KR20100064184A - Diagnosing method and apparatus of catalyst deterioration of a car - Google Patents

Diagnosing method and apparatus of catalyst deterioration of a car Download PDF

Info

Publication number
KR20100064184A
KR20100064184A KR1020080122635A KR20080122635A KR20100064184A KR 20100064184 A KR20100064184 A KR 20100064184A KR 1020080122635 A KR1020080122635 A KR 1020080122635A KR 20080122635 A KR20080122635 A KR 20080122635A KR 20100064184 A KR20100064184 A KR 20100064184A
Authority
KR
South Korea
Prior art keywords
catalyst
oxygen sensor
fuel
purge
deterioration
Prior art date
Application number
KR1020080122635A
Other languages
Korean (ko)
Other versions
KR101480566B1 (en
Inventor
김명훈
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR20080122635A priority Critical patent/KR101480566B1/en
Publication of KR20100064184A publication Critical patent/KR20100064184A/en
Application granted granted Critical
Publication of KR101480566B1 publication Critical patent/KR101480566B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/025Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0416Methods of control or diagnosing using the state of a sensor, e.g. of an exhaust gas sensor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE: A diagnostic method for catalyst degradation ratio of a vehicle is provided to accurately measure catalyst degradation ratio regardless of the motion area of a vehicle and combustion conditions. CONSTITUTION: A diagnostic method for catalyst degradation ratio of a vehicle comprises following steps. Catalyst degradation ratio is diagnosed using the purge fuel amount of accumulated catalyst(11) sprayed on a catalyst purge region. The purge fuel amount of accumulated catalyst and the catalyst degradation ratio are in inverse proportion. A diagnostic apparatus for catalyst degradation ratio of a vehicle comprises a downstream oxygen sensor and an electronic control unit. The downstream oxygen sensor is installed behind catalyst. The electronic control unit controls the air-fuel ratio of an engine using the output of the downstream oxygen sensor.

Description

자동차의 촉매 열화도 진단 방법 및 장치 {diagnosing method and apparatus of catalyst deterioration of a car}Diagnosis method and apparatus of catalyst deterioration of a car

이 발명은 자동차의 촉매 열화도 진단 방법에 관한 것으로서, 더욱 상세하게는 가솔린 엔진의 촉매 퍼지 기능을 이용하여 촉매의 열화도를 진단하는 방법 및 장치에 관한 것이다.The present invention relates to a method for diagnosing catalyst deterioration of an automobile, and more particularly, to a method and apparatus for diagnosing deterioration of a catalyst using a catalyst purge function of a gasoline engine.

현재의 자동차용 원동기로 사용하는 가솔린 기관을 비롯한 내연기관은 연료를 실린더 안에서 연소시켜 이때 발생되는 열에너지를 동력으로 이용한다.Internal combustion engines, including gasoline engines, which are currently used as automotive prime movers, burn fuel in a cylinder and use thermal energy generated at this time as power.

따라서, 자동차에서 배출되는 배기가스에는 연소에 따른 질소산화물(NOx), 불완전 연소로 인한 일산화탄소(CO) 또는 탄화수소(HC) 등 유해한 성분이 함유되어 있다. 이러한 배기가스에 의한 대기 오염은 오늘날 커다란 사회문제로 되어 있으며, 그에 대한 대책이 강구되고 있다.Therefore, the exhaust gas emitted from the automobile contains harmful components such as nitrogen oxides (NOx) resulting from combustion, carbon monoxide (CO) or hydrocarbons (HC) due to incomplete combustion. The air pollution caused by these exhaust gases is a big social problem today, and countermeasures have been taken.

이러한 배기가스에 대한 대책의 일환으로 자동차에는 배기가스 중의 유해성분을 정화하는 촉매가 설치되어 있다. 촉매는 배기가스가 리치할 경우 흡착되어 있는 산 소를 방출하여 배기가스 중의 유해물질을 산화시켜 배기가스를 저감시킨다.As part of the countermeasure against such exhaust gas, automobiles are equipped with a catalyst for purifying harmful components in the exhaust gas. When the exhaust gas is rich, the catalyst releases the adsorbed oxygen to oxidize harmful substances in the exhaust gas, thereby reducing the exhaust gas.

촉매의 정상작동 여부를 판단하는 기본적인 방법은 촉매의 산소저장능력(OSC)이라는 특징을 이용하는 것이다.The basic method for determining the normal operation of the catalyst is to use the characteristic of the oxygen storage capacity (OSC) of the catalyst.

