾸는 원리이다. 그리하여 현재 유기 고분자를 이용한 유기 고분자 박막 태양전지의 최고 효율은 실리콘을 이용한 태양전지에 비해 아주 낮다는 문제점이 있다. 따라서 유기 고분자 태양전지의 광흡수 능력을 향상시키기 위하여 다양한 시도들이 행해지고 있다.
상기의 문제점을 해결하기 위하여, 본 발명의 목적은 더 넓은 태양광 흡수대역을 가지면서 유기용매에 녹여 상온에서 스핀코팅 공정이 가능한 유기 고분자를 제공하는 것을 목적으로 한다.
상기의 목적을 달성하기 위하여, 본 발명은 다음의 화학식 1로 표시되는 고분자를 제공한다:
Figure 112009079596234-PAT00005
상기 식에서, 상기
Figure 112009079596234-PAT00006
는 화학식 2 또는 화학식 3으로 표시되고,
Figure 112009079596234-PAT00007
Figure 112009079596234-PAT00008
상기 식에서, R1, R2는 각각 독립적으로 C1 -20의 선형 또는 분지형 알킬기이다.
본 발명의 고분자는 일반적인 유기용매에 잘 녹아 상온 스핀코팅 공정이 가능하여 단순한 공정을 통해 구부림이 가능한 플라스틱 기판 위에 유기 고분자 박막 태양전지 소자 (organic polymer thin film solar cell)를 제작할 수 있는 훌륭한 장점을 가지고 있다.
본 발명은 다음의 화학식 1로 표시되는 고분자를 제공한다:
[화학식 1]
Figure 112009079596234-PAT00009
상기 식에서, 상기
Figure 112009079596234-PAT00010
는 화학식 2 또는 화학식 3으로 표시된다.
[화학식 2]
Figure 112009079596234-PAT00011
,
[화학식 3]
Figure 112009079596234-PAT00012
상기 식에서, R1, R2는 각각 독립적으로 C1 -20의 선형 또는 분지형 알킬기이고, 바람직하게는 각각 독립적으로 C4 -17의 선형 또는 분지형 알킬기이다.
구체적으로 화학식 1로 표현되는 플러렌 및 카바졸의 시아노비닐기 유도체와 다이(2-싸이엔일-2-일)-2,1,3-벤조싸이아다이아졸 교대 고분자를 나타낸다. 상기 수평균분자량이 4,000 내지 10,000이고, 중량평균분자량이 5,000 내지 150,000인 것이 바람직하다.
본 발명의 일 구현예에 의하면, 화학식 1은 다음의 화학식 4 또는 화학식 5로 표시되는 화합물로 표시될 수 있다.
Figure 112009079596234-PAT00013
Figure 112009079596234-PAT00014
본 발명의 다른 일구현예에 의하면, 화학식 1은 다음의 화학식으로 구체적으로 표시될 수 있으나 이에 한정되는 것은 아니다.
Figure 112009079596234-PAT00015
,
Figure 112009079596234-PAT00016
,
Figure 112009079596234-PAT00017
,
Figure 112009079596234-PAT00018
,
Figure 112009079596234-PAT00019
,
Figure 112009079596234-PAT00020
,
Figure 112009079596234-PAT00021
,
Figure 112009079596234-PAT00022
,
Figure 112009079596234-PAT00023
,
Figure 112009079596234-PAT00024
,
Figure 112009079596234-PAT00025
, 또는
Figure 112009079596234-PAT00026
.
본 발명의 유기 고분자는 플러렌 및 카바졸의 시아노비닐기 유도체를 전자 공여체로, 다이(2-싸이엔일-2-일)-2,1,3-벤조싸이아다이아졸을 전자 수용체로 포함한다.
본 발명은 플러렌 및 카바졸의 시아노비닐기 유도체를 전자 공여체로 다이(2-싸이엔일-2-일)-2,1,3-벤조싸이아다이아졸을 전자 수용체로 하여 기존의 태양전지용 고분자보다 좀더 장파장 쪽 흡수를 위한 기존의 고분자가 흡수하지 못하는 파장대역의 빛을 흡수하는 특성이 나타냄을 발견한 것이다.
