KR20110009954A - 어레이 기판 및 이의 제조방법 - Google Patents

어레이 기판 및 이의 제조방법 Download PDF

Info

Publication number
KR20110009954A
KR20110009954A KR1020090067410A KR20090067410A KR20110009954A KR 20110009954 A KR20110009954 A KR 20110009954A KR 1020090067410 A KR1020090067410 A KR 1020090067410A KR 20090067410 A KR20090067410 A KR 20090067410A KR 20110009954 A KR20110009954 A KR 20110009954A
Authority
KR
South Korea
Prior art keywords
layer
gate
amorphous silicon
electrode
forming
Prior art date
Application number
KR1020090067410A
Other languages
English (en)
Other versions
KR101246789B1 (ko
Inventor
최희동
최혜영
이준민
Original Assignee
엘지디스플레이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지디스플레이 주식회사 filed Critical 엘지디스플레이 주식회사
Priority to KR1020090067410A priority Critical patent/KR101246789B1/ko
Priority to US12/813,308 priority patent/US8198631B2/en
Publication of KR20110009954A publication Critical patent/KR20110009954A/ko
Application granted granted Critical
Publication of KR101246789B1 publication Critical patent/KR101246789B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1288Multistep manufacturing methods employing particular masking sequences or specially adapted masks, e.g. half-tone mask

Abstract

본 발명은, 화소영역과 스위칭 영역이 정의된 기판 상에 무기절연물질로 이루어진 버퍼층을 형성하는 단계와; 상기 버퍼층 위로 상기 스위칭 영역에 아일랜드 형태로서 동일한 평면적을 가지며 순차 적층된 불순물 폴리실리콘의 게이트 전극과, 게이트 절연막을 형성하고, 상기 게이트 절연막 위로 상기 게이트 절연막의 가장자리를 노출시키며 아일랜드 형태로서 동일한 평면적을 가지며 순차 적층된 순수 폴리실리콘의 주 액티브층과 순수 비정질 실리콘의 보조 액티브층을 형성하는 단계와; 상기 보조 액티브층 위로 전면에 무기절연물질을 증착하고 패터닝함으로써 상기 보조 액티브층의 양측을 노출시키며 이격하는 액티브 콘택홀을 갖는 층간절연막을 형성하는 단계와; 상기 층간절연막 위로 상기 액티브 콘택홀을 통해 각각 상기 보조 액티브층과 각각 접촉하며 서로 이격하는 불순물 비정질 실리콘의 오믹콘택층과 상기 오믹콘택층 위로 서로 이격하는 소스 및 드레인 전극을 형성하고, 동시에 상기 층간절연막 위로 상기 소스 전극과 연결되며 상기 화소영역의 경계에 데이터 배선을 형성하는 단계와; 상기 데이터 배선과 상기 소스 및 드레인 전극 위로 전면에 제 1 보호층을 형성하고, 상기 제 1 보호층과 상기 층간절연막과 상기 게이트 절연막을 패터닝하여 상기 보조 액티브층 외측으로 상기 게이트 전극을 노출시키는 게이트 콘택홀을 형성하는 단계와; 상기 제 1 보호층 위로 상기 화소영역의 경계에 금속물질로서 상기 게이트 콘택홀을 통해 상기 게이트 전극과 접촉하며 상기 데이터 배선과 교차하는 게이트 배선을 형성하는 단계와; 상기 게이트 배선 위로 상기 기판 전면에 제 2 보호층을 형성하고, 상기 제 2 보호층과 그 하부의 제 1 보호층을 패터닝함으로써 상기 드레인 전극을 노출시키는 드레인 콘택홀을 형성하는 단계와; 상기 제 2 보호층 위로 상기 화소영역에 상기 드레인 콘택홀을 통해 상기 드레인 전극과 접촉하는 화소전극을 형성하는 단계를 포함하는 어레이 기판의 제조 방법 및 이에 따라 제조된 어레이 기판을 제공한다.
Figure P1020090067410
어레이기판, 폴리실리콘, 고상결정화, 액티브층, 손상, 오프전류