도 1은 일반적인 촉매 열화도 진단 장치를 도시한 도면이다.1 is a diagram illustrating a general catalyst deterioration diagnostic apparatus.

이 촉매 열화도 진단 장치는 촉매(11)의 전방에 설치되어 연소실에서 배출되는 배기가스 중에 포함되어 있는 산소농도를 검출하는 업스트림(upstream) 산소센서(12)와, 촉매(11)의 후방에 설치되어 촉매(11)에서 정화된 배기가스 중에 포함되어 있는 산소농도를 검출하는 다운스트림(downstream) 산소센서(13)와, 업스트림 산소센서(12)와 다운스트림 산소센서(13)의 신호를 이용하여 촉매 열화도를 계산하는 전자제어유닛(14)을 구비한다.The catalyst deterioration diagnosis device is installed in front of the catalyst 11 and is located upstream of the oxygen sensor 12 for detecting the oxygen concentration contained in the exhaust gas discharged from the combustion chamber, and behind the catalyst 11. By using the signals of the downstream oxygen sensor 13 and the upstream oxygen sensor 12 and the downstream oxygen sensor 13 which detect the oxygen concentration contained in the exhaust gas purified by the catalyst 11. An electronic control unit 14 for calculating the degree of catalyst deterioration is provided.

아울러, 촉매의 정화 효율을 향상시키기 위해서는 정밀한 공연비 제어가 필요한데, 전자제어유닛(14)은 업스트림 산소센서(12)와 다운스트림 산소센서(13)에서 출력되는 신호를 분석하여 현재의 연료량에 대한 린(Lean) 혹은 리치(Rich) 여부를 판정한 후 그에 따라 공연비를 제어한다.In addition, precise air-fuel ratio control is required in order to improve the purification efficiency of the catalyst. The electronic control unit 14 analyzes signals output from the upstream oxygen sensor 12 and the downstream oxygen sensor 13 to determine the current fuel amount. After determining whether it is Lean or Rich, the air-fuel ratio is controlled accordingly.

전자제어유닛(14)은 자동차의 부분부하 운전조건 중 진단 기준을 만족하는 운전영역에서, 촉매의 전방에 설치된 업스트림 산소센서(12)와 촉매의 후방에 설치된 다운스트림 산소센서(13)의 출력값을 일정한 사이클(cycle)동안 비교하여 촉매의 열화도를 계산한다. 종래에 촉매 열화도 진단의 가장 큰 변수는 다운스트림 산소센서(13)의 출력값의 안정성이다.The electronic control unit 14 outputs the output values of the upstream oxygen sensor 12 installed in front of the catalyst and the downstream oxygen sensor 13 installed in the rear of the catalyst in the driving region that satisfies the diagnostic criteria among the partial load driving conditions of the vehicle. The degree of deterioration of the catalyst is calculated by comparison over a constant cycle. The biggest parameter of the catalyst deterioration diagnosis in the past is the stability of the output value of the downstream oxygen sensor 13.

도 2는 촉매 열화도에 따른 다운스트림 산소센서의 출력신호의 상관관계를 도시한 도면이다.2 is a diagram illustrating a correlation of an output signal of a downstream oxygen sensor according to a degree of catalyst deterioration.

즉, 촉매 열화도가 클수록 촉매의 산소저장능력(OSC)이 축소되어 다운스트림 산소센서 출력값의 안정성이 떨어진다.In other words, as the degree of catalyst deterioration increases, the oxygen storage capacity (OSC) of the catalyst decreases, and the stability of the output value of the downstream oxygen sensor decreases.

그러나 이러한 종래의 촉매 열화도 진단방법은 공연비 트림 학습의 영향 때문에 촉매 열화도를 정확하게 진단하기 곤란하다. 이 공연비 트림 학습은 촉매 열화도에 따른 방출시험(emission test) 편차를 축소하기 위한 것으로서, 이 공연비 트림 학습에 의해 목표 공연비가 엔진의 운전영역별로 달라지고 이에 따라 다운스트림 산소센서의 출력값이 영향을 받게 된다. 즉, 다운스트림 산소센서의 출력값의 안정성이 엔진의 운전영역별로 큰 편차를 나타낸다.However, this conventional catalyst deterioration diagnostic method is difficult to accurately diagnose the catalyst deterioration due to the influence of air-fuel ratio trim learning. This air-fuel ratio trim learning is to reduce the emission test deviation according to the degree of catalyst deterioration. The air-fuel ratio trim learning changes the target air-fuel ratio by the operating region of the engine, and thus the output value of the downstream oxygen sensor is affected. Will receive. That is, the stability of the output value of the downstream oxygen sensor shows a large deviation for each operating region of the engine.