본 발명의 화학식 1로 표시되는 플러렌 및 카바졸의 시아노비닐기 유도체와 다이(2-싸이엔일-2-일)-2,1,3-벤조싸이아다이아졸 교대 고분자는 종래에 알려진 통상의 방법을 이용하여 합성될 수 있으며, 특별히 제한되는 것은 아니다. 보다 구체적으로, 상기 화학식 4와 화학식 5로 표시되는 화합물은 다음의 반응식 1과 2에 따라 합성될 수 있다.
폴리( 비스 -2,7(-(Z)-1- 시아노 -2-(5-(7-(2- 싸이엔일 )-2,1,3- 벤조싸이아다이아 졸-4-일)-2- 싸이엔일 ) 에틴일 )- alt -9-(1- 오틸노닐 )-9 H - 카바졸 -2-일)의 합성
Figure 112009079596234-PAT00027
반응식 1에서 보는 바와 같이, 2,7-다이브로모-9-(1-옥틸노닐)-9H-카바졸 (화학식 1a)을 치환반응을 통하여 9-(1-옥틸노닐)-9H-카바졸-2,7-카바알데하이드 (화학식 1b)을 수득하고, 상기 9-(1-옥틸노닐)-9H-카바졸-2,7-카바알데하이드 (화학식 1b)을 환원 반응을 통하여 2,7-비스(하이드록시메틸)-9-(1-옥틸노닐)-9H-카바졸 (화학식 1c)을 수득하고, 상기 2,7-비스(하이드록시메틸)-9-(1-옥틸노닐)-9H-카바졸 (화학식 1c)을 포스포러스 트리브로마이드과 반응시킨 뒤에 트리메틸실릴 시안나이드와 반응시켜 2,7-비스(시아노메틸)-9-(1-옥틸노닐)-9H-카바졸 (화학식 1d)을 수득하고, 상기 2,7-비스(시아노메틸)-9-(1-옥틸노닐)-9H-카바졸 (화학식 1d)과 와 4,7-비스(5-포밀싸이오펜-2-일)-2,1,3-벤조싸이아다이아졸 (화학식 1e)을 나브 나겔 커플링 반응을 통하여 폴리(비스-2,7(-(Z)-1-시아노-2-(5-(7-(2-싸이엔일)-2,1,3-벤조싸이아다이아졸-4-일)-2-싸이엔일)에틴일)-alt-9-(1-오틸노닐)-9H-카바졸-2-일) (화학식 1f)를 수득한다.
폴리( 비스 -2,7(-(Z)-1- 시아노 -2-(5-(7-(2- 싸이엔일 )-2,1,3- 벤조싸이아다이아 졸-4-일)-2- 싸이엔일 ) 에텐닐 )- alt -9,9- 다이헥실 -9 H - 플러랜 -2-일)의 합성
Figure 112009079596234-PAT00028
반응식 2에서 보는 바와 같이, (7-시아노메틸-9,9-다이헥실-9H-플러랜-2-일)아세토나이트라일 (화학식 2a)과 4,7-비스(5-포밀싸이오펜-2-일)-2,1,3-벤조싸이아다이아졸 (화학식 1e)을 나브나겔 커플링 반응을 통하여 폴리(비스-2,7(-(Z)-1-시아노-2-(5-(7-(2-싸이엔일)-2,1,3-벤조싸이아다이아졸-4-일)-2-싸이엔일)에텐닐)-alt-9,9-다이헥실-9H-플러랜-2-일) (화학식 2b)를 수득한다.
이하, 실시예를 참고로 하여 본 발명을 보다 상세하게 설명한다. 다음의 실시예는 본 발명을 구체적으로 설명하려는 것이며, 다음의 실시예에 의하여 본 발명의 범위가 제한되는 것은 아니다.
실시예
실시예 1
폴리( 비스 -2,7(-(Z)-1- 시아노 -2-(5-(7-(2- 싸이엔일 )-2,1,3- 벤조싸이아다이아 졸-4-일)-2- 싸이엔일 ) 에틴일 )- alt -9-(1- 오틸노닐 )-9 H - 카바졸 -2-일)의 제조
1) 9-(1-옥틸노닐)-9H-카바졸-2,7-카바알데하이드 (화학식 1b)의 합성
2,7-다이브로모-9-(1-옥틸노닐)-9H-카바졸 (화학식 1a) 20 g (36 mmol)을 테트라하이드로튜란 200 ml에 녹인 후 -78 ℃에서 노말부틸 리튬 75 ml (120 mmol)을 천천히 드랍시킨다. 혼합물을 2시간 동안 상온에서 교반시킨다. 다시 온도를 -78 ℃로 내린 후에 다이메틸포름아마이드 10 ml (130 mmol)을 천천히 넣는다. 상온에서 12시간 동안 교반시킨 후에 2 M 하이드로젠 클로라이드 수용액으로 남은 리튬의 반응성을 제거시킨다. 에테르 200 ml를 첨가 후에 유기용액을 추출한다. 용매를 진공증류한 후 생기는 액상 잔류물을 관 크로마토그래피를 통하여 생성물을 분리하였다. 7.0 g (43%)의 노란색 고체를 얻었다.
R f = 0.35 (SiO2, 에틸아세테이트:헥산=1:3)