Description

어레이 기판 및 이의 제조방법{Array substrate and method of fabricating the same}
근래에 들어 사회가 본격적인 정보화 시대로 접어듦에 따라 대량의 정보를 처리 및 표시하는 디스플레이(display) 분야가 급속도로 발전해 왔고, 최근에는 특히 박형화, 경량화, 저소비전력화의 우수한 성능을 지닌 평판표시장치로서 액정표시장치 또는 유기전계 발광소자가 개발되어 기존의 브라운관(Cathode Ray Tube : CRT)을 대체하고 있다.
액정표시장치 중에서는 각 화소(pixel)별로 전압의 온(on)/오프(off)를 조절할 수 있는 스위칭 소자인 박막트랜지스터가 구비된 어레이 기판을 포함하는 액티브 매트릭스형 액정표시장치가 해상도 및 동영상 구현능력이 뛰어나 가장 주목받고 있다.
또한, 유기전계 발광소자는 높은 휘도와 낮은 동작 전압 특성을 가지며, 스스로 빛을 내는 자체발광형이기 때문에 명암대비(contrast ratio)가 크고, 초박형 디스플레이의 구현이 가능하며, 응답시간이 수 마이크로초(㎲) 정도로 동화상 구현이 쉽고, 시야각의 제한이 없으며 저온에서도 안정적이고, 직류 5 내지 15V의 낮은 전압으로 구동하므로 구동회로의 제작 및 설계가 용이하므로 최근 평판표시장치로서 주목 받고 있다.
이러한 액정표시장치와 유기전계 발광소자에 있어서 공통적으로 화소영역 각각을 온(on)/오프(off) 제거하기 위해서 필수적으로 스위칭 소자인 박막트랜지스터를 구비한 어레이 기판이 구비되고 있다.
도 1은 액정표시장치 또는 유기전계 발광소자를 구성하는 종래의 어레이 기판에 있어 하나의 화소영역을 박막트랜지스터를 포함하여 절단한 단면을 도시한 것이다.
도시한 바와 같이, 어레이 기판(11)에 있어 다수의 게이트 배선(미도시)과 데이터 배선(33)이 교차하여 정의되는 다수의 화소영역(P) 내의 스위칭 영역(TrA)에는 게이트 전극(15)이 형성되어 있으며, 상기 게이트 전극(15) 상부로 전면에 게이트 절연막(18)이 형성되어 있으며, 그 위에 순차적으로 순수 비정질 실리콘의 액티브층(22)과 불순물 비정질 실리콘의 오믹콘택층(26)으로 구성된 반도체층(28)이 형성되어 있다. 상기 오믹콘택층(26) 위로는 상기 게이트 전극(15)에 대응하여 서로 이격하며 소스 전극(36)과 드레인 전극(38)이 형성되어 있다. 이때 상기 스위칭 영역(TrA)에 순차 적층 형성된 게이트 전극(15)과 게이트 절연막(18)과 반도체층(28)과 소스 및 드레인 전극(36, 38)은 박막트랜지스터(Tr)를 이룬다.
또한, 상기 소스 및 드레인 전극(36, 38)과 노출된 액티브층(22) 위로 전면에 상기 드레인 전극(38)을 노출시키는 드레인 콘택홀(45)을 포함하는 보호층(42)이 형성되어 있으며, 상기 보호층(42) 상부에는 각 화소영역(P)별로 독립되며, 상 기 드레인 콘택홀(45)을 통해 상기 드레인 전극(38)과 접촉하는 화소전극(50)이 형성되어 있다. 이때, 상기 데이터 배선(33) 하부에는 상기 오믹콘택층(26)과 액티브층(22)을 이루는 동일한 물질로 제 1 패턴(27)과 제 2 패턴(23)의 이중층 구조를 갖는 반도체 패턴(29)이 형성되어 있다.
전술한 구조를 갖는 종래의 어레이 기판(11)에 있어서 상기 스위칭 영역(TrA)에 구성된 박막트랜지스터(Tr)의 반도체층(28)을 살펴보면, 순수 비정질 실리콘의 액티브층(22)은 그 상부로 서로 이격하는 오믹콘택층(26)이 형성된 부분의 제 1 두께(t1)와 상기 오믹콘택층(26)이 제거되어 노출된 된 부분의 제 2 두께(t2)가 달리 형성됨을 알 수 있다. 이러한 액티브층(22)의 두께 차이(t1 ≠ t2)는 제조 방법에 기인한 것이며, 상기 액티브층(22)의 두께 차이(t1 ≠ t2)에 의해 상기 박막트랜지스터(Tr)의 특성 저하가 발생하고 있다.
도 2a 내지 도 2e는 종래의 어레이 기판의 제조 단계 중 반도체층과 소스 및 드레인 전극을 형성하는 단계를 도시한 공정 단면도이다. 도면에 있어서는 설명의 편의를 위해 게이트 전극과 게이트 절연막은 생략하였다.
우선, 도 2a에 도시한 바와 같이, 기판(11) 상에 순수 비정질 실리콘층(20)을 형성하고 그 상부로 불순물 비정질 실리콘층(24)과 금속층(30)을 순차적으로 형성한다. 이후 상기 금속층(30) 위로 포토레지스트를 도포하여 포토레지스트층(미도시)을 형성하고, 이를 노광 마스크를 이용하여 노광하고, 연속하여 현상함으로써 상기 소스 및 드레인 전극이 형성될 부분에 대응하여 제 3 두께를 갖는 제 1 포토레지스트 패턴(91)을 형성하고, 동시에 상기 소스 및 드레인 전극 사이의 이격영역 에 대응해서는 상기 제 3 두께보다 얇은 제 4 두께를 갖는 제 2 포토레지스트 패턴(92)을 형성한다.
다음, 도 2b에 도시한 바와 같이, 상기 제 1 및 제 2 포토레지스트 패턴(91, 92) 외부로 노출된 상기 금속층(도 2a의 30)과 그 하부의 불순물 및 순수 비정질 실리콘층(도 2a의 24, 20)을 식각하여 제거함으로써 최상부에 금속물질로서 소스 드레인 패턴(31)을 형성하고, 그 하부로 불순물 비정질 실리콘 패턴(25)과, 액티브층(22)을 형성한다.
다음, 도 2c에 도시한 바와 같이, 애싱(ashing)을 진행함으로써 상기 제 4 두께의 제 2 포토레지스트 패턴(도 2b의 92)을 제거한다. 이 경우 상기 제 3 두께의 제 1 포토레지스트 패턴(도 2b의 91)은 그 두께가 줄어든 상태로 제 3 포토레지스트 패턴(93)을 이루며 상기 소스 드레인 패턴(31) 상에 남아있게 된다.
다음, 도 2d에 도시한 바와 같이, 상기 제 3 포토레지스트 패턴(93) 외부로 노출된 상기 소스 드레인 패턴(도 2c의 31)을 식각하여 제거함으로써 서로 이격하는 소스 및 드레인 전극(36, 38)을 형성한다. 이때 상기 소스 및 드레인 전극(36, 398) 사이로 상기 불순물 비정질 실리콘 패턴(25)이 노출되게 된다.
다음, 도 2e에 도시한 바와 같이, 상기 소스 및 드레인 전극(36, 38) 사이의 이격영역에 노출된 상기 불순물 비정질 실리콘 패턴(도 2d의 25)에 대해 건식식각을 실시함으로써 상기 소스 및 드레인 전극(36, 38) 외부로 노출된 상기 불순물 비정질 실리콘 패턴(도 2d의 25)을 제거함으로써 서로 이격하는 오믹콘택층(26)을 상기 소스 및 드레인 전극(36, 38) 하부에 형성한다.
이때, 상기 건식식각은 상기 소스 및 드레인 전극(36, 38) 외부로 노출된 불순물 비정질 실리콘 패턴(도 2d의 25)을 완전히 없애기 위해 충분히 오랜시간 지속되며, 이러한 과정에서 상기 불순물 비정질 실리콘 패턴(도 2d의 25) 하부에 위치한 액티브층(22)까지도 상기 불순물 비정질 실리콘 패턴(도 2d의 25)이 제거되는 부분에 대해서는 소정 두께 식각이 발생하게 된다. 따라서 액티브층(22)에 있어 그 상부에 오믹콘택층(26)이 형성된 부분과 노출된 부분에 있어 두께(t1 ≠ t2) 차이가 발생하게 된다. 상기 건식식각을 충분히 오랜시간 실시하지 않으면, 소스 및 드레인 전극(36, 38) 간의 이격영역에 있어 제거되어야 할 상기 불순물 비정질 실리콘 패턴(도 2d의 25)이 상기 액티브층(22) 상부에 남게되므로 이를 방지하기 위함이다.
따라서, 전술한 종래의 어레이 기판(11)의 제조 방법에 있어서는 필연적으로 액티브층(22)의 두께 차이가 발생하게 되며, 이로 인해 박막트랜지스터(도 1의 Tr)의 특성 저하가 발생하게 된다.
또한, 액티브층(22)이 오믹콘택층(26) 형성을 위한 건식식각 진행 시 식각되어 제거되는 두께까지 고려하여 충분히 두껍게 상기 액티브층(22)을 이루는 순수 비정질 실리콘층(도 2a의 20)을 1000Å 이상의 두께를 갖도록 충분히 두껍게 증착해야 하는 바, 증착시간이 늘어나 생산성을 떨어뜨리는 결과를 초래하고 있다.
한편, 어레이 기판에 있어서 가장 중요한 구성요소로는 각 화소영역별로 형성되며, 게이트 배선과 데이터 배선 및 화소전극과 동시에 연결됨으로써 선택적, 주기적으로 신호전압을 상기 화소전극에 인가시키는 역할을 하는 박막트랜지스터를 들 수 있다.
하지만, 종래의 어레이 기판에서 일반적으로 구성하는 박막트랜지스터의 경우, 상기 액티브층은 비정질 실리콘을 이용하고 있음을 알 수 있다. 이러한 비정질 실리콘을 이용하여 액티브층을 형성할 경우, 상기 비정질 실리콘은 원자 배열이 무질서하기 때문에 빛 조사나 전기장 인가 시 준 안정 상태로 변화되어 박막트랜지스터 소자로 활용 시 안정성에 문제가 되고 있으며, 채널 내부에서 캐리어의 이동도가 0.1㎠/V·s∼1.0㎠/V·s로 낮아 이를 구동회로용 소자로 사용하는 데는 어려움이 있다.
이러한 문제를 해결하고자 레이저 장치를 이용한 결정화 공정 진행에 의해 비정질 실리콘의 반도체층을 폴리실리콘의 반도체층으로 결정화함으로써 폴리실리콘을 액티브층으로 이용한 박막트랜지스터를 제조하는 방법이 제안되고 있다.
하지만 종래의 폴리실리콘을 반도체층으로 하는 박막트랜지스터를 구비한 어레이 기판에 있어 상기 박막트랜지스터를 포함하는 하나의 화소영역에 대한 단면도인 도 3을 참조하면, 레이저 결정화 공정을 통한 폴리실리콘을 반도체층(55)으로 이용하는 박막트랜지스터(Tr)를 포함하는 어레이 기판(51) 제조에는 상기 폴리실리콘으로 이루어진 반도체층(55) 내에 제 1 영역(55a)의 양측으로 고농도의 불순물을 포함하는 n+영역(55b) 또는 p+영역(미도시)의 형성을 필요로 한다. 따라서, 이들 n+ 영역(55b) 또는 p+ 형성을 위한 도핑 공정이 요구되며, 이러한 도핑공정 진행을 위해 이온 인플란트 장비가 추가적으로 필요하다. 이 경우, 제조비용 상승을 초래하며, 신규 장비 추가에 의한 어레이 기판(51) 제조를 위해 제조 라인을 새롭게 구 성해야 하는 문제가 발생하고 있다.
본 발명은 전술한 문제를 해결하기 위한 것으로, 액티브층이 건식식각에 노출되지 않음으로써 그 표면에 손상이 발생하지 않아 박막트랜지스터의 특성이 향상되는 어레이 기판의 제조 방법을 제공하는 것을 그 목적으로 한다.
또한, 반도체층을 폴리실리콘으로 형성하면서도 도핑 공정을 필요로 하지 않아 공정을 단순화할 수 있으며, 이동도 특성을 향상시키는 동시에 오프 전류 특성을 향상시킬 수 있는 박막트랜지스터를 구비한 어레이 기판의 제조 방법을 제공하는 것을 또 다른 목적으로 한다.
상기 목적을 달성하기 위한 본 발명에 따른 어레이 기판의 제조 방법은, 화소영역과 스위칭 영역이 정의된 기판 상에 무기절연물질로 이루어진 버퍼층을 형성하는 단계와; 상기 버퍼층 위로 상기 스위칭 영역에 아일랜드 형태로서 동일한 평면적을 가지며 순차 적층된 불순물 폴리실리콘의 게이트 전극과, 게이트 절연막을 형성하고, 상기 게이트 절연막 위로 상기 게이트 절연막의 가장자리를 노출시키며 아일랜드 형태로서 동일한 평면적을 가지며 순차 적층된 순수 폴리실리콘의 주 액티브층과 순수 비정질 실리콘의 보조 액티브층을 형성하는 단계와; 상기 보조 액티 브층 위로 전면에 무기절연물질을 증착하고 패터닝함으로써 상기 보조 액티브층의 양측을 노출시키며 이격하는 액티브 콘택홀을 갖는 층간절연막을 형성하는 단계와; 상기 층간절연막 위로 상기 액티브 콘택홀을 통해 각각 상기 보조 액티브층과 각각 접촉하며 서로 이격하는 불순물 비정질 실리콘의 오믹콘택층과 상기 오믹콘택층 위로 서로 이격하는 소스 및 드레인 전극을 형성하고, 동시에 상기 층간절연막 위로 상기 소스 전극과 연결되며 상기 화소영역의 경계에 데이터 배선을 형성하는 단계와; 상기 데이터 배선과 상기 소스 및 드레인 전극 위로 전면에 제 1 보호층을 형성하고, 상기 제 1 보호층과 상기 층간절연막과 상기 게이트 절연막을 패터닝하여 상기 보조 액티브층 외측으로 상기 게이트 전극을 노출시키는 게이트 콘택홀을 형성하는 단계와; 상기 제 1 보호층 위로 상기 화소영역의 경계에 금속물질로서 상기 게이트 콘택홀을 통해 상기 게이트 전극과 접촉하며 상기 데이터 배선과 교차하는 게이트 배선을 형성하는 단계와; 상기 게이트 배선 위로 상기 기판 전면에 제 2 보호층을 형성하고, 상기 제 2 보호층과 그 하부의 제 1 보호층을 패터닝함으로써 상기 드레인 전극을 노출시키는 드레인 콘택홀을 형성하는 단계와; 상기 제 2 보호층 위로 상기 화소영역에 상기 드레인 콘택홀을 통해 상기 드레인 전극과 접촉하는 화소전극을 형성하는 단계를 포함한다.
상기 버퍼층 위로 상기 스위칭 영역에 아일랜드 형태로서 동일한 평면적을 가지며 순차 적층된 불순물 폴리실리콘의 게이트 전극과 게이트 절연막을 형성하고, 상기 게이트 절연막 위로 상기 게이트 절연막의 가장자리를 노출시키며 아일랜드 형태로서 동일한 평면적을 가지며 순차 적층된 순수 폴리실리콘의 주 액티브층 과 순수 비정질 실리콘의 보조 액티브층을 형성하는 단계는, 상기 버퍼층 위로 제 1 불순물 비정질 실리콘층과 제 1 무기절연층과 제 1 순수 비정질 실리콘층을 순차 적층시키는 단계와; 고상 결정화(SPC) 공정을 진행하여 상기 제 1 불순물 비정질 실리콘층과 제 1 순수 비정질 실리콘층을 각각 불순물 폴리실리콘층과 순수 폴리실리콘층으로 결정화시키는 단계와; 상기 순수 폴리실리콘층 위로 상기 기판 전면에 제 2 순수 비정질 실리콘층을 형성하는 단계와; 상기 제 2 순수 비정질 실리콘층 위로 상기 스위칭 영역에 상기 보조 액티브층이 형성되는 부분에 대응해서는 제 1 두께를 갖는 제 1 포토레지스트 패턴을 형성하고, 상기 보조 액티브층 외측으로 노출되는 상기 게이트 전극의 가장자리에 대응해서는 상기 제 1 포토레지스트 일측과 타측에 상기 제 1 두께보다 얇은 제 2 두께를 가지며 서로 그 폭을 달리하는 제 2 포토레지스트패턴과 제 3 포토레지스트 패턴을 형성하는 단계와; 상기 제 1, 2 및 3 포토레지스트 패턴 외측으로 노출된 상기 제 2 순수 비정질 실리콘층과 그 하부의 상기 순수 폴리실리콘층과 제 1 무기절연층과 불순물 폴리실리콘층을 순차적으로 제거하여 상기 스위칭 영역에 순차 적층된 형태로 상기 불순물 폴리실리콘 게이트 전극과, 게이트 절연막과, 순수 폴리실리콘 패턴 및 순수 비정질 실리콘 패턴을 형성하는 단계와; 애싱(ashing)을 진행하여 상기 제 2 및 제 3 포토레지스트 패턴을 제거함으로써 상기 순수 비정질 실리콘 패턴의 가장자리를 노출시키는 단계와; 노출된 상기 순수 비정질 실리콘 패턴과 그 하부의 순수 폴리실리콘 패턴을 제거함으로써 상기 게이트 절연막 위로 순차적으로 상기 순수 폴리실리콘의 주 액티브층과 상기 순수 비정질 실리콘의 보조 액티브층을 형성하는 단계와; 상기 제 1 포토 레지스트 패턴을 제거하는 단계를 포함한다.
이때, 상기 고상 결정화(SPC) 공정은 열처리를 통한 써말 결정화(Thermal Crystallization) 또는 교번자장 결정화(Alternating Magnetic Field Crystallization) 장치를 이용한 교번자장 결정화인 것이 특징이며, 상기 제 2 순수 비정질 실리콘층을 형성하기 이전에 상기 고상 결정화 공정 진행에 의해 상기 순수 폴리실리콘층 상에 형성된 열산화막을 제거하기 위한 BOE(Buffered Oxide Etchant) 세정을 실시하는 것이 특징이다.
또한, 상기 오믹콘택층을 형성하기 이전에 상기 액티브 콘택홀을 통해 노출된 상기 보조 액티브층 표면에 산화막 제거를 위한 BOE(Buffered Oxide Etchant) 세정을 실시하는 것이 바람직하다.
또한, 상기 소스 및 드레인 전극과 상기 데이터 배선을 형성하는 단계는 상기 데이터 배선의 일끝단과 연결된 데이터 패드전극을 형성하는 단계를 포함하며, 상기 게이트 배선을 형성하는 단계는 상기 게이트 배선의 일끝단과 연결된 게이트 패드전극을 형성하는 단계를 포함하며, 상기 드레인 콘택홀을 갖는 상기 제 2 보호층을 형성하는 단계는 상기 게이트 패드전극을 노출시키는 게이트 패드 콘택홀과 상기 데이터 패드전극을 노출시키는 데이터 패드 콘택홀을 형성하는 단계를 포함하며, 상기 화소전극을 형성하는 단계는 상기 게이트 패드 콘택홀을 통해 상기 게이트 패드전극과 접촉하는 게이트 보조 패드전극과, 상기 데이터 패드 콘택홀을 통해 상기 데이터 패드전극과 접촉하는 데이터 보조 패드전극을 형성하는 단계를 포함한다.
또한, 상기 불순물 폴리실리콘의 게이트 전극은 500Å 내지 1000Å의 두께를 가지며, 상기 순수 폴리실리콘의 주 액티브층은 300Å 내지 1000Å의 두께를 가지며, 상기 순수 비정질 실리콘의 보조 액티브층은 50Å 내지 300Å의 두께를 가지며, 상기 층간절연막은 상기 게이트 전극과 상기 게이트 절연막의 두께를 합한 두께보다 더 두꺼운 두께를 갖도록 형성하는 것이 특징이다.
본 발명에 따른 어레이 기판은, 화소영역과 스위칭 영역이 정의된 기판 상의 전면에 무기절연물질로 형성된 버퍼층과; 상기 버퍼층 상의 상기 스위칭 영역에 아일랜드 형태로서 동일한 평면적을 가지며 순차 적층된 폴리실리콘의 게이트 전극과, 게이트 절연막과; 상기 게이트 절연막 위로 상기 게이트 절연막의 가장자리를 노출시키며 아일랜드 형태로서 동일한 평면적을 가지며 순차 적층된 순수 폴리실리콘의 주 액티브층 및 순수 비정질 실리콘의 보조 액티브층과; 상기 보조 액티브층 위로 상기 보조 액티브층을 노출시키며 서로 이격하는 액티브 콘택홀을 가지며 상기 액티브층의 중앙부에 대해서는 에치스토퍼의 역할을 하며 상기 기판 전면에 형성된 층간절연막과; 상기 스위칭 영역에 상기 층간절연막 위로 각각 상기 액티브 콘택홀을 통해 상기 보조 액티브층과 접촉하며, 서로 이격하며 형성된 불순물 비정질 실리콘의 오믹콘택층과; 상기 이격하는 상기 오믹콘택층 위로 각각 이격하며 형성된 소스 및 드레인 전극과; 상기 층간절연막 위로 상기 화소영역의 경계에 상기 소스 전극과 연결되며 형성된 데이터 배선과; 상기 데이터 배선 위로 상기 기판 전면에 상기 보조 액티브층 외측으로 상기 게이트 전극을 노출시키는 게이트 콘택 홀을 가지며 형성된 제 1 보호층과; 상기 제 1 보호층 위로 상기 화소영역의 경계에 상기 게이트 콘택홀을 통해 상기 게이트 전극과 접촉하며 상기 데이터 배선과 교차하며 형성된 게이트 배선과; 상기 게이트 배선 위로 상기 기판 전면에 상기 드레인 전극을 노출시키는 드레인 콘택홀을 가지며 형성된 제 2 보호층과; 상기 제 2 보호층 위로 상기 드레인 콘택홀을 통해 상기 드레인 전극과 접촉하며 상기 화소영역에 형성된 화소전극을 포함한다.
이때, 상기 불순물 폴리실리콘의 게이트 전극은 그 두께가 500Å 내지 1000Å이며, 상기 순수 폴리실리콘의 주 액티브층은 그 두께가 300Å 내지 1000Å이며, 상기 순수 비정질 실리콘의 보조 액티브층은 그 두께가 50Å 내지 300Å이며, 상기 층간절연막은 그 하부에 위치한 상기 게이트 전극 및 게이트 절연막 각각의 두께를 합한 두께보다 더 두꺼운 두께를 갖도록 형성된 것이 특징이다.
또한, 상기 게이트 배선의 끝단과 연결된 게이트 패드전극과, 상기 데이터 배선의 끝단과 연결된 데이터 패드전극을 포함하며, 상기 제 2 보호층은 상기 게이트 패드전극을 노출시키는 게이트 패드 콘택홀을 구비하고, 상기 제 2 및 제 1 보호층은 상기 데이터 패드전극을 노출시키는 데이터 패드 콘택홀을 구비하며, 상기 제 2 보호층 위로 상기 화소전극을 이루는 동일한 물질로 상기 게이트 패드 콘택홀을 통해 상기 게이트 패드전극과 접촉하는 게이트 보조 패드전극과, 상기 데이터 패드 콘택홀을 통해 상기 데이터 패드전극과 접촉하는 데이터 보조 패드전극을 포함한다.
본 발명에 따른 어레이 기판의 제조방법에 의해 액티브층이 건식식각에 노출되지 않음으로써 그 표면 손상이 발생하지 않아 박막트랜지스터 특성이 저하되는 것을 방지하는 효과가 있다.
또한, 액티브층이 건식식각에 영향을 받지 않게 되므로 식각되어 없어지는 두께를 고려하지 않아도 되므로 상기 액티브층의 두께를 줄임으로써 증착 시간을 단축시켜 생산성을 향상시키는 효과가 있다.
또한, 비정질 실리콘층을 결정화 공정에 의해 폴리실리콘층으로 결정화하고 이를 반도체층으로 하여 박막트랜지스터를 구성함으로써 비정질 실리콘층의 반도체층을 포함하는 박막트랜지스터를 구비한 어레이 기판 대비 이동도 특성을 수십 내지 수 백배 향상시키는 효과가 있다.
또한, 폴리실리콘의 액티브층과, 순수 비정질 실리콘의 액티브층의 이중층 구조의 액티브층이 구성됨으로써 박막트랜지스터 온 상태시의 주된 전류 흐름은 폴리실리콘의 액티브층 내에 형성되고, 오프 상태에서의 오프 전류는 비정질 실리콘의 액티브층의 영향을 받아 폴리실리콘의 액티브층만을 형성한 박막트랜지스터 대비 낮은 상태를 유지함으로써 온 상태 및 오프 상태 모두에 있어서 박막트랜지스터의 성능을 향상시키는 효과가 있다.
또한, 폴리실리콘의 액티브층을 박막트랜지스터의 반도체층으로 이용하면서도 불순물의 도핑은 필요로 하지 않으므로 도핑 공정 진행을 위한 신규 장비 투자를 실시하지 않아도 되므로 초기 투자비용을 절감할 수 있는 장점이 있다.
또한, 게이트 전극을 불순물을 포함하는 폴리실리콘으로 형성함으로써 금속물질의 게이트 전극을 형성한 종래의 어레이 기판의 결정화 공정 진행 시 발생되는 게이트 전극의 변형 또는 게이트 전극과 반도체층과의 쇼트 등의 문제를 원천적으로 해결하는 효과가 있다.
이하, 본 발명에 따른 바람직한 실시예를 도면을 참조하여 설명한다.
도 4a 내지 도 4n은 본 발명의 실시예에 따른 어레이 기판의 박막트랜지스터를 포함하는 하나의 화소영역과 게이트 패드부 및 데이터 패드부에 대한 제조 단계별 공정 단면도이다. 이때, 설명의 편의를 위해 각 화소영역(P) 내의 게이트 및 데이터 배선과 연결되는 박막트랜지스터(Tr)가 형성될 부분을 스위칭 영역(TrA), 게이트 패드전극이 형성될 부분을 게이트 패드부(GPA), 데이터 패드전극이 형성될 부분을 데이터 패드부(DPA)라 정의한다.
우선, 도 4a에 도시한 바와 같이, 투명한 절연기판(101) 예를들면 유리기판 상에 무기절연물질 예를들면 산화실리콘(SiO2) 또는 질화실리콘(SiNx)을 증착함으로써 1000Å 내지 3000Å 정도의 두께를 갖는 버퍼층(102)을 형성한다.