이러한 종래의 촉매 열화도 진단방법은 정상적인 촉매를 열화상태로 진단하여 엔진 경고등을 점등함으로써 고객의 불만을 야기할 수 있고, 열화된 촉매를 정상으로 진단하여 IN USE 법규 위반 상황을 야기할 수 있는 문제점이 있다.The conventional catalyst deterioration diagnosis method may cause a customer complaint by diagnosing a normal catalyst in a deteriorated state and lighting an engine warning light, and causing a violation of IN USE regulations by diagnosing a deteriorated catalyst as normal. There is this.

상술한 종래기술의 문제점을 해결하기 위한 이 발명의 목적은, 자동차 운전영역의 차이나 연소환경에 의한 영향을 받지 않고 촉매의 열화도를 정확하게 측정하는 방법을 제공하기 위한 것이다.SUMMARY OF THE INVENTION An object of the present invention is to provide a method for accurately measuring the degree of deterioration of a catalyst without being influenced by a difference in a vehicle driving area or a combustion environment.

상술한 목적을 달성하기 위한 이 발명에 따른 자동차의 촉매 열화도 진단 방법은, 촉매 퍼지 구간에 분사된 누적 촉매 퍼지 연료량을 이용하여 상기 촉매 열화도를 진단하는 것을 특징으로 한다.The method for diagnosing catalyst deterioration of a vehicle according to the present invention for achieving the above object is characterized by diagnosing the catalyst deterioration using the accumulated amount of catalyst purge fuel injected in the catalyst purge section.

또한, 이 발명에 따른 자동차의 촉매 열화도 진단 장치는, 촉매의 후방에 설치된 다운스트림 산소센서와, 상기 다운스트림 산소센서의 출력값을 이용하여 엔진의 공연비를 제어하고 촉매 퍼지 구간에 분사된 누적 촉매 퍼지 연료량을 이용하여 상기 촉매의 열화도를 진단하는 전자제어유닛을 구비한 것을 특징으로 한다.In addition, the apparatus for diagnosing catalyst deterioration of a vehicle according to the present invention uses a downstream oxygen sensor installed behind the catalyst and an output value of the downstream oxygen sensor to control the air-fuel ratio of the engine and to accumulate the catalyst injected into the catalyst purge section. And an electronic control unit for diagnosing deterioration of the catalyst using the amount of purge fuel.

이 발명에 따르면 촉매 퍼지 로직을 이용하여 촉매의 산소저장능력(OSC)을 계산하고 촉매의 열화도를 측정하기 때문에 자동차의 운전영역의 특성 차이 및 연소 환경에 의한 영향없이 자동차 촉매의 열화도를 정확하게 측정할 수 있는 효과가 있다.According to the present invention, the catalyst purge logic is used to calculate the oxygen storage capacity (OSC) of the catalyst and to measure the degree of deterioration of the catalyst. There is a measurable effect.

이하, 첨부된 도면을 참조하며 이 발명에 따른 자동차의 촉매 열화도 진단 방법을 상세하게 설명한다.Hereinafter, a method for diagnosing catalyst deterioration of a vehicle according to the present invention will be described in detail with reference to the accompanying drawings.

도 3은 이 발명에서 활용하고자 하는 촉매 퍼지 기능을 설명하기 위하여 도시한 도면으로서, 다운스트림 산소센서에서 출력되는 신호를 이용하여 공연비를 제어하는 과정을 설명한다.3 is a view illustrating a catalyst purge function to be utilized in the present invention, and describes a process of controlling the air-fuel ratio by using a signal output from the downstream oxygen sensor.