1H-NMR (300 MHz, CDCl3) δ 10.2 (s, 1H), 8.31 (m, 2H), 8.15 (s, 1H), 8.02 (s, 1H), 7.82 (d, 2H, J = 7.5Hz), 4.76-4.68 (m, 1H), 2.36-2.26 (m, 2H), 2.07-1.97 (m, 2H), 1.22-1.11 (m, 24H), 0.83 (t, 6H, J = 6.9 Hz).
13C-NMR (75 MHz, CDCl3) δ 192.73, 143.43, 140.00, 135.44, 134.96, 128.04, 126.66, 122.18, 121.37, 113.43, 110.78, 57.64, 33.97, 31.92, 29.63, 29.48, 29.31, 27.03, 25.14, 22.80, 14.30.
2) 2,7-비스(하이드록시메틸)-9-(1-옥틸노닐)-9H-카바졸 (화학식 1c)의 합성
이렇게 수득한 화학식 1b의 화합물 6.0 g (13 mmol)과 수소화붕소 나트륨 3.0 g (78 mmol)을 메탄올 200 ml에 녹인 후 0 ℃에서 1시간 교반하였다. 온도를 상온까지 올리고 5시간 더 교반하였다. 용매를 진공증류한 후 생기는 고체성 잔류물을 물과 에틸아세테이트로 추출하여, 고체성 유기물질을 관 크로마토그래피를 통하여 생성물을 분리하였다. 4.4 g (73%)의 엷은 노란색 고체를 얻었다.
R f = 0.23 (SiO2, 에틸아세테이트 100%)
1H-NMR (300 MHz, CDCl3) δ 8.10 (t, 2H, J = 9.6 Hz), 7.59 (s, 1H), 7.44 (s, 1H), 7.25 (t, 2H, J = 9.3 Hz), 4.90 (d, 4H, J = 4.8 Hz), 4.62-4.54 (m, 1H), 2.29-2.24 (m, 2H), 1.98-1.90 (m, 2H), 1.29-1.02 (m, 24H), 0.85 (t, 6H, J = 5.7 Hz).
13C-NMR (75 MHz, CDCl3) δ 142.73, 139.32, 138.82, 138.31, 123.45, 122.00, 120.69, 120.41, 118.19, 118.08, 110.42, 107.67, 66.53, 56.78, 33.90, 32.02, 29.69, 29.59, 29.45, 27.14, 22.86, 14.35.
3) 2,7-비스(시아노메틸)-9-(1-옥틸노닐)-9H-카바졸 (화학식 1d)의 합성
이렇게 수득한 화학식 1c의 화합물 4.3 g (9.2 mmol)을 벤젠 50 ml에 녹인 후 0 ℃에서 포스포러스 트리브로마이드 2.6 ml (28 mmol)을 천천히 첨가한 후, 45 ℃에서 6시간 교반하였다. 물과 클로로포름으로 추출하여 용매를 진공증류한 후 생기는 액체성을 말린 뒤에 아세토나이트라일 50 ml에 녹였다. 그 용액에 테트라부틸암모늄플로라이드 37 ml (37 mmol)과 트리메틸실릴 시아나이드 4.96 ml (37 mmol)을 첨가하여 상온에서 5시간 이상 교반하였다. 과량의 에틸아세테이트와 물로 추출하였다. 용매를 진공증류한 후 생기는 고체성 잔류물을 관 크로마토그래피를 통하여 생성물을 분리하였다. 1.4 g (37%)의 노란색 결정을 얻었다.
R f = 0.19 (SiO2, 에틸아세테이트:헥산 =1:6)
1H-NMR (300 MHz, CDCl3) δ 8.10 (t, 2H, J = 9.1 Hz), 7.57 (s, 1H), 7.41 (s, 1H), 7.20 (t, 2H, J = 9.1 Hz), 4.59-4.56 (m, 1H), 3.99 (s, 4H), 2.30-2.27 (m, 2H), 2.01-1.93 (m, 2H), 1.21-0.96 (m, 24H), 0.86 (t, 6H, J = 6.8 Hz).
13C-NMR (75 MHz, CDCl3) δ 142.84, 139.42, 127.90, 127.44, 123.31, 121.90, 121.39, 121.11, 119.11, 118.63, 111.23, 108.61, 57.03, 33.90, 32.02, 29.63, 29.57, 29.42, 27.05, 24.60, 22.58, 14.38.
