KR20100075597A - 금속유기 화학기상증착 및 하이드라이드 기상 에피택시를 이용한 ⅲⅴ 질화물 필름의 성장 중에 기생형 입자의 형성을 억제하는 방법 - Google Patents
금속유기 화학기상증착 및 하이드라이드 기상 에피택시를 이용한 ⅲⅴ 질화물 필름의 성장 중에 기생형 입자의 형성을 억제하는 방법 Download PDFInfo
- Publication number
- KR20100075597A KR20100075597A KR1020107009657A KR20107009657A KR20100075597A KR 20100075597 A KR20100075597 A KR 20100075597A KR 1020107009657 A KR1020107009657 A KR 1020107009657A KR 20107009657 A KR20107009657 A KR 20107009657A KR 20100075597 A KR20100075597 A KR 20100075597A
- Authority
- KR
- South Korea
- Prior art keywords
- formation
- inhibiting
- parasitic
- reaction chamber
- precursor
- Prior art date
Links
- 239000002245 particle Substances 0.000 title claims abstract description 122
- 230000003071 parasitic effect Effects 0.000 title claims abstract description 87
- 150000004767 nitrides Chemical class 0.000 title claims abstract description 47
- 230000001629 suppression Effects 0.000 title abstract description 3
- 238000000034 method Methods 0.000 claims abstract description 296
- 230000008569 process Effects 0.000 claims abstract description 180
- 239000002243 precursor Substances 0.000 claims abstract description 152
- 239000000758 substrate Substances 0.000 claims abstract description 125
- 239000007789 gas Substances 0.000 claims abstract description 119
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 114
- 238000006243 chemical reaction Methods 0.000 claims abstract description 111
- 229910052751 metal Inorganic materials 0.000 claims abstract description 77
- 239000002184 metal Substances 0.000 claims abstract description 77
- 150000001875 compounds Chemical class 0.000 claims abstract description 40
- 230000006911 nucleation Effects 0.000 claims abstract description 38
- 238000010899 nucleation Methods 0.000 claims abstract description 38
- 125000002524 organometallic group Chemical group 0.000 claims abstract description 35
- 238000005229 chemical vapour deposition Methods 0.000 claims abstract description 33
- 229910052736 halogen Inorganic materials 0.000 claims abstract description 25
- 150000002367 halogens Chemical class 0.000 claims abstract description 25
- 229910000039 hydrogen halide Inorganic materials 0.000 claims abstract description 14
- 239000012433 hydrogen halide Substances 0.000 claims abstract description 14
- 230000002401 inhibitory effect Effects 0.000 claims description 82
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 56
- 229910002601 GaN Inorganic materials 0.000 claims description 55
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 48
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 claims description 41
- 229910021529 ammonia Inorganic materials 0.000 claims description 24
- 230000036961 partial effect Effects 0.000 claims description 24
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 22
- 229910000041 hydrogen chloride Inorganic materials 0.000 claims description 21
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 claims description 21
- -1 nitrogen containing compound Chemical class 0.000 claims description 20
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 claims description 16
- 229910052594 sapphire Inorganic materials 0.000 claims description 15
- 239000010980 sapphire Substances 0.000 claims description 15
- 239000000376 reactant Substances 0.000 claims description 14
- 229910052733 gallium Inorganic materials 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 8
- UPWPDUACHOATKO-UHFFFAOYSA-K gallium trichloride Chemical compound Cl[Ga](Cl)Cl UPWPDUACHOATKO-UHFFFAOYSA-K 0.000 claims description 7
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 claims description 6
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 claims description 6
- 229910052738 indium Inorganic materials 0.000 claims description 6
- 150000002259 gallium compounds Chemical class 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 4
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 3
- 229910000042 hydrogen bromide Inorganic materials 0.000 claims description 3
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 claims description 3
- PSCMQHVBLHHWTO-UHFFFAOYSA-K indium(iii) chloride Chemical compound Cl[In](Cl)Cl PSCMQHVBLHHWTO-UHFFFAOYSA-K 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 3
- RGGPNXQUMRMPRA-UHFFFAOYSA-N triethylgallium Chemical compound CC[Ga](CC)CC RGGPNXQUMRMPRA-UHFFFAOYSA-N 0.000 claims description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 2
- 229910000040 hydrogen fluoride Inorganic materials 0.000 claims description 2
- 229910000043 hydrogen iodide Inorganic materials 0.000 claims description 2
- MNKMDLVKGZBOEW-UHFFFAOYSA-M lithium;3,4,5-trihydroxybenzoate Chemical compound [Li+].OC1=CC(C([O-])=O)=CC(O)=C1O MNKMDLVKGZBOEW-UHFFFAOYSA-M 0.000 claims description 2
- 229910001092 metal group alloy Inorganic materials 0.000 claims description 2
- 239000011541 reaction mixture Substances 0.000 claims description 2
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 2
- 229910052596 spinel Inorganic materials 0.000 claims description 2
- 239000011029 spinel Substances 0.000 claims description 2
- 229910000807 Ga alloy Inorganic materials 0.000 claims 3
- 229940126062 Compound A Drugs 0.000 claims 2
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 claims 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims 2
- NWAIGJYBQQYSPW-UHFFFAOYSA-N azanylidyneindigane Chemical compound [In]#N NWAIGJYBQQYSPW-UHFFFAOYSA-N 0.000 claims 2
- 150000002366 halogen compounds Chemical class 0.000 claims 2
- 239000002210 silicon-based material Substances 0.000 claims 2
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 claims 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims 1
- 238000000407 epitaxy Methods 0.000 claims 1
- 150000004820 halides Chemical class 0.000 claims 1
- 229910001338 liquidmetal Inorganic materials 0.000 claims 1
- 239000011787 zinc oxide Substances 0.000 claims 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 abstract description 13
- 238000000151 deposition Methods 0.000 description 64
- 230000008021 deposition Effects 0.000 description 60
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 25
- 239000007788 liquid Substances 0.000 description 14
- 238000010438 heat treatment Methods 0.000 description 13
- 229910052757 nitrogen Inorganic materials 0.000 description 13
- 229910045601 alloy Inorganic materials 0.000 description 9
- 239000000956 alloy Substances 0.000 description 9
- 238000004140 cleaning Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 239000012159 carrier gas Substances 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 238000009826 distribution Methods 0.000 description 7
- 230000005693 optoelectronics Effects 0.000 description 7
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 7
- 235000012431 wafers Nutrition 0.000 description 7
- 238000005530 etching Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 238000005137 deposition process Methods 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 229910052734 helium Inorganic materials 0.000 description 5
- 239000001307 helium Substances 0.000 description 5
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 4
- 238000004590 computer program Methods 0.000 description 4
- 239000002019 doping agent Substances 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 125000005843 halogen group Chemical group 0.000 description 3
- 238000005086 pumping Methods 0.000 description 3
- 238000010926 purge Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000005247 gettering Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- KLRHPHDUDFIRKB-UHFFFAOYSA-M indium(i) bromide Chemical compound [Br-].[In+] KLRHPHDUDFIRKB-UHFFFAOYSA-M 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 239000012705 liquid precursor Substances 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical group C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 description 2
- OTRPZROOJRIMKW-UHFFFAOYSA-N triethylindigane Chemical compound CC[In](CC)CC OTRPZROOJRIMKW-UHFFFAOYSA-N 0.000 description 2
- DIIIISSCIXVANO-UHFFFAOYSA-N 1,2-Dimethylhydrazine Chemical compound CNNC DIIIISSCIXVANO-UHFFFAOYSA-N 0.000 description 1
- KAXRWMOLNJZCEW-UHFFFAOYSA-N 2-amino-4-(2-aminophenyl)-4-oxobutanoic acid;sulfuric acid Chemical compound OS(O)(=O)=O.OC(=O)C(N)CC(=O)C1=CC=CC=C1N KAXRWMOLNJZCEW-UHFFFAOYSA-N 0.000 description 1
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910016569 AlF 3 Inorganic materials 0.000 description 1
- 229910002704 AlGaN Inorganic materials 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910021617 Indium monochloride Inorganic materials 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 125000002009 alkene group Chemical group 0.000 description 1
- 125000002355 alkine group Chemical group 0.000 description 1
- 125000005234 alkyl aluminium group Chemical group 0.000 description 1
- 150000001348 alkyl chlorides Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 150000001649 bromium compounds Chemical class 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- NEHMKBQYUWJMIP-NJFSPNSNSA-N chloro(114C)methane Chemical compound [14CH3]Cl NEHMKBQYUWJMIP-NJFSPNSNSA-N 0.000 description 1
- NVPKNAWBPMTMLA-UHFFFAOYSA-M chloro(diethyl)gallane Chemical compound [Cl-].CC[Ga+]CC NVPKNAWBPMTMLA-UHFFFAOYSA-M 0.000 description 1
- OWQWEJKPOUNPPG-UHFFFAOYSA-M chloro(dimethyl)gallane Chemical compound C[Ga](C)Cl OWQWEJKPOUNPPG-UHFFFAOYSA-M 0.000 description 1
- XOYLJNJLGBYDTH-UHFFFAOYSA-M chlorogallium Chemical compound [Ga]Cl XOYLJNJLGBYDTH-UHFFFAOYSA-M 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000779 depleting effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- MYBJXSAXGLILJD-UHFFFAOYSA-N diethyl(methyl)alumane Chemical compound CC[Al](C)CC MYBJXSAXGLILJD-UHFFFAOYSA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- APHGZSBLRQFRCA-UHFFFAOYSA-M indium(1+);chloride Chemical compound [In]Cl APHGZSBLRQFRCA-UHFFFAOYSA-M 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 150000004694 iodide salts Chemical class 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 229910001509 metal bromide Inorganic materials 0.000 description 1
- 229910001510 metal chloride Inorganic materials 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910001512 metal fluoride Inorganic materials 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 229910001511 metal iodide Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000002896 organic halogen compounds Chemical class 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- HKOOXMFOFWEVGF-UHFFFAOYSA-N phenylhydrazine Chemical compound NNC1=CC=CC=C1 HKOOXMFOFWEVGF-UHFFFAOYSA-N 0.000 description 1
- 229940067157 phenylhydrazine Drugs 0.000 description 1
- 238000009428 plumbing Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- 238000001089 thermophoresis Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/301—AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/4401—Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/0242—Crystalline insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02455—Group 13/15 materials
- H01L21/02458—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02378—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02381—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/024—Group 12/16 materials
- H01L21/02403—Oxides
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Metallurgy (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
금속 유기 화학기상증착 프로세스에서 기생형 입자가 형성되는 것을 억제하는 방법이 설명된다. 그러한 방법은 반응 챔버로 기판을 제공하는 단계, 그리고 유기금속 전구체, 입자 억제 화합물 및 적어도 제 2 전구체를 반응 챔버로 도입하는 단계를 포함한다. 상기 제 2 전구체는 상기 유기금속 전구체와 반응하여 핵생성 층을 기판 상에 형성한다. 또한, Ⅲ-V 질화물 층의 형성 중에 기생형 입자의 형성을 억제하는 방법이 설명된다. 그러한 방법은 그룹 Ⅲ 금속 함유 전구체를 반응 챔버로 도입하는 단계를 포함한다. 그룹 Ⅲ 금속 전구체는 할로겐을 포함할 수 있다. 하이드로겐 할라이드 가스 및 질소 함유 가스가 또한 반응 챔버로 도입된다. 질소 함유 가스는 그룹 Ⅲ 금속 전구체와 반응하여 Ⅲ-Ⅴ 질화물 층을 기판 상에 형성한다.
Description
본원 발명은 본원 명세서에서 전체가 참조되는 "EPITAXIAL GROWTH OF COMPOUND 질화물 SEMICONDUCTOR STRUCTURES"라는 명칭으로 니하완(Nijhawan) 등이 출원한 대리인 서류 번호 'A10938/T68100'의 미국 특허 출원을 기초로 우선권을 주장한다.
그룹(족) Ⅲ-Ⅴ 반도체는 발광 다이오드(LEDs) 및 레이저 다이오드(LDs)에서 점진적으로 많이 사용되고 있다. 갈륨 질화물(GaN)과 같은 특정 Ⅲ-Ⅴ 반도체들은 청색 및 자외선 발광 광학 및 광전자(optoelectronic) 장치들을 포함하는 짧은 파장의 LEDs 및 LDs의 제조를 위한 주요 물질로서 떠오르고 있다. 그에 따라, 저비용, 고품질의 Ⅲ-Ⅴ 반도체 필름을 제조하기 위한 제조 프로세스의 개발에 대한 관심이 증대되고 있다.
GaN과 같은 Ⅲ-Ⅴ 질화물 필름을 제조하기 위해서 널리 이용되는 것 중 하나가 하이드라이드 기상 에피택시(hydride vapor-phase epitaxy; HVPE)이다. 이러한 프로세스는 기판 증착(deposition; 부착) 표면에서 갈륨 클로라이드(GaCl)와 암모니아(NH3) 사이의 고온, 기상 반응을 포함한다. GaCl 전구체는 염화수소(HCl) 가스를 가열된 액체 갈륨 공급부(융점 29.8℃)의 위쪽으로 통과시킴으로써 생산된다. 암모니아는 표준 가스 공급원(source)으로부터 공급될 수 있을 것이다. 전구체들은 가열된 기판으로 함께 도입되고, 그 곳에서 전구체들이 반응하고 GaN 층을 부착하게 된다. HVPE 증착 속도는 높으며(예를 들어, 100 μm/hr 이하) GaN 필름 제조를 위한 비교적 신속하고 저렴한 방법을 제공한다.
그러나, HVPE 는 또한 GaN 및 기타 Ⅲ-V 화합물 필름을 형성하는데 있어서 단점들을 가진다. HCl 가스는 GaCl 형성시에 완전히 소모되지 않으며, 기판은 필름 증착 중에 상당량의 HCl에 노출된다. HCl에 대해서 에칭-민감성을 가지는 실리콘과 같은 기판의 경우에, 기판이 손상되거나 파괴되는 것을 방지하기 위해서는 예비(pre)-필름 에칭-방지 층이 요구된다. GaN 필름의 형성과의 간섭을 최소화할 수 있도록 추가적인 층이 주의 깊게 선택되어야 할 필요가 있다. 최소한, 에칭-방지 층의 형성은 GaN 필름 증착 프로세스에 대한 추가적인 비용 및 시간을 부가하게 될 것이다.
또한, HVPE 프로세스를 특성화하는(characterize) 높은 증착 속도는 낮은 레벨의 도펀트 물질과 함께 이용하는 것을 어렵게 만든다. 도펀트들은 종종 Ⅲ-Ⅴ 화합물 LED, LD, 트랜지스터 등의 전기적 및 광전자적 특성을 규정하는데 있어서 중요하다. GaN 필름이 증착된 후에 이루어진 도핑 단계들은 필름 내에서 도펀트의 적절한 농도 또는 균일도를 제공하지 않는다. 증착후(post-deposition) 도핑이 가능할 때, GaN 필름 증착 프로세스에 대한 비용 및 시간이 추가될 것이다.
HVPE 의 다른 주요 단점은, 알루미늄 갈륨 질화물 (AlGaN) 및 인듐 갈륨 질화물 (InGaN)과 같은 Ⅲ- V 질화물의 합금을 성장시키기 위한 프로세스를 이용하기가 어렵다는 것이다. 이러한 질화물 합금 및 다른 질화물 합금은 단일-금속 질화물 보다 더 다양한 헤테로구조(heterostructure)를 제공하고, 그리고 이미 많은 새로운 광전자 장치 용도에서 제안되어 있다. 그러나, 알루미늄 (예를 들어, 알루미늄 클로라이드) 및 인듐 (예를 들어, 인듐 클로라이드)를 위한 안정한 가스 전구체를 생성하는 것이 GaCl을 생성하는 것 보다 어렵다는 것이 입증되었다.
예를 들어, 알루미늄은 갈륨 보다 상당히 높은 융점 (약 660 ℃)을 가지며, 알루미늄의 클로라이드 염(salt) (AlCl3)은 고온 HVPE 반응기 조건하에서도 낮은 증기압 고체로 신속하게 응고한다. HCl가 알루미늄 금속을 통과할 때, 대부분의 AlCl3 가 가스 유동으로부터 석출되고, 그리고 적은 분율만이 증착 기판에 도달하여 질소 전구체와 반응하고 그리고 AlN을 형성한다.
HVPE Ⅲ-V 화합물 필름 형성과 관련한 이러한 단점들 및 기타 단점들을 극복하기 위해서, 금속-유기 화학기상증착 (MOCVD)이라고 지칭되는 다른 프로세스를 이용하여 Ⅲ-V 질화물 필름을 형성한다. MOCVD 는 트리메틸갈륨 (TMGa) 또는 트리메틸알루미늄 (TMAl)와 같은 적절한 휘발성의 금속유기 그룹 Ⅲ 전구체를 이용하여 그룹 Ⅲ 금속을 기판으로 전달하며, 그러한 기판에서 질소 전구체(예를 들어, 암모늄)와 반응하여 Ⅲ-Ⅴ 질화물 필름을 형성한다.
통상적으로, MOCVD 질화물 필름은 HVPE 필름 보다 낮은 온도에서 증착되며, 그에 따라 제조 프로세스가 낮은 열 소모비용(thermal budget)을 가질 수 있게 된다. 또한, 둘 또는 셋 이상의 다양한 그룹 Ⅲ 금속유기 전구체 (예를 들어, Ga, Al, In, 등)를 조합하기가 용이하고 그리고 GaN의 합금 필름 (예를 들어, AlGaN, InGaN, 등)을 만들기가 용이할 것이다. 또한, 도펀트는 인-시츄(in-situ) 도핑형 필름 층을 증착하기 위한 전구체와 보다 용이하게 조합될 수 있을 것이다.
그러나, MOCVD 필름 증착은 다음과 같은 단점을 가진다. 이러한 단점에는, HVPE 보다 MOCVD 의 경우에 증착 속도가 느리다는 것이 포함된다. 통상적으로, MOCVD 는 HVPE 의 50 μm/hr 에 대비하여 약 5 μm/hr 또는 그 미만으로 필름을 증착한다. 느린 증착 속도로 인해서 MOCVD는 HVPE 에 비해서 처리량이 적고 그리고 증착 프로세스 비용이 더 많이 소요될 것이다.
MOCVD를 이용한 GaN 증착의 처리량(throughput)을 증대시키기 위한 몇가지 접근방식이 있어왔다: 하나의 접근 방법에서, 많은 웨이퍼들 상에서 또는 넓은 면적 상에서 동시에 필름을 성장시킬 수 있는 배치식(batch) 반응기들이 시도되었다. 2번째 접근 방법에서, GaN 필름 성장 속도 및 헤테로구조를 증대시키기 위한 시도가 있었왔다. 양자 모두 문제점을 가지고 있다.
큰 면적으로 규모를 확대하는 것은 문제가 많은 것으로 입증되었는데, 이는 GaN 이 반드시 상대적으로 높은 압력(예를 들어, 수백 Torr)에서 성장되어야 하기 때문이고, 그리고 반응기를 통한 전체 유동이 극히 예외적으로 높지 않다면, 이들 압력에서 대형 반응기 내의 유동 속도(flow rate; 유량)가 느리기 때문일 것이다. 결과적으로, 짧은 거리에 걸쳐 전구체 스트림에서 반응제(reactants)가 고갈되기 시작할 것이고, 이는 큰 면적에 걸쳐 균일한 필름을 성장시키는 것을 어렵게 만들 것이다.
유기-갈륨 및 암모니아 전구체의 농도(예를 들어, 부분 압력)를 높임으로써 GaN 필름의 증착 속도를 높이기 위한 시도 역시 문제가 되는 것을 밝혀졌다. 도 1a는 MOCVD 반응기 내의 전체 압력을 함수로 하여 GaN 필름의 성장 속도를 나타낸 그래프를 도시한다. 이들 그래프는 폐쇄-커플링형 샤워헤드 분사기(close-coupled showerhead injector)를 이용하여 Thomas Swan 반응기에서 GaN 필름 성장의 STR에 의한 시뮬레이션을 기초로 한다. 그래프는 반응기 내의 압력이 약 300 torr 보다 높게 상승하였을 때 속도의 급격한 강하를 나타낸다.
MOCVD 반응기 압력의 증가에 따른 GaN 필름 성장 속도의 감소는 필름의 성장에 사용되어야 할 Ga 및 N 전구체들을 소모하는 가스-상 기생형(parasitic) 입자의 형성 때문이다. 국부적인 가스 온도가 그룹 Ⅲ 전구체와 암모니아(질소 전구체) 사이의 열분해(pyrolytic) 반응을 촉진할 수 있을 정도로 높아지는 경우에, 이들 기생형 입자들이 웨이퍼 기판에 걸친 얇은 열적 경계(thermal boundary) 층 형태로 형성된다. 일단 형성되면, 고온의, (열영동현상(thermophoresis)에 의해서 현수된(suspended) 입자들이 추가적인 증착을 위한 핵이 되며, 그에 따라 성장하고 그리고 챔버에서 소모될 때까지 가스 스트림으로부터 반응제를 추가적으로 고갈시킨다. 그에 따라, 희망하는 필름 성장과 기생형 입자 성장 사이에 경쟁이 있게 된다. 그룹 Ⅲ 및/또는 그룹 Ⅴ 전구체들의 부분 압력이 높아질 때, 또는 웨이퍼 기판 주위의 열 경계 층이 확대될 때, 기생형 입자 형성이 증대된다.
트리메틸갈륨 전구체를 이용한 GaN 필름 성장의 경우에, 필름 성장 속도는 최종적으로 트리메틸갈륨 유동과 관련하여 포화되고(saturate), 이는 5 μm/hr 보다 큰 성장 속도를 구현하기 어렵게 만든다. 기생형 입자의 형성은 증착된 GaN 필름의 광전자적 품질을 악화시킬 수 있다.
기생형 입자의 형성이 그룹 Ⅲ 및 Ⅴ 전구체들의 부분 압력에 의존하기 때문에, 전구체 가스 스트림을 보다 많은 캐리어 가스(예를 들어, 수소(H2), 헬륨, 등)로 희석함으로써 MOCVD 증착 필름의 성장 속도를 높일 수 있을 것이다. 그러나, 전구체 가스 스트림을 희석하기 위한 시도는 증착되는 Ⅲ-Ⅴ 필름의 품질을 손상시켰다. 전구체들의 높은 부분 압력을 유지하는 것, 특히 질화물 필름 증착의 경우에 높은 암모니아 부분 압력은 고품질 필름의 성장에 유리한 것으로 보인다.
MOCVD 필름 증착에서 기생형 입자 형성은 갈륨 질화물 합금의 경우에 보다 심각할 수 있을 것이다. 예를 들어, 도 1b는 Aixtron 위성형 반응기(planetary reactor)내의 압력을 함수로 하는 AlGaN의 증착 속도의 STR 시뮬레이션의 그래프를 도시한다. 그러한 그래프는 비합금화된 GaN 필름의 경우 보다 급격한 AlGaN 필름의 형성 중의 필름 성장 속도 대 반응기 압력의 강하(drop off)를 보여준다. 필름 성장 속도의 유사한 감소가 Thomas Swan 및 Veeco 반응기 형태(geometries)에 대한 시뮬레이션에서도 나타났다.
AlGaN 필름은 p-타입 층이 InGaN 웰 능동 영역(well active region)에 걸쳐 성장되는 LED 헤테로구조에서 이용된다. 그에 따라, 홀(hole) 농도가 적절하게 높은 그리고 비방사성 또는 보상 결함(nanradiative or compensating defects)이 없는 AlGaN 필름을 성장시키는 것이 유리할 것이다. 불행하게도, 높은 전체 압력 및 높은 암모니아 유동은 이러한 품질을 가지는 AlGaN 필름의 성장에 최적이나, MOCVD에 의해서 필수적인 Al 함량을 가지는 이러한 필름을 성장시키는 것은 기생형 입자의 형성으로 인해서 매우 어려운 문제가 될 것이다.
다른 예에서, InGaN 필름 성장 역시 기생형 입자 형성에 의해서 제한받는다. 도 1c는 반응 압력을 함수로 하는 InGaN 필름 성장 속도를 나타낸 그래프이다. 이러한 그래프는 여러 압력에서 Thomas Swan 샤워헤드 반응기 형태를 이용하여 실시된 성장 시뮬레이션으로부터 유도된 것이다. InGaN의 MOCVD 증착에서 기생형 입자의 형성이 AlGaN에 대한 경우만큼 두드러지지는 않지만, 이는 필름의 성장 속도를 충분히 제한할 정도로 여전히 크다. InGaN 필름은 레이저 다이오드 및 LEDs의 양자 웰 능동 영역들에서의 용도를 가진다. 높은 압력 및 높은 암모니아 유동에서, 기생형 입자를 형성하지 않고, InGaN 필름의 성장이 이루어질 수 있을 것이며, 이때 상기 높은 압력과 높은 암모니아 유동 모두는 LDs 및 LEDs 에서의 p-타입 도핑에서 그리고 광전자 품질(예를 들어, 높은 내부 효율)에서 유리할 것이다. 그에 따라, MOCVD 형성된 Ⅲ-Ⅴ 질화물 필름의 처리량을 높이면서도 기생형 입자 형성을 제어할 수 있는 시스템 및 방법이 요구되고 있다.
본 발명의 실시예는 금속 유기 화학기상증착 프로세스에서 기생형 입자의 형성을 억제하기 위한 방법을 포함한다. 그러한 방법은 반응 챔버로 기판을 제공하는 단계, 유기금속 전구체 및 입자 억제 화합물을 반응 챔버로 도입하는 단계, 및 적어도 제 2 전구체를 반응 챔버로 도입하는 단계를 포함한다. 제 2 전구체는 유기금속 전구체와 반응하고, 그리고 유기금속 전구체 및 제 2 전구체를 포함하는 반응 혼합물로부터 기판 상에 핵생성 층을 형성한다.
본 발명의 실시예는 또한 Ⅲ-V 질화물 층의 형성 중에 기생형 입자의 형성을 억제하는 방법을 포함한다. 그러한 방법은 반응 챔버로 기판 제공하는 단계, 및 그룹 Ⅲ 금속 함유 전구체를 반응 챔버로 도입하는 단계를 포함한다. 그룹 Ⅲ 금속 전구체는 또한 기생형 입자의 형성을 억제하는 할로겐을 포함할 수 있다. 그러한 방법은 또한 하이드로겐 할라이드 가스를 반응 챔버로 도입하는 단계(하이드로겐 할라이드가 또한 기생형 입자 형성을 억제하는 경우) 및 질소 함유 화합물을 반응 챔버로 도입하는 단계를 포함한다. 질소 함유 화합물은 그룹 Ⅲ 금속 전구체와 반응하여 Ⅲ-Ⅴ 질화물 층을 기판 상에 형성한다.
본 발명의 실시예는 또한 사파이어 기판 상에 갈륨 질화물 층을 형성하는 동안에 기생형 입자 형성을 억제하기 위한 방법을 포함한다. 그러한 방법은 사파이어 기판을 수용하는 반응 챔버로 암모니아를 도입하는 단계, 그리고 유기-갈륨 화합물 및 하이드로겐 클로라이드를 반응 챔버로 도입하는 단계를 포함한다. 하이드로겐 클로라이드는 암모니아에 의한 기생형 입자의 형성을 억제한다. 또한, 그러한 방법은 사파이어 기판 상에 갈륨 질화물 층을 형성하는 단계를 포함한다.
본 발명의 실시예는 또한 기판 상에 갈륨 질화물 층을 형성하는 동안에 기생형 입자 형성을 억제하는 방법을 포함한다. 그러한 방법은 사파이어 기판을 수용하는 반응 챔버로 암모니아를 도입하는 단계, 그리고 상기 반응 챔버로 유기-갈륨 화합물 및 할로겐 함유 갈륨 화합물을 도입하는 단계를 포함할 수 있을 것이다. 할로겐 함유 갈륨 화합물은 암모니아에 의한 기생형 입자의 형성을 억제한다. 그러한 방법은 또한 갈륨 질화물 층을 기판 상에 형성하는 단계를 포함한다.
추가적인 실시예들 및 특징들이 이하의 상세한 설명에서 부분적으로 전개될 것이고, 그리고 부분적으로는 본 발명의 실시 중에 학습되거나 또는 상세한 설명의 실험에 의해서 이른바 당업자에게 용이하게 이해될 수 있을 것이다. 본 발명의 특징 및 이점들은 본원 명세서에서 설명되는 기구, 조합, 및 방법들에 의해서 실현되고 획득될 수 있을 것이다.
명세서의 나머지 부분 및 첨부 도면을 참조할 때 본 발명의 추가적인 특성 및 이점에 대해서 이해할 수 있을 것이며, 상기 도면에서는 유사한 성분에 대해서는 유사한 참조 부호를 부여하였다. 일부 경우에, 하위 부호를 참조 부호와 연관시켰으며 하이픈을 부가하여 다수의 유사한 성분들을 표시하였다. 현존하는 하위 부호에 대한 설명 없이 참조 부호를 언급한 경우에, 그러한 것은 그러한 다수의 유사한 성분들 모두를 지칭하기 위한 것이다.
도 1a-c는 반응 챔버 내의 압력을 함수로 한 Ⅲ-Ⅴ 질화물 필름의 증착 속도를 나타낸 그래프이다.
도 2는 GaN-계 LED의 구조를 도시한 도면이다.
도 3은 본 발명의 실시예에 따라서 기판 상에 핵생성 층을 형성하는 프로세스의 단계들을 도시한 흐름도이다.
도 4는 본 발명의 실시예에 따라서 기판 상에 Ⅲ-Ⅴ 질화물 층을 형성하는 프로세스의 단계들을 도시한 흐름도이다.
도 5는 본 발명의 실시예에 따라서 기판 상에 Ⅲ-Ⅴ 층을 형성하는 다수-스테이지 프로세스의 단계들을 도시한 흐름도이다.
도 6은 본 발명의 실시예에 따라서 기판 상에 Ⅲ-Ⅴ 층을 형성하는 MOCVD 및 HVPE가 조합된 프로세스에서의 단계들을 도시한 흐름도이다.
도 7은 본 발명의 실시예에 따라서 기판 상에 Ⅲ-Ⅴ 층을 형성하는 HVPE 및 MOCVD가 조합된 프로세스에서의 단계들을 도시한 흐름도이다.
도 8a는 본 발명의 실시예를 실시하는데 이용될 수 있는 예시적인 증착 장치를 개략적으로 도시한 도면이다.
도 8b는 도 8a의 예시적인 증착 장치를 위한 사용자 인터페이스의 실시예를 개략적으로 도시한 도면이다.
도 8c는 도 8a의 예시적인 증착 장치와 함께 사용될 수 있는 시스템 제어 소프트웨어를 위한 계층적(hierarchical) 제어 구조의 실시예를 개략적으로 도시한 도면이다.
도 1a-c는 반응 챔버 내의 압력을 함수로 한 Ⅲ-Ⅴ 질화물 필름의 증착 속도를 나타낸 그래프이다.
도 2는 GaN-계 LED의 구조를 도시한 도면이다.
도 3은 본 발명의 실시예에 따라서 기판 상에 핵생성 층을 형성하는 프로세스의 단계들을 도시한 흐름도이다.
도 4는 본 발명의 실시예에 따라서 기판 상에 Ⅲ-Ⅴ 질화물 층을 형성하는 프로세스의 단계들을 도시한 흐름도이다.
도 5는 본 발명의 실시예에 따라서 기판 상에 Ⅲ-Ⅴ 층을 형성하는 다수-스테이지 프로세스의 단계들을 도시한 흐름도이다.
도 6은 본 발명의 실시예에 따라서 기판 상에 Ⅲ-Ⅴ 층을 형성하는 MOCVD 및 HVPE가 조합된 프로세스에서의 단계들을 도시한 흐름도이다.
도 7은 본 발명의 실시예에 따라서 기판 상에 Ⅲ-Ⅴ 층을 형성하는 HVPE 및 MOCVD가 조합된 프로세스에서의 단계들을 도시한 흐름도이다.
도 8a는 본 발명의 실시예를 실시하는데 이용될 수 있는 예시적인 증착 장치를 개략적으로 도시한 도면이다.
도 8b는 도 8a의 예시적인 증착 장치를 위한 사용자 인터페이스의 실시예를 개략적으로 도시한 도면이다.
도 8c는 도 8a의 예시적인 증착 장치와 함께 사용될 수 있는 시스템 제어 소프트웨어를 위한 계층적(hierarchical) 제어 구조의 실시예를 개략적으로 도시한 도면이다.
금속-유기 화학기상증착(MOCVD)를 이용하여 Ⅲ-V 층을 증착하는 동안에 기생형 입자가 형성되는 것을 억제하기 위한 시스템 및 방법에 대해서 설명한다. 기판 위의 공간내에 기생형 Ⅲ-Ⅴ 입자가 형성되는 것을 억제하기 위해서, 하이드로겐 할라이드(예를 들어, HCl)와 같은 입자 억제 화합물이 그룹 Ⅲ 금속-유기 전구체(예를 들어, 알킬 갈륨 전구체) 및/또는 그룹 V 전구체(예를 들어, 암모니아)와 함께 도입될 수 있을 것이다. 입자 억제 화합물(또는 화합물들)의 부분 압력은 Ⅲ-Ⅴ 층의 증착 동안에 그룹 Ⅲ 또는 그룹 V 전구체의 부분 압력 보다 낮을 것이다.
입자 억제 화합물은, MOCVD로 고품질 Ⅲ-Ⅴ 필름을 성장시킬 수 있는 것 보다 높은 부분 압력으로 그룹 Ⅲ 및 그룹 V 전구체가 반응 챔버로 공급될 수 있게 허용한다. 보다 많은 기생형 입자를 형성하지 않으면서 필름 형성 전구체들의 부분 압력을 높일 수 있는 능력은 낮은 반응기 압력에서 성장된 필름 보다 Ⅲ-Ⅴ 필름이 보다 빠른 증착 속도(예를 들어, 약 5 μm/hr 또는 그 초과)로 성장될 수 있게 하고, 그리고 보다 높은 광전자 품질(예를 들어, 보다 높은 내부 효율(internal efficiency), 우수한 p-타입 도핑 등)로 성장될 수 있게 한다.
예시적인 Ⅲ-Ⅴ 필름 구조
본원 명세서에서 설명된 시스템 및 방법의 실시예들을 이용하여 다른 장치들 중에서 발광 다이오드 및/또는 레이저 다이오드로서 작용하는 Ⅲ-Ⅴ 장치를 형성할 수 있을 것이다. 도 2는 본원 발명의 시스템 및 방법을 이용하여 제조될 수 있는 Ⅲ-Ⅴ 장치의 예가 도시되어 있다. GaN-계 LED 구조(200)가 사파이어(0001) 기판(204)의 위쪽에 형성된 것으로 도시되어 있다. n-타입 GaN 층(212)이 기판 상에 형성된 GaN 버퍼 층(208)에 걸쳐 증착된다. 장치의 능동 영역은 도면에서 InGaN 층을 포함하는 것으로 도시된 다수-양자-웰(MQW) 층(216)으로 구현된다. pn 정크션(junction)이 위쪽에 놓이는 p-타입 AlGaN 층(220)과 함께 형성되고, p-타입 GaN 층(224)은 콘택 층으로서 작용한다.
레이저 다이오드(LDs), 고전자이동도(高電子移動度) 트랜지스터 및 기타 광전자 장치를 포함하는 다른 Ⅲ-Ⅴ 장치 역시 본원 발명에 의해서 제조될 수 있을 것이다.
예시적인 제조 방법
도 3은 본 발명의 실시예들에 따라서 기판 상에 핵생성 층을 형성하는 프로세스(300)의 단계들을 도시한 흐름도이다. 프로세스(300)는 핵생성 층이 상부에 형성될 기판을 반응 챔버(302)로 제공하는 단계를 포함한다. 기판은 그룹 Ⅲ-Ⅴ 핵생성 층이 MOCVD 또는 HVPE 에 의해서 형성될 수 있는 임의 기판일 수 있을 것이다. 예를 들어, 이들은 사파이어(Al2O3), 실질적으로 순수한 실리콘(Si), 실리콘 탄화물(SiC), 스피넬, 지르코늄 산화물, 그리고 갈륨-비소(GaAs), 리튬 갈레이트(lithium gallate), 인듐 인 (InP), 및 단-결정 GaN과 같은 화합물 반도체 기판 등으로 제조된 기판 웨이퍼를 포함할 것이다.
기판이 반응 챔버 내에 있는 상태에서, 필름 형성 전구체 및 입자 억제 전구체가 핵생성 층의 증착 시작을 위해서 도입될 것이다. 도 3에 도시된 흐름도에서, 프로세스의 실시예는 유기금속 전구체를 반응 챔버(304)로 도입하는 단계를 포함할 수 있다. 유기금속 전구체는 그룹 Ⅲ 금속 및 탄소 그룹, 기타 성분들을 포함할 수 있을 것이다. 예를 들어, 전구체는 알킬 알루미늄 화합물, 알킬 갈륨 화합물, 및/또는 알킬 인듐 화합물 등과 같은 알킬 그룹 Ⅲ 금속 화합물을 포함할 수 있다. 특정 전구체 예에는 트리메틸알루미늄(TMA), 트리에틸-알루미늄(TEA), 트리메틸인듐(TMI), 트리에틸인듐(TEI), 트리메틸갈륨(TMG), 및 트리에틸갈륨(TEG)을 포함할 수 있다. 프로필, 펜틸, 헥살 등과 같은 보다 큰 범위의(larger sized) 알킬 그룹이 또한 그룹 Ⅲ 금속과 조합될 수 있을 것이다. 에틸디메틸갈륨, 메틸디에틸-알루미늄 등과 같은 다양한 범위의 알킬 그룹들이 또한 동일한 전구체와 조합될 수 있을 것이다. 방향족 그룹, 알켄 그룹, 알킨 그룹 등과 같은 다른 유기 모이어티(moiety; 부분)가 또한 유기금속 전구체의 일부가 될 수 있을 것이다.
둘 또는 셋 이상의 유기금속 전구체가 반응 챔버로 도입되어 반응될 수 있고 그리고 금속 합금을 포함하는 층을 형성할 수 있을 것이다. 예를 들어, 유기금속 전구체는 AlGaN, InGaN, InAlN, InAlGaN 등과 같은 그룹 Ⅲ 합금의 질화물을 기판 상에 형성하는 둘 또는 셋 이상의 그룹 Ⅲ 금속(예를 들어, Al, Ga, In)을 포함할 수 있다. AlGaN에서, 예를 들어, TMG 및 TMA가 질소 전구체(예를 들어, 암모니아)와 함께 반응 챔버 내로 도입되어 합금화된 Ⅲ-V 층을 형성할 수 있을 것이다.
유기금속 전구체는 할로겐 그룹이 금속 원자, 유기 모이어티 또는 양자 모두에 부착된 할로겐화된 전구체일 수 있을 것이다. 그러한 예에는 디에틸갈륨 클로라이드, 클로로메틸디에틸갈륨, 클로로디에틸갈륨 클로라이드 등이 포함된다. 유기금속 전구체가 할로겐 그룹을 포함하는 경우에, 분해된 할로겐이 핵생성 층의 반응 및 증착 동안에 입자 억제 성분으로서 작용할 것이다. 일부 실시예에서, 할로겐화된 유기금속 전구체가 핵생성 층의 반응 및 증착 동안에 입자 억제 화합물 및 그룹 Ⅲ 금속 제공 화합물 모두로서 작용할 것이다. 또한, 실시예들은 개별적인 입자 억제 화합물에 추가하여 할로겐화된 유기금속 화합물을 제공하는 것을 포함한다.
입자 억제 화합물은 유기금속 전구체와 동일한 유체 스트림 내에서 또는 개별적인 스트림 내에서 반응 챔버(306)로 도입될 수 있을 것이다. 입자 억제 화합물은, 화합물이 없는 제조의 경우와 비교해서, 웨이퍼 기판 위쪽의 반응 영역 내에서 형성되는 기생형 입자의 개체수를 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% 또는 그 초과 만큼 감소시킬 것이다.
입자 억제 화합물(또는 화합물들)은 유기금속 전구체의 농도와 동일한 또는 그보다 낮은 농도(즉, 부분 압력)으로 반응 챔버 내로 도입될 수 있을 것이다. 예를 들어, 실시예들은 핵생성 층을 형성하기 위해서 이용되는 유기금속 전구체 및/또는 다른 전구체 보다 적은 부분 압력으로 도입되는 입자 억제 화합물을 포함할 수 있을 것이다. 특정 예에는, 반응 챔버 내로 도입되는 유기금속 전구체의 부분 압력의 절반 미만, 1/4 미만, 1/5 미만, 1/6 미만, 1/10 미만 등의 부분 압력으로 입자 억제 화합물을 도입하는 단계가 포함될 수 있다.
입자 억제 화합물은 할로겐 그룹을 포함할 수 있다. 예를 들어, 입자 억제 화합물은 하이드로겐 플루오라이드, 하이드로겐 클로라이드, 하이드로겐 브로마이드 및/또는 하이드로겐 아이오다이드(iodide)와 같은 하이드로겐 할라이드일 수 있다. 입자 억제 화합물은 또한 알킬 클로라이드(예를 들어, 메틸 클로라이드, 메틸렌 클로라이드, 클로로포옴, 등)과 같은 유기-할로겐 화합물을 포함할 수 있다. 전술한 바와 같이, 실시예들은 핵생성 층의 형성에 포함되는 할로겐 함유 유기금속 전구체 및/또는 다른 할로겐 함유 반응제를 포함한다.
기판의 증착 표면 주위의 반응 영역 내에서 유기금속 전구체와 반응하는 제 2 전구체가 반응 챔버(308)로 도입될 것이다. 핵생성 층이 금속-질화물 층인 경우에, 제 2 전구체가 암모니아(NH3)와 같은 질소 함유 전구체일 수 있을 것이다. 기판 위쪽의 가열된 반응 영역 내의 공간에서 유기금속 전구체 가스 스트림과 교차하는 제 2 전구체가 개별적인 가스 스트림 형태로 반응 챔버 내로 유동될 수 있을 것이다.
헬륨과 같은 캐리어 가스들을 이용하여 반응 챔버 내의 입자 억제 화합물 및 전구체의 유동을 촉진할 뿐만 아니라 챔버 내의 전체 압력을 조정할 수 있을 것이다. 캐리어 가스는 챔버내로 도입되기에 앞서서 전구체 가스와 미리 혼합될 수 있을 것이며, 및/또는 별개의 유동 라인을 통해서 혼합되지 않은 상태로 챔버로 도입될 수 있을 것이다.
전구체들이 반응 영역 내에서 반응할 때, 반응 생성물의 적어도 일부가 기판 상에서 핵생성 층을 형성한다(단계 310). 핵생성 층 증착 속도 및 필름 특성은 반응 챔버의 조정가능한 파라미터들에 의해서 적어도 부분적으로 제어될 수 있을 것이며, 그러한 파라미터들에는 챔버 온도, 압력, 및 유체 유동 속도, 그리고 전구체의 부분 압력, 캐리어 가스 및 입자 억제 화합물(들)이 포함될 것이다.
예를 들어, 기판 웨이퍼 주위의 반응 영역의 온도는 반응 챔버를 둘러싸는 외부의 열 공급원에 의해서 약 23 ℃로부터 약 1100 ℃로 조정될 것이다. 열 공급원은 반응기의 벽을 가열하고(즉, 고온-벽 형태의 반응 챔버), 이는 다시 기판을 가열한다. 고온-벽 형태의 반응 조건하에서, 전구체들이 반응 챔버 내로 도입됨에 따라 가열되고, 그리고 기판 뿐만 아니라 챔버 벽 주위에서도 반응할 수 있을 것이다. 많은 양의 전구체가 기판 표면으로부터 먼 곳에서 반응하여 사라지기 때문에, 고온-벽 형태의 MOCVD 챔버의 전구체 수율(즉, 증착된 필름의 양 대 사용된 전구체의 양)은 통상적으로 저온-벽 형태의 시스템 보다 낮을 것이다.
저온-벽 형태의 반응 챔버에서, 챔버 벽을 먼저 가열하지 않고 기판이 가열된다. 기판 가열은 기판 지지 구조물을 가열함으로써, 기판으로 지향되는 하나 또는 둘 이상의 가스(예를 들어, 전구체)의 스트림을 가열함으로써, 기판에 인접하여 플라즈마를 발생시킴으로써, 그리고 기판 상으로 광선(빛의 비임; 예를 들어, 적외선)을 전달함으로써, 그리고 기타 기술을 이용함으로써 이루어질 수 있을 것이다. 반응 챔버 내의 가장 고온 영역이 기판의 증착 표면 주위에 보다 더 집중되기 때문에, 기판으로부터 먼 곳에서의 전구체 반응이 보다 덜 일어날 것이고 그리고 전구체 수율이 고온-벽 형태의 프로세스 보다는 전체적으로 높을 것이다.
핵생성 층의 증착 속도 및 필름 품질은, 부분적으로, 기판의 온도에 의해서 결정될 수 있을 것이다. 증착 중의 기판 온도는 예를 들어, 약 200℃, 300℃, 400℃, 500℃, 600℃, 700℃, 700℃ 까지 또는 그 초과까지 될 수 있을 것이다. 기판 주변 및 반응 챔버 내로 유입되는 전구체 가스들의 스트림의 온도를 제어함으로써, 기판의 온도가 부분적으로 조정될 수 있을 것이다. 예를 들어, 반응 챔버 내로 도입되는 전구체 가스들은 약 15 ℃ 내지 약 300 ℃, 400℃, 500℃, 600℃, 또는 700℃ 또는 그 초과의 온도를 가질 수 있을 것이다.
핵생성 층의 증착 동안에 반응기 압력도 설정될 수 있을 것이다. 핵생성 층의 증착에 이용되는 프로세싱 조건들은 특정 용도에 따라서 달라질 수 있을 것이다. 이하의 표는 일반적으로 Ⅲ-Ⅴ 핵생성 층의 성장에 적합한 예시적인 전구체 유동 속도 및 프로세싱 조건들을 제공한다:
앞서서 명백하게 설명된 바와 같이, 프로세스는 임의의 주어진 프로세스에서의 모든 전구체들의 유동을 이용하지는 않을 것이다. 예를 들어, 일 실시예에서 GaN의 성장시에는 TMG, NH3, 및 N2 의 유동을 이용할 것이고; 다른 실시예에서, AlGaN의 성장시에는 TMG, TMA, NH3, 및 H2 를 이용할 것이며, 이때 TMA 및 TMG의 상대적인 유동 속도들은 증착 층의 원하는 Al:Ga 화학양론비를 제공하도록 선택될 것이며; 또 다른 실시예에서 InGaN 의 성장시에는 TMG, TMI, NH3, N2, 및 H2 를 이용할 것이고, 이때 TMI 및 TMG의 상대적인 유동 속도들은 증착 층의 원하는 In:Ga 화학양론비를 제공하도록 선택될 것이다.
반응 챔버 조건들은 예를 들어, 약 2 μm/hr 또는 그 초과, 약 5 μm/hr 또는 그 초과, 약 10 μm/hr 또는 그 초과, 약 25 μm/hr 또는 그 초과, 또는 약 50 μm/hr 또는 그 초과의 증착 속도로 핵생성 층을 형성하도록 설정될 수 있을 것이다. 두께가 약 100 Å 내지 약 1000 Å인 핵생성 층을 생성하기 위한 증착 시간은, 예를 들어, 약 1, 5, 10, 15, 20, 30, 45, 또는 60 분 또는 그 초과일 수 있을 것이다.
도 4를 참조하면, 본 발명의 실시예에 따라서 기판 상에 Ⅲ-Ⅴ 질화물 층을 형성하는 프로세스(400)의 단계들을 포함하는 흐름도가 도시되어 있다. 프로세스(400)는 반응 챔버(402)로 기판을 제공하는 단계를 포함한다. 또한, 프로세스는 그룹 Ⅲ 금속 및 할로겐 함유 전구체를 반응 챔버(404)로 도입하는 단계를 포함한다. 이들 전구체는, 예를 들어, 그룹 Ⅲ 금속 플루오라이드, 클로라이드, 브로마이드 및/또는 아이오다이드(예를 들어, AlF3, AlCl3, AlBr3, AlI3, GaF, GaCl, GaBr, GaI, InF, InCl, InBr, InI, 등)일 수 있다. 그룹 Ⅲ 유기금속 할라이드(예를 들어, 디메틸갈륨 클로라이드) 및/또는 그룹 Ⅲ 금속 유기할라이드 화합물(예를 들어, 트리클로로메틸갈륨)일 수도 있을 것이다.
프로세스(400)는 또한 별개의 하이드로겐 할라이드를 그룹 Ⅲ 금속 전구체와 동일한 또는 상이한 전구체 스트림 내에서 반응 챔버(406)로 도입하는 단계를 포함한다. 하이드로겐 할라이드는 HF, HCl, HBr, 또는 HI의 단독 또는 조합을 포함할 수 있을 것이다. 하이드로겐 할라이드는 반응 챔버 내에서 그룹 Ⅲ 금속 질화물 입자가 형성되고 성장하는 것을 억제하는 기생형 입자 억제 화합물로서 작용한다.
질소 함유 가스가 또한 반응 챔버(408)로 도입되어 Ⅲ-Ⅴ 질화물 필름의 그룹 V(즉, 질화물) 성분을 제공할 수 있을 것이다. 질소 함유 가스는 질소(N2), 암모니아(NH3), 히드라진, 디메틸히드라진, 페닐히드라진, 여기(excited) 질소, 등의 질소 함유 전구체를 포함할 수 있을 것이다.
그룹 Ⅲ 금속 및 할로겐 함유 전구체가 질소 함유 전구체와 반응하여 Ⅲ- V 질화물 층을 기판 상에 형성한다(단계 410). 기판 주위의 반응 영역 내에 존재하는 그룹 Ⅲ 금속 전구체 및 하이드로겐 할라이드로부터 분해된 할로겐들은 기생형 그룹 Ⅲ 금속 질화물 입자의 형성을 감속시킨다(slow). Ⅲ-Ⅴ 질화물 층은 AlN, GaN, 또는 InN과 같은 단일 금속 그룹 Ⅲ 금속 질화물, 또는 AlGaN, AlGaIn 등과 같은 둘 또는 셋 이상의 그룹 Ⅲ 금속 및 질소의 합금일 수 있을 것이다.
프로세스(400)는 둘 또는 셋 이상 반복될 수 있을 것이며, 이때 기판 온도, 반응 챔버 압력 및/또는 전구체들의 조성을 변화시켜 그룹 Ⅲ 금속 질화물 층의 다수-레벨 스택(stack; 적층체)을 형성할 수 있을 것이다. 예를 들어, 도 2에 도시된 GaN-계 LED 구조(200)와 유사하게, 프로세스(400)을 이용하여 기판 상에 GaN 버퍼 층을 먼저 형성하고, 이어서 n-GaN 도핑 층을 형성하고, 그리고 InGaN 합금, 이어서 p-AlGaN 도핑 층, 그리고 최종적으로 상단의 p-GaN 도핑 층을 형성할 수 있을 것이다.
도 5는 본 발명의 실시예에 따라서 기판 상에 Ⅲ-Ⅴ 층을 형성하는 다수-스테이지 프로세스(500)의 단계들을 도시한 흐름도이다. 이러한 프로세스(500)에서, 얇은 핵생성 층 및 두꺼운 벌크 Ⅲ-Ⅴ 질화물 층이 MOCVD에 의해서 기판 상에 증착된다. 프로세스(500)는 반응 챔버(502)로 기판을 제공하는 단계에 의해서 시작된다. 반응 챔버는 전용(dedicated) MOCVD 챔버 또는 MOCVD 및 HVPE 증착 모두를 실시할 수 있는 하이브리드 챔버일 수 있을 것이다.
이어서, 그룹 Ⅲ 금속 전구체(504)(예를 들어, TMG) 및 질소 함유 가스(506)(예를 들어, NH3)를 반응 챔버로 도입하는 단계를 포함하는 프로세스의 제 1 스테이지가 시작된다. 전구체 및 가스가 반응가 반응하고 그리고 제 1 증착 속도(508)로 기판 상에 핵생성 층을 형성한다. 핵생성 층은 약 1OOO Å 또는 그 기만(예를 들어, 100 Å 내지 약 1000 Å)의 두께를 가지고 그리고 벌크 Ⅲ-V 질화물 층 보다 느린 증착 속도로 증착될 것이다. 핵생성 층의 증착 속도가 충분히 낮아서(예를 들어, 5 μm/hr 미만), 상당한 개체수의 기생형 입자를 형성하지 않는 레벨로 전구체들의 부분 압력을 설정할 수 있을 것이다. 그에 따라, 입자 억제 화합물이 이러한 스테이지에서는 반응 챔버 내로 도입되지 않을 것이다.
그러나, 핵생성 층의 형성에 이어서, 벌크 질화물 층을 형성하는 증착 속도를 높이는 것이 바람직할 수 있을 것이다. 그에 따라, 핵생성 층이 형성되면, 입자 억제 화합물(예를 들어, HCl)이 반응 챔버 내로 도입될 수 있을 것이다(단계 510). 입자 억제 화합물은 그룹 Ⅲ 금속 전구체 및 질소 함유 가스가 반응 챔버 내로 여전히 유동하는 동안에 도입될 수 있을 것이고, 그리고 양 전구체들 또는 그 중 하나의 유동 속도가 증가될 때 도입될 수 있을 것이다. 그 대신에, 전구체들 및 입자 억제 화합물이 벌크 질화물 층의 형성을 위해서 도입되기에 앞서서, 핵생성 층을 형성하는 전구체의 유동이 중단될 수 있을 것이다. 핵생성 층의 중단과 벌크 층 전구체들의 개시 사이의 중간 기간 동안에, 어닐링 및 에칭 등(도시되지 않음)과 같은 부가적인 단계들이 핵생성 층 코팅 기판에 대해서 실시될 수 있을 것이다.
입자 억제 화합물을 도입하는 것은, 형성되는 기생형 입자의 개체수를 그에 비례하여 증가시키지 않고, 반응 챔버 내의 압력이 증대될 수 있게 허용한다(단계 512). 그룹 Ⅲ 금속 전구체 및/또는 질소 전구체의 부분 압력을 증가시킴으로써 반응 챔버 내의 압력을 높이는 것은 핵생성 층에 대한 제 1 증착 속도 보다 빠른 제 2 증착 속도(514)로 벌크 그룹 Ⅲ-Ⅴ 층이 형성될 수 있게 할 것이다. 예를 들어, 벌크 Ⅲ-Ⅴ 층 증착 속도는 약 5 μm/hr 내지 약 50 μm/hr(예를 들어, 5, 6, 7, 8, 9, 10, 12, 15, 25, 35, 40, 45, 또는 50 μm/hr)일 수 있다. 벌크 Ⅲ-Ⅴ 층의 증착은 그 층이 소정 두께(예를 들어, 약 1 μm 내지 약 5 μm 두께)에 도달할 때 종료된다.
도 5에 도시된 다수-스테이지 프로세스는 핵생성 층 및 벌크 Ⅲ-Ⅴ 층 모두를 기판 상에 증착하기 위해서 MOCVD를 이용한다. 도 6 및 도 7은 기판 상에 Ⅲ-Ⅴ 필름을 형성하기 위해서 MOCVD 및 HVPE의 조합을 이용하는 추가적인 프로세스를 설명하는 흐름도를 도시한다.
도 6은 본 발명의 실시예에 따라서 기판 상에 Ⅲ-Ⅴ 층을 형성하는 MOCVD 및 HVPE가 조합된 프로세스(600)에서의 단계들을 도시한 흐름도이다. 이러한 프로세스에서, MOCVD는 기판 상에 제 1 MOCVD 층(예를 들어, Ⅲ-V 핵생성 층)을 형성하기 위해서 이용되고, 그리고 HVPE는 제 2 HVPE 층(예를 들어, 벌크 Ⅲ-V 층)을 형성하기 위해서 이용된다. 프로세스(600)는 반응 챔버(602)로 기판을 제공하는 단계를 포함할 것이다. 그룹 Ⅲ 유기금속 전구체가 반응 챔버(604)로 도입될 것이고, 그리고 할로겐 전구체가 또한 도입될 수 있을 것이다(단계 606). 할로겐 전구체(예를 들어, HCl)는 기생형 입자 억제 화합물로서 작용할 것이고, 그리고 그룹 Ⅲ 유기금속 전구체 보다 상당히 낮은 부분 압력 및/또는 유동 속도로 도입될 수 있을 것이다. 예를 들어, 할로겐 함유 화합물은 그룹 Ⅲ 유기금속 전구체의 부분 압력의 약 절반, 약 1/3, 약 1/4, 약 1/5, 약 1/6, 약 1/7, 약 1/8, 약 1/9, 약 1/10, 약 1/12, 약 1/15, 약 1/100의 부분 압력으로 도입될 수 있을 것이다.
질소 전구체가 또한 반응 챔버(608) 내로 도입될 수 있을 것이다. 질소 전구체(예를 들어, 암모니아)는 그룹 Ⅲ 유기금속 전구체와 동일한 또는 그보다 높은 유동 속도 및/또는 부분 압력으로 도입될 수 있을 것이며, 할로겐 전구체와 같은 또는 그보다 낮은 유동 속도 및 부분 압력으로 도입될 수 있을 것이다.
그룹 Ⅲ 유기금속 전구체 및 질소 전구체가 반응하고 그리고 기판 상에 MOCVD 층을 형성할 수 있을 것이다(단계 610). MOCVD 층은 5 μm/hr까지의 또는 그 초과의 속도로 형성될 수 있을 것이고, 그리고 약 10 Å 및 약 1 ㎛의 두께를 가질 수 있을 것이다.
MOCVD 층의 증착에 이어서, 반응 챔버의 온도가 HVPE 층의 증착에 맞춰 조정될 것이다(단계 612). 통상적으로, HVPE 층의 증착을 위해서 온도가 상승될 것이다. 예를 들어, Ⅲ-Ⅴ 질화물 층을 형성하기 위한 HVPE 증착 온도는 약 550 ℃ 내지 약 1100 ℃(예를 들어, 약 800℃ 내지 약 1000℃)이다. 이는 MOCVD에 의해서 Ⅲ-Ⅴ 질화물 층을 형성하는데 통상적으로 이용되는 온도(예를 들어, 약 100℃ 내지 약 700℃, 일반적으로는 약 300℃ 내지 약 700℃) 보다 높을 것이다.
이어서, 그룹 Ⅲ HVPE 전구체가 반응 챔버로 도입될 것이다(단계 614). 할로겐 가스(예를 들어, HCl)를 가열된 그룹 Ⅲ 금속(예를 들어, 액체 갈륨, 알루미늄 및/또는 인듐)의 위로 통과시킴으로써, 그룹 Ⅲ HVPE 전구체가 형성될 것이다. 할로겐 가스와 금속 증기가 반응하여 캐리어 가스(예를 들어, 헬륨, 수소)에 의해서 반응 챔버 내로 도입되는 금속 할라이드(예를 들어, GaCl)를 형성한다.
그룹 Ⅲ HVPE 전구체가 반응 챔버 내에서 질소 전구체와 반응할 것이다(단계 616). 반응 생성물의 적어도 일부가 기판 상에 증착되어 MOCVD 층 상에 HVPE 층을 형성한다(단계 618). HVPE 층은 MOCVD 층 보다 빠른 증착 속도(예를 들어, 약 50 μm/hr까지)로 형성될 수 있을 것이다. HVPE 층은 또한 MOCVD 층 보다 두꺼울 수 있다(예를 들어, MOCVD 층 두께의 2, 3, 4, 5, 6, 10, 20, 또는 그 이상의 배수).
도 6에 도시된 프로세스(600)는 MOCVD 및 HVPE 모두를 실시할 수 있는 단일 반응 챔버 내에서 또는 단일 증착 기술을 위해서만 할당된 별개의 반응 챔버들 내에서 실시될 수 있을 것이다. 프로세스(600)를 실시하기 위해서 이용되는 시스템은 또한 에칭, 리소그래피, 및 어닐링 등의 기타 부가적인 프로세스 단계들의 반응 챔버들을 포함할 수 있을 것이다.
도 6에서, 프로세스(600)는 기판 상에 제 1 층을 형성하기 위해서 MOCVD를 이용하고 그리고 제 1 층 상에 제 2 층을 형성하기 위해서 HVPE를 이용하였다. 도 7은 MOCVD 층에 앞서서 HVPE 층을 형성함으로써 HVPE 및 MOCVD 증착 시퀀스를 역전시킨 프로세스(700)의 실시예를 도시한다. 프로세스(700)는 동일하게 반응 챔버로 기판을 제공함으로써 시작될 수 있을 것이다. 그러나, 그룹 Ⅲ HVPE 전구체가 먼저, 질소 함유 가스와 함께(단계 706), 반응 챔버로 도입된다(단계 704). 그룹 Ⅲ HVPE 전구체 및 질소 함유 가스가 반응하여(단계 708) 제 1 HVPE 층을 기판 상에 형성한다(단계 710).
프로세스(60)가 단일 반응 챔버에서 실시될 때, 챔버내의 프로세스 조건들은 제 2의 MOCVD 증착에 맞춰 재구성될 수 있을 것이다. 이러한 재구성은, 그룹 Ⅲ HVPE 전구체의 유동을 중단시키는 단계, 및 MOCVD 증착을 위해서 반응 챔버의 온도를 조정하는 단계(712)를 포함할 수 있을 것이다. 통상적으로, 이러한 것은 반응 챔버의 온도 감소를 의미한다. 이어서, 그룹 Ⅲ 유기금속 전구체가 할로겐 전구체(단계 716) 및 질소 함유 가스와 함께 반응 챔버 내로 도입되어(단계 714) HVPE 층과 기판 상에 MOCVD 층을 형성할 수 있을 것이다(단계 718). 질소 함유 가스는 HVPE 및 MOCVD 층의 증착 동안에 연속적으로 유동할 수 있을 것이고, 또는 증착들 사이에 중단될 수도 있을 것이다.
예시적인 기판 프로세싱 시스템
도 8a는 예시적인 화학기상증착("CVD") 시스템(810)의 개략도로서, 각각의 증착 단계들이 실시될 수 있는 챔버의 기본적인 구조를 도시하고 있다. 이러한 시스템은 열적인, 저압의(thermal, sub-atmospheric) CVD("SACVD") 프로세스를 실시하기에 적합할 뿐만 아니라, 리플로우(reflow), 드라이브-인(drive-in), 세정(cleaning), 에칭, 증착 및 게터링(gettering) 프로세스와 같은 다른 프로세스들을 실시하기에도 적합하다. 이하에서 설명하는 예에서 명백한 바와 같이, 일부 경우에 다른 챔버로 이송되기에 앞서서 다수-단계 프로세스들이 각각의 챔버 내에서 여전히 실시될 수 있을 것이다. 시스템의 주요 성분(components; 부품)에는, 가스 전달 시스템(820)으로부터 프로세스 가스 및 기타 가스를 수용하는 진공 챔버(815), 진공 시스템(825), 원격 플라즈마 시스템(830) 등이 포함된다. 이러한 성분들 및 다른 성분들에 대해서는 이하에서 보다 구체적으로 설명한다. 또한, 양면(dual-sided) 증착을 할 수 있도록 이용되는 구조적 장치에 관한 구체적인 내용이 이하에서 설명된다. 도면들이 설명을 위해서 단일 챔버의 구조만을 도시하고 있지만, 유사한 구조의 다수의 챔버들이 클러스터 툴의 일부로서 제공될 수 있다는 것을 이해할 수 있을 것이고, 각 챔버들은 전체적인 제조 프로세스의 여러 측면들을 실시하도록 구성될 수 있을 것이다. 챔버 프로세싱을 지원하기 위한 도면의 다른 성분들은, 비록 일부 경우에 각각의 지원 성부들이 각 챔버를 개별적으로 지원하도록 제공될 수도 있을 것이지만, 다수의 챔버들 사이에서 공유될 수 있을 것이다.
CVD 장치(810)는 가스 반응 구역(816)과 함께 진공 챔버(815)를 형성하는 외장 조립체(837)를 포함한다. 가스 분배 플레이트(821)는 기판 지지 구조물(808)에 의해서 정위치에서 유지되는 하나 또는 둘 이상의 기판(809)을 향해서 그리고 천공 홀들을 통해서 반응 가스들 및 퍼지 가스와 같은 기타 가스들을 분산시킨다. 가스 분배 플레이트(821)와 기판(809) 사이에는 가스 반응 구역(816)이 위치된다. 히터(826)가 여러 증착 프로세스 및 에칭 또는 세정 프로세스를 허용하기 위한 여러 위치들 사이에서 제어가능하게 이동될 수 있을 것이다. 중간 보드(도시되지 않음)는 기판의 위치에 대한 정보를 제공하기 위한 센서들을 포함한다.
여러 가지 구조가 히터(826)를 위해서 이용될 수 있을 것이다. 예를 들어, 본 발명의 일부 실시예들은 바람직하게 하나 또는 둘 이상의 기판(809)의 양 측면에 대해서 개별적인 열 공급원을 제공하기 위해서 기판 지지 구조물(808)의 양 측면 상에 밀접하게 배치된 플레이트 쌍을 이용한다. 단지 예로서, 특정 실시예들에서, 플레이트들은 그라파이트 또는 SiC를 포함할 수 있을 것이다. 다른 경우에, 히터(826)들은 세라믹에 둘러싸인 전기 저항형 가열 요소(도시되지 않음)를 포함한다. 세라믹은 잠재적인 부식성의 챔버 분위기로부터 가열 요소를 보호하고 그리고 히터가 약 1200 ℃ 까지의 온도를 가질 수 있게 한다. 예시적인 실시예에서, 진공 챔버(815)에 노출되는 히터(826)의 모든 표면들은 알루미늄 산화물(Al2O3 또는 알루미나) 또는 알루미늄 질화물과 같은 세라믹 물질로 제조된다. 다른 실시예들에서, 히터(826)는 램프 히터들을 포함한다. 그 대신에, 텅스텐, 레늄, 이리듐, 토륨, 또는 이들의 합금과 같은 내화 금속으로 이루어진 순수(bare) 금속 필라멘트 가열 요소를 이용하여 기판을 가열할 수 있을 것이다. 그러한 램프 히터 구성은 1200 ℃ 보다 높은 온도를 달성할 수 있을 것이며, 이는 특정 용도에서 유용할 수 있을 것이다.
반응 가스 및 캐리어 가스가 가스 전달 시스템(820)으로부터 공급 라인(843)을 통해서 가스 혼합 박스(가스 혼합 블록이라고도 한다)(844)로 공급되며, 그 곳에서 함께 혼합되고 가스 분배 플레이트(821)로 전달된다. 가스 전달 시스템(820)은 다양한 가스 공급원 및 적절한 공급 라인을 포함하고, 이른바 당업자가 이해할 수 있는 바와 같이 각 공급원의 선택된 양을 챔버(815)로 전달한다. 일반적으로, 각 가스에 대한 공급 라인은 관련 라인으로 가스의 유동을 자동적으로 또는 수동적으로 차단하기 위해서 이용될 수 있는 차단 밸브, 그리고 공급 라인을 통한 가스 또는 액체의 유동을 측정하는 질량 유동 제어부 또는 다른 타입의 제어부를 포함한다. 시스템(810)에 의해서 운영되는 프로세스에 따라서, 공급원들의 일부가 가스 대신에 실질적으로 액체 공급원일 수 있다. 액체 공급원이 이용되는 경우에, 가스 전달 시스템은 액체를 증발시키기 위한 액체 분사 시스템 또는 기타 적절한 기구(예를 들어, 기포 발생장치(bubbler))를 포함한다. 이어서, 당업자가 이해할 수 있는 바와 같이, 액체로부터의 증기가 일반적으로 캐리어 가스와 혼합된다.
가스 혼합 박스(844)는 프로세스 가스 공급 라인(843)에 그리고 세정/에칭 가스 도관(847)에 커플링된 듀얼(dual) 유입구 혼합 블록이다. 밸브(846)가 작동되어 가스 도관(847)으로부터 가스 혼합 블록(844)으로 가스 또는 플라즈마가 전달될 수 있게 허용하거나 밀봉한다. 가스 도관(847)은 일체형의 원격 마이크로파 플라즈마 시스템(830)으로부터 가스를 수용하며, 상기 시스템(830)은 입력 가스들을 수용하기 위한 유입구(857)를 구비한다. 증착 프로세싱 동안에, 플레이트(821)로 공급되는 가스는 기판 표면을 향해서 환기(vent)되고(화살표(823)으로 표시됨), 그 곳에서 층류 형태로 기판 표면을 가로질러 방사상으로 균일하게 분포될 수 있을 것이다.
퍼지 가스가 가스 분배 플레이트(821)로부터 및/또는 유입구 포트 또는 튜브(도시되지 않음)로부터 외장 조립체(837)의 바닥 벽을 통해서 진공 챔버(815) 내로 전달될 수 있을 것이다. 챔버(815)의 바닥으로부터 도입되는 퍼지 가스는 유입구 포트로부터 히터(826)를 통해서 그리고 환형 펌핑 채널(840)로 유동한다. 진공 펌프(도시되지 않음)를 포함하는 진공 챔버(825)가 배기 라인(860)을 통해서 가스를 배기한다(화살표(824)로 표시함). 배기 가스 및 포획 입자들이 환형 펌핑 채널(840)로부터 배기 라인(860)을 통해서 인출되는 속도는 스로틀 밸브 시스템(863)에 의해서 제어된다.
원격 플라즈마 시스템(830)은 프로세스 기판으로부터 잔류물을 세정 또는 에칭하는 챔버와 같은 선택된 용도를 위한 플라즈마를 생산할 수 있다. 원격 플라즈마 시스템(830) 내에서 입력 라인(857)을 통해서 공급되는 전구체들로부터 생성된 플라즈마 종(species)이 도관(847)을 통해서 전달되고 가스 분배 플레이트(821)를 통해서 진공 챔버(815)로 분산된다. 원격 플라즈마 시스템(830)은 챔버(815)의 아래쪽에 일체형으로 위치되고 그리고 장착되며, 이때 도관(847)은 챔버를 따라서 게이트 밸브(846)로 그리고 챔버(815)의 위쪽에 위치하는 가스 혼합 박스(844)로 연장된다. 세정 용도를 위한 전구체 가스들은 플로린, 클로린 및/또는 기타 반응성 요소들을 포함할 수 있을 것이다. 원격 플라즈마 시스템(830)은 또한 층 증착 프로세스 동안에 원격 마이크로파 플라즈마 시스템(830)으로 적절한 증착 전구체 가스를 유동시키면서 CVD 층을 증착하도록 구성될 수 있을 것이다.
증착 챔버(815)의 벽과 배기 통로와 같은 주변 구조물의 온도는 챔버 벽 내부의 채널(도시되지 않음)을 통해서 열-교환 액체를 순환시킴으로써 추가적으로 제어될 수 있을 것이다. 열-교환 액체는 원하는 효과에 따라서 챔버 벽을 가열 또는 냉각시키는데 이용될 수 있을 것이다. 예를 들어, 고온 액체는 열적 증착 프로세스 동안에 열적 구배(thermal gradient)를 유지하는데 도움을 줄 수 있을 것이고, 반면에 저온 액체는 인-시츄 플라즈마 프로세스 동안에 시스템으로부터 열을 제거하는데 또는 챔버의 벽에 증착 생성물이 형성되는 것을 제한하는데 이용될 수 있을 것이다. 또한, 가스 분배 매니폴드(821)가 열 교환 통로(도시되지 않음)를 구비한다. 통상적인 열-교환 유체에는 수성 에틸렌 클리콜 혼합물, 유성 열 전달 유체, 또는 유사한 유체가 포함된다. "열 교환기"에 의한 가열로서 지칭되는 이러한 가열은 바람직하지 못한 반응 생성물의 응축을 감소 또는 방지하고, 그리고 저온의 진공 통로 상에서 응축되거나 가스 유동이 없는 동안에 프로세싱 챔버로 역유입되는 경우에 프로세스를 오염시킬 수 있는 프로세스 가스의 휘발성 생성물 또는 기타 오염물질의 제거를 도울 수 있을 것이다.
시스템 제어부(835)는 증착 시스템의 활동(activities) 및 작업 파라미터를 제어한다. 시스템 제어부(835)는 컴퓨터 프로세서(850) 및 상기 프로세서(850)에 커플링된 컴퓨터-판독형 메모리(855)를 포함한다. 프로세서(850)는 메모리(855)에 저장된 컴퓨터 프로그램(858)과 같은 시스템 제어 소프트웨어를 실행한다. 바람직하게, 메모리(855)는 하드 디스크 드라이브이나, ROM 또는 플래시 메모리와 같은 다른 종류의 메모리가 될 수도 있을 것이다. 시스템 제어부(835)는 또한 플로피 디스크 드라이브, CD, 또는 DVD 드라이브(도시되지 않음)를 포함한다.
프로세서(850)는 시스템 제어 소프트웨어(프로그램 858)에 따라서 작동되며, 그러한 소프트웨어는 타이밍, 가스들의 혼합, 챔버 압력, 챔버 온도, 마이크로파 파워 레벨, 받침대 위치, 및 특정 프로세스의 기타 파라미터들을 지시하는 컴퓨터 명령어들을 포함한다. 이러한 파라미터들 및 다른 파라미터들의 제어는 시스템 제어부(835)를 히터, 스로틀 밸브, 원격 플라즈마 시스템 및 다양한 밸브 그리고 가스 전달 시스템(820)과 연관된 질량 유동 제어부로 소통가능하게(communicatively) 커플링하는 제어 라인(865)(도 8a에 일부만이 도시됨)에 걸쳐 실행된다.
프로세서(850)는 단일-보드 컴퓨터, 아날로그 및 디지털 입/출력 보드, 인터페이스 보드 및 스텝퍼 모터 제어부 보드를 포함하는 카드 랙(card rack; 도시되지 않음)을 구비한다. CVD 시스템(810)의 여러 부분들은 보드, 카드 케이지, 및 커넥터 치수 및 타입을 규정하고 있는 Versa Modular European(VME) 표준을 준수한다. VME 표준은 또한 16-비트 데이터 버스 및 44-비트 어드레스 버스를 가지는 버스 구조를 규정하고 있다.
도 8b는 CVD 시스템(810)의 작동을 모니터링하고 제어하는데 이용될 수 있는 사용자 인터페이스를 개략적으로 도시한 도면이다. 도 8b는 CVD 시스템(810)이 다수 챔버 시스템 중 하나인 클러스터 툴의 다수 챔버 특성을 명확하게 도시하고 있다. 그러한 다수-챔버 시스템에서, 기판들은 추가적인 프로세싱을 위해서 컴퓨터-제어형 로봇을 통해서 하나의 챔버로부터 다른 챔버로 이송될 수 있을 것이다. 일부 경우에, 기판들은 진공 또는 선택된 가스 분위기에서 이송된다. 사용자와 시스템 제어부(835) 사이의 인터페이스는 CRT 모니터(837a) 및 라이트 펜(light pen; 873b) 이다. 메인프레임 유닛(875)은 CVD 장치(810)를 위한 전기, 배관, 및 기타 지원 기능을 제공한다. CVD 장치의 설명된 실시예와 양립될 수 있는 예시적인 멀티-챔버 시스템 메인프레임 유닛으로서, 미국 캘리포니아 산타클라라에 소재하는 APPLIED MATERIALS, INC.가 현재 상업적으로 공급하는 Precision 5000™ 및 Centura 5200™ 시스템이 있다.
일 실시예에서, 2개의 모니터(837a)가 사용되며, 그중 하나는 작업자를 위해서 청정실 벽(871)에 장착되고, 다른 하나는 서비스 기술자를 위해서 벽(872)의 뒤쪽에 장착된다. 양 모니터(837a)들은 동일한 정보를 동시에 디스플레이하나, 하나의 라이트 펜(873b)만이 인에이블링될(enabled) 것이다. 라이트 펜(873b)은 그 펜의 선단부 내의 광 센서를 이용하여 CRT 디스플레이에 의해서 방출되는 빛을 탐지한다. 특정 스크린 또는 기능을 선택하기 위해서, 작업자는 디스플레이 스크린의 지정 구역을 터치하고 그리고 펜(873b)의 버튼을 누른다. 터치된 구역은 밝은 색으로 변화되고, 또는 새로운 메뉴 또는 스크린이 디스플레이되며, 그에 따라 라이트 펜과 디스플레이 스크린 사이의 통신을 확인할 수 있게 된다. 당업자가 용이하게 이해할 수 있는 바와 같이, 키보드, 마우스, 또는 다른 포인팅 장치 또는 통신 장치와 같은 다른 입력 장치를 라이트 펜(873b)에 부가하여 또는 그 대신에 이용하여, 사용자가 프로세서와 통신할 수 있게 허용할 수 있을 것이다.
도 8c는 도 8a의 예시적인 CVD 장치를 위한 시스템 제어 소프트웨어, 컴퓨터 프로그램(858)의 계층적(hierarchical) 제어 구조의 일 실시예를 도시한 블록도이다. 층을 증착하기 위한, 건식 챔버 세정을 실시하기 위한, 또는 리플로우나 드라이브-인 작업을 실시하기 위한 것과 같은 프로세스들은 프로세서(850)에 의해서 실행되는 컴퓨터 프로그램(858)의 제어하에서 실시될 수 있을 것이다. 컴퓨터 프로그램 코드는 68000 어셈블리 언어, C, C++, Pascal, Fortran, 또는 기타 언어와 같은 임의의 통상적인 컴퓨터 판독형 프로그래밍 언어로 작성될 수 있을 것이다. 적절한 프로그램 코드가 통상적인 텍스트 에디터를 이용하여 단일 파일, 또는 다수 파일로 도입(enter)되고 그리고 시스템 메모리와 같은 컴퓨터-이용 매체에서 저장 또는 구현된다.
만약, 도입된 코드 텍스트가 높은-레벨의 언어라면, 코드가 컴파일링되고, 그리고 결과적인 컴파일러 코드가 미리 컴파일링된 Windows™ 라이브러리 루틴의 목적 코드(object code)와 링크된다. 링크된 컴파일링 목적 코드를 실행하기 위해서, 시스템 사용자는 목적 코드를 가져오고, 컴퓨터 시스템이 코드를 메모리에 로딩하게 하며, CPU는 상기 메모리로부터 코드를 읽고 실행하여 프로그램에서 식별되는 과제를 실행하도록 장치를 구성한다.
라이트 펜을 이용하여 CRT 모니터 상에 디스플레이되는 메뉴 또는 스크린들에 의해서 제공되는 선택사항을 선택함으로써, 사용자는 프로세스 세트 넘버(process set number) 및 프로세스 챔버 넘버를 프로세스 선택장치 서브루틴(selector subroutine; 880)으로 입력한다. 특정 프로세스들의 실행에 필수적인 프로세스 파라미터들의 미리 정해진 세트인 프로세스 세트들이 미리 규정된 세트 넘버에 의해서 식별된다. 프로세스 선택장치 서브루틴(880)은 (i) 희망하는 프로세스 챔버 및 (ii) 희망하는 프로세스를 실행하기 위한 프로세스 챔버를 작동시키는데 필요한 희망하는 프로세스 파라미터들의 세트를 식별한다. 특정 프로세스를 실행하기 위한 프로세스 파라미터들은, 예를 들어, 프로세스 가스 조성 및 유동 속도, 받침대 온도, 챔버 벽 온도, 압력 및 마그네트론 파워 레벨과 같은 플라즈마 조건 등의 프로세스 조건들을 포함한다. 프로세스 선택장치 서브루틴(880)은 챔버 내에서 특성 시간에 어떠한 종류의 프로세스(예를 들어, 증착, 웨이퍼 세정, 챔버 세정, 챔버 게터링, 리플로잉)가 실행되는지를 제어한다. 일부 실시예에서, 하나 이상의 프로세스 선택장치 서브루틴이 있을 수 있다. 프로세스 파라미터들은 레시피(recipe) 형태로 사용자에게 제공되며 라이트 펜/CRT 모니터 인터페이스를 이용하여 입력될 수 있을 것이다.
프로세스 시퀀서 서브루틴(882)는 프로세스 선택장치 서브루틴(880)로부터 식별된 프로세스 챔버 및 프로세스 파라미터를 수용하기 위한, 그리고 여러 프로세스 챔버들의 작동을 제어하기 위한 프로그램 코드를 가진다. 프로세스 시퀀서 서브루틴(882)이 작동되어 희망하는 시퀀스에 따라서 선택된 프로세스를 스케쥴링(schedule)하도록, 다수의 사용자가 프로세스 세트 넘버 및 프로세스 챔버 넘버를 입력할 수 있을 것이고, 또는 한명의 사용자가 다수의 프로세스 세트 넘버 및 프로세스 챔버 넘버를 입력할 수 있을 것이다. 바람직하게, 프로세스 시퀀서 서브루틴(882)은 (i) 챔버들이 사용되고 있다면 그러한 프로세스 챔버들의 작업을 모니터링하는 단계, (ⅱ) 사용되고 있는 챔버 내에서 어떠한 프로세스들이 실행되고 있는 지를 결정하는 단계, 그리고 (ⅲ) 실행하고자 하는 프로세스의 타입 및 프로세스 챔버의 이용가능성을 기초로 하여 희망하는 프로세스를 실행하는 단계를 실시하기 위한 프로그램 코드를 포함한다.
폴링(polling) 방법과 같은 통상적인 프로세스 챔버 모니터링 방법이 이용될 수 있을 것이다. 어떠한 프로세스가 실행되어야 하는지를 스케쥴링할 때, 프로세스 시퀀서 서브루틴(882)은 선택된 프로세스에 대한 희망 프로세스 조건들과 대비하여 사용되고 있는 프로세스 챔버의 현재 조건을 고려하도록 디자인될 수 있을 것이고, 또는 사용자가 입력한 각각의 특별한 요청의 "에이지(age)"를 고려하도록, 또는 시스템 프로그래머가 스케쥴링 우선순위를 결정하기 위해서 포함하기를 원하는 임의의 다른 관련 인자를 고려하도록 디자인될 수 있을 것이다.
프로세스 시퀀서 서브루틴(882)이 어떠한 프로세스 챔버 및 프로세스 세트 조합이 다음에 실행될 것인가를 결정하면, 프로세스 시퀀서 서브루틴(882)은 특정 프로세스 세트 파라미터들을 챔버 매니저 서브루틴(885)으로 전달함으로써 프로세스 세트의 실행을 시작하며, 상기 챔버 매니저 서브루틴(885)은 프로세스 시퀀서 서브루틴(882)에 의해서 결정된 프로세스 세트에 따라서 특정 프로세스 챔버에서의 다수의 프로세싱 과제를 제어한다. 예를 들어, 챔버 매니저 서브루틴(885)은 챔버(815) 내에서 CVD 및 세정 프로세스 작업을 제어하기 위한 프로그램 코드를 가진다. 챔버 매니저 서브루틴(885)은 또한 선택된 프로세스 세트를 실행하는데 필요한 챔버 성분들의 작업을 제어하는 다양한 챔버 성분 서브루틴의 실행을 제어한다. 챔버 성분 서브루틴의 예에는, 기판 위치결정 서브루틴(890), 프로세스 가스 제어 서브루틴(891), 압력 제어 서브루틴(892), 히터 제어 서브루틴(893) 및 원격 플라즈마 제어 서브루틴(894)가 포함된다. CVD 챔버의 특정 구성에 따라서, 일부 실시예들은 상기 서브루틴들 모두를 포함할 수 있는 한편, 다른 실시예들은 상기 서브루틴들 중 일부만을 포함하거나 상기 예시되지 않은 다른 서브루틴들을 포함할 수 있을 것이다. 당업자는 프로세스 챔버 내에서 실행하고자 하는 프로세스가 무엇인지에 따라서 다른 챔버 제어 서브루틴들이 포함될 수 있다는 것을 용이하게 이해할 것이다. 다수 챔버 시스템에서, 부가적인 챔버 매니저 서브루틴(886, 887)이 다른 챔버들의 활동을 제어한다.
작업 중에, 챔버 매니저 서브루틴(885)은 실행되고 있는 특정 프로세스에 따라서 프로세스 성분 서브루틴들을 선택적으로 스케쥴링하거나 요청(call)한다. 챔버 매니저 서브루틴(885)은 프로세스 시퀀서 서브루틴(882)이 어떠한 프로세스 챔버 및 프로세스 세트가 다음번에 실행되어야 하는지를 스케쥴링하는 것과 유사하게 프로세스 성분 서브루틴들을 스케쥴링한다. 통상적으로, 챔버 매니저 서브루틴(885)은 여러 챔버 성분들을 모니터링하는 단계, 실행하고자 하는 프로세스에 대한 프로세스 파라미터들을 기초로 어떠한 성분들이 작동되어야 하는지를 결정하는 단계, 그리고 상기 모니터링 및 결정 단계에 응답하여 챔버 성분 서브루틴의 실행을 개시하는 단계를 포함한다.
이하에서는 도 8a 및 도 8c를 참조하여 특정 챔버 성분 서브루틴의 작동에 대해서 설명한다. 기판 위치결정 서브루틴(890)은 기판을 히터(826) 상에 로딩하기 위해서 그리고, 선택적으로, 기판을 챔버 내의 희망 높이로 상승시켜 기판과 가스 분배 매니폴드(821) 사이의 간격을 제어하기 위해서 이용되는 챔버 성분들을 제어하기 위한 프로그램 코드를 포함한다. 기판이 프로세스 챔버(815) 내로 로딩될 때, 히터(826)가 기판 수용을 위해서 하강되고 그리고 이어서 히터(826)가 희망 높이까지 상승된다. 작업 중에, 기판 위치결정 서브루틴(890)은 챔버 매니저 서브루틴(885)으로 전달된 지지부 높이와 관련한 프로세스 세트 파라미터들에 응답하여 히터(826)의 이동을 제어한다.
프로세스 가스 제어 서브루틴(891)은 프로세스 가스 조성 및 유동 속도를 제어하기 위한 프로그램 코드를 가진다. 프로세스 가스 제어 서브루틴(891)은 안전 차단 밸브의 상태를 제어하고, 그리고 질량 유동 제어부를 조정하여 희망하는 가스 유동 속도를 획득한다. 통상적으로, 프로세스 가스 제어 서브루틴(891)은 가스 공급 라인들을 개방함으로써 그리고 반복적으로 (ⅰ) 필요한 질량 유동 제어부를 판독하는 단계, (ⅱ) 그 판독 값을 챔버 매니저 서브루틴(885)으로부터 수신된 희망 유동 속도와 비교하는 단계, 그리고 (ⅲ) 가스 공급 라인의 유동 속도를 필요에 따라서 조정하는 단계에 의해서 작동된다. 또한, 프로세스 가스 제어 서브루틴(891)은 위험 등급과 관련하여 가스 유동 속도를 모니터링하는 단계, 그리고 위험 조건이 탐지되었을 때 안전 차단 밸브를 활성화시키는 단계를 포함한다. 대안적인 실시예는 하나 이상의 프로세스 가스 제어 서브루틴을 가질 수 있고, 그러한 각각의 서브루틴은 특정 타입의 프로세스 또는 특정 가스 라인 세트를 제어할 수 있을 것이다.
일부 프로세스에서, 반응성 프로세스 가스들이 도입되기에 앞서서 챔버 내의 압력을 안정화하기 위해서, 질소 또는 아르곤과 같은 불활성 가스가 챔버 내로 유동된다. 이러한 프로세스들의 경우에, 프로세스 가스 제어 서브루틴(891)은 챔버 내의 압력을 안정화하는데 필요한 시간 동안 챔버 내로 불활성 가스를 유동시키기 위한 단계를 포함하도록, 그리고 이어서 전술한 단계들을 실행하도록 프로그램될 수 있을 것이다. 추가적으로, 프로세스 가스가 액체 전구체로부터 증기화되는 경우에, 프로세스 가스 제어 서브루틴(891)은 기포발생 조립체 내의 액체 전구체를 통해서 헬륨과 같은 전달 가스를 버블링하기 위한 단계, 또는 헬륨과 같은 캐리어 가스의 스트림으로 액체를 스프레이 또는 분출시키기 위한 액체 분사 시스템을 제어하는 단계를 포함하도록 작성될 수 있을 것이다. 이러한 타입의 프로세스를 위해서 기포발생장치가 이용될 때, 희망하는 프로세스 가스 유동 속도를 얻기 위해서, 프로세스 가스 제어 서브루틴(891)은 전달 가스의 유동, 기포발생장치 내의 압력, 그리고 기포발생장치의 온도를 조정한다. 전술한 바와 같이, 희망하는 프로세스 가스 유동 속도는 프로세스 파라미터들에 따라서 프로세스 가스 제어 서브루틴(891)으로 전달된다.
또한, 프로세스 가스 제어 서브루틴(891)은, 해당 프로세스 가스 유동 속도를 위해서 필요한 값들을 포함하는 저장된 테이블에 접속함으로써, 희망하는 프로세스 가스 유동 속도를 획득하기 위해서 필요한 전달 가스 유동 속도, 기포발생장치 압력, 및 기포발생장치 온도를 획득하는 단계를 포함한다. 일단 필요한 값들이 얻어지면, 전달 가스 유동 속도, 기포발생장치 압력 및 기포발생장치 온도가 모니터링되고, 필요 값들과 비교되며 그러한 비교에 따라서 조정된다.
압력 제어 서브루틴(892)은 챔버의 배기 시스템 내의 스로틀 밸브의 개구 크기를 조정함으로써 챔버 내의 압력을 제어하기 위한 프로그램 코드를 포함한다. 스로틀 밸브의 개구 크기는 프로세스 가스 유동, 프로세스의 크기, 및 배기 시스템에 대한 펌핑 설정점(set-point) 압력과 관련된 희망 레벨로 챔버 압력을 조정하도록 설정된다. 압력 제어 서브루틴(892)이 포함되는 경우에, 희망 또는 목표 압력 레벨이 챔버 매니저 서브루틴(885)으로부터 파라미터로서 수신된다. 압력 제어 서브루틴(892)은 챔버에 연결된 하나 이상의 통상적인 압력계를 판독함으로써 챔버 내의 압력을 측정하고, 측정된 값(들)을 목표 압력과 비교하며, 저장된 압력 테이블로부터의 목표 압력에 상응하는 비례-적분-미분("PID") 값들을 획득하고, 그리고 PID 값에 따라서 스로틀 밸브를 조정한다. 그 대신에, 챔버 내의 압력을 조정하기 위해서 스로틀 밸브를 특정 개구 크기로 즉, 일정한(fixed) 위치로 개방 및 폐쇄하도록 압력 제어 서브루틴(892)이 작성될 수 있을 것이다. 이러한 방식으로 배기 용량을 제어하는 것은 압력 제어 서브루틴(892)의 피드백 제어 특성을 포함하지 않는다.
히터 제어 서브루틴(893)은 기판을 가열하기 위해서 이용되는 가열 유닛으로 공급되는 전류를 제어하기 위한 프로그램 코드를 포함한다. 히터 제어 서브루틴(893)은 또한 챔버 매니저 서브루틴(885)에 의해서 요청되고(invoke) 그리고 목표 또는 설정점, 온도 파라미터를 수용한다. 히터 제어 서브루틴(893)은 온도를 측정하며, 그러한 온도 측정은 여러 실시예들에서 다양한 방식으로 실시될 수 있을 것이다. 예를 들어, 히터 내에 위치된 써모커플의 전압 출력을 측정하고, 측정된 온도를 설정점 온도와 비교하고, 그리고 설정점 온도를 얻기 위해서 가열 유닛으로 공급되는 전류를 가감함으로써 교정된(calibrated) 온도가 결정될 수 있을 것이다. 저장된 변환 테이블 내의 상응 온도를 찾아 봄으로써, 또는 4차 다항식을 이용하여 온도를 계산함으로써, 측정된 값으로부터 온도가 얻어질 수 있다. 다른 실시예에서, 교정 온도를 결정하기 위해서 써모커플 대신에 고온계를 이용하여 유사한 프로세스가 실시될 수 있을 것이다. 히터 제어 서브루틴(893)은 히터 온도를 점진적으로 상승 또는 하강 제어할 수 있는 능력을 갖는다. 히터가 세라믹에 둘러싸인 저항식 가열 요소를 포함하는 실시예에서 이러한 특징은 세라믹 내의 열적 균열을 감소시키는 것을 도울 수 있으나, 램프 히터를 이용하는 실시예들에서는 그러한 것이 확실한 것은 아니다. 추가적으로, 프로세스 안전이 준수되고 있는지를 탐지하기 위해서 내장형 비상 안전 모드(built-in failsafe mode)가 포함될 수 있을 것이고, 그러한 내장형 비상 안전 모드는 프로세스가 적절하게 셋업되지 않은 경우에 가열 요소의 작동을 차단할 수 있을 것이다.
원격 플라즈마 제어 서브루틴(894)은 원격 플라즈마 시스템(830)의 작업을 제어하기 위한 프로그램 코드를 포함한다. 플라즈마 제어 서브루틴(894)은 전술한 다른 서브루틴들과 유사하게 챔버 매니저 서브루틴(885)에 의해서 요청된다.
소프트웨어로 구현되고 그리고 범용 컴퓨터에서 실행되는것으로 본 발명을 설명하였지만, 당업자는 본원 발명이 응용 주문형 집적회로(ASIC) 또는 다른 하드웨어 회로와 같은 하드웨어를 이용하여 실시될 수 있다는 것을 이해할 것이다. 그와 같은 경우에, 본원 발명이, 전체적으로 또는 부분적으로, 소프트웨어, 하드웨어, 또는 소프트웨어 및 하드웨어 모두로 구현될 수 있을 것이다. 또한, 당업자는 CVD 시스템(810)을 제어하기 위한 적절한 컴퓨터 시스템을 선택하는 것이 통상적인 것임을 이해할 수 있을 것이다.
몇몇 실시예들을 설명하였지만, 당업자는 본원 발명의 사상 범위 내에서도 다양한 변형 실시예, 대안적인 구성, 및 균등물을 인식할 수 있을 것이다. 추가적으로, 본원 발명을 불필요하게 불명확하게 하는 것을 피하기 위해서, 많은 공지된 프로세스들 및 요소들에 대해서는 설명하지 않았다. 따라서, 전술한 설명내용이 본원 발명의 범위를 제한하는 것으로 간주되지 않아야 할 것이다.
값들의 범위가 제시된 경우에, 명백한 다른 설명이 없다면, 하한선 단위의 1/10(the tenth of the unit of the lower limit)까지, 상한선과 하한선 사이에서 각각의 중간의 값도 역시 특정적으로 규정된 것으로 이해하여야 할 것이다. 임의의 기술된 값과 기술된 범위 내의 중간값 사이의 각각의 보다 작은 범위 그리고 다른 기술된 또는 값 또는 그 기술 범위 내의 중간 값 사이의 보다 작은 범위가 포함된다. 이들 보다 작은 범위의 상한선 및 하한선도 이들 범위 내에 독립적으로 포함되거나 배제될 것이고, 상한선 및 하한선 중 하나 이상이 그러한 보다 작은 범위 내에 포함되거나 또는 포함되지 않는 각각의 범위 역시 본원 발명에 포함될 것이고, 기술된 범위 내에서 특정되어 배제된 한계선이 적용될 것이다. 기술된 범위가 한계선들 중 하나 또는 양자를 포함하는 경우에, 이들 포함된 한계선들 중 하나 또는 양자 모두를 배제하는 범위 역시 포함될 것이다.
청구범위를 포함한 본원 명세서에서 사용된 바와 같이, 다른 명백한 기재가 없다면, 단수 형태의 기재는 복수도 포함하는 것으로 해석될 수 있을 것이다. 예를 들어, "프로세스"라는 기재는 다수의 프로세스를 포함할 수 있고, 그리고 "전구체"라는 기재는 당업자에게 공지된 하나 또는 둘 이상의 전구체 및 균등물을 포함할 수 있을 것이다.
또한, "포함", "구비"의 단어가 특허청구범위를 포함하는 본원 명세서에서 사용된 경우에, 그러한 단어는 기술된 특징(features), 정수, 성분, 또는 단계들의 존재를 특정하기 위한 것이나, 그 단어들이 하나 또는 둘 이상의 다른 특징, 정수, 성분, 또는 단계, 작용 또는 그룹의 존재나 부가를 배제하는 것은 아니다.
Claims (46)
- 금속 유기 화학기상증착 프로세스에서 기생형 입자의 형성을 억제하기 위한 방법으로서:
반응 챔버로 기판을 제공하는 단계;
유기금속 전구체 및 입자 억제 화합물을 반응 챔버로 도입하는 단계;
적어도 제 2 전구체를 반응 챔버로 도입하는 단계로서, 상기 제 2 전구체가 상기 유기금속 전구체와 반응하는, 제 2 전구체 도입 단계; 및
상기 유기금속 전구체 및 제 2 전구체를 포함하는 반응 혼합물로부터 기판 상에 핵생성 층을 형성하는 단계를 포함하는
금속 유기 화학기상증착 프로세스에서 기생형 입자의 형성을 억제하기 위한 방법.
- 제 1 항에 있어서,
상기 입자 억제 화합물은 제 2 전구체가 반응 챔버 내에서 기생형 입자를 형성하는 것을 방지하는
금속 유기 화학기상증착 프로세스에서 기생형 입자의 형성을 억제하기 위한 방법.
- 제 1 항에 있어서,
상기 기판이 알루미늄 또는 실리콘 물질을 포함하는
금속 유기 화학기상증착 프로세스에서 기생형 입자의 형성을 억제하기 위한 방법.
- 제 3 항에 있어서,
상기 알루미늄 물질이 사파이어를 포함하는
금속 유기 화학기상증착 프로세스에서 기생형 입자의 형성을 억제하기 위한 방법.
- 제 3 항에 있어서,
상기 실리콘 물질이 실질적으로 순수한 실리콘 또는 실리콘 탄화물을 포함하는
금속 유기 화학기상증착 프로세스에서 기생형 입자의 형성을 억제하기 위한 방법.
- 제 1 항에 있어서,
상기 기판이 스피넬, 리튬 갈레이트, 또는 아연 산화물을 포함하는
금속 유기 화학기상증착 프로세스에서 기생형 입자의 형성을 억제하기 위한 방법.
- 제 1 항에 있어서,
상기 유기금속 전구체가 유기-갈륨 화합물을 포함하는
금속 유기 화학기상증착 프로세스에서 기생형 입자의 형성을 억제하기 위한 방법.
- 제 7 항에 있어서,
상기 유기-갈륨 화합물이 트리메틸 갈륨을 포함하는
금속 유기 화학기상증착 프로세스에서 기생형 입자의 형성을 억제하기 위한 방법.
- 제 1 항에 있어서,
상기 입자 억제 화합물이 할로겐 화합물을 포함하는
금속 유기 화학기상증착 프로세스에서 기생형 입자의 형성을 억제하기 위한 방법.
- 제 9 항에 있어서,
상기 할로겐 화합물이 하이드로겐 할라이드를 포함하는
금속 유기 화학기상증착 프로세스에서 기생형 입자의 형성을 억제하기 위한 방법.
- 제 10 항에 있어서,
상기 하이드로겐 할라이드가 하이드로겐 플루오라이드, 하이드로겐 클로라이드, 하이드로겐 브로마이드, 또는 하이드로겐 아이오다이드를 포함하는
금속 유기 화학기상증착 프로세스에서 기생형 입자의 형성을 억제하기 위한 방법.
- 제 1 항에 있어서,
상기 제 2 전구체가 암모니아를 포함하는
금속 유기 화학기상증착 프로세스에서 기생형 입자의 형성을 억제하기 위한 방법.
- 제 1 항에 있어서,
상기 핵생성 층이 갈륨 질화물, 또는 갈륨 질화물의 합금을 포함하는
금속 유기 화학기상증착 프로세스에서 기생형 입자의 형성을 억제하기 위한 방법.
- 제 1 항에 있어서,
상기 입자 억제 화합물이 반응 챔버 내에서 상기 유기금속 전구체 보다 낮은 부분압을 가지는
금속 유기 화학기상증착 프로세스에서 기생형 입자의 형성을 억제하기 위한 방법.
- 제 1 항에 있어서,
상기 입자 억제 화합물이 반응 챔버 내에서 상기 유기금속 전구체의 부분압의 절반 보다 낮은 부분압을 가지는
금속 유기 화학기상증착 프로세스에서 기생형 입자의 형성을 억제하기 위한 방법.
- 제 1 항에 있어서,
상기 유기금속 전구체 및 입자 억제 화합물은, 상기 반응 챔버 내로 도입될 때, 300 ℃ 미만의 온도를 가지는
금속 유기 화학기상증착 프로세스에서 기생형 입자의 형성을 억제하기 위한 방법.
- 제 1 항에 있어서,
상기 유기금속 전구체 및 입자 억제 화합물은, 상기 반응 챔버 내로 도입될 때, 15 ℃ 내지 300 ℃ 의 온도를 가지는
금속 유기 화학기상증착 프로세스에서 기생형 입자의 형성을 억제하기 위한 방법.
- 제 1 항에 있어서,
상기 유기금속 전구체 및 상기 제 2 전구체와 반응하여 핵생성 층을 형성하는 제 3 전구체를 상기 반응 챔버로 도입하는 단계를 포함하는
금속 유기 화학기상증착 프로세스에서 기생형 입자의 형성을 억제하기 위한 방법.
- 제 1 항에 있어서,
하이드라이드 기상 에피택시 프로세스를 이용하여 상기 핵생성 층 상에 에피택시 층을 형성하는 단계를 더 포함하는
금속 유기 화학기상증착 프로세스에서 기생형 입자의 형성을 억제하기 위한 방법.
- 제 19 항에 있어서,
상기 하이드라이드 기상 에피택시 프로세스가:
반응 챔버 내로 금속 함유 반응제 가스를 도입하는 단계로서, 상기 금속 함유 반응제 가스가 금속과 할로겐 함유 가스의 반응으로부터 생성되는, 금속 함유 반응제 가스 도입 단계;
상기 반응 챔버 내로 제 2 반응제 가스를 도입하는 단계로서, 상기 제 2 반응제 가스가 상기 금속 함유 반응제 가스와 반응하는, 제 2 반응제 가스 도입 단계; 그리고
상기 금속 함유 가스 및 제 2 반응제 가스를 포함하는 에피택셜 반응 가스 혼합물로부터 에피택셜 층을 상기 핵생성 층 상에 형성하는 단계를 포함하는
금속 유기 화학기상증착 프로세스에서 기생형 입자의 형성을 억제하기 위한 방법.
- 제 20 항에 있어서,
상기 할로겐 함유 가스와의 금속 반응은 알루미늄, 갈륨, 및 인듐으로 이루어진 그룹으로부터 선택된 액체 금속인
금속 유기 화학기상증착 프로세스에서 기생형 입자의 형성을 억제하기 위한 방법.
- 제 20 항에 있어서,
상기 금속 함유 반응제 가스가 알루미늄 클로라이드, 갈륨 클로라이드, 또는 인듐 클로라이드를 포함하는
금속 유기 화학기상증착 프로세스에서 기생형 입자의 형성을 억제하기 위한 방법.
- 제 20 항에 있어서,
상기 할로겐 함유 가스가 하이드로겐 클로라이드를 포함하는
금속 유기 화학기상증착 프로세스에서 기생형 입자의 형성을 억제하기 위한 방법.
- 제 20 항에 있어서,
상기 제 2 반응제 가스가 암모니아를 포함하는
금속 유기 화학기상증착 프로세스에서 기생형 입자의 형성을 억제하기 위한 방법.