전자제어유닛은 다운스트림 산소센서의 출력값이 도 3 (a)의 (Ⅰ)(Ⅲ)구간일 때에는 공연비가 리치(rich)하므로 도 3 (b)의 (Ⅰ)(Ⅲ)처럼 엔진으로 공급되는 연료량을 감소시키도록 인젝터를 제어한다. 한편, 전자제어유닛은 연료가 차단(fuel cut off)되어 다운스트림 산소센서의 출력값이 도 3 (a)의 (Ⅱ)와 같이 나타날 때에는 공연비가 린(lean)하므로 도 3 (b)의 (Ⅱ)처럼 엔진으로 공급되는 연료량을 증가시키도록 인젝터를 제어한다.Since the air-fuel ratio is rich when the output value of the downstream oxygen sensor is (I) (III) in FIG. 3 (a), the electronic control unit is supplied to the engine as shown in (I) (III) in FIG. Control the injector to reduce the fuel level. On the other hand, in the electronic control unit, when the fuel is cut off and the output value of the downstream oxygen sensor is shown as (II) in FIG. 3 (a), the air-fuel ratio is lean. Control the injector to increase the amount of fuel supplied to the engine.

여기서, 도 3 (b)에 나타난 바와 같이, 연료량이 (Ⅰ) -> (Ⅱ) 및 (Ⅱ) -> (Ⅲ) 구간으로 전환될 때 급속히 변하는 P-JUMP 구간이 있으며, 이 중 (Ⅱ) -> (Ⅲ) 구간으로 전환시 전자제어유닛은 이론 공연비 이상의 리치(rich)한 연료량을 일정시간 분사시켜 P-JUMP를 딜레이하는 촉매 퍼지(catalyst purge) 기능을 수행하게 된다.Here, as shown in Figure 3 (b), there is a P-JUMP section that changes rapidly when the fuel amount is switched to the (I)-> (II) and (II)-> (III) section, (II) When switching to section (III), the electronic control unit performs a catalyst purge function that delays P-JUMP by injecting a rich fuel amount over a theoretical air-fuel ratio for a predetermined time.

즉, 도 3 (a)의 (Ⅱ)구간에서 연료가 차단되면 촉매에 다량의 공기가 들어가게 되는데, 그 후 주행을 시작하여 다운스트림 산소센서가 도 3 (a)의 (Ⅲ)처럼 리치(rich)한 신호를 출력하더라도 촉매는 린(lean)한 상태를 유지하여 대기오염 물질인 질소산화물(NOx)이 쉽게 발생할 수 있는 상황이 된다. 따라서, 연료가 차단된 후 다시 공급되는 시기(도 3 (b)의 (Ⅱ) -> (Ⅲ))에 일정 시간 연료량을 리치(rich)하게 분사시킴으로써, 촉매의 린(lean)한 상태를 리치(rich)하게 전환하는 촉매 퍼지 기능을 작동하여 질소산화물(NOx)의 발생률을 감소시킨다. 이 촉매 퍼지 기능이 수행되는 촉매 퍼지 구간에 분사되는 촉매 퍼지 연료량은 촉매에 저장된 산소량에 비례한다. 이 발명은 이러한 촉매 퍼지 연료량을 이용하여 촉매 열화도 를 진단한다.That is, when fuel is cut off in the section (II) of FIG. 3 (a), a large amount of air enters the catalyst. After that, the downstream oxygen sensor starts to run as shown in (III) of FIG. 3 (a). Even if the signal is output, the catalyst remains in a lean state, whereby nitrogen oxide (NOx), an air pollutant, can be easily generated. Therefore, the fuel is leaned by rich injection of a predetermined amount of fuel at a time when the fuel is cut off and supplied again ((II)-> (III) in FIG. 3 (b)). A catalytic converter purge function that converts richly to reduce the incidence of NOx. The amount of catalyst purge fuel injected into the catalyst purge section in which the catalyst purge function is performed is proportional to the amount of oxygen stored in the catalyst. The present invention uses this amount of catalyst purge fuel to diagnose catalyst degradation.

도 4는 촉매 열화도에 따른 촉매 퍼지 구간을 도시한 그래프이다.4 is a graph showing the catalyst purge section according to the degree of catalyst deterioration.

촉매 열화도가 작은 정상 촉매의 경우, 산소저장능력(OSC)이 우수하고 연료 차단(fuel cut) 기간 동안 촉매 내에 저장되는 산소량이 많다. 그렇기 때문에 연료 차단(fuel cut)된 후 촉매에 저장되어 있는 산소를 제거하기 위한 촉매 퍼지 연료량이 많다.In the case of a normal catalyst having a low degree of catalyst deterioration, the oxygen storage capacity (OSC) is excellent and the amount of oxygen stored in the catalyst during the fuel cut period is high. Therefore, the amount of catalyst purge fuel for removing oxygen stored in the catalyst after the fuel cut (fuel cut) is large.