4) 폴리(비스-2,7(-(Z)-1-시아노-2-(5-(7-(2-싸이엔일)-2,1,3-벤조싸이아다이아졸-4-일)-2-싸이엔일)에틴일)-alt-9-(1-오틸노닐)-9H-카바졸-2-일) (화학식 1f)의 합성
이렇게 수득한 화학식 1d의 화합물 0.35 g (0.72 mmol)과 화학식 1e의 화합물 0.26 g (0.72 mmol)를 테트라하이드로퓨란 20 ml와 메탄올 10 ml 용액에 녹인 후에 노말부틸암모늄 하드이록사이드 0.36 ml (0.36 mmol)을 상온에서 천천히 첨가한다. 1시간 교반 후에, 65 ℃에서 1 일간 교반하였다. 용액을 메탄올 300 ml에 천천히 첨가한 뒤 생성된 고체를 여과, 세척, 건조하여 원하는 생성물 폴리(비스-2,7(-(Z)-1-시아노-2-(5-(7-(2-싸이엔일)-2,1,3-벤조싸이아다이아졸-4-일)-2-싸이엔일)에틴일)-alt-9-(1-오틸노닐)-9H-카바졸-2-일) 68 mg을 얻었다.
실시예 2
폴리( 비스 -2,7(-((Z)-1- 시아노 -2-(5-(7-(2- 싸이엔일 )-2,1,3- 벤조싸이아다이 아졸-4-일)-2- 싸이엔일 ) 에텐닐 )- alt -(9,9- 다이헥실 -9 H - 플러랜 -2-일))[화학식 2b]의 제조
(7-시아노메틸-9,9-다이헥실-9H-플러랜-2-일)아세토나이트라일 (화학식 2a) 0.21 g (0.52 mmol)과 화학식 1e의 화합물 0.18 g (0.52 mmol)를 테트라하이드로퓨란 20 ml와 메탄올 10 ml 용액에 녹인 후에 노말부틸암모늄 하이드록사이드 0.26 ml (0.26 mmol)을 상온에서 천천히 첨가하였다. 1시간 교반 후에, 65 ℃에서 1 일간 교반하였다. 용액을 메탄올 300 ml에 천천히 첨가한 뒤 생성된 고체를 여과, 세척, 건조하여 원하는 생성물 폴리(비스-2,7(-(Z)-1-시아노-2-(5-(7-(2-싸이엔일)-2,1,3-벤조싸이아다이아졸-4-일)-2-싸이엔일)에텐닐)-alt-9,9-다이헥실-9H-플러랜-2-일) 50 mg을 얻었다.
평가 및 결과
상기 실시예 1 및 실시예 2에서 합성하여 제조한 고분자들은 유기용매에 대한 좋은 용해도를 가져 일반적인 유기용매에 완전히 용해되었다. GPC를 이용하여 분자량을 측정하며, 화학식 1f의 측정된 분자량은 수평균 분자량이 4,000이고, 질량평균 분자량이 5,400이며, 분산도가 1.4이다. 화학식 2b의 측정된 분자량은 수평 균 분자량이 89,000이고, 질량평균 분자량이 150,000이며, 분산도가 1.7이다.
이 화학식 1f의 고분자는 561 nm 내지 569 nm근처에서 최대흡수를 나타내었다. 화학식 2b의 고분자는 569 nm근처에서 최대흡수를 나타내었다.
도 1 및 도 2는 이 고분자들을 스핀코팅법을 이용한 유기 고분자의 유리기판을 제작한 것이다. 도 1은 실시예 1에서 제조한 고분자를 이용하여 제작한 유기 고분자의 흡수 스펙트럼을 나타낸다. 실시예 1의 고분자의 밴드갭은 1.74 eV이다.
도 2는 실시예 2에서 제조한 고분자를 이용하여 제작한 유기 고분자의 흡수 스펙트럼을 나타낸다. 실시예 2의 고분자의 밴드갭은 1.80 eV이다.
도 3 및 도 4는 이 고분자들을 백금막대에 도핑하여 샘플을 제작한 것이다. 도핑한 백금막대를 순환 전압전류법을 이용하여 고분자들의 산화시작점을 측정하여 전자가 있는 최고에너지 준위의 분자궤도함수를 알아낸다.
도 3은 실시예 1의 고분자를 순환 전압전류법으로 측정하여 고분자의 산화 시작점을 도시한 그래프이다. 전자가 있는 최고에너지준위의 분자궤도함수는 -5.51 eV 이다. 도 4는 실시예 2의 고분자를 순환 전압전류법으로 측정하여 고분자의 산화 시작점을 도시한 그래프이다. 전자가 있는 최고에너지 준위의 분자궤도함수는 -5.39 eV 이다.
도 1은 실시예 1의 고분자를 이용한 흡수 스펙트럼을 도시한 그래프이다.
도 2는 실시예 2의 고분자를 이용한 흡수 스펙트럼을 도시한 그래프이다.
도 3은 실시예 1의 고분자를 순환 전압전류법으로 측정하여 고분자의 산화 시작점을 도시한 그래프이다.
도 4는 실시예 2의 고분자를 순환 전압전류법으로 측정하여 고분자의 산화 시작점을 도시한 그래프이다.