본 발명의 특징 상 추후 공정에서 고상 결정화(Solid Phase Crystallization : SPC) 공정을 진행하는데, 이러한 고상 결정화(SPC) 공정은 600℃ 내지 800℃의 고온의 분위기가 요구되고 있다. 이 경우 상기 기판(101)이 고온 의 분위기에 노출되면 기판(101) 표면으로부터 알카리 이온이 용출되어 폴리실리콘으로 이루어진 구성요소의 특성을 저하시킬 수 있으므로 이러한 문제를 방지하기 위해 상기 버퍼층(102)을 형성하는 것이다.
다음, 상기 버퍼층(102) 위로 불순물 비정질 실리콘을 증착함으로써 500Å 내지 1000Å 정도의 두께를 갖는 제 1 불순물 비정질 실리콘층(103)을 형성한다. 이후, 상기 제 1 불순물 비정질 실리콘층(103) 위로 무기절연물질 예를들면 산화실리콘(SiO2)을 증착하여 500Å 내지 4000Å 정도의 두께를 갖는 제 1 무기절연층(108)을 형성하고, 연속하여 상기 제 1 무기절연층(108) 상부로 순수 비정질 실리콘을 증착함으로써 300Å 내지 1000Å 정도의 두께를 갖는 제 1 순수 비정질 실리콘층(111)을 형성한다.
상기 제 1 순수 비정질 실리콘층(111)은, 종래의 경우 서로 이격하는 오믹콘택층 형성을 위해 진행하는 건식식각에 노출됨으로써 식각되어 그 표면으로부터 일부 두께가 제거되는 것을 고려하여 1000Å 이상의 두께로 형성하였다. 하지만, 본 발명의 실시예의 경우, 상기 제 1 순수 비정질 실리콘층(111)을 통해 최종적으로 구현되는 폴리실리콘의 액티브층(도 4n의 115)은 건식식각에 노출되지 않으므로 상기 건식식각에 의해 그 두께가 얇아지게 되는 등의 문제는 발생하지 않는다. 따라서 상기 순수 비정질 실리콘층(111)은 액티브층으로서의 역할을 할 수 있는 두께인 300Å 내지 1000Å로 형성해도 무방하며, 이 경우 재료비 저감 및 단위 공정 시간 단축의 효과를 얻을 수 있는 것이 특징이다.
한편, 이러한 4개의 물질층(102, 103, 108, 111)은 모두 반도체 물질(제 1 불순물 비정질 실리콘층(103) 및 제 1 순수 비정질 실리콘층(111)) 또는 무기절연물질(버퍼층(102) 및 제 1 무기절연층(108))이므로, 이들 반도체 및 무기절연물질은 모두 화학기상증착(Chemical Vapor Deposition : CVD) 장비(미도시)를 통해 모두 동일한 하나의 진공챔버(195) 내에서 반응가스만을 바꿔줌으로써 대기 중에 노출없이 연속적으로 형성할 수 있는 것이 특징이다.
다음, 도 4b에 도시한 바와 같이, 상기 제 1 순수 비정질 실리콘층(도 4a의 111)의 이동도 특성 등을 향상시키기 위해 고상 결정화(SPC) 공정을 진행함으로써 상기 제 1 순수 비정질 실리콘층(도 4a의 111)이 결정화되어 순수 폴리실리콘층(112)을 이루도록 한다. 이때, 상기 고상 결정화(SPC) 공정은 일례로 600℃ 내지 800℃의 분위기에서 열처리를 통한 써말 결정화(Thermal Crystallization) 공정이거나, 또는 교번자장 결정화 장치를 이용한 600℃ 내지 700℃의 온도 분위기에서의 교번자장 결정화(Alternating Magnetic Field Crystallization) 공정인 것이 바람직하다.
이때, 이러한 고상 결정화(SPC) 공정 진행에 의해 상기 제 1 순수 비정질 실리콘층(도 4a 111) 뿐만 아니라 상기 제 1 불순물 비정질 실리콘층(도 4a의 103) 또한 결정화되어 불순물 폴리실리콘층(104)을 이루게 됨으로써 전도성이 향상되게 된다.
다음, 도 4c에 도시한 바와 같이, 상기 순수 폴리실리콘층(112)이 형성된 기판(101)에 대해 BOE(buffered oxide etchant)를 이용한 세정공정(이하 BOE세정이라 칭함)을 실시함으로써 상기 순수 폴리실리콘층(112) 표면에 형성된 열산화막(미도시)을 제거한다.
제 1 순수 비정질 실리콘층(도 4a의 111) 상에 아무런 물질층이 형성되지 않은 상태에서 600℃ 내지 800℃의 온도 분위기를 갖는 상기 고상 결정화(SPC) 공정을 진행하게 되면 그 표면에 자연적으로 열산화막(미도시)이 자연적으로 형성되게 된다. 이러한 열산화막(미도시)은 추후 형성될 제 2 순수 비정질 실리콘층(116)과의 접촉 시 오믹 특성을 저하시키는 요소로 작용한다. 따라서 상기 순수 폴리실리콘층(112) 표면의 열산화막(미도시)은 제거되는 것이 바람직하며 이를 제거하기 위해 상기 BOE 세정을 실시하는 것이다.
다음, 본 발명의 특징적인 것으로 상기 순수 폴리실리콘층(112) 표면에 열산화막이 제거된 상태에서 그 상부로 제 2 순수 비정질 실리콘층(116)을 50Å 내지 300Å 정도의 두께를 갖도록 형성한다.
이때, 이렇게 상기 순수 폴리실리콘층(112) 상부에 제 2 순수 비정질 실리콘층(116)을 형성하는 것은 추후 형성되는 불순물 비정질 실리콘으로 이루어진 오믹콘택층(도 4n의 127)과의 접촉특성 향상 및 오프 전류 특성을 향상시키기 위함이다.
조금 더 상세히 설명하면, 상기 순수 폴리실리콘층(112)은 추후 패터닝되어 주 액티브층(115)을 이루게 되며, 이러한 순수 폴리실리콘의 주 액티브층(115) 상부에는 서로 이격하며 오믹콘택층(도 4n의 127)이 형성되는데, 이러한 오믹콘택층(도 4n의 127)은 불순물 비정질 실리콘으로 이루어지게 된다. 이때, 상기 순수 폴 리실리콘층(112)의 접합력은 불순물 비정질 실리콘보다는 순수 비정질 실리콘이 더욱 우수하기 때문에 상기 제 2 순수 비정질 실리콘층(116)을 상기 순수 폴리실리콘층(112) 상에 형성함으로써 추후 형성될 오믹콘택층(도 4n의 127)과의 접합력을 향상시키고 접촉저항을 낮추기 위함이다.
상기 제 2 순수 비정질 실리콘층(116)을 형성하는 또 다른 이유는, 상기 오믹콘택층(도 4n의 127)과의 접합력을 향상시키는 역할 외에 그 자체로서 추후 패터닝되어 보조 액티브층(도 4n의 118)을 이루도록 하여 박막트랜지스터(도 4n의 Tr)의 오프(off) 상태에서의 오프 전류치를 낮추는 역할을 하도록 하기 위함이다. 이때 상기 보조 액티브층(도 4n의 118) 내부에는 온(on) 상태에서 채널이 형성될 필요가 없고 단지 오프 전류치를 낮추기 위한 구성요소가 되므로 액티브층으로서의 역할을 할 수 있는 300Å 내지 1000Å정도의 두께로 형성될 필요없이 접촉특성 향상 및 오프 전류치를 낮추기 위한 보조층으로서의 역할을 할 수 있도록 50Å 내지 300Å 정도의 두께를 갖도록 형성한 것이 특징이다.
다음, 도 4d에 도시한 바와 같이, 상기 제 2 순수 비정질 실리콘층(116) 위로 포토레지스트를 도포하여 포토레지스트층(미도시)을 형성하고, 상기 포토레지스트층(미도시)에 대해 빛의 투과영역과 차단영역(미도시), 그리고 슬릿형태로 구성되거나, 또는 다중의 코팅막을 더욱 구비하여 통과되는 빛량을 조절함으로써 그 빛 투과도가 상기 투과영역(미도시)보다는 작고 상기 차단영역(미도시)보다는 큰 반투과영역(미도시)으로 구성된 노광 마스크(미도시)를 이용하여 회절노광 또는 하프톤 노광을 실시한다.
이후, 노광된 포토레지스트층(미도시)을 현상함으로써 상기 제 2 순수 비정질 실리코층(116) 위로 상기 스위칭 영역(TrA)에 대응하여 게이트 전극(도 4n의 105)이 형성되어야 할 부분 중 일부(추후 형성되는 순수 폴리실리콘의 주 액티브층(도 4m의 115)과 중첩하지 않는 부분)에 대응해서는 제 1 두께를 갖는 제 1 및 2 포토레지스트 패턴(191a, 191b)을 형성하고, 상기 게이트 전극(도 4n의 105)이 형성되어야 할 부분 중 주 액티브층(도 4n의 115)이 형성되어야 할 부분에 대응해서는 상기 제 1 두께보다 더 두꺼운 제 2 두께를 갖는 제 3 포토레지스트 패턴(191c)을 형성한다. 따라서 게이트 전극(도 4n의 105)이 형성될 부분 중 상기 주 액티브층(도 4n의 115)과 중첩하며 형성되는 부분에 대응해서는 제 2 두께의 제 3 포토레지스트 패턴(191c)이 형성되고, 상기 게이트 전극(도 4n의 105)이 형성될 부분 중 주 액티브층(도 4n의 115)이 형성되지 않는 영역은 상기 제 1 두께의 제 1 및 제 2 포토레지스트 패턴(191a, 191b)이 형성되며, 상기 게이트 전극(도 4n의 105)이 형성되지 않는 기판(101)상의 모든 영역에 대해서는 상기 포토레지스트층(미도시)이 제거됨으로써 상기 제 2 순수 비정질 실리콘층(116)을 노출시킨 상태를 이룬다.
이때, 상기 스위칭 영역(TrA)에 있어 상기 제 3 포토레지스트 패턴(191c) 외측으로 상기 제 1 및 2 포토레지스트 패턴(191a, 191b)은 그 폭을 달리하는 것이 특징이다. 이는 추후에 패터닝 되어 형성되는 불순물 비정질 실리콘의 게이트 전극(도 4n의 105)과 그 상부의 게이트 절연막(도 4n의 109) 및 순수 폴리실리콘의 주 액티브층(도 4m의 115)과 순수 비정질 실리콘의 보조 액티브층(도 4n의 118)의 그 테두리부가 계단 형태를 이루도록 하여 이후 형성되는 층간절연막(도 4n의 122) 의 끊김 또는 들뜸을 방지하고, 나아가 추후 형성되는 게이트 배선(도 4n의 145)과 상기 보조 액티브층(도 4n의 118) 외측으로 노출되는 상기 게이트 전극(도 4n의 105)과의 접촉을 위한 게이트 콘택홀(도 4n의 142)을 형성할 면적을 확보하기 위함이다.
다음, 도 4e에 도시한 바와 같이, 상기 제 1, 2 및 3 포토레지스트 패턴(191a, 191b, 191c) 외부로 노출된 상기 제 2 순수 비정질 실리콘층(도 4d의 116)과 그 하부에 순차적으로 위치한 상기 순수 폴리실리콘층(도 4d의 112)과 상기 제 1 무기절연층(도 4d의 108)과 상기 제 1 불순물 폴리실리콘층(도 4d의 104)을 순차적으로 식각하여 제거함으로써 상기 스위칭 영역(TrA)에 상기 버퍼층(102) 위로 아일랜드 형태로서 순차 적층된 불순물 폴리실리콘의 게이트 전극(105)과 게이트 절연막(109)과 순수 폴리실리콘 패턴(113) 및 순수 비정질 실리콘패턴(117)을 형성한다.
이때, 상기 게이트 및 데이터 패드부(GPA, DPA)를 포함하여 상기 스위칭 영역(TrA) 이외의 영역에 대해서는 상기 제 2 순수 비정질 실리콘층(도 4d의 116)과 순수 폴리실리콘층(도 4d의 112)과 제 1 무기절연층(도 4d의 108) 및 상기 불순물 폴리실리콘층(도 4d의 104)이 모두 제거되어 상기 버퍼층(102)이 노출된 상태가 된다.
한편, 본 발명의 실시예에 있어서, 상기 게이트 전극(105)을 금속물질이 아닌 불순물 폴리실리콘으로 형성하는 것은, 상기 게이트 전극(105) 상부에 위치하는 상기 순수 폴리실리콘 패턴(113) 형성 시 발생하는 문제를 해결하기 위함이다. 보 텀 게이트 구조를 갖는 박막트랜지스터를 형성하는 경우, 기판 상에는 금속물질로 게이트 전극을 형성하고 그 상부에 반도체층 형성을 위해 게이트 절연막을 개재하여 순수 비정질 실리콘층을 형성하는데, 상기 순수 비정질 실리콘층을 순수 폴리실리콘층으로 고상 결정화하는데 있어 600℃ 이상의 비교적 높은 온도를 필요로 하고 있다. 따라서, 이러한 비교적 높은 온도를 요구하는 고상 결정화 공정 진행 시, 금속물질로 이루어진 게이트 전극은 변형이 발생하거나 또는 상기 게이트 절연막을 뚫고 상기 결정화된 순수 폴리실리콘층과 접촉하게 되는 스파이크가 발생하는 등의 문제를 일으킨다.
따라서, 본 발명의 실시예에 있어서는 이러한 금속물질의 게이트 전극을 형성함으로써 결정화 공정 진행 시 발생하는 문제를 해결하고자 이러한 고온의 분위기 노출되어도 전술한 문제를 일으키지 않는 불순물 폴리실리콘을 이용하여 게이트 전극(105)을 형성한 것이다.
한편, 불순물 폴리실리콘으로 이루어진 게이트 전극(105)의 경우, 전도성이 금속물질보다는 낮지만, 상기 불순물 폴리실리콘의 게이트 전극(105)의 두께가 500Å 내지 1000Å인 경우, 단위 면적당 저항치가 150Ω/sq(□) ~ 230Ω/sq(□) 정도가 되며, 이는 투명 도전성 물질인 인듐-틴-옥사이드(ITO) 또는 인듐-징크-옥사이드(IZO)와 유사한 수준이 된다. 따라서, 불순물 폴리실리콘으로써 게이트 전극(105)을 형성하여도 충분히 주 액티브층(도 4n 115) 내에 채널을 형성하는 등의 게이트 전극으로서의 역할을 수행하는데 문제 되지 않는다.
다음, 도 4f에 도시한 바와 같이, 불순물 폴리실리콘의 게이트 전극(105)과 게이트 절연막(109)과 순수 폴리실리콘 패턴(113) 및 순수 비정질 실리콘 패턴(117)이 형성된 기판(101)에 대해 애싱(ashing)을 진행하여 상기 제 1 두께를 갖는 제 1 및 2 포토레지스트 패턴(도 4e의 191a, 191b)을 제거함으로써 상기 스위칭 영역(TrA)에 있어 상기 제 3 포토레지스트 패턴(191c) 외측으로 상기 순수 비정질 실리콘 패턴(117)의 양측 표면을 노출시킨다. 이때, 상기 애싱(ashing) 진행에 의해 상기 제 3 포토레지스트 패턴(191c) 또한 그 두께가 줄어들지만 여전히 상기 순수 비정질 실리콘 패턴(117) 상부에 남아있게 된다.
다음, 도 4g에 도시한 바와 같이, 상기 제 3 포토레지스트 패턴(191c) 외부로 노출된 상기 순수 비정질 실리콘 패턴(도 4f의 117)과 그 하부의 순수 폴리실리콘 패턴(도 4f의 113)을 식각하여 제거함으로써 상기 게이트 전극(105)에 대응하는 상기 게이트 절연막(109)의 가장자리를 노출시킨다.
이때, 상기 제 3 포토레지스트 패턴(191c) 외측으로 노출된 상기 게이트 절연막(109)은 상기 제 3 포토레지스트 패턴(191c)을 기준으로 각각 그 폭을 달리하는 것이 특징이다. 넓은 폭을 가지며 상기 제 3 포토레지스트 패턴(191c) 외측으로 노출된 게이트 절연막(109)에 대응해서는 추후 상기 게이트 전극(105)과 접촉하는 게이트 배선(도 4n의 145)이 형성되어야 하므로 이를 반영하기 위함이다.
한편, 상기 제 3 포토레지스트 패턴(191c)에 의해 식각되지 않고 상기 게이트 절연막(109) 상에 남아있게 되는 상기 순수 폴리실리콘 패턴(도 4f의 113) 및 그 하부의 순수 비정질 실리콘 패턴(도 4f의 117)은 각각 순수 폴리실리콘의 주 액티브층(115) 및 순수 비정질 실리콘의 보조 액티브층(118)을 이룬다.
다음, 도 4h에 도시한 바와 같이, 스트립(strip)을 진행하여 상기 순수 비정질 실리콘의 보조 액티브층(118) 상부에 남아있는 상기 제 3 포토레지스트 패턴(도 4g의 191c)을 제거함으로써 상기 순수 비정질 실리콘의 보조 액티브층(118)을 노출시킨다.
다음, 도 4i에 도시한 바와 같이, 상기 순수 비정질 실리콘의 보조 액티브층(118) 위로 무기절연물질 예를들면 산화실리콘(SiO2) 또는 질화실리콘(SiNx) 중 하나를 증착하여 단일층 구조의 제 2 무기절연층(미도시)을 형성하거나 또는 상기 2개의 물질을 연속하여 증착함으로써 이중층 구조의 제 2 무기절연층(미도시)을 형성한다. 이때 상기 제 2 무기절연층(미도시)은 서로 동일한 평면적을 가지며 완전 중첩하며 형성된 상기 게이트 전극(105) 및 게이트 절연막(109) 각각의 두께를 합한 두께보다는 더 큰 두께를 갖도록 형성하는 것이 바람직하다.
상기 제 2 무기절연층(미도시)을 그 하부에 위치한 패턴된 상태의 게이트 전극(105) 및 게이트 절연막(109) 각각의 두께를 합한 두께보다 큰 두께를 갖도록 형성하는 이유는, 상기 버퍼층(102)을 기준으로 상기 게이트 전극(105) 및 게이트 절연막(109)이 단차를 이루는 부분에서 끊김없이 잘 형성되도록 하기 위함이다. 이때 상기 게이트 전극(105)과 게이트 절연막(109)을 합한 두께가 상기 순수 폴리실리콘의 주 액티브층(115)과 그 상부의 순수 비정질 실리콘의 보조 액티브층(118)의 두께를 합한 두께보다는 크므로 상기 게이트 전극(105) 및 게이트 절연막(109) 각각의 두께를 합한 두께보다 상기 제 2 무기절연층(122)을 두껍게 형성하면 상기 게이 트 절연막(109)을 기준으로 상기 순수 폴리실리콘의 주 액티브층(115)과 순수 비정질 실리콘의 보조 액티브층(118)에 의해 단차진 부분에서는 문제되지 않는다.
상기 게이트 전극(105)은 그 두께가 500Å 내지 1000Å이며, 상기 게이트 절연막(109)의 두께는 500Å 내지 4000Å이므로 상기 제 2 무기절연층(미도시)의 두께는 1000Å 내지 5000Å 보다는 더 두꺼운 두께를 갖도록 형성하는 것이 바람직하다.
일례로 상기 게이트 전극(105)기 1000Å정도의 두께를 갖고, 상기 게이트 절연막(109)이 2000Å정도의 두께를 가지며 형성되었다면, 상기 제 2 무기절연층(미도시)은 그 두께가 상기 3000Å보다 큰 두께를 갖도록 예를들면 3100Å 정도의 두께를 갖도록 형성함으로써 단차가 발생한 부분에서의 끊김 발생을 방지할 수 있다.
이후, 상기 기판(101) 전면에 형성된 상기 제 2 무기절연층(미도시)을 포토레지스트의 도포, 노광 마스크를 이용한 노광, 노광된 포토레지스트의 현상, 식각 및 스트립(strip) 등 일련의 단위공정을 포함하는 마스크 공정을 진행하여 패터닝함으로써 상기 순수 폴리실리콘의 주 액티브층(115)의 중앙부를 기준으로 이의 양측으로 상기 순수 비정질 실리콘의 보조 액티브층(118)을 노출시키는 2개의 액티브 콘택홀(123)을 구비한 층간절연막(122)을 형성한다.
이때, 상기 층간절연막(122)은 상기 순수 비정질 실리콘의 보조 액티브층(118)의 중앙부에 대응해서는 상기 순수 비정질 실리콘의 보조 액티브층(118)을 덮어 에치 스토퍼로서의 역할을 하며, 그 외의 영역에 대응해서는 절연층의 역할을 하는 것이 특징이다.
한편, 상기 층간절연막(122) 내에 상기 액티브 콘택홀(123) 형성은 주로 건식식각에 의해 진행되는데, 이때 상기 층간절연막(122)의 건식식각 진행 시 상기 순수 비정질 실리콘의 보조 액티브층(118) 또한 상기 건식식각에 노출되지만, 무기절연물질의 건식식각에 이용되는 식각 가스(일례로 산화실리콘 및 질화실리콘의 경우 CF4, CF3, CF2) 경우와 반도체 물질의 건식식각에 이용되는 식각 가스(비정질 실리콘 및 폴리실리콘 모두 Cl2 또는 BCl3)는 매우 상이하므로 이들 두 물질간에는 서로 거의 영향을 주지 않는다. 따라서, 상기 순수 비정질 실리콘의 보조 액티브층(118)은 비록 상기 층간절연막(122) 내에 상기 액티브 콘택홀(123) 형성을 위한 건식식각에 노출된다 하더라도 그 두께 변화가 거의 없게 되므로 문제되지 않는다.
또한, 상기 순수 비정질 실리콘의 보조 액티브층(118)에 있어 소정의 두께 변화가 발생한다 하더라도 상기 액티브 콘택홀(123)이 형성되는 부분은 실질적으로 채널이 형성되는 부분이 아니므로 더욱더 문제되지 않으며, 본 발명에 있어 박막트랜지스터(도 4n의 Tr)의 온(on) 상태에서는 채널은 주로 순수 폴리실리콘의 주 액티브층(115)에 형성되므로 상기 액티브 콘택홀(123) 형성 시 상기 순수 비정질 실리콘의 보조 액티브층(118)의 두께가 줄어든다 하여도 문제되지 않는다.
다음, 도 4j에 도시한 바와 같이, 상기 순수 비정질 실리콘의 보조 액티브층(118)에 대응하여 이를 노출시키는 액티브 콘택홀(123)을 가지며, 상기 순수 폴리실리콘의 주 액티브층(115)의 중앙부에 대해서는 에치스토퍼의 역할을 하는 상기 층간절연막(122) 위로 전면에 불순물 비정질 실리콘을 증착하여 100Å 내지 300Å 정도의 두께를 갖는 제 2 불순물 비정질 실리콘층(미도시)을 형성한다.
이때, 상기 제 2 불순물 비정질 실리콘층(미도시)을 형성하기 전 BOE 세정을 실시할 수도 있다. 이는 상기 액티브 콘택홀(123)을 통해 노출된 상기 순수 비정질 실리콘의 보조 액티브층(118) 표면이 공기 중에 노출됨으로서 형성될 수 있는 자연 산화막(미도시)을 완전히 제거하기 위함이다. 이때 상기 순수 비정질 실리콘의 보조 액티브층(118)은 상온에서 공기중에 노출되는 것이므로 결정화 공정에서와 같이 반드시 산화막이 형성되지 않으며, 상기 액티브 콘택홀(123) 형성 후 바로 제 2 불순물 비정질 실리콘층(미도시)의 증착이 이루어진다면 상기 BOE 세정은 생략되어도 무방하다.
이후, 상기 제 2 불순물 비정질 실리콘층(미도시) 위로 제 1 금속물질 예를들면, 몰리브덴(Mo), 크롬(Cr) 및 몰리티타늄(MoTi) 중 어느 하나를 증착함으로써 제 1 금속층(미도시)을 형성한다.
다음, 상기 제 1 금속층(미도시)과 그 하부에 위치한 제 2 불순물 비정질 실리콘층(미도시)을 마스크 공정을 진행하여 패터닝함으로써 상기 층간절연막(122) 위로 각 화소영역(P)의 경계에 데이터 배선(130)을 형성하고, 상기 데이터 배선(130)의 일 끝단이 위치한 상기 데이터 패드부(DPA)에 상기 데이터 배선(130)의 일끝단과 연결된 데이터 패드전극(138)을 형성한다.
동시에 상기 스위칭 영역(TrA)에 있어서는 상기 층간절연막(122) 상부에 서로 이격하는 소스 및 드레인 전극(133, 136)을 형성하고, 상기 소스 및 드레인 전극(133, 136)의 하부에 불순물 비정질 실리콘으로 이루어진 오믹콘택층(127)을 형 성한다. 이때, 상기 오믹콘택층(127)은 각각 상기 액티브 콘택홀(123)을 통해 상기 순수 비정질 실리콘의 보조 액티브층(118)과 접촉하도록 한다.
또한, 상기 스위칭 영역(TrA)에 형성된 상기 소스 전극(133)과 상기 데이터 배선(130)은 서로 연결되도록 형성하며, 이때 서로 이격하는 소스 및 드레인 전극(133, 136) 각각의 하부에 형성되는 상기 오믹콘택층(127)은 상기 소스 및 드레인 전극(133, 136) 각각과 동일한 평면형태 및 평면적을 가지고 완전 중첩하며 형성되는 것이 특징이다.
이때, 전술한 바와 같은 공정 진행에 의해 상기 데이터 배선(130)과 상기 데이터 패드전극(138)의 하부에도 불순물 비정질 실리콘으로 이루어진 더미패턴(128)이 형성되는 것이 특징이다.
한편, 본 발명의 실시예의 경우, 상기 데이터 배선(130)과 소스 및 드레인 전극(133, 136)과 오믹콘택층(127)을 형성하는 과정에서 박막트랜지스터(도 4n의 Tr)의 온(on) 상태에서 채널이 형성되는 순수 폴리실리콘의 주 액티브층(115)과 그 상부의 순수 비정질 실리콘의 보조 액티브층(118)의 중앙부에 대응해서는 에치스토퍼로서 역할을 하는 상기 층간절연막(122)이 형성되어 있으므로 상기 소스 및 드레인 전극(133, 136) 형성 후 상기 오믹콘택층(127)의 패터닝을 위한 건식식각 진행 시 상기 순수 비정질 실리콘의 보조 액티브층(118)과 상기 순수 폴리실리콘의 주 액티브층(115)은 전혀 영향을 받지 않게 되는 것이 특징이다.
따라서, 종래기술에서 언급한 문제점인 오믹콘택층 패터닝을 위한 건식식각 진행에 의한 채널이 형성되는 액티브층의 표면 손상 등은 발생하지 않음을 알 수 있으며, 상기 순수 폴리실리콘의 주 액티브층(115)의 두께 또한 줄어들지 않으므로 스위칭 영역(TrA) 전체에 있어 상기 순수 폴리실리콘의 액티브층(115)은 일정한 두께를 갖게 됨을 알 수 있다.
한편, 전술한 단계까지의 공정 진행에 의해 상기 스위칭 영역(TrA)에 순차 적층된 상기 불순물 폴리실리콘의 게이트 전극(105)과, 게이트 절연막(109)과, 순수 폴리실리콘의 주 액티브층(115)과, 순수 비정질 실리콘의 보조 액티브층(118)과, 층간절연막(122)과, 불순물 비정질 실리콘의 오믹콘택층(127)과, 소스 및 드레인 전극(133, 136)은 박막트랜지스터(Tr)를 이룬다.
한편, 도면에 나타나지는 않았지만, 전술한 어레이 기판(101)을 유기전계 발광소자용 어레이 기판으로 제조하는 경우, 상기 데이터 배선(130)과 나란하게 상기 데이터 배선(130)이 형성된 동일한 층에 상기 데이터 배선(130)과 소정간격 이격하며 전원배선(미도시)을 더욱 형성할 수도 있으며, 각 화소영역(P)에는 상기 데이터 배선(130) 및 추후 공정에서 제조될 게이트 배선(도 4n의 145)과 연결된 상기 박막트랜지스터(Tr)(이는 스위칭 박막트랜지스터를 이룸) 이외에 이와 동일한 구조를 가지며 상기 전원배선(미도시) 및 상기 스위칭 박막트랜지스터(Tr)와 연결된 구동 박막트랜지스터(미도시)를 더욱 형성할 수도 있다.
다음, 도 4k에 도시한 바와 같이, 상기 데이터 배선(130) 및 데이터 패드전극(138)과 소스 및 드레인 전극(133, 136)과 오믹콘택층(127)이 형성된 기판(101)에 대해 상기 소스 및 드레인 전극(133, 136)과 데이터 배선(130) 및 데이터 패드 전극(138) 위로 무기절연물질 예를들어 산화실리콘(SiO2) 또는 질화실리콘(SiNx)을 증착함으로써 제 1 보호층(140)을 형성하고, 마스크 공정을 진행하여 상기 제 1 보호층(140)과 상기 층간절연막(122)과 게이트 절연막(109)을 패터닝함으로써 상기 순수 비정질 실리콘의 보조 액티브층(118) 외측으로 상기 게이트 전극(105)을 노출시키는 게이트 콘택홀(142)을 형성한다.
다음, 도 4l에 도시한 바와 같이, 상기 게이트 콘택홀(142)이 구비된 상기 제 1 보호층(140) 위로 제 2 금속물질 예를들면 알루미늄(Al), 알루미늄 합금(AlNd), 구리(Cu), 구리합금, 몰리브덴(Mo) 및 크롬(Cr)을 증착하여 제 2 금속층(미도시)을 형성한다.
이후, 상기 제 2 금속층(미도시)을 마스크 공정을 진행하여 패터닝함으로써 상기 제 1 보호층(140) 위로 각 화소영역(P)의 경계에 상기 게이트 콘택홀(142)을 통해 노출된 상기 게이트 전극(105)과 접촉하며 상기 데이터 배선(130)과 교차하는 게이트 배선(145)을 형성한다.
동시에 상기 게이트 배선(145)의 일끝단이 위치한 게이트 패드부(GPA)에 있어 상기 게이트 배선(145)의 일 끝단과 연결된 게이트 패드전극(147)을 형성한다.
이때, 상기 게이트 배선(145)과 상기 게이트 패드전극(147)은 전술한 제 2 금속물질 중 하나의 금속물질만으로 이루어져 단일층 구조를 이루도록 할 수도 있으며, 또는 서로 다른 2개 이상의 상기 제 2 금속물질을 증착함으로서 이중층 또는 3중층 구조를 이루도록 할 수도 있다. 일례로 상기 게이트 배선(145)과 게이트 패 드전극(147)이 이중층 구조를 이루도록 할 경우, 알루미늄 합금(AlNd)/몰리브덴(Mo)으로 이루어질 수 있으며, 3중층 구조를 이루도록 할 경우, 몰리브덴(Mo)/알루미늄 합금(AlNd)/몰리브덴(Mo)로 이루어질 수 있다. 도면에 있어서는 단일층 구조를 갖는 게이트 배선(145) 및 게이트 패드전극(147)을 도시하였다.
다음, 도 4m에 도시한 바와 같이, 상기 게이트 배선(145)과 게이트 패드전극(147) 위로 전면에 무기절연물질 예를들면 산화실리콘(SiO2) 또는 질화실리콘(SiNx)을 증착함으로써 제 2 보호층(150)을 형성한다.
이후, 마스크 공정을 진행하여 상기 제 2 보호층(150)과 그 하부의 제 1 보호층(140)을 패터닝함으로써 상기 각 스위칭 영역(TrA)에는 상기 드레인 전극(136)을 노출시키는 드레인 콘택홀(152)을 형성하고, 상기 게이트 패드부(GPA)에 있어서는 상기 게이트 패드전극(147)을 노출시키는 게이트 패드 콘택홀(154)을 형성한다. 동시에 상기 데이터 패드부(DPA)에 있어서는 상기 데이터 패드전극(138)을 노출시키는 데이터 패드 콘택홀(156)을 형성한다.
다음, 도 4n에 도시한 바와 같이, 상기 드레인 콘택홀(152)과 게이트 및 데이터 패드 콘택홀(154, 156)을 구비한 상기 제 2 보호층(150) 위로 전면에 투명 도전성 물질 예를들면 인듐-틴-옥사이드(ITO) 또는 인듐-징크-옥사이드(IZO)를 증착하여 투명 도전성 물질층(미도시)을 형성하고, 이를 마스크 공정을 진행하여 패터닝함으로써 상기 화소영역(P)에 상기 드레인 콘택홀(152)을 통해 상기 드레인 전극(136)과 접촉하는 화소전극(170)을 형성한다.
동시에, 상기 게이트 패드부(GPA)에 있어서는 상기 제 2 보호층(150) 위로 상기 게이트 패드 콘택홀(154)을 통해 상기 게이트 패드전극(147)과 접촉하는 게이트 보조 패드전극(172)을 형성하고, 상기 데이터 패드부(DPA)에 있어서도 상기 제 2 보호층(150) 위로 상기 데이터 패드 콘택홀(156)을 통해 상기 데이터 패드전극(138)과 접촉하는 데이터 보조 패드전극(174)을 형성함으로써 본 발명의 실시예에 따른 어레이 기판(101)을 완성한다.
한편, 도면에 나타나지 않았지만, 상기 각 화소영역(P)에 구동 박막트랜지스터(미도시)가 구성되는 경우, 상기 스위칭 영역(TrA)에 형성되는 상기 박막트랜지스터(Tr)(스위칭 박막트랜지스터를 이룸)는 상기 화소전극(170)과 접촉하지 않고, 대신 상기 구동 박막트랜지스터(미도시)의 드레인 전극(미도시)이 상기 화소전극(170)과 상기 구동 박막트랜지스터(미도시)의 드레인 전극(미도시)을 노출시키며 형성된 드레인 콘택홀(미도시)을 통해 접촉하여 전기적으로 연결되도록 형성한다. 이때, 상기 스위칭 영역(TrA)에 형성된 박막트랜지스터(Tr)는 상기 드레인 콘택홀(152)이 형성되지 않고 상기 제 1 및 제 2 보호층(140, 150)에 의해 완전히 덮힌 형태가 된다. 이렇게 스위칭 영역(TrA)에 상기 게이트 및 데이터 배선(145, 130)과 연결된 박막트랜지스터(Tr)(스위칭 박막트랜지스터를 이룸)와 화소영역(P)에 구동 박막트랜지스터(미도시)가 형성되는 경우, 이는 액정표시장치용 어레이 기판이 아닌 유기전계 발광 소자용 어레이 기판을 이루게 된다.
한편, 도 5는 비교예로서 순수 비정질 실리콘의 보조 액티브층을 형성하지 않고 순수 폴리실리콘의 액티브층만을 형성한 경우의 박막트랜지스터의 I-V특성 그래프이며, 도 6은 순수 비정질 실리콘의 보조 액티브층을 형성한 본 발명의 실시예에 따른 어레이 기판 내의 박막트랜지스터의 I-V특성 그래프이다.
우선, 순수 비정질 실리콘의 보조 액티브층을 형성하지 않은 박막트랜지스터의 I-V 특성 그래프인 도 5를 살펴보면, -5V 부근에서 1E-10 A 정도의 드레인 전류가 흐르고 있으며, 스위칭 및 구동 소자로서 활용할 수 있는 인가되는 게이트 전압(Vgs 전압)에 비례하여 드레인 전류(Ids)거의 선형적으로 증가하는 구간인 -5V 내지 0V 사이에서의 그래프의 변화를 보면, 그 중간에 거의 선형적으로 비례하여 증가하다가 비정상적으로 튀는 부분이 발생하고 있음을 알 수 있다. 이러한 부분은 험프(hump)라 하는데, 선형적으로 인가되는 게이트 전극 변화에 따라 선형적인 동작을 해야 하는 부분에서 험프(hump)가 발생함으로서 스위칭 또는 구동 소자로서의 역할을 하는데 문제가 됨을 알 수 있다.
하지만, 순수 비정질 실리콘의 보조 액티브층이 구비된 본 발명에 따른 어레이 기판에 구성된 박막트랜지스터의 I-V 특성 그래프인 도 6을 살펴보면, -5V 부근에서 1E-11 A 정도의 드레인 전류가 흐르고 있음을 알 수 있다. 따라서, 비교예인 순수 비정질 실리콘의 보조 액티브층이 구비되지 않은 어레이 기판에 있어서의 오프 시의 드레인 전류의 크기 대비 10배 정도 오프시의 드레인 전류 값이 낮아졌음을 알 수 있다.
또한, 도 6을 살펴보면 인가되는 게이트 전압에 비례하여 선형적으로 드레인 전류가 증가하는 부분에 있어서 비정상적으로 튀는 부분 즉, 험프(hump)의 형성없이 거의 선형적으로 드레인 전류의 크기가 증가됨을 알 수 있다.
따라서, 순수 폴리실리콘의 액티브층만이 형성된 박막트랜지스터를 구비한 비교예의 어레이 기판 대비 순수 폴리실리콘의 액티브층 상부와 오믹콘택층 사이에 순수 비정질 실리콘의 보조 액티브층이 형성된 박막트랜지스터를 구비한 본 발명의 실시예에 따른 어레이 기판이 박막트랜지스터의 특성이 향상되었음을 알 수 있다.
도 1은 액정표시장치 또는 유기전계 발광소자를 구성하는 종래의 어레이 기판에 있어 하나의 화소영역을 박막트랜지스터를 포함하여 절단한 단면을 도시한 도면.
도 2a 내지 도 2e는 종래의 어레이 기판의 제조 단계 중 반도체층과 소스 및 드레인 전극을 형성하는 단계를 도시한 공정 단면도.
도 3은 종래의 폴리실리콘을 반도체층으로 하는 박막트랜지스터를 구비한 어레이 기판에 있어 상기 박막트랜지스터를 포함하는 하나의 화소영역에 대한 단면도.
도 4a 내지 도 4n은 본 발명의 실시예에 따른 어레이 기판의 박막트랜지스터를 포함하는 하나의 화소영역과 게이트 패드부 및 데이터 패드부에 대한 제조 단계별 공정 단면도.
도 5는 비교예로서 순수 비정질 실리콘의 보조 액티브층을 형성하지 않고 순수 폴리실리콘의 액티브층만을 형성한 경우의 박막트랜지스터의 I-V특성 그래프.
도 6은 순수 비정질 실리콘의 보조 액티브층을 형성한 본 발명의 실시예에 따른 어레이 기판 내의 박막트랜지스터의 I-V특성 그래프.
< 도면의 주요 부분에 대한 부호의 설명 >
101 : 기판
102 : 버퍼층
105 : 불순물 폴리실리콘의 게이트 전극
109 : 게이트 절연막
115 : 순수 폴리실리콘의 주 액티브층
118 : 순수 비정질 실리콘의 보조 액티브층
122 : 층간절연막
123 : 액티브 콘택홀
127 : 불순물 비정질 실리콘의 오믹콘택층
128 : 더미패턴
130 : 데이터 배선
133 : 소스 전극
136 : 드레인 전극
138 : 데이터 패드전극
DPA : 데이터 패드부
GPA : 게이트 패드부
P : 화소영역
Tr : 박막트랜지스터
TrA : 스위칭 영역

Claims (10)

  1. 화소영역과 스위칭 영역이 정의된 기판 상에 무기절연물질로 이루어진 버퍼층을 형성하는 단계와;
    상기 버퍼층 위로 상기 스위칭 영역에 아일랜드 형태로서 동일한 평면적을 가지며 순차 적층된 불순물 폴리실리콘의 게이트 전극과, 게이트 절연막을 형성하고, 상기 게이트 절연막 위로 상기 게이트 절연막의 가장자리를 노출시키며 아일랜드 형태로서 동일한 평면적을 가지며 순차 적층된 순수 폴리실리콘의 주 액티브층과 순수 비정질 실리콘의 보조 액티브층을 형성하는 단계와;
    상기 보조 액티브층 위로 전면에 무기절연물질을 증착하고 패터닝함으로써 상기 보조 액티브층의 양측을 노출시키며 이격하는 액티브 콘택홀을 갖는 층간절연막을 형성하는 단계와;
    상기 층간절연막 위로 상기 액티브 콘택홀을 통해 각각 상기 보조 액티브층과 각각 접촉하며 서로 이격하는 불순물 비정질 실리콘의 오믹콘택층과 상기 오믹콘택층 위로 서로 이격하는 소스 및 드레인 전극을 형성하고, 동시에 상기 층간절연막 위로 상기 소스 전극과 연결되며 상기 화소영역의 경계에 데이터 배선을 형성하는 단계와;
    상기 데이터 배선과 상기 소스 및 드레인 전극 위로 전면에 제 1 보호층을 형성하고, 상기 제 1 보호층과 상기 층간절연막과 상기 게이트 절연막을 패터닝하여 상기 보조 액티브층 외측으로 상기 게이트 전극을 노출시키는 게이트 콘택홀을 형성하는 단계와;
    상기 제 1 보호층 위로 상기 화소영역의 경계에 금속물질로서 상기 게이트 콘택홀을 통해 상기 게이트 전극과 접촉하며 상기 데이터 배선과 교차하는 게이트 배선을 형성하는 단계와;
    상기 게이트 배선 위로 상기 기판 전면에 제 2 보호층을 형성하고, 상기 제 2 보호층과 그 하부의 제 1 보호층을 패터닝함으로써 상기 드레인 전극을 노출시키는 드레인 콘택홀을 형성하는 단계와;
    상기 제 2 보호층 위로 상기 화소영역에 상기 드레인 콘택홀을 통해 상기 드레인 전극과 접촉하는 화소전극을 형성하는 단계
    를 포함하는 어레이 기판의 제조 방법.
  2. 제 1 항에 있어서,
    상기 버퍼층 위로 상기 스위칭 영역에 아일랜드 형태로서 동일한 평면적을 가지며 순차 적층된 불순물 폴리실리콘의 게이트 전극과 게이트 절연막을 형성하고, 상기 게이트 절연막 위로 상기 게이트 절연막의 가장자리를 노출시키며 아일랜드 형태로서 동일한 평면적을 가지며 순차 적층된 순수 폴리실리콘의 주 액티브층과 순수 비정질 실리콘의 보조 액티브층을 형성하는 단계는,
    상기 버퍼층 위로 제 1 불순물 비정질 실리콘층과 제 1 무기절연층과 제 1 순수 비정질 실리콘층을 순차 적층시키는 단계와;
    고상 결정화(SPC) 공정을 진행하여 상기 제 1 불순물 비정질 실리콘층과 제 1 순수 비정질 실리콘층을 각각 불순물 폴리실리콘층과 순수 폴리실리콘층으로 결정화시키는 단계와;
    상기 순수 폴리실리콘층 위로 상기 기판 전면에 제 2 순수 비정질 실리콘층을 형성하는 단계와;
    상기 제 2 순수 비정질 실리콘층 위로 상기 스위칭 영역에 상기 보조 액티브층이 형성되는 부분에 대응해서는 제 1 두께를 갖는 제 1 포토레지스트 패턴을 형성하고, 상기 보조 액티브층 외측으로 노출되는 상기 게이트 전극의 가장자리에 대응해서는 상기 제 1 포토레지스트 일측과 타측에 상기 제 1 두께보다 얇은 제 2 두께를 가지며 서로 그 폭을 달리하는 제 2 포토레지스트패턴과 제 3 포토레지스트 패턴을 형성하는 단계와;
    상기 제 1, 2 및 3 포토레지스트 패턴 외측으로 노출된 상기 제 2 순수 비정질 실리콘층과 그 하부의 상기 순수 폴리실리콘층과 제 1 무기절연층과 불순물 폴리실리콘층을 순차적으로 제거하여 상기 스위칭 영역에 순차 적층된 형태로 상기 불순물 폴리실리콘 게이트 전극과, 게이트 절연막과, 순수 폴리실리콘 패턴 및 순수 비정질 실리콘 패턴을 형성하는 단계와;
    애싱(ashing)을 진행하여 상기 제 2 및 제 3 포토레지스트 패턴을 제거함으로써 상기 순수 비정질 실리콘 패턴의 가장자리를 노출시키는 단계와;
    노출된 상기 순수 비정질 실리콘 패턴과 그 하부의 순수 폴리실리콘 패턴을 제거함으로써 상기 게이트 절연막 위로 순차적으로 상기 순수 폴리실리콘의 주 액 티브층과 상기 순수 비정질 실리콘의 보조 액티브층을 형성하는 단계와;
    상기 제 1 포토레지스트 패턴을 제거하는 단계
    를 포함하는 어레이 기판의 제조 방법.
  3. 제 2 항에 있어서,
    상기 고상 결정화(SPC) 공정은 열처리를 통한 써말 결정화(Thermal Crystallization) 또는 교번자장 결정화(Alternating Magnetic Field Crystallization) 장치를 이용한 교번자장 결정화인 것이 특징인 어레이 기판의 제조 방법.
  4. 제 2 항에 있어서,
    상기 제 2 순수 비정질 실리콘층을 형성하기 이전에 상기 고상 결정화 공정 진행에 의해 상기 순수 폴리실리콘층 상에 형성된 열산화막을 제거하기 위한 BOE(Buffered Oxide Etchant) 세정을 실시하는 것이 특징인 어레이 기판의 제조 방법.
  5. 제 1 항에 있어서,
    상기 오믹콘택층을 형성하기 이전에 상기 액티브 콘택홀을 통해 노출된 상기 보조 액티브층 표면에 산화막 제거를 위한 BOE(Buffered Oxide Etchant) 세정을 실시하는 것이 특징인 어레이 기판의 제조 방법.
  6. 제 1 항에 있어서,
    상기 소스 및 드레인 전극과 상기 데이터 배선을 형성하는 단계는 상기 데이터 배선의 일끝단과 연결된 데이터 패드전극을 형성하는 단계를 포함하며,
    상기 게이트 배선을 형성하는 단계는 상기 게이트 배선의 일끝단과 연결된 게이트 패드전극을 형성하는 단계를 포함하며,
    상기 드레인 콘택홀을 갖는 상기 제 2 보호층을 형성하는 단계는 상기 게이트 패드전극을 노출시키는 게이트 패드 콘택홀과 상기 데이터 패드전극을 노출시키는 데이터 패드 콘택홀을 형성하는 단계를 포함하며,
    상기 화소전극을 형성하는 단계는 상기 게이트 패드 콘택홀을 통해 상기 게이트 패드전극과 접촉하는 게이트 보조 패드전극과, 상기 데이터 패드 콘택홀을 통해 상기 데이터 패드전극과 접촉하는 데이터 보조 패드전극을 형성하는 단계를 포함하는 어레이 기판의 제조 방법.
  7. 제 1 항에 있어서,
    상기 불순물 폴리실리콘의 게이트 전극은 500Å 내지 1000Å의 두께를 가지며,
    상기 순수 폴리실리콘의 주 액티브층은 300Å 내지 1000Å의 두께를 가지며,
    상기 순수 비정질 실리콘의 보조 액티브층은 50Å 내지 300Å의 두께를 가지며,
    상기 층간절연막은 상기 게이트 전극과 상기 게이트 절연막의 두께를 합한 두께보다 더 두꺼운 두께를 갖도록 형성하는 것이 특징인 어레이 기판의 제조 방법.
  8. 화소영역과 스위칭 영역이 정의된 기판 상의 전면에 무기절연물질로 형성된 버퍼층과;
    상기 버퍼층 상의 상기 스위칭 영역에 아일랜드 형태로서 동일한 평면적을 가지며 순차 적층된 폴리실리콘의 게이트 전극과, 게이트 절연막과;
    상기 게이트 절연막 위로 상기 게이트 절연막의 가장자리를 노출시키며 아일랜드 형태로서 동일한 평면적을 가지며 순차 적층된 순수 폴리실리콘의 주 액티브층 및 순수 비정질 실리콘의 보조 액티브층과;
    상기 보조 액티브층 위로 상기 보조 액티브층을 노출시키며 서로 이격하는 액티브 콘택홀을 가지며 상기 액티브층의 중앙부에 대해서는 에치스토퍼의 역할을 하며 상기 기판 전면에 형성된 층간절연막과;
    상기 스위칭 영역에 상기 층간절연막 위로 각각 상기 액티브 콘택홀을 통해 상기 보조 액티브층과 접촉하며, 서로 이격하며 형성된 불순물 비정질 실리콘의 오믹콘택층과;
    상기 이격하는 상기 오믹콘택층 위로 각각 이격하며 형성된 소스 및 드레인 전극과;
    상기 층간절연막 위로 상기 화소영역의 경계에 상기 소스 전극과 연결되며 형성된 데이터 배선과;
    상기 데이터 배선 위로 상기 기판 전면에 상기 보조 액티브층 외측으로 상기 게이트 전극을 노출시키는 게이트 콘택홀을 가지며 형성된 제 1 보호층과;
    상기 제 1 보호층 위로 상기 화소영역의 경계에 상기 게이트 콘택홀을 통해 상기 게이트 전극과 접촉하며 상기 데이터 배선과 교차하며 형성된 게이트 배선과;
    상기 게이트 배선 위로 상기 기판 전면에 상기 드레인 전극을 노출시키는 드레인 콘택홀을 가지며 형성된 제 2 보호층과;
    상기 제 2 보호층 위로 상기 드레인 콘택홀을 통해 상기 드레인 전극과 접촉하며 상기 화소영역에 형성된 화소전극
    을 포함하는 어레이 기판.
  9. 제 8 항에 있어서,
    상기 불순물 폴리실리콘의 게이트 전극은 그 두께가 500Å 내지 1000Å이며, 상기 순수 폴리실리콘의 주 액티브층은 그 두께가 300Å 내지 1000Å이며, 상기 순수 비정질 실리콘의 보조 액티브층은 그 두께가 50Å 내지 300Å이며, 상기 층간절연막은 그 하부에 위치한 상기 게이트 전극 및 게이트 절연막 각각의 두께를 합한 두께보다 더 두꺼운 두께를 갖도록 형성된 것이 특징인 것이 특징인 어레이 기판.
  10. 제 8 항에 있어서,
    상기 게이트 배선의 끝단과 연결된 게이트 패드전극과, 상기 데이터 배선의 끝단과 연결된 데이터 패드전극을 포함하며,
    상기 제 2 보호층은 상기 게이트 패드전극을 노출시키는 게이트 패드 콘택홀을 구비하고, 상기 제 2 및 제 1 보호층은 상기 데이터 패드전극을 노출시키는 데이터 패드 콘택홀을 구비하며,
    상기 제 2 보호층 위로 상기 화소전극을 이루는 동일한 물질로 상기 게이트 패드 콘택홀을 통해 상기 게이트 패드전극과 접촉하는 게이트 보조 패드전극과, 상기 데이터 패드 콘택홀을 통해 상기 데이터 패드전극과 접촉하는 데이터 보조 패드전극
    을 포함하는 어레이 기판.
KR1020090067410A 2009-07-23 2009-07-23 어레이 기판 및 이의 제조방법 KR101246789B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020090067410A KR101246789B1 (ko) 2009-07-23 2009-07-23 어레이 기판 및 이의 제조방법
US12/813,308 US8198631B2 (en) 2009-07-23 2010-06-10 Display device and method of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090067410A KR101246789B1 (ko) 2009-07-23 2009-07-23 어레이 기판 및 이의 제조방법

Publications (2)

Publication Number Publication Date
KR20110009954A true KR20110009954A (ko) 2011-01-31
KR101246789B1 KR101246789B1 (ko) 2013-03-26

Family

ID=43496500

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090067410A KR101246789B1 (ko) 2009-07-23 2009-07-23 어레이 기판 및 이의 제조방법

Country Status (2)

Country Link
US (1) US8198631B2 (ko)
KR (1) KR101246789B1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120129746A (ko) * 2011-05-20 2012-11-28 엘지디스플레이 주식회사 산화물 반도체를 포함하는 박막 트랜지스터 기판 및 그 제조 방법
KR20140052450A (ko) * 2012-10-24 2014-05-07 엘지디스플레이 주식회사 산화물 반도체를 포함하는 박막 트랜지스터 기판 및 그 제조 방법
KR20150025490A (ko) * 2013-08-29 2015-03-10 삼성디스플레이 주식회사 표시패널 및 이의 제조방법

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8329523B2 (en) * 2009-05-15 2012-12-11 Lg Display Co., Ltd. Array substrate for dislay device and method of fabricating the same
CN102751240B (zh) * 2012-05-18 2015-03-11 京东方科技集团股份有限公司 薄膜晶体管阵列基板及其制造方法、显示面板、显示装置
KR102038075B1 (ko) * 2012-12-14 2019-10-30 삼성디스플레이 주식회사 유기발광표시장치 및 그 제조방법
CN103646966B (zh) * 2013-12-02 2016-08-31 京东方科技集团股份有限公司 一种薄膜晶体管、阵列基板及其制备方法、显示装置
CN105185715B (zh) * 2015-09-28 2018-09-18 深圳市华星光电技术有限公司 一种tft基板、tft开关管及其制造方法
KR102510394B1 (ko) * 2016-01-27 2023-03-16 삼성디스플레이 주식회사 도전 패턴의 형성 방법 및 유기 발광 표시 장치의 제조 방법
TWI678803B (zh) * 2018-12-26 2019-12-01 友達光電股份有限公司 顯示裝置
CN110233109A (zh) * 2019-06-24 2019-09-13 京东方科技集团股份有限公司 晶体管及其制备方法、阵列基板及其制备方法和显示面板

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100412619B1 (ko) 2001-12-27 2003-12-31 엘지.필립스 엘시디 주식회사 액정표시장치용 어레이 기판의 제조 방법
JP2009099636A (ja) 2007-10-15 2009-05-07 Hitachi Displays Ltd 表示装置および表示装置の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120129746A (ko) * 2011-05-20 2012-11-28 엘지디스플레이 주식회사 산화물 반도체를 포함하는 박막 트랜지스터 기판 및 그 제조 방법
KR20140052450A (ko) * 2012-10-24 2014-05-07 엘지디스플레이 주식회사 산화물 반도체를 포함하는 박막 트랜지스터 기판 및 그 제조 방법
KR20150025490A (ko) * 2013-08-29 2015-03-10 삼성디스플레이 주식회사 표시패널 및 이의 제조방법

Also Published As

Publication number Publication date
US8198631B2 (en) 2012-06-12
KR101246789B1 (ko) 2013-03-26
US20110018000A1 (en) 2011-01-27

Similar Documents

Publication Publication Date Title
KR101246789B1 (ko) 어레이 기판 및 이의 제조방법
KR101213708B1 (ko) 어레이 기판 및 이의 제조방법
KR101128333B1 (ko) 어레이 기판 및 이의 제조방법
KR101019048B1 (ko) 어레이 기판 및 이의 제조방법
KR101593443B1 (ko) 어레이 기판의 제조방법
KR101272892B1 (ko) 어레이 기판
KR101314787B1 (ko) 어레이 기판
KR20120046555A (ko) 어레이 기판의 제조방법
KR101134989B1 (ko) 어레이 기판의 제조방법
KR20110113040A (ko) 어레이 기판
KR101246790B1 (ko) 어레이 기판 및 이의 제조방법
KR20110058356A (ko) 어레이 기판 및 이의 제조방법
KR101518851B1 (ko) 어레이 기판의 제조방법
KR101030968B1 (ko) 어레이 기판 및 이의 제조방법
KR101760946B1 (ko) 박막트랜지스터 어레이기판 제조방법
KR101475313B1 (ko) 어레이 기판의 제조방법
KR20110056899A (ko) 어레이 기판 및 이의 제조방법
KR20110058355A (ko) 어레이 기판 및 이의 제조방법
KR20110113042A (ko) 어레이 기판 및 이의 제조방법
KR20110028040A (ko) 어레이 기판 및 이의 제조방법
KR101484965B1 (ko) 어레이 기판의 제조방법
KR20110061774A (ko) 어레이 기판 및 이의 제조방법
KR101588447B1 (ko) 어레이 기판 및 이의 제조방법
KR102142477B1 (ko) 어레이 기판 및 이의 제조방법
KR20100122390A (ko) 어레이 기판 및 이의 제조방법

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160226

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180213

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20200219

Year of fee payment: 8