한편, 촉매의 열화가 진행됨에 따라 촉매의 산소저장능력(OSC)은 축소되고, 연료차단(fuel cut) 기간 동안 촉매 내에 저장될 수 있는 산소량도 축소된다. 그렇기 때문에 연료 차단(fuel cut) 후 촉매에 저장되어 있는 산소를 제거하기 위하여 수행되는 촉매 퍼지 연료량도 축소된다.On the other hand, as the catalyst deteriorates, the oxygen storage capacity (OSC) of the catalyst is reduced, and the amount of oxygen that can be stored in the catalyst during the fuel cut period is also reduced. As a result, the amount of catalyst purge fuel carried out to remove oxygen stored in the catalyst after the fuel cut is also reduced.

도 5는 이 발명의 한 실시예에 따른 자동차의 촉매 열화도 진단 방법을 도시한 동작 흐름도이다.5 is an operation flowchart illustrating a method for diagnosing catalytic degradation of a vehicle according to an exemplary embodiment of the present invention.

냉각수 온도와 촉매 온도가 각각 설정된 값을 초과하면(S51), 연료차단(flue cut)하고 연료차단 진입시간이 설정된 시간을 초과하면 촉매 퍼지 기능이 수행되는지 판단한다(S53).When the coolant temperature and the catalyst temperature respectively exceed the set value (S51), it is determined whether the catalyst purge function is performed when the fuel is cut and the fuel cutoff time exceeds the set time (S53).

촉매 퍼지 기능이 수행되면 촉매 퍼지 구간의 분사 연료량을 계산 및 적산한다(S54). 촉매 퍼지 기능이 종료되면(S55), 적산된 촉매 퍼지 연료량을 촉매 진단 테이블에 적용하여 촉매 진단 지수를 산출한다(S56). 즉, 촉매 퍼지 구간에 분사된 적산된 촉매 퍼지 연료량이 기 설정된 값보다 작으면 촉매가 열화된 것을 판단한다.When the catalyst purge function is performed, the injection fuel amount of the catalyst purge section is calculated and accumulated (S54). When the catalyst purge function is terminated (S55), the accumulated catalyst purge fuel amount is applied to the catalyst diagnosis table to calculate a catalyst diagnosis index (S56). That is, when the accumulated amount of catalyst purge fuel injected into the catalyst purge section is smaller than the preset value, it is determined that the catalyst is deteriorated.

도 1은 일반적인 촉매 열화도 진단 장치를 도시한 도면,1 is a view showing a general catalyst degradation diagnostic apparatus,

도 2는 촉매 열화도에 따른 다운스트림 산소센서의 출력신호의 상관관계를 도시한 도면,2 is a view showing a correlation of the output signal of the downstream oxygen sensor according to the degree of catalyst degradation;

도 3은 이 발명에서 활용하고자 하는 촉매 퍼지 기능을 설명하기 위하여 도시한 도면,3 is a view illustrating a catalyst purge function to be utilized in the present invention;

도 4는 촉매 열화도에 따른 촉매 퍼지 구간을 도시한 그래프,4 is a graph showing a catalyst purge section according to a degree of catalyst deterioration,

도 5는 이 발명의 한 실시예에 따른 자동차의 촉매 열화도 진단 방법을 도시한 동작 흐름도이다5 is a flowchart illustrating a method for diagnosing catalytic degradation of a vehicle according to an exemplary embodiment of the present invention.

Claims (3)

자동차의 촉매 열화도를 진단하는 방법에 있어서,In a method for diagnosing catalyst deterioration of an automobile, 촉매 퍼지 구간에 분사된 누적 촉매 퍼지 연료량을 이용하여 상기 촉매 열화도를 진단하는 것을 특징으로 하는 자동차의 촉매 열화도 진단 방법.A method for diagnosing catalyst deterioration of a vehicle, characterized by diagnosing the degree of catalyst deterioration using a cumulative amount of catalyst purge fuel injected in a catalyst purge section. 제 1 항에 있어서, 상기 누적 촉매 퍼지 연료량과 촉매 열화도가 반비례하는 것을 특징으로 하는 자동차의 촉매 열화도 진단 방법.The method for diagnosing catalyst deterioration of a vehicle according to claim 1, wherein the cumulative amount of catalyst purge fuel is inversely proportional to catalyst deterioration. 촉매의 후방에 설치된 다운스트림 산소센서와,A downstream oxygen sensor mounted behind the catalyst, 상기 다운스트림 산소센서의 출력값을 이용하여 엔진의 공연비를 제어하고 촉매 퍼지 구간에 분사된 누적 촉매 퍼지 연료량을 이용하여 상기 촉매의 열화도를 진단하는 전자제어유닛을 구비한 것을 특징으로 하는 자동차의 촉매 열화도 진단 장치. The catalyst of an automobile comprising an electronic control unit for controlling the air-fuel ratio of the engine by using the output value of the downstream oxygen sensor and diagnosing the degree of degradation of the catalyst by using the accumulated amount of catalyst purge fuel injected in the catalyst purge section. Degradation degree diagnostic device.
KR20080122635A 2008-12-04 2008-12-04 diagnosing method and apparatus of catalyst deterioration of a car KR101480566B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20080122635A KR101480566B1 (en) 2008-12-04 2008-12-04 diagnosing method and apparatus of catalyst deterioration of a car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20080122635A KR101480566B1 (en) 2008-12-04 2008-12-04 diagnosing method and apparatus of catalyst deterioration of a car