Claims (5)

  1. 다음의 화학식 1로 표시되는 고분자 화합물:
    [화학식 1]
    Figure 112009079596234-PAT00029
    상기 식에서, 상기
    Figure 112009079596234-PAT00030
    는 화학식 2 또는 화학식 3으로 표시되고,
    [화학식 2]
    Figure 112009079596234-PAT00031
    ,
    [화학식 3]
    Figure 112009079596234-PAT00032
    상기 식에서, R1, R2는 각각 독립적으로 C1 -20의 선형 또는 분지형 알킬기이다.
  2. 제1항에 있어서, 상기 수평균분자량이 4,000 내지 10,000이고, 중량평균분자량이 5,000 내지 150,000인 것을 특징으로 하는 고분자 화합물.
  3. 제1항에 있어서, 상기 R1, R2는 각각 독립적으로 C4 -17의 선형 또는 분지형 알킬기인 것을 특징으로 하는 고분자 화합물.
  4. 제1항에 있어서, 상기 고분자는 다음의 화학식 5 또는 화학식 6으로 표시되는 것을 특징으로 하는 고분자 화합물:
    [화학식 4]
    Figure 112009079596234-PAT00033
    [화학식 5]
    Figure 112009079596234-PAT00034
  5. 제1항에 있어서, 상기 고분자는 다음의 화학식으로 표시되는 것을 특징으로 하는 고분자 화합물:
    Figure 112009079596234-PAT00035
    ,
    Figure 112009079596234-PAT00036
    ,
    Figure 112009079596234-PAT00037
    ,
    Figure 112009079596234-PAT00038
    ,
    Figure 112009079596234-PAT00039
    ,
    Figure 112009079596234-PAT00040
    ,
    Figure 112009079596234-PAT00041
    ,
    Figure 112009079596234-PAT00042
    ,
    Figure 112009079596234-PAT00043
    ,
    Figure 112009079596234-PAT00044
    ,
    Figure 112009079596234-PAT00045
    , 또는
    Figure 112009079596234-PAT00046
    .
KR1020090129503A 2009-12-23 2009-12-23 비닐기에 시아노기를 지닌 신규한 고분자 화합물 KR20110072529A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090129503A KR20110072529A (ko) 2009-12-23 2009-12-23 비닐기에 시아노기를 지닌 신규한 고분자 화합물

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090129503A KR20110072529A (ko) 2009-12-23 2009-12-23 비닐기에 시아노기를 지닌 신규한 고분자 화합물

Publications (1)

Publication Number Publication Date
KR20110072529A true KR20110072529A (ko) 2011-06-29

Family

ID=44403432

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090129503A KR20110072529A (ko) 2009-12-23 2009-12-23 비닐기에 시아노기를 지닌 신규한 고분자 화합물

Country Status (1)

Country Link
KR (1) KR20110072529A (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014021487A1 (ko) * 2012-08-03 2014-02-06 주식회사 엘지화학 공중합체, 이를 이용한 유기 태양 전지 및 이의 제조방법
WO2014021488A1 (ko) * 2012-08-03 2014-02-06 주식회사 엘지화학 공중합체, 이를 이용한 유기 태양 전지 및 이의 제조 방법
US8921506B2 (en) 2011-08-03 2014-12-30 Lg Chem, Ltd. Copolymer, organic solar cell using the same and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8921506B2 (en) 2011-08-03 2014-12-30 Lg Chem, Ltd. Copolymer, organic solar cell using the same and manufacturing method thereof
WO2014021487A1 (ko) * 2012-08-03 2014-02-06 주식회사 엘지화학 공중합체, 이를 이용한 유기 태양 전지 및 이의 제조방법
WO2014021488A1 (ko) * 2012-08-03 2014-02-06 주식회사 엘지화학 공중합체, 이를 이용한 유기 태양 전지 및 이의 제조 방법

Similar Documents

Publication Publication Date Title
CN108484569B (zh) 一种噻吩桥联四胺芘空穴传输材料及其在钙钛矿太阳能电池中的应用
US20160380204A1 (en) Hole transport layer composition for solar cell, preparation method thereof and solar cell comprising the same
CN112225882B (zh) 一类含非稠环受体单元的n-型聚合物及其制备方法与应用
KR20130016130A (ko) 공중합체, 이를 이용한 유기 태양 전지 및 이의 제조 방법
Liu et al. Efficient fullerene-free solar cells with wide optical band gap polymers based on fluorinated benzotriazole and asymmetric benzodithiophene
KR20110072529A (ko) 비닐기에 시아노기를 지닌 신규한 고분자 화합물
CN108192083B (zh) 含三氟甲基的共轭聚合物及其制备方法和应用
CN108409755B (zh) 一种有机光电转换材料,其制备方法及应用
CN110600612B (zh) 基于自组装工程的p-i-n型钙钛矿电池空穴传输层
Gedefaw et al. Alternating copolymers of fluorene and donor–acceptor–donor segments designed for miscibility in bulk heterojunction photovoltaics
CN109553757B (zh) 一种二维结构的萘二酰亚胺类受体聚合物及其制备方法与应用
Xiao et al. Synthesis and photovoltaic properties of thieno [3, 2-b] thiophenyl substituted benzo [1, 2-b: 4, 5-b′] dithiophene copolymers
Hu et al. Donor–Acceptor Copolymers with Rationally Regulated Side Chain Orientation for Polymer Solar Cells Processed by Non-Halogenated Solvent
US20160020336A1 (en) Low band gap polymer compound, synthesis of thereof, and organic photovoltaic cell containing the same
CN116178430A (zh) 一种基于吖啶的自组装空穴选择材料及其制备方法与用途
US9236573B2 (en) Organic semiconductor compound, method for preparing same, and organic semiconductor device employing same
Wang et al. Alkoxyphenyl or alkylphenyl side-chained Thieno [2, 3-f] benzofuran polymer for efficient non-fullerene solar cells
JP7200381B2 (ja) 非対称構造を有する有機高分子およびその光電材料としての使用
CN109810121B (zh) 基于硫芴的稠环非富勒烯受体化合物、其制备方法及在太阳能电池中的应用
KR20140114712A (ko) 유기 반도체 화합물 및 제조방법과 이를 포함하는 유기전자소자
CN109337046B (zh) 含二苯并噻吩亚砜单元的聚合物给体材料及其制备
US9567321B2 (en) Aromatic monomers deriving from glycerol units, process for their preparation and use thereof for the preparation of water-soluble conjugated polymers
CN110790757A (zh) 一种基于噻吩茚酮和咔唑的A-π-D-π-A型小分子太阳能电池受体材料及其制备方法
Deng et al. Quinoxaline-based small molecules: synthesis and investigation on their optoelectronic properties
KR20130112982A (ko) 낮은 밴드갭을 갖는 고분자, 이의 제조 방법 및 이를 포함하는 유기태양전지

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid