KR20110024307A - 하이브리드 차량의 배터리 soc 밸런싱 제어 방법 - Google Patents

하이브리드 차량의 배터리 soc 밸런싱 제어 방법 Download PDF

Info

Publication number
KR20110024307A
KR20110024307A KR1020090082229A KR20090082229A KR20110024307A KR 20110024307 A KR20110024307 A KR 20110024307A KR 1020090082229 A KR1020090082229 A KR 1020090082229A KR 20090082229 A KR20090082229 A KR 20090082229A KR 20110024307 A KR20110024307 A KR 20110024307A
Authority
KR
South Korea
Prior art keywords
soc
value
strategy
auxiliary electric
electric load
Prior art date
Application number
KR1020090082229A
Other languages
English (en)
Other versions
KR101113639B1 (ko
Inventor
김정은
오종한
Original Assignee
현대자동차주식회사
기아자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사, 기아자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020090082229A priority Critical patent/KR101113639B1/ko
Publication of KR20110024307A publication Critical patent/KR20110024307A/ko
Application granted granted Critical
Publication of KR101113639B1 publication Critical patent/KR101113639B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

본 발명은 하이브리드 차량의 배터리 SOC 밸런싱 제어 방법에 관한 것으로서, 더욱 상세하게는 고전압배터리의 SOC 밸런싱 제어를 위한 SOC 전략 밴드(Band Strategy)값을 설정할 때, 현재 SOC값 이외에 보조전장부하, 외기온도 등을 고려하여 설정함으로써, SOC 전략 밴드값을 정상범위로 유지할 수 있도록 한 하이브리드 차량의 배터리 SOC 밸런싱 제어 방법에 관한 것이다.
이를 위해, 본 발명은 현재 SOC값을 모니터링하는 단계와; 보조전장부하를 모니터링 하는 단계와; 보조전장부하에 따른 SOC 보정값을 연산하는 단계와; 외기온도를 모니터링하는 단계와; 외기온도에 따른 SOC 보정값을 연산하는 단계와; 미리 설정된 히스테리시스에 따라 SOC값의 방향성을 판단하는 단계와; 보조전장부하 및 외기온도에 따라 연산된 최종 SOC 보정값에 맞추어 SOC 전략 밴드값을 설정하는 단계와; 설정된 SOC 전략 밴드값에 따라 차량의 운전점을 제어하는 단계; 로 이루어지는 것을 특징으로 하는 하이브리드 차량의 배터리 SOC 밸런싱 제어 방법을 제공한다.
Figure P1020090082229
하이브리드, 차량, 배터리, SOC, 전략밴드값, 밸런싱, 보조전장부하, 외기온

Description

하이브리드 차량의 배터리 SOC 밸런싱 제어 방법{SOC band Strategy for HEV}
본 발명은 하이브리드 차량의 배터리 SOC 밸런싱 제어 방법에 관한 것으로서, 더욱 상세하게는 고전압배터리의 SOC 밸런싱 제어를 위한 SOC 전략 밴드(Band Strategy)값을 설정할 때, 현재 SOC값 이외에 보조전장부하, 외기온도 등을 고려하여 설정함으로써, SOC 전략 밴드값을 정상범위로 유지할 수 있도록 한 하이브리드 차량의 배터리 SOC 밸런싱 제어 방법에 관한 것이다.
일반적으로, 하이브리드(Hybrid) 자동차는 두 개의 동력원, 예를 들어 가솔린 엔진과 전기 모터를 병행하여 구동되는 차량으로서, 엔진이 비효율적인 주행 환경일 때 모터의 충방전을 통해 시스템의 효율성을 높이고(load leveling), 또한 감속시에는 브레이크 토크에 의한 운동에너지를 모터에서 발전하는 회생제동을 하여 배터리에 저장함으로써 연비를 향상시킬 수 있는 장점이 있다.
하이브리드 차량의 동력계통 구성을 보면, 주행 구동원인 엔진 및 전기모터, 동력 전달을 위한 클러치 및 자동변속기, 엔진 및 모터 등의 구동을 위한 인버터, DC/DC컨버터, 고전압배터리 등을 포함하여 구성되고, 또한 이들의 제어수단으로서 최상위 제어기인 하이브리드 제어기(HCU), 모터 제어기(MCU), 배터리 제어기(BMS) 등을 포함하고 있다.
이러한 하이브리드 차량은 모터 채택 여부에 따라 소프트 타입 또는 하드 ㅌ타입으로 구분되는데, 하드 타입의 하이브리드 차량의 경우에는 엔진 온/오프(On/Off) 판단 여부 및 엔진과 모터간의 동력분배 등에 따라 연비와 운전성에 큰 영향을 미친다.
특히, 엔진 온/오프 및 엔진과 모터의 동력분배는 차속, 가속페달 위치(APS Depth), 변속단 등 여러 가지 요소에 의해 결정되지만, 그 중에서도 고전압배터리의 SOC(State of Charge)가 가장 중요한 인자(Factor)이다.
고전압배터리는 하이브리드 차량의 모터 및 DC/DC 컨버터를 구동하는 에너지원이며, 그 제어기인 배터리 제어기는 고전압배터리의 전압, 전류, 온도를 모니터링하여, 고전압배터리의 충전상태량(SOC[%](State of Charge))을 전반적으로 조절 관리하는 기능을 한다.
따라서, 차량 주행 및 제어시, 고전압배터리의 충전상태량인 SOC가 정상(Normal) 영역으로 유지되도록 운전점을 설정해야 하며, 만약 SOC가 정상(Normal) 영역에서 벗어났을 경우에는 정상 영역으로 회복되도록 제어해 주어야 한다.
즉, 고전압배터리의 SOC 밴드(Band) 제어에 있어서, SOC가 낮을수록 엔진을 요구파워보다 높은 운전점에서 동작되게 하여 SOC를 충전 지향으로 제어해야 하고, 반면에 SOC가 높을수록 전기모터에 대한 방전량을 증대하여 SOC를 방전 지향으로 제어해야 한다.
여기서, 고전압배터리의 SOC 밴드(Band) 제어를 위한 종래 방법을 살펴보면 다음과 같다.
종래의 SOC 밴드(Band) 제어는, 첨부한 도 4에 도시된 바와 같이 현재 SOC값을 모니터링하는 단계와, 설정된 히스테리시스에 따라 SOC값의 방향성을 판단하는 단계와, 현재 SOC값에 따른 SOC 전략 밴드값을 설정하는 단계와, 이 SOC 전략 밴드값에 따라 차량의 운전점을 제어하는 단계로 이루어진다.
상기 고전압배터리의 SOC 제어를 위한 SOC 전략 밴드(Band Strategy)값을 설정하는 것에 대한 하나의 예로서, SOC 0~25: 한계최저값(Critical Low(0)), SOC 25~40: 낮은 범위(Low(1)), SOC 40~70: 정상범위(Normal(2)), SOC 70~80: 높은범위(High(3)), SOC 80~100: 한계최고값(Critical High(4)) 등으로 구분하여 설정한다.
따라서, 배터리 제어기(BMS)에서 전송된 SOC값에 따라, 위의 예와 같이 SOC 전략 밴드값이 설정되는 바, 이때 현재 SOC값에 따라 SOC 전략 밴드값이 갑자기 변화지 않도록 히스테리시스(Hysteresis)가 설정된다.
그러나, 종래의 SOC 밴드(Band) 제어 방법은 다음과 같은 문제점이 있다.
현재 SOC값에 의해서만 SOC 전략 밴드값을 결정할 경우, 보조전장부하(예: 에어컨 부하)에 대한 미고려로 정상범위(Normal(1)) 영역 유지가 어려운 문제점이 있다.
예를 들면, [현재 요구파워 + 보조전장부하 > 엔진 파워] 인 경우, SOC 전략 밴드값의 정상범위 영역에서 방전 운전점이 유발될 수 있고, 이에 배터리에서 모터로 방전이 이루어져, 결국 SOC값이 계속 떨어져 SOC 전략 밴드값이 낮은 범위(Low(1))로 진입할 가능성이 있다.
본 발명은 상기와 같은 점을 감안하여 안출한 것으로서, 고전압배터리의 SOC 제어를 위한 SOC 전략 밴드(Band Strategy)값을 설정할 때, 현재 SOC값 이외에 보조전장부하, 외기온도 등을 추가로 고려하여 설정함에 따라, SOC 전략 밴드값이 낮은 범위가 되어 방전 운전점을 가지지 않고, 충전 운전점만을 가지게 됨으로써, SOC 전략 밴드값을 정상범위로 유지할 수 있도록 한 하이브리드 차량의 배터리 SOC 밸런싱 제어 방법을 제공하는데 그 목적이 있다.
상기한 목적을 달성하기 위한 본 발명은 현재 SOC값을 모니터링하는 단계와; 보조전장부하를 모니터링 하는 단계와; 보조전장부하에 따른 SOC 보정값을 연산하는 단계와; 외기온도를 모니터링하는 단계와; 외기온도에 따른 SOC 보정값을 연산하는 단계와; 미리 설정된 히스테리시스에 따라 SOC값의 방향성을 판단하는 단 계와; 보조전장부하 및 외기온도에 따라 연산된 최종 SOC 보정값에 맞추어 SOC 전략 밴드값을 설정하는 단계와; 설정된 SOC 전략 밴드값에 따라 차량의 운전점을 제어하는 단계; 로 이루어지는 것을 특징으로 하는 하이브리드 차량의 배터리 SOC 밸런싱 제어 방법을 제공한다.
본 발명의 바람직한 일 구현예로서, 상기 설정된 SOC 전략 밴드값은 현재 SOC값에서 보조전장부하 [SOC_Comp1] 값을 차감하고, 외기온[SOC_Comp2] 값을 더 차감한 값으로 설정되어, 낮은 범위(25~40: 낮은 범위(Low(1))에 속하게 됨으로써, 충전 운전점을 가지게 되는 것을 특징으로 한다.
상기한 과제 해결 수단을 통하여, 본 발명은 다음과 같은 효과를 제공한다.
본 발명에 따르면, 하이브리드 차량의 고전압배터리의 SOC 전략 밴드(Band Strategy)값을 설정할 때, 현재의 SOC값 이외에 보조전장부하, 외기온도 등을 고려하여 설정함으로써, 능률적인 SOC 밸런싱 제어가 가능한 장점이 있다.
즉, 보조전장부하 또는 외기온도에 따른 에어컨 부하량을 예측하여, SOC 전략 밴드값을 설정함으로써, 기존에 SOC 전략 밴드값의 정상범위에서 방전 운전점에 유발되어 SOC 전략 밴드값이 낮은 범위로 진입하는 것을 방지할 수 있게 되어, 한층 더 능률적인 SOC 밸런싱 제어가 가능한 장점을 제공한다.
이하, 본 발명의 바람직한 실시예를 첨부도면을 참조로 상세하게 설명하기로 한다.
본 발명의 이해를 돕기 위하여 종래의 SOC 밸런싱 제어를 위한 SOC 전략 밴드값을 설정하는 일례를 첨부한 도 3을 참조로 살펴보면, 현재 SOC값이 42, 외기온 정상상태, 보조전장부하 3kw를 유지하는 경우라면, 외기온도 및 보조전장부하를 고려하지 않고, 배터리 제어기(BMS)에서 전송된 현재 SOC값만을 고려하여 SOC 전략 밴드값을 결정하게 됨에 따라, SOC 전략 밴드값 42는 정상범위(SOC 40~70: (Normal(2))에 속하게 된다.
따라서, 현재 SOC값이 42이고, 보조전장부하량 및 외기온이 높아 에어컨 동작 가능성이 크므로, 설정된 SOC 전략 밴드값이 정상범위(SOC 40~70: (Normal(2))에 속한 상태로 방전 운전점에서 동작할 경우 SOC는 계속 떨어질 가능성이 커지게 된다.
이렇게, 종래의 방법에 따라 설정된 SOC 전략 밴드값이 정상범위(SOC 40~70: (Normal(2))에 속하게 됨에 따라, 방전 운전점을 가지게 되고, 설정된 SOC 전략 밴드값에 따라 차량의 운전점이 방전 지향으로 제어되어 고전압 배터리의 방전이 이루어짐에 따라, SOC값은 정상범위 이하인 40이하로 떨어지게 되며, 결국 다시 충전 지향의 운전점 제어를 통하여 충전 과정이 이루어져야 한다.
본 발명은 하이브리드 차량용 고전압배터리의 SOC 밸런싱 제어를 위한 SOC 전략 밴드(Band Strategy)값을 설정할 때, 현재의 SOC값 이외에 보조전장부하 또는 외기온도, 보조전장부하 및 외기온도 등을 고려하여 설정하는 점에 특징이 있으며, 보조전장부하(에어컨 부하)를 고려하는 이유는 에어컨 작동에 필요한 전력이 메인배터리에서 소비되기 때문이고, 또한 외기온도를 고려하는 이유는 외기온도가 높은 경우 에어컨을 가동시킬 가능성이 높기 때문이다.
여기서, 본 발명에 따른 고전압배터리의 SOC 밸런싱 제어를 위한 SOC 전략 밴드(Band Strategy)값을 설정하는 방법을 설명하면 다음과 같다.
첨부한 도 1은 본 발명에 따른 하이브리드 차량의 배터리 SOC 밸런싱 제어 방법을 나타내는 제어블럭도이고, 도 2는 본 발명에 따른 하이브리드 차량의 배터리 SOC 밸런싱 제어 방법을 설명하는 순서도이다.
먼저, 현재 SOC값을 모니터링하는 단계와, 보조전장부하를 모니터링하는 단계가 진행되어, 보조전장부하에 따른 SOC 보정값을 연산하게 된다.
연이어, 외기온도를 모니터링하는 단계 및 외기온도에 따른 SOC 보정값을 연산하는 단계가 진행된다.
한편, 미리 설정된 히스테리시스에 따라 SOC값의 방향성을 판단하게 되는데, 아래와 같이 설정되는 SOC 전략 밴드값이 설정되는 바, 현재 SOC값에 따라 SOC 전략 밴드값이 갑자기 변화지 않도록 히스테리시스(Hysteresis)가 미리 설정된다.
따라서, 보조전장부하 및 외기온도에 따라 연산된 최종 SOC 보정값에 맞추어 SOC 전략 밴드값을 설정하되, 현재 SOC값에서 보조전장부하 및 외기온도 고려하여 차감추출(Subtraction) 한 SOC값이 0~100 범위의 값을 가지도록 한다.
예를 들어, 현재 SOC값이 42이고, 보조전장부하 3kw인 경우 [SOC_Comp1] 값이 2 라면, SOC 전략밴드값을 결정하기 위한 전략결정(Strategy Determination) 입 력값은 현재 SOC값 40에서 [SOC_Comp1]값 2를 차감한 40이 되고, 외기온이 33℃인 경우 [SOC_Comp2] 값이 3이라면, 전략결정(Strategy Determination) 입력값은 다시 3을 차감한 37이 된다.
이렇게 현재 SOC값이 42이고, 보조전장부하량 및 외기온이 높아 에어컨 작동 가능성이 큰 상태를 고려함에 따라, 최종 SOC 전략밴드값은 37로서, 낮은 범위의 전략 밴드값으로 설정된다.
이때, SOC 전략밴드값이 정상범위(SOC 40~70: (Normal(2)) 이상에 속하는 경우에는 방전운점점을 가지게 되지만, 그 미만에서는 충전 운전점만을 가지게 된다.
따라서, 설정된 SOC 전략 밴드값이 낮은 범위(25~40: 낮은 범위(Low(1))에 속하게 됨에 따라, 충전 운전점을 가지게 되고, 설정된 SOC 전략 밴드값에 따라 차량의 운전점이 충전 지향으로 제어되어 고전압 배터리의 충전이 이루어짐에 따라, SOC값은 42이상으로 충전되어지고, 결국 SOC값은 42이하로 떨어지지 않고 정상범위내로 유지될 수 있는 효과를 얻을 수 있다.
도 1은 본 발명에 따른 하이브리드 차량의 배터리 SOC 밸런싱 제어 방법을 나타내는 제어블럭도,
도 2는 본 발명에 따른 하이브리드 차량의 배터리 SOC 밸런싱 제어 방법을 설명하는 순서도,
도 3은 종래의 하이브리드 차량의 배터리 SOC 밸런싱 제어 방법을 나타내는 제어블럭도,
도 4는 종래의 하이브리드 차량의 배터리 SOC 밸런싱 제어 방법을 설명하는 순서도.

Claims (2)

  1. 현재 SOC값을 모니터링하는 단계와;
    보조전장부하를 모니터링하거나 또는 외기온도를 모니터링하는 단계와;
    상기 보조전장부하에 따른 SOC 보정값을 연산하거나, 상기 외기온도에 따른 SOC 보정값을 연산하는 단계와;
    미리 설정된 히스테리시스에 따라 SOC값의 방향성을 판단하는 단계와;
    보조전장부하 또는 외기온도에 따라 연산된 최종 SOC 보정값에 맞추어 SOC 전략 밴드값을 설정하는 단계와;
    설정된 SOC 전략 밴드값에 따라 차량의 운전점을 제어하는 단계;
    로 이루어지는 것을 특징으로 하는 하이브리드 차량의 배터리 SOC 밸런싱 제어 방법.
  2. 청구항 1에 있어서,
    상기 설정된 SOC 전략 밴드값은 현재 SOC값에서 보조전장부하 [SOC_Comp1] 값을 차감하고, 외기온[SOC_Comp2] 값을 더 차감한 값으로 설정되어, 낮은 범위(25~40: 낮은 범위(Low(1))에 속하게 됨으로써, 충전 운전점을 가지게 되는 것을 특징으로 하는 하이브리드 차량의 배터리 SOC 밸런싱 제어 방법.
KR1020090082229A 2009-09-01 2009-09-01 하이브리드 차량의 배터리 soc 밸런싱 제어 방법 KR101113639B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090082229A KR101113639B1 (ko) 2009-09-01 2009-09-01 하이브리드 차량의 배터리 soc 밸런싱 제어 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090082229A KR101113639B1 (ko) 2009-09-01 2009-09-01 하이브리드 차량의 배터리 soc 밸런싱 제어 방법

Publications (2)

Publication Number Publication Date
KR20110024307A true KR20110024307A (ko) 2011-03-09
KR101113639B1 KR101113639B1 (ko) 2012-02-15

Family

ID=43932167

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090082229A KR101113639B1 (ko) 2009-09-01 2009-09-01 하이브리드 차량의 배터리 soc 밸런싱 제어 방법

Country Status (1)

Country Link
KR (1) KR101113639B1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8442718B2 (en) 2011-07-21 2013-05-14 Hyundai Motor Company Battery charging system for vehicle and control method of the same
KR101282687B1 (ko) * 2011-11-07 2013-07-05 현대자동차주식회사 차량용 배터리 상태 예측 방법
CN106560363A (zh) * 2015-10-02 2017-04-12 现代自动车株式会社 用于控制混合动力车辆的电池soc的方法和系统
US10053082B2 (en) 2016-10-20 2018-08-21 Hyundai Motor Company Control method of hybrid vehicle
KR20230063246A (ko) 2021-11-01 2023-05-09 현대자동차주식회사 차량의 배터리 시스템

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102602984B1 (ko) 2018-07-23 2023-11-16 현대자동차주식회사 후진기어를 포함하지 않는 모터 구동 차량의 전력충전량 제어방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100862432B1 (ko) * 2006-12-15 2008-10-08 현대자동차주식회사 Etc가 탑재된 하이브리드 전기자동차의 엔진 토크 제어방법

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8442718B2 (en) 2011-07-21 2013-05-14 Hyundai Motor Company Battery charging system for vehicle and control method of the same
KR101282687B1 (ko) * 2011-11-07 2013-07-05 현대자동차주식회사 차량용 배터리 상태 예측 방법
CN106560363A (zh) * 2015-10-02 2017-04-12 现代自动车株式会社 用于控制混合动力车辆的电池soc的方法和系统
CN106560363B (zh) * 2015-10-02 2021-06-11 现代自动车株式会社 用于控制混合动力车辆的电池soc的方法和系统
US10053082B2 (en) 2016-10-20 2018-08-21 Hyundai Motor Company Control method of hybrid vehicle
KR20230063246A (ko) 2021-11-01 2023-05-09 현대자동차주식회사 차량의 배터리 시스템

Also Published As

Publication number Publication date
KR101113639B1 (ko) 2012-02-15

Similar Documents

Publication Publication Date Title
KR20110054135A (ko) 하이브리드 차량의 배터리 soc 밸런싱 제어 방법
KR101684543B1 (ko) 하이브리드 차량의 운전 모드 제어 시스템 및 그 방법
US8930098B2 (en) Clutch control device of hybrid vehicle
US10071649B2 (en) Method for controlling external electric power supply system of fuel cell-mounted vehicle, and external electric power supply system
EP2117106B1 (en) Power supply system and vehicle including the same, and method of controlling the same
KR100906908B1 (ko) 하이브리드 전기 차량의 배터리 충전량 제어 방법
US9266527B2 (en) Method and system for setting motor torque for hybrid vehicle
US20110000725A1 (en) Hybrid vehicle
US20120022744A1 (en) Vehicle power supply system and method for controlling the same
KR101113639B1 (ko) 하이브리드 차량의 배터리 soc 밸런싱 제어 방법
US10661782B2 (en) Operation control system for hybrid vehicle
JP6146396B2 (ja) 電動モーターによって駆動する車両、および、その車両の制御方法
WO2013061122A2 (en) Vehicle including secondary battery and control method for vehicle including secondary battery
JP5796457B2 (ja) バッテリシステムおよびバッテリシステムの制御方法
KR20090111240A (ko) 하이브리드 차량의 보조 부하 보상 방법
JP5762699B2 (ja) ハイブリッドカーの電源装置
JP6784684B2 (ja) ハイブリッド車両の走行用バッテリの充電状態を管理するための方法
US20120139481A1 (en) Battery charge control apparatus
KR20170003117A (ko) 친환경 차량의 배터리 충방전량 제어 장치 및 방법
KR20120062340A (ko) 하이브리드 자동차의 변속 제어장치 및 방법
CN102887122A (zh) 一种混合动力汽车高压附件能量管理方法
CN113556075B (zh) 一种电机扭矩的控制方法、装置、车辆及设备
KR101198808B1 (ko) 하이브리드 차량에서의 엔진 아이들 제어 방법
JP5450238B2 (ja) 電動車両
CN110588632A (zh) 一种混合动力汽车的工作模式的切换方法及装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150130

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180130

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190130

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20191219

Year of fee payment: 9