Publications (2)

Publication Number Publication Date
KR20100064184A true KR20100064184A (en) 2010-06-14
KR101480566B1 KR101480566B1 (en) 2015-01-08

Family

ID=42363896

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20080122635A KR101480566B1 (en) 2008-12-04 2008-12-04 diagnosing method and apparatus of catalyst deterioration of a car

Country Status (1)

Country Link
KR (1) KR101480566B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101734713B1 (en) 2015-12-10 2017-05-24 현대자동차주식회사 Three Way Catalytic Control Method and System for Decreasing Fuel Consumption and Vehicle thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3719535B2 (en) * 1995-08-02 2005-11-24 本田技研工業株式会社 Catalyst deterioration detection device for internal combustion engine
KR100381238B1 (en) * 2000-11-09 2003-04-26 기아자동차주식회사 Method for diagnosing a catalyst of an exhaust system for a motor vehicle
JP3811075B2 (en) 2002-01-24 2006-08-16 本田技研工業株式会社 Air-fuel ratio control device for internal combustion engine using virtual exhaust gas sensor
KR100579264B1 (en) * 2003-12-10 2006-05-11 현대자동차주식회사 Fuel cut-off nox emission catalyst purge control method of vehicle

Also Published As

Publication number Publication date
KR101480566B1 (en) 2015-01-08

Similar Documents

Publication Publication Date Title
EP2119897B1 (en) ABNORMALITY DIAGNOSIS APPARATUS FOR NOx SENSOR
CN101809261B (en) NOx sensor malfunction diagnostic device and malfunction diagnostic method
RU2684859C2 (en) Method and system for detecting leakage from particular filter
JPH07166843A (en) Monitoring method of light-off behavior of catalyst apparatus mounted on exhaust pipe for internal combustion engine
US10480382B2 (en) Method for detecting catalyst deterioration of vehicle
US5732549A (en) Method for checking the conversion capability of a catalytic converter
WO2014129049A1 (en) Fuel-cetane-number estimation method and device
US7779620B2 (en) Air-fuel ratio feedback control device
US7159385B2 (en) Apparatus for and method of detecting deterioration of catalyst in internal combustion engine
CN113175387A (en) Abnormality diagnosis device for downstream air-fuel ratio detection device
US6035632A (en) Step response catalyst monitoring
JP4736796B2 (en) Diagnostic apparatus and diagnostic method for internal combustion engine
KR20100064184A (en) Diagnosing method and apparatus of catalyst deterioration of a car
JP4736797B2 (en) Diagnostic apparatus and diagnostic method for internal combustion engine
JP4311305B2 (en) Deterioration detection device for linear air-fuel ratio sensor
JPH09125938A (en) Engine control device
KR100219203B1 (en) Failure detecting method of feedback control for oxygen sensor
KR100298719B1 (en) Method for determining catalyst disorder
EP1739292B1 (en) A method of diagnosing the effectiveness of a catalytic device in the exhaust system of a multi-cylinder internal combustion engine
JP4692274B2 (en) Diagnostic apparatus and diagnostic method for internal combustion engine
RU2667807C1 (en) Method and system of engine control and vehicle having such method and system
Jessen et al. Bosch On Board Diagnostic solutions for Motorcycles
KR102394630B1 (en) Method for Catalyst Purge Control Based on Engine Temperature and Vehicle thereof
KR100767507B1 (en) Down-stream oxygen sensor error detecting method
KR20210130460A (en) System and method for protecting catalyst of vehicle

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20171227

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20181213

Year of fee payment: 5