- 제 19 항에 있어서,
상기 에피택셜 층이 알루미늄 질화물 또는 인듐 질화물을 포함하는
금속 유기 화학기상증착 프로세스에서 기생형 입자의 형성을 억제하기 위한 방법.
- 제 19 항에 있어서,
상기 에피택셜 층이 갈륨 질화물 또는 갈륨 질화물의 합금을 포함하는
금속 유기 화학기상증착 프로세스에서 기생형 입자의 형성을 억제하기 위한 방법.
- 제 19 항에 있어서,
상기 핵생성 층의 두께가 약 100 Å 내지 약 1000 Å이고, 상기 에피택셜 층의 두께가 약 1 ㎛ 또는 그 초과인
금속 유기 화학기상증착 프로세스에서 기생형 입자의 형성을 억제하기 위한 방법.
- Ⅲ-V 질화물 층의 형성 중에 기생형 입자의 형성을 억제하는 방법으로서:
반응 챔버로 기판 제공하는 단계; 및
그룹 Ⅲ 금속 함유 전구체를 상기 반응 챔버로 도입하는 단계로서, 상기 그룹 Ⅲ 금속 전구체는 또한 할로겐을 포함하고, 상기 할로겐은 기생형 입자의 형성을 억제하는, 그룹 Ⅲ 금속 함유 전구체를 상기 반응 챔버로 도입하는 단계;
하이드로겐 할라이드 가스를 상기 반응 챔버로 도입하는 단계로서, 상기 하이드로겐 할라이드가 또한 기생형 입자의 형성을 억제하는, 하이드로겐 할라이드 가스를 상기 반응 챔버로 도입하는 단계; 그리고
질소 함유 화합물을 상기 반응 챔버로 도입하는 단계로서, 상기 질소 함유 화합물은 그룹 Ⅲ 금속 전구체와 반응하여 Ⅲ-Ⅴ 질화물 층을 상기 기판 상에 형성하는, 질소 함유 화합물을 상기 반응 챔버로 도입하는 단계를 포함하는
Ⅲ-V 질화물 층의 형성 중에 기생형 입자의 형성을 억제하는 방법.
- 제 28 항에 있어서,
제 2 금속 전구체를 도입하는 단계를 더 포함하며,
상기 제 2 금속 전구체가 상기 그룹 Ⅲ 금속 전구체와 상이한 금속을 포함하고, 상기 Ⅲ-Ⅴ 질화물 층이 그룹 Ⅲ 금속 합금을 포함하는
Ⅲ-V 질화물 층의 형성 중에 기생형 입자의 형성을 억제하는 방법.
- 제 28 항에 있어서,
상기 그룹 Ⅲ 금속 전구체가 알루미늄 클로라이드, 갈륨 클로라이드, 또는 인듐 클로라이드를 포함하는
Ⅲ-V 질화물 층의 형성 중에 기생형 입자의 형성을 억제하는 방법.
- 제 28 항에 있어서,
상기 질소 함유 화합물이 암모니아를 포함하는
Ⅲ-V 질화물 층의 형성 중에 기생형 입자의 형성을 억제하는 방법.
- 제 28 항에 있어서,
상기 그룹 Ⅲ-Ⅴ 질화물 층이 알루미늄 질화물, 갈륨 질화물, 또는 인듐 질화물을 포함하는
Ⅲ-V 질화물 층의 형성 중에 기생형 입자의 형성을 억제하는 방법.
- 제 28 항에 있어서,
상기 그룹 Ⅲ-Ⅴ 질화물 층이 갈륨 질화물의 합금을 포함하는
Ⅲ-V 질화물 층의 형성 중에 기생형 입자의 형성을 억제하는 방법.
- 제 28 항에 있어서,
상기 하이드로겐 할라이드가 그룹 Ⅲ 금속 전구체 보다 느린 유동 속도로 상기 반응 챔버로 도입되는
Ⅲ-V 질화물 층의 형성 중에 기생형 입자의 형성을 억제하는 방법.
- 제 34 항에 있어서,
상기 하이드로겐 할라이드가 그룹 Ⅲ 금속 전구체의 유동 속도의 절반 보다 느린 유동 속도로 상기 반응 챔버로 도입되는
Ⅲ-V 질화물 층의 형성 중에 기생형 입자의 형성을 억제하는 방법.
- 제 28 항에 있어서,
상기 하이드로겐 할라이드가 300 ℃ 미만으로 상기 반응 챔버로 도입되는
Ⅲ-V 질화물 층의 형성 중에 기생형 입자의 형성을 억제하는 방법.
- 사파이어 기판 상에 갈륨 질화물 층을 형성하는 동안에 기생형 입자 형성을 억제하기 위한 방법으로서:
상기 사파이어 기판을 수용하는 반응 챔버로 암모니아를 도입하는 단계;
유기-갈륨 화합물 및 하이드로겐 클로라이드를 상기 반응 챔버로 도입하는 단계로서, 상기 하이드로겐 클로라이드는 암모니아에 의한 기생형 입자의 형성을 억제하는, 유기-갈륨 화합물 및 하이드로겐 클로라이드를 상기 반응 챔버로 도입하는 단계; 그리고
상기 사파이어 기판 상에 갈륨 질화물 층을 형성하는 단계를 포함하는
사파이어 기판 상에 갈륨 질화물 층을 형성하는 동안에 기생형 입자 형성을 억제하기 위한 방법.
- 제 37 항에 있어서,
상기 유기-갈륨 화합물이 트리메틸 갈륨인
사파이어 기판 상에 갈륨 질화물 층을 형성하는 동안에 기생형 입자 형성을 억제하기 위한 방법.
- 제 37 항에 있어서,
상기 하이드로겐 클로라이드가 상기 반응 챔버 내에서 상기 유기-갈륨 화합물 보다 낮은 부분압을 가지는
사파이어 기판 상에 갈륨 질화물 층을 형성하는 동안에 기생형 입자 형성을 억제하기 위한 방법.
- 제 37 항에 있어서,
상기 하이드로겐 클로라이드가 300 ℃ 미만으로 상기 반응 챔버 내로 도입되는
사파이어 기판 상에 갈륨 질화물 층을 형성하는 동안에 기생형 입자 형성을 억제하기 위한 방법.
- 제 37 항에 있어서,
상기 유기-갈륨 화합물 및 하이드로겐 클로라이드가 300 ℃ 미만으로 상기 반응 챔버로 동시에 도입되는
사파이어 기판 상에 갈륨 질화물 층을 형성하는 동안에 기생형 입자 형성을 억제하기 위한 방법.
- 기판 상에 갈륨 질화물 층을 형성하는 동안에 기생형 입자 형성을 억제하는 방법으로서:
사파이어 기판을 수용하는 반응 챔버로 암모니아를 도입하는 단계;
상기 반응 챔버로 유기-갈륨 화합물 및 할로겐 함유 갈륨 화합물을 도입하는 단계로서, 상기 할로겐 함유 갈륨 화합물은 암모니아에 의한 기생형 입자의 형성을 억제하는, 유기-갈륨 화합물 및 할로겐 함유 갈륨 화합물을 도입하는 단계; 그리고
갈륨 질화물 층을 상기 기판 상에 형성하는 단계를 포함하는
기판 상에 갈륨 질화물 층을 형성하는 동안에 기생형 입자 형성을 억제하는 방법.
- 제 42 항에 있어서,
상기 유기-갈륨 화합물이 트리메틸 갈륨 또는 트리에틸 갈륨을 포함하는
기판 상에 갈륨 질화물 층을 형성하는 동안에 기생형 입자 형성을 억제하는 방법.
- 제 42 항에 있어서,
상기 할로겐 함유 갈륨 화합물이 갈륨 할라이드, 디메틸갈륨 할라이드, 또는 디에틸갈륨 할라이드를 포함하고,
상기 할라이드가 플루오라이드, 클로라이드, 브로마이드, 또는 아이오다이드를 포함하는 그룹으로부터 선택되는
기판 상에 갈륨 질화물 층을 형성하는 동안에 기생형 입자 형성을 억제하는 방법.
- 제 42 항에 있어서,
암모니아에 의한 기생형 입자의 형성을 또한 억제하는 하이드로겐 할라이드를 상기 반응 챔버로 도입하는 단계를 더 포함하는
기판 상에 갈륨 질화물 층을 형성하는 동안에 기생형 입자 형성을 억제하는 방법.
- 제 42 항에 있어서,
상기 하이드로겐 할라이드가 하이드로겐 클로라이드를 포함하는
기판 상에 갈륨 질화물 층을 형성하는 동안에 기생형 입자 형성을 억제하는 방법.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2007/080460 WO2009045217A1 (en) | 2007-10-04 | 2007-10-04 | Parasitic particle suppression in the growth of iii-v nitride films using mocvd and hvpe |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20100075597A true KR20100075597A (ko) | 2010-07-02 |
Family
ID=40526491
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020107009657A KR20100075597A (ko) | 2007-10-04 | 2007-10-04 | 금속유기 화학기상증착 및 하이드라이드 기상 에피택시를 이용한 ⅲⅴ 질화물 필름의 성장 중에 기생형 입자의 형성을 억제하는 방법 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP2010541276A (ko) |
KR (1) | KR20100075597A (ko) |
CN (1) | CN101816061B (ko) |
WO (1) | WO2009045217A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021045385A3 (ko) * | 2019-09-03 | 2021-05-20 | 주식회사 유진테크 머티리얼즈 | 금속 질화물 박막의 형성 방법 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8183132B2 (en) * | 2009-04-10 | 2012-05-22 | Applied Materials, Inc. | Methods for fabricating group III nitride structures with a cluster tool |
FR2968831B1 (fr) * | 2010-12-08 | 2012-12-21 | Soitec Silicon On Insulator | Procedes de formation de materiaux massifs de nitrure iii sur des couches matricielles de croissance de nitrure de metal et structures formees par ces procedes |
US8148252B1 (en) | 2011-03-02 | 2012-04-03 | S.O.I. Tec Silicon On Insulator Technologies | Methods of forming III/V semiconductor materials, and semiconductor structures formed using such methods |
SG183608A1 (en) * | 2011-03-02 | 2012-09-27 | Soitec Silicon On Insulator | Methods of forming iii/v semiconductor materials, and semiconductor structures formed using such methods |
US8980002B2 (en) * | 2011-05-20 | 2015-03-17 | Applied Materials, Inc. | Methods for improved growth of group III nitride semiconductor compounds |
JP5829152B2 (ja) * | 2012-03-08 | 2015-12-09 | 株式会社サイオクス | 窒化ガリウムテンプレート基板の製造方法及び窒化ガリウムテンプレート基板 |
CN109360786B (zh) * | 2018-09-29 | 2021-08-10 | 扬州乾照光电有限公司 | 一种侧向外延生长的方法及半导体结构 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4147571A (en) * | 1977-07-11 | 1979-04-03 | Hewlett-Packard Company | Method for vapor epitaxial deposition of III/V materials utilizing organometallic compounds and a halogen or halide in a hot wall system |
US5587014A (en) * | 1993-12-22 | 1996-12-24 | Sumitomo Chemical Company, Limited | Method for manufacturing group III-V compound semiconductor crystals |
US5679152A (en) * | 1994-01-27 | 1997-10-21 | Advanced Technology Materials, Inc. | Method of making a single crystals Ga*N article |
JP4166885B2 (ja) * | 1998-05-18 | 2008-10-15 | 富士通株式会社 | 光半導体装置およびその製造方法 |
WO1999066565A1 (en) * | 1998-06-18 | 1999-12-23 | University Of Florida | Method and apparatus for producing group-iii nitrides |
US6406677B1 (en) * | 1998-07-22 | 2002-06-18 | Eltron Research, Inc. | Methods for low and ambient temperature preparation of precursors of compounds of group III metals and group V elements |
US6290774B1 (en) * | 1999-05-07 | 2001-09-18 | Cbl Technology, Inc. | Sequential hydride vapor phase epitaxy |
JP2001144325A (ja) * | 1999-11-12 | 2001-05-25 | Sony Corp | 窒化物系iii−v族化合物半導体の製造方法および半導体素子の製造方法 |
US6900067B2 (en) * | 2002-12-11 | 2005-05-31 | Lumileds Lighting U.S., Llc | Growth of III-nitride films on mismatched substrates without conventional low temperature nucleation layers |
JP4816079B2 (ja) * | 2005-12-28 | 2011-11-16 | 三菱化学株式会社 | Ga含有窒化物半導体の製造方法 |
-
2007
- 2007-10-04 KR KR1020107009657A patent/KR20100075597A/ko not_active Application Discontinuation
- 2007-10-04 JP JP2010527926A patent/JP2010541276A/ja active Pending
- 2007-10-04 WO PCT/US2007/080460 patent/WO2009045217A1/en active Application Filing
- 2007-10-04 CN CN200780100933.6A patent/CN101816061B/zh not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021045385A3 (ko) * | 2019-09-03 | 2021-05-20 | 주식회사 유진테크 머티리얼즈 | 금속 질화물 박막의 형성 방법 |
CN114341396A (zh) * | 2019-09-03 | 2022-04-12 | 株式会社Egtm | 金属氮化物薄膜的形成方法 |
US20220333243A1 (en) * | 2019-09-03 | 2022-10-20 | Egtm Co., Ltd. | Method for forming metal nitride thin film |
Also Published As
Publication number | Publication date |
---|---|
WO2009045217A1 (en) | 2009-04-09 |
JP2010541276A (ja) | 2010-12-24 |
CN101816061B (zh) | 2013-01-30 |
CN101816061A (zh) | 2010-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7585769B2 (en) | Parasitic particle suppression in growth of III-V nitride films using MOCVD and HVPE | |
US7560364B2 (en) | Dislocation-specific lateral epitaxial overgrowth to reduce dislocation density of nitride films | |
US7459380B2 (en) | Dislocation-specific dielectric mask deposition and lateral epitaxial overgrowth to reduce dislocation density of nitride films | |
KR101200198B1 (ko) | 질화 화합물 반도체 구조물의 제조 방법 | |
US20080050889A1 (en) | Hotwall reactor and method for reducing particle formation in GaN MOCVD | |
JP6117169B2 (ja) | 三塩化ガリウムの噴射方式 | |
US8110889B2 (en) | MOCVD single chamber split process for LED manufacturing | |
JP5575483B2 (ja) | Iii−v族半導体材料の大量製造装置 | |
JP5575482B2 (ja) | 単結晶iii−v族半導体材料のエピタキシャル堆積法、及び堆積システム | |
US8382898B2 (en) | Methods for high volume manufacture of group III-V semiconductor materials | |
US20110244617A1 (en) | Forming a compound-nitride structure that includes a nucleation layer | |
KR20100075597A (ko) | 금속유기 화학기상증착 및 하이드라이드 기상 에피택시를 이용한 ⅲⅴ 질화물 필름의 성장 중에 기생형 입자의 형성을 억제하는 방법 | |
US20080124453A1 (en) | In-situ detection of gas-phase particle formation in nitride film deposition | |
WO2010129289A2 (en) | Decontamination of mocvd chamber using nh3 purge after in-situ cleaning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WITN | Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid |