JP4692274B2 - Diagnostic apparatus and diagnostic method for internal combustion engine - Google Patents

Diagnostic apparatus and diagnostic method for internal combustion engine Download PDF

Info

Publication number
JP4692274B2
JP4692274B2 JP2005374039A JP2005374039A JP4692274B2 JP 4692274 B2 JP4692274 B2 JP 4692274B2 JP 2005374039 A JP2005374039 A JP 2005374039A JP 2005374039 A JP2005374039 A JP 2005374039A JP 4692274 B2 JP4692274 B2 JP 4692274B2
Authority
JP
Japan
Prior art keywords
catalyst
ignition timing
correction coefficient
control
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005374039A
Other languages
Japanese (ja)
Other versions
JP2007177631A (en
Inventor
理恵 ▲高▼津戸
浩志 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005374039A priority Critical patent/JP4692274B2/en
Priority to US11/644,035 priority patent/US7444233B2/en
Publication of JP2007177631A publication Critical patent/JP2007177631A/en
Application granted granted Critical
Publication of JP4692274B2 publication Critical patent/JP4692274B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02T10/47

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

本発明は、内燃機関の排気の特定成分を浄化する触媒を備えた排気浄化システムを診断する技術に関し、特に、冷機始動時のように触媒の昇温を促進する制御が行われる状況で、この制御を含めた排気浄化システムの異常を検出することに適した診断装置及び診断方法に関する。   The present invention relates to a technology for diagnosing an exhaust purification system provided with a catalyst for purifying a specific component of exhaust gas of an internal combustion engine, and in particular, in a situation where control for promoting the temperature rise of the catalyst is performed as in cold start. The present invention relates to a diagnostic apparatus and a diagnostic method suitable for detecting an abnormality of an exhaust purification system including control.

近年の自動車用内燃機関の分野では、排気浄化、特に触媒が不活性状態である冷機始動(コールドスタート)時からの排気浄化技術の向上が強く望まれ、また法規による規制が厳しくなっている。そこで、冷機始動時には早期に触媒を活性化させるために、アイドル回転数の増加制御や点火時期の遅角制御等の触媒昇温促進制御が良く行われている。また、このような制御を含めた冷機始動時における排気浄化システムが正常に機能しているかの診断が要求され、また法規制が強化される傾向にある。   In the field of internal combustion engines for automobiles in recent years, it is strongly desired to improve exhaust gas purification technology, particularly from the cold start when the catalyst is in an inactive state, and regulations by regulations have become strict. Therefore, in order to activate the catalyst at an early stage when the cold engine is started, catalyst temperature increase promotion control such as idle speed increase control and ignition timing retardation control is often performed. In addition, a diagnosis of whether the exhaust purification system at the time of cold start including such control is functioning normally is required, and there is a tendency that regulations are strengthened.

特許文献1には、このような診断技術として、冷機始動時に、機関回転数フィードバック制御と点火時期フィードバック制御とを組み合わせた昇温促進制御を開始してから所定の遅延時間が経過した時点から機関回転数や点火時期を監視し、機関回転数が所定値以下又は点火時期(進角値)が所定値以上の状態が所定時間経過すると、故障(異常)と判定している。
特開2001−132526号公報
In Patent Document 1, as such a diagnostic technique, at the time of cold start, the engine is started from the time when a predetermined delay time has elapsed since the start of the temperature increase promotion control that combines the engine speed feedback control and the ignition timing feedback control. The engine speed and ignition timing are monitored, and when the engine speed is less than a predetermined value or the ignition timing (advance value) is greater than or equal to a predetermined value, a failure (abnormal) is determined.
JP 2001-132526 A

上記特許文献1のものでは、アイドル運転時のように機関回転数フィードバック制御と点火時期フィードバック制御の双方が行われる一定の機関運転状態で、かつ、所定の遅延時間が経過した後でないと診断を開始することができないので、例えば冷機始動後に比較的短い時間で加速・走行モードへ移行するような使われ方では診断が行われず、診断頻度が非常に少なくなることがある。従って、実際には異常であるのに診断が行われないままとなることがあり、更なる改良が望まれていた。   In the above-mentioned Patent Document 1, a diagnosis is made in a certain engine operating state in which both engine speed feedback control and ignition timing feedback control are performed as in idle operation and after a predetermined delay time has elapsed. Since it cannot be started, for example, the diagnosis is not performed and the diagnosis frequency may be very low in the case of using the system to shift to the acceleration / running mode in a relatively short time after the cold start. Therefore, there is a case where the diagnosis is not performed although it is actually abnormal, and further improvement has been desired.

また、触媒の活性状態は主として触媒温度つまり触媒に供給される排気ガスの供給熱量に大きく依存しており、この排気供給熱量は、上記の点火時期や機関回転数のみならず、触媒を通過する排気ガスのマスボリューム(吸気量や排気量)によっても変動する。このマスボリュームは機関運転状態に応じて変化し、例えばアイドルから車両走行へ移行するとマスボリュームが増加する。従って、上記特許文献1のように主として機関回転数や点火時期に基づいて診断を行うものでは、アイドルなどの特定の運転状態に限定すれば比較的精度の良い診断を行うことができるものの、市場での様々な走行パターンに対応することができない。   Further, the active state of the catalyst largely depends on the catalyst temperature, that is, the supply heat amount of the exhaust gas supplied to the catalyst. This exhaust supply heat amount passes through the catalyst as well as the ignition timing and the engine speed. It also varies depending on the exhaust gas mass volume (intake and displacement). This mass volume changes according to the engine operating state. For example, the mass volume increases when shifting from idle to vehicle running. Therefore, in the case of making a diagnosis mainly based on the engine speed and the ignition timing as in Patent Document 1, a relatively accurate diagnosis can be made if limited to a specific operating state such as an idle. It is not possible to cope with various driving patterns in

本発明は、このような課題に鑑みてなされたものであり、内燃機関の排気系に設けられて特定成分を浄化する少なくとも一つの触媒と、機関冷機時に、機関回転数を増加する回転数増加制御と点火時期を遅角する点火時期遅角制御とを用いて触媒の昇温を促進する触媒昇温促進手段と、を有する排気浄化システムを診断する技術に関し、
機関回転数に基づいて、上記回転数増加制御による機関回転数の増加に伴う触媒昇温の寄与度に相当し、機関回転数が増加するほど大きな値とされる回転数補正係数を算出し、
点火時期に基づいて、上記点火時期遅角制御による点火時期の遅角に伴う触媒昇温の寄与度に相当し、点火時期が遅角するほど大きな値とされる点火時期補正係数を算出し、
これら回転数補正係数及び点火時期補正係数と、燃料噴射量と、に基づいて、上記触媒昇温促進の間中に触媒へ供給された排気ガスの総熱量に相当する排気供給総熱量を算出し、
触媒に残存する上記特定成分の割合に相当する触媒残存率を、上記排気供給総熱量と、触媒が活性化するのに必要な熱量とに基づいて算出し、
上記触媒残存率と、触媒に供給される上記特定成分の供給量とに基づいて、上記特定成分の触媒下流側への排出量に相当する触媒排出量を推定し、
上記触媒残存率が所定の触媒残存率となったとき、上記触媒排出量を所定の触媒排出量と比較して、排気浄化システムの正常・異常を判定し、
上記回転数補正係数に基づいて、回転数増加制御の正常レベルを算出し、
上記点火時期補正係数に基づいて、点火時期遅角制御の正常レベルを算出し、
この回転数増加制御の正常レベルと点火時期遅角制御の正常レベルとに基づいて、上記回転数増加制御と点火時期遅角制御の異常を判定する、
ものである。
The present invention has been made in view of such a problem, and is provided with at least one catalyst provided in an exhaust system of an internal combustion engine for purifying a specific component, and an increase in the number of revolutions when the engine is cooled. The present invention relates to a technology for diagnosing an exhaust purification system having a catalyst temperature increase promotion means for promoting temperature increase of a catalyst by using control and ignition timing retardation control for delaying ignition timing,
Based on the engine speed, the rotation speed correction coefficient corresponding to the contribution of the catalyst temperature increase accompanying the increase in the engine speed by the above-described engine speed increase control, and a larger value as the engine speed increases,
Based on the ignition timing, the ignition timing correction coefficient corresponding to the degree of contribution of the catalyst temperature rise accompanying the ignition timing retardation by the ignition timing retardation control, which is set to a larger value as the ignition timing is retarded, is calculated.
Based on these rotation speed correction coefficient, ignition timing correction coefficient, and fuel injection amount, the exhaust heat supply total heat amount corresponding to the total heat amount of the exhaust gas supplied to the catalyst during the catalyst temperature increase promotion is calculated. ,
A catalyst residual ratio corresponding to the ratio of the specific component remaining in the catalyst is calculated based on the exhaust heat total heat amount and a heat amount necessary for the catalyst to be activated,
Based on the catalyst remaining rate and the supply amount of the specific component supplied to the catalyst, a catalyst discharge amount corresponding to the discharge amount of the specific component to the catalyst downstream side is estimated,
When the catalyst remaining rate becomes a predetermined catalyst remaining rate, the catalyst discharge amount is compared with a predetermined catalyst discharge amount to determine normality / abnormality of the exhaust purification system,
Based on the rotation speed correction coefficient, the normal level of the rotation speed increase control is calculated,
Based on the ignition timing correction coefficient, a normal level of ignition timing retardation control is calculated,
Based on the normal level of the rotational speed increase control and the normal level of the ignition timing retard control, the abnormality of the rotational speed increase control and the ignition timing retard control is determined.
Is.

本発明によれば、触媒昇温手段による触媒の昇温促進が行われる機関冷機中に、回転数補正係数及び点火時期補正係数に基づいて特定成分の触媒下流側への排出量に相当する触媒排出量を推定し、この触媒排出量に基づいて診断を行うことにより、幅広い機関運転領域で精度の高い診断を行うことができる。上記の補正係数は、触媒昇温寄与度に相当する値であって、典型的には機関回転数が高いほど大きく、また点火時期が遅角するほど大きな値に設定される。このような補正係数を用いることによって、機関回転数や点火時期の変動にかかわらず、システムの異常・正常の診断に用いられる触媒排出量を精度良く推定することができる。そして、このような触媒排出量の推定に用いられる補正係数を有効に利用して、触媒昇温手段における回転数増加制御の正常レベルと点火時期遅角制御の正常レベルとを簡便に算出することができる。すなわち、システム判定のために用いられる補正係数を利用することで、新たな制御因子の設定・適合を行うことなく、触媒昇温手段における回転数増加制御と点火時期遅角制御の正常レベル・度合いを個別に算出でき、システム異常時にその異常の原因を容易に特定することが可能となる。   According to the present invention, the catalyst corresponding to the discharge amount of the specific component to the downstream side of the catalyst based on the rotation speed correction coefficient and the ignition timing correction coefficient during the engine cooler in which the catalyst temperature rising promotion is performed by the catalyst temperature rising means. By estimating the emission amount and making a diagnosis based on the catalyst emission amount, a highly accurate diagnosis can be performed in a wide range of engine operation. The above correction coefficient is a value corresponding to the catalyst temperature increase contribution, and is typically set to a larger value as the engine speed is higher and as the ignition timing is retarded. By using such a correction coefficient, it is possible to accurately estimate the catalyst discharge amount used for diagnosis of system abnormality / normality regardless of fluctuations in engine speed and ignition timing. Then, by effectively using the correction coefficient used for estimating the catalyst emission amount, the normal level of the rotation speed increasing control and the normal level of the ignition timing retarding control in the catalyst temperature raising means can be easily calculated. Can do. In other words, by using the correction coefficient used for system determination, the normal level and degree of rotation speed increase control and ignition timing retardation control in the catalyst temperature raising means without setting and adapting new control factors Can be calculated individually, and the cause of the abnormality can be easily identified when the system is abnormal.

以下、本発明の好ましい実施例を図面に基づいて説明する。図1は、本発明の一実施例に係るガソリン内燃機関の排気浄化システムを簡略的に示している。内燃機関20の燃焼室21には、略中央上部に点火プラグ9が配設されているとともに、吸気弁22を介して吸気通路23と、排気弁24を介して排気通路25と、が接続されている。吸気通路23には、上流側より順に、エアクリーナ26、吸気流量を計測するエアフロメータ3、吸気通路23を開閉する電子制御式のスロットル弁27及びそのスロットル開度を検出するスロットル開度センサ4、及び吸気通路23の吸気ポート23Aへ燃料を噴射する燃料噴射弁5が設けられている。なお、このようなポート噴射式の内燃機関に限らず、燃料噴射弁から燃焼室内に直接燃料を噴射する筒内直噴型の内燃機関に本発明を適用することもできる。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 schematically shows an exhaust gas purification system for a gasoline internal combustion engine according to an embodiment of the present invention. In the combustion chamber 21 of the internal combustion engine 20, a spark plug 9 is disposed substantially at the upper center, and an intake passage 23 is connected via an intake valve 22 and an exhaust passage 25 is connected via an exhaust valve 24. ing. In the intake passage 23, in order from the upstream side, an air cleaner 26, an air flow meter 3 for measuring the intake flow rate, an electronically controlled throttle valve 27 for opening and closing the intake passage 23, and a throttle opening sensor 4 for detecting the throttle opening, A fuel injection valve 5 for injecting fuel into the intake port 23A of the intake passage 23 is provided. The present invention can be applied not only to such a port injection type internal combustion engine but also to a direct injection type internal combustion engine that directly injects fuel from a fuel injection valve into a combustion chamber.

排気通路25には、燃焼室21に近く比較的排気温度の高い排気マニホールド集合部25A又はその近傍の上流位置にフロント触媒13が配設されているとともに、このフロント触媒13よりも下流側であって、比較的排気温度の低い車両の床下位置にリア触媒14が配設されている。つまり、冷機始動時を含めて高効率に排気を浄化するために、排気通路25の中で周囲温度の異なる複数箇所に触媒を直列に配置した触媒システムとなっている。フロント触媒13は、好ましくは、理論空燃比近傍でNO,HC,COをほぼ0(零)まで低減可能な三元触媒13Aと、この三元触媒13Aが活性化する前に排出されるHCを一時的に吸着するHC吸着触媒13Bとを組み合わせたHC吸着型三元触媒であり、リア触媒14は、例えば上記のHC吸着触媒である。但し、これに限らず、上記の三元触媒、HC吸着触媒の他、リーン運転時のような酸素過剰な領域でNOXをトラップし、ストイキ又はリッチ運転時にはNOXを放出,還元するNOトラップ触媒等の他の触媒を単独又は組み合わせて用いても良い。 A front catalyst 13 is disposed in the exhaust passage 25 at an upstream position near the combustion chamber 21 and at a relatively high exhaust temperature, or at an upstream position in the vicinity thereof, and further downstream than the front catalyst 13. Thus, the rear catalyst 14 is disposed at a position under the floor of the vehicle having a relatively low exhaust temperature. That is, in order to purify the exhaust gas with high efficiency including when the cold machine is started, the catalyst system is configured such that the catalyst is arranged in series at a plurality of locations having different ambient temperatures in the exhaust passage 25. The front catalyst 13 is preferably a three-way catalyst 13A capable of reducing NO x , HC, CO to almost 0 (zero) in the vicinity of the theoretical air-fuel ratio, and HC discharged before the three-way catalyst 13A is activated. The rear catalyst 14 is, for example, the above-described HC adsorption catalyst. However, not limited thereto, the above-mentioned three-way catalyst, other HC adsorption catalyst, to trap NO X in an oxygen excess region, such as during the lean operation, releases NO X during stoichiometric or rich operation, reducing to NO X Other catalysts such as a trap catalyst may be used alone or in combination.

また、排気通路25には、フロント触媒13の上流側及び下流側にそれぞれ上流側酸素センサ11及び下流側酸素センサ12が設けられている。なお、センサ11,12としては、簡素な酸素センサ(Oセンサ)に代えて、幅広い空燃比を検出可能な広域型の空燃比センサを用いても良い。機関回転速度(機関回転数)は、例えばクランクシャフトの回転角位置を検出するポジション(POS)センサ7とカムシャフトの位相を検出する位相(PHASE)センサ8との検出信号に基づいて演算される。また、内燃機関20のシリンダブロックには、ノッキング(ノック)の発生を検出するノックセンサ6や、機関温度としての機関水温を検出する水温センサ10が取り付けられている。 The exhaust passage 25 is provided with an upstream oxygen sensor 11 and a downstream oxygen sensor 12 on the upstream side and the downstream side of the front catalyst 13, respectively. As the sensors 11 and 12, wide-range air-fuel ratio sensors that can detect a wide range of air-fuel ratios may be used instead of simple oxygen sensors (O 2 sensors). The engine speed (engine speed) is calculated based on detection signals from, for example, a position (POS) sensor 7 that detects the rotational angle position of the crankshaft and a phase (PHASE) sensor 8 that detects the phase of the camshaft. . Further, a knock sensor 6 that detects the occurrence of knocking (knock) and a water temperature sensor 10 that detects the engine water temperature as the engine temperature are attached to the cylinder block of the internal combustion engine 20.

電子制御装置つまり制御部としてのエンジンコントローラ1は、CPU,ROM,RAM及び入出力インターフェースを備えた周知のデジタルコンピュータシステムであって、各種制御処理を記憶及び実行する機能を有している。このエンジンコントローラ1には、スタータ信号やイグニッション信号等の各種信号が信号線2を介して入力されるとともに、上記の各種センサ類3,4,6〜8,10〜12から入力される検出信号に基づいて、各種アクチュエータ類へ制御信号を出力し、その動作を制御する。例えば、燃料噴射弁5による燃料噴射量及び噴射時期、点火プラグ9による点火時期を制御する。また、上記の酸素センサ11,12の出力に基づいて空燃比のフィードバック制御を行う。   The engine controller 1 as an electronic control unit, that is, a control unit is a known digital computer system including a CPU, a ROM, a RAM, and an input / output interface, and has a function of storing and executing various control processes. Various signals such as a starter signal and an ignition signal are input to the engine controller 1 via the signal line 2 and detection signals input from the various sensors 3, 4, 6 to 8 and 10 to 12. Based on the above, control signals are output to various actuators to control the operation. For example, the fuel injection amount and injection timing by the fuel injection valve 5 and the ignition timing by the spark plug 9 are controlled. Also, air-fuel ratio feedback control is performed based on the outputs of the oxygen sensors 11 and 12.

機関始動から数十秒間の冷機始動時のように、触媒が低温で未だ活性化していない機関冷機時には、多くの炭化水素(HC)が未浄化のまま触媒から排出されるおそれがある。このようなコールドエミッション対策として、この触媒浄化システムでは、上記のHC吸蔵触媒13B,14を設けているとともに、フロント触媒13を排気マニホールド集合部25Aの近傍に配置して昇温化を促進しており、かつ、所定のアイドル運転域にあっては、機関回転数を所定のアイドル回転数にフィードバック制御するアイドル回転数制御における上記アイドル回転数の増加制御と、点火時期を最適点火時期(MBT)に対してリタード・遅角化する点火時期遅角制御と、を併用した触媒昇温促進制御を行う(触媒昇温手段)。なお、このような触媒昇温促進制御は例えば上記の特許文献1にも詳しく記載されている。   When the engine is not activated at a low temperature, such as when the engine is started for several tens of seconds after the engine is started, a large amount of hydrocarbons (HC) may be discharged from the catalyst without being purified. As a countermeasure against such cold emission, in this catalyst purification system, the above-described HC storage catalysts 13B and 14 are provided, and the front catalyst 13 is disposed in the vicinity of the exhaust manifold assembly portion 25A to promote temperature rise. In the predetermined idling operating range, the idling engine speed increasing control in the idling engine speed control for feedback control of the engine engine speed to the predetermined idling engine speed, and the ignition timing are set to the optimum ignition timing (MBT). In contrast, catalyst temperature increase promotion control is performed in combination with retard / retarded ignition timing retardation control (catalyst temperature increase means). Note that such catalyst temperature increase promotion control is also described in detail in, for example, the above-mentioned Patent Document 1.

図2は、触媒昇温促進制御が行われる機関冷機中に排気浄化システムが正常に機能しているかを診断する診断制御処理の流れを示すフローチャートである。このルーチンは上記のエンジンコントローラ1により機関始動とともに開始され、極短い所定期間、具体的には一単位(1〜数回)の燃焼が行われる所定のクランク角毎に繰り返し実行される。   FIG. 2 is a flowchart showing a flow of a diagnostic control process for diagnosing whether the exhaust purification system is functioning normally during the engine cooler in which the catalyst temperature increase promotion control is performed. This routine is started by the engine controller 1 when the engine is started, and is repeatedly executed for a very short predetermined period, specifically, every predetermined crank angle at which one unit (one to several times) of combustion is performed.

ステップ101では、内燃機関20の運転状態が冷機始動時のように上記の触媒昇温促進制御が行われる稼働領域であるか、すなわち触媒が未だ活性していない機関冷機時であるかを判定する。具体的には、機関水温が25〜30℃程度の所定温度以下であるか等の幾つかの条件により判定が行われる。   In step 101, it is determined whether the operating state of the internal combustion engine 20 is an operating region where the above-described catalyst temperature increase promotion control is performed as in cold start, that is, whether the engine is cold when the catalyst is not yet active. . Specifically, the determination is made based on several conditions such as whether the engine water temperature is equal to or lower than a predetermined temperature of about 25 to 30 ° C.

ステップ102では、所定の診断許可条件が成立しているかを判定する。この診断許可条件としては、排気昇温促進制御に関わるセンサ類、例えばエアフロメータ3,ポジションセンサ7,位相センサ8及び酸素センサ11,12が正常であるか等の条件が含まれる。但し、本実施例は機関冷機中であればアイドル運転に限られず比較的幅広い機関運転領域で診断可能であることを一つの特徴としており、従って、基本的には個々の運転状態(アイドル等),機関負荷及び機関回転数等の条件がこのステップ102での診断許可条件には含まれていない。   In step 102, it is determined whether a predetermined diagnosis permission condition is satisfied. The diagnosis permission condition includes conditions such as whether the sensors related to the exhaust gas temperature increase promotion control, for example, the air flow meter 3, the position sensor 7, the phase sensor 8, and the oxygen sensors 11, 12 are normal. However, this embodiment is characterized in that it can be diagnosed in a relatively wide engine operation region without being limited to idle operation as long as the engine is cold. Therefore, basically, individual operation states (idle etc.) The conditions such as the engine load and the engine speed are not included in the diagnosis permission conditions in step 102.

ステップ103Aでは、現在の点火時期に基づいて、点火時期補正係数G(ADV)を算出する。このG(ADV)は、最適点火時期MBTに対するリタード量(遅角量)ADV−MBTCALに基づいて、図6に示すような制御マップ・テーブルを参照して求められる。同図に示すように、点火時期のリタード量が大きくなるほど、燃焼効率が低下して排気ガス温度が高くなることから、単位排気供給熱量QEXSTが大きくなるように、G(ADV)が設定されている。つまり、G(ADV)は、点火時期の遅角化による触媒昇温の寄与度に相当するもので、点火時期の遅角量が大きくなるほど大きな値に設定される。   In step 103A, an ignition timing correction coefficient G (ADV) is calculated based on the current ignition timing. This G (ADV) is obtained with reference to a control map table as shown in FIG. 6 based on the retard amount (retard amount) ADV-MBTCAL with respect to the optimum ignition timing MBT. As shown in the figure, the larger the ignition timing retard amount, the lower the combustion efficiency and the higher the exhaust gas temperature. Therefore, G (ADV) is set so that the unit exhaust gas supply heat amount QEXST increases. Yes. That is, G (ADV) corresponds to the contribution of the catalyst temperature increase due to the retarded ignition timing, and is set to a larger value as the retard amount of the ignition timing increases.

ステップ103Bでは、現在の機関回転数NEに基づいて、回転数補正係数G(N)を算出する。このG(N)は、機関回転数NEに基づいて図7に示すような制御マップ・テーブルを参照して求められる。同図に示すように、回転数NEが高くなるほど、燃焼間隔の実際の時間が短くなって放熱量が小さくなることから、単位排気供給熱量QEXSTが大きくなるように、G(N)が設定されている。つまり、G(N)は、機関回転数の増加による触媒昇温の寄与度に相当するもので、機関回転数が増加するほど大きな値に設定される。   In step 103B, a rotational speed correction coefficient G (N) is calculated based on the current engine rotational speed NE. This G (N) is obtained by referring to a control map table as shown in FIG. 7 based on the engine speed NE. As shown in the figure, the higher the rotational speed NE, the shorter the actual time of the combustion interval and the smaller the heat release, so G (N) is set so that the unit exhaust supply heat quantity QEXST increases. ing. That is, G (N) corresponds to the contribution of the catalyst temperature increase due to the increase in the engine speed, and is set to a larger value as the engine speed increases.

ステップ103Cでは、内燃機関の一回(一単位)の燃焼で供給される排気ガスの熱量に相当する単位排気供給熱量QEXSTを推定・算出する。具体的には、次式(1)によりQEXSTを算出する。
QEXST=TP×G(ADV)×G(N)…(1)
「TP」は燃料噴射量である。上記の補正係数G(ADV),G(N)を用いることによって、機関回転数や点火時期の変動による単位排気供給量QEXSTの変動分を良好に吸収・相殺することができる。
In step 103C, a unit exhaust supply heat quantity QEXST corresponding to the heat quantity of the exhaust gas supplied in one (one unit) combustion of the internal combustion engine is estimated and calculated. Specifically, QEXST is calculated by the following equation (1).
QEXST = TP × G (ADV) × G (N) (1)
“TP” is the fuel injection amount. By using the above correction coefficients G (ADV) and G (N), it is possible to satisfactorily absorb and cancel out fluctuations in the unit exhaust gas supply amount QEXST caused by fluctuations in engine speed and ignition timing.

ステップ104では、単位排気供給熱量QEXSTを積算して、機関冷機時に触媒へ供給された排気ガスの総熱量に相当する排気供給総熱量QEXSTPを算出する。具体的には、一演算前の総熱量QEXSTPに対し、単位排気供給熱量QEXSTに一演算前からの燃焼回数(つまり、一単位での燃焼回数)を乗算した値を加算して、QEXSTPを更新する。   In step 104, the unit exhaust gas supply heat quantity QEXST is integrated to calculate the exhaust gas supply total heat quantity QEXTTP corresponding to the total heat quantity of the exhaust gas supplied to the catalyst when the engine is cold. Specifically, QEXTTP is updated by adding the value obtained by multiplying the unit exhaust supply heat quantity QEXST by the number of combustions from the previous calculation (that is, the number of combustions per unit) to the total heat quantity QEXTTP before one calculation. To do.

ステップ104Aのサブルーチンでは、点火時期補正係数平均値AVADVと回転数補正係数平均値AVNEとを算出する。図3を参照して詳述すると、ステップ141では、回転数補正係数G(N)に基づいて、回転数補正係数積算値SMCSNEを算出する。具体的には、今回の演算ルーチンで算出された回転数補正係数G(N)を前回ルーチンまでに積算された値SMCSNEに加算してSMCSNEを更新する。ステップ142では、回転数補正係数積算値SMCSNEを積算燃焼回数で割算して、回転数補正係数平均値AVNEを算出する。ステップ143では、点火時期補正係数G(ADV)に基づいて、点火時期補正係数積算値SMCSADVを算出する。具体的には、今回の演算ルーチンで算出された点火時期補正係数G(ADV)を前回ルーチンまでに積算された値SMCSADVに加算してSMCSADVを更新する。ステップ144では、点火時期補正係数積算値SMCSADVを積算燃焼回数で割算して、点火時期補正係数平均値AVADVを算出する。   In the subroutine of step 104A, the ignition timing correction coefficient average value AVADV and the rotation speed correction coefficient average value AVNE are calculated. Referring to FIG. 3 in detail, in step 141, the rotational speed correction coefficient integrated value SMCSNE is calculated based on the rotational speed correction coefficient G (N). Specifically, the SMCSNE is updated by adding the rotation speed correction coefficient G (N) calculated in the current calculation routine to the value SMCSNE accumulated up to the previous routine. In step 142, the engine speed correction coefficient average value AVNE is calculated by dividing the engine speed correction coefficient integrated value SMCSNE by the integrated combustion frequency. In step 143, an ignition timing correction coefficient integrated value SMCSADV is calculated based on the ignition timing correction coefficient G (ADV). Specifically, the SMCSADV is updated by adding the ignition timing correction coefficient G (ADV) calculated in the current calculation routine to the value SMCSADV accumulated up to the previous routine. In step 144, an ignition timing correction coefficient average value AVADV is calculated by dividing the ignition timing correction coefficient integrated value SMCSADV by the cumulative number of combustion times.

再び図2を参照して、ステップ105では、触媒に残存するHC(炭化水素)の割合に相当する触媒残存率ITAT50を算出する。触媒残存率ITAT50は触媒総熱量QEXSTPに大きく依存しているため、この実施例では次式(2)に示すように、簡易的に触媒総熱量QEXSTPのみに基づいて触媒残存率ITAT50を算出している。
ITAT50=1−QEXSTP/QT50…(2)
「QT50」は、触媒が活性するのに必要な熱量に相当し、予め設定された固定値である。
Referring to FIG. 2 again, in step 105, a catalyst remaining rate ITAT50 corresponding to the ratio of HC (hydrocarbon) remaining in the catalyst is calculated. Since the catalyst remaining rate ITAT50 greatly depends on the total catalyst heat quantity QEXTP, in this embodiment, as shown in the following equation (2), the catalyst remaining ratio ITAT50 is simply calculated based only on the total catalyst heat quantity QEXTTP. Yes.
ITAT50 = 1-QEXTTP / QT50 (2)
“QT50” corresponds to the amount of heat necessary for the catalyst to be activated, and is a preset fixed value.

ステップ106では、一回の燃焼で内燃機関の燃焼室から排気系へ排出されるHCの排出量EOE、すなわち触媒に供給されるHCの供給量に相当する単位機関排出量SIMEOEを推定する。図8に示すように、排出量EOEは燃料噴射量にほぼ比例するものであり、燃料噴射量に対する排出量EOEの割合COE1はほぼ一定である。従って、このステップ106では、簡易的に、上記の割合COE1を固定係数として燃料噴射量TPのみに基づいて単位機関排出量SIMEOEを演算している。   In step 106, an exhaust amount EOE of HC discharged from the combustion chamber of the internal combustion engine to the exhaust system in one combustion, that is, a unit engine discharge amount SIMEOE corresponding to the supply amount of HC supplied to the catalyst is estimated. As shown in FIG. 8, the emission amount EOE is substantially proportional to the fuel injection amount, and the ratio COE1 of the emission amount EOE to the fuel injection amount is substantially constant. Therefore, in this step 106, the unit engine emission amount SIMEOE is simply calculated based only on the fuel injection amount TP with the ratio COE1 as a fixed coefficient.

ステップ107では、単位機関排出量SIMEOEと現時点での触媒残存率ITAT50とに基づいて、一単位の燃焼で触媒下流に排出されるHCの排出量に相当する単位触媒排出量(単位テールパイプHC)SIMTPEを算出する。ステップ108では、上記の単位触媒排出量SIMTPEを積算して、触媒下流に排出されるテールパイプHCの総量に相当する触媒排出量SIMTTPEを算出する。具体的には、一演算前のSIMTTPEに対し、一単位の燃焼回数にSIMTPEを乗算した値を加算することにより、触媒排出量SIMTTPEを逐次更新している。   In step 107, based on the unit engine emission amount SIMEOE and the current catalyst remaining rate ITAT50, the unit catalyst emission amount (unit tail pipe HC) corresponding to the HC emission amount discharged downstream of the catalyst in one unit of combustion. SIMTPE is calculated. In step 108, the unit catalyst discharge amount SIMTPE is integrated to calculate a catalyst discharge amount SIMTTPE corresponding to the total amount of the tail pipe HC discharged downstream of the catalyst. Specifically, the catalyst emission amount SIMTTPE is sequentially updated by adding a value obtained by multiplying the number of combustions per unit by SIMTPE to the SIMTTPE before one operation.

ステップ109では、触媒残存率ITAT50が所定の判定値である0(零)になったか、すなわち触媒が活性化したかを判定する。なお、判定値としては上記の値(0)に限らず、診断期間短縮化のためにより大きな値としても良く、あるいは診断精度向上のためにより小さな値としても良い。   In step 109, it is determined whether the catalyst remaining rate ITAT50 has reached a predetermined determination value of 0 (zero), that is, whether the catalyst has been activated. The determination value is not limited to the above value (0), and may be a larger value for shortening the diagnosis period or a smaller value for improving diagnosis accuracy.

このステップ109の判定が肯定されると、ステップ110へ進み、この排気浄化システムの正常・異常の判定・診断を行う。具体的には、上記の触媒排出量SIMTTPEが所定の判定値EMNG以下であるかを判定する。この判定値EMNGは、予め設定される固定値であって、例えば正常な場合の触媒排出量SIMTTPEの1.5倍程度の値に設定される。ステップ110の判定が肯定されると正常と判定し、否定されると異常と判定して例えば警告ランプや警告音等により運転者に異常であることを報知する。   If the determination in step 109 is affirmed, the process proceeds to step 110 to determine / diagnose whether the exhaust purification system is normal or abnormal. Specifically, it is determined whether the catalyst discharge amount SIMTTPE is equal to or less than a predetermined determination value EMNG. This determination value EMNG is a fixed value that is set in advance, and is set to a value that is about 1.5 times the catalyst discharge amount SIMTTPE in a normal case, for example. If the determination in step 110 is affirmative, it is determined to be normal, and if it is negative, it is determined to be abnormal, and the driver is notified of an abnormality by, for example, a warning lamp or a warning sound.

また、異常と判定された場合には、ステップ113のサブルーチンにより、点火時期補正の正常レベルWORADV及び回転数増加制御の正常レベルWORNEが算出される。詳しくは図4に示すように、ステップ151では、次式(3)により、回転数増加制御の正常レベルWORNEを算出する。   If it is determined that there is an abnormality, the normal level WORADV of the ignition timing correction and the normal level WORNE of the rotation speed increase control are calculated by a subroutine of step 113. Specifically, as shown in FIG. 4, in step 151, the normal level WORKNE of the rotation speed increase control is calculated by the following equation (3).

WORNE=(AVNE−AVFNE)/(AVTNE−AVFNE)…(3)
ここで、「WORNE」は、回転数増加制御の正常レベル・度合いを表す指数であり、正常であれば「1」に近い値となり、異常であれば「0」に近い値となる。「AVFNE」は異常時の回転数補正係数に相当する値であり、予め設定される固定値である。「AVTNE」は正常時の回転数補正係数に相当する値であり、予め設定される固定値である。
WORNE = (AVNE−AVFNE) / (AVVTNE−AVFNE) (3)
Here, “WORDE” is an index representing the normal level / degree of the rotation speed increase control, and is a value close to “1” if normal, and a value close to “0” if abnormal. “AVFNE” is a value corresponding to the rotation speed correction coefficient at the time of abnormality, and is a preset fixed value. “AVTNE” is a value corresponding to a normal rotation speed correction coefficient, and is a fixed value set in advance.

また、ステップ152では、次式(4)により、点火時期遅角制御の正常レベルWORADVを算出する。   In step 152, the normal level WORADV of the ignition timing retardation control is calculated by the following equation (4).

WORADV=(AVADV−AVFADV)/(AVTADV−AVFADV)…(4)
ここで、「WORADV」は、点火時期増加制御の正常レベル・度合いを表す指数であり、正常であれば「1」に近い値となり、異常であれば「0」に近い値となる。「AVFADV」は異常時の点火時期補正係数に相当する値であり、予め設定される固定値である。「AVTADV」は正常時の点火時期補正係数に相当する値であり、予め設定される固定値である。例えば、最適点火時期MBTのときの点火時期補正係数G(ADV)を「1」に設定すると、AVFADVは1に設定され、AVTADVが1.2〜1.3の値に設定される。
WORADV = (AVADV−AVFADV) / (AVTADV−AVFADV) (4)
Here, “WORADV” is an index representing the normal level / degree of ignition timing increase control, and is close to “1” if normal, and close to “0” if abnormal. “AVFADV” is a value corresponding to the ignition timing correction coefficient at the time of abnormality, and is a preset fixed value. “AVTADV” is a value corresponding to a normal ignition timing correction coefficient, and is a fixed value set in advance. For example, when the ignition timing correction coefficient G (ADV) at the optimal ignition timing MBT is set to “1”, AVFADV is set to 1 and AVTADV is set to a value of 1.2 to 1.3.

図4に示すサブルーチンでは、回転数増加制御と点火時期遅角制御のいずれが相対的に正常・異常であるかを判定している。つまり、システム異常の原因を特定している。具体的には、ステップ153において、WORNEとWORADVとを比較し、大きい方が相対的に正常であり、小さい方が相対的に異常であると判定している(ステップ154,155)。この判定結果は、運転者に警告・報知するようにしてもよく、あるいは修理時の参考として単に記憶しておくようにしても良い。   In the subroutine shown in FIG. 4, it is determined which of the rotation speed increase control and the ignition timing retard control is relatively normal or abnormal. That is, the cause of the system abnormality is specified. Specifically, in step 153, WORDE and WORADV are compared, and it is determined that the larger one is relatively normal and the smaller one is relatively abnormal (steps 154 and 155). This determination result may be warned / notified to the driver, or simply stored as a reference at the time of repair.

図5は図4に代わるサブルーチンの他の例を示しており、この例では、回転数増加制御と点火時期遅角制御のそれぞれの正常・異常を判定している。ステップ151及びステップ152では、図4の場合と同様、WORNE及びWORADVを算出する。続くステップ161では、WORNEを予め設定された判定値(1より小さい値)と比較する。WORNEが判定値よりも大きれば、回転数増加制御の正常と判定し(ステップ162)、WORNEが判定値以下であれば、回転数増加制御の異常と判定する(ステップ163)。ステップ164では、WORADVを予め設定された判定値(1より小さい値)と比較する。WORADVが判定値よりも大きければ、点火時期遅角制御の正常と判定し(ステップ165)、WORADVが判定値以下であれば、点火時期増加制御の異常と判定する(ステップ166)。   FIG. 5 shows another example of a subroutine substituting for FIG. 4. In this example, the normality / abnormality of the rotation speed increase control and the ignition timing retard control are respectively determined. In step 151 and step 152, WORDE and WORDADV are calculated as in the case of FIG. In the following step 161, WORDE is compared with a preset determination value (a value smaller than 1). If WORNE is larger than the determination value, it is determined that the rotation speed increase control is normal (step 162), and if WORNE is equal to or less than the determination value, it is determined that the rotation speed increase control is abnormal (step 163). In step 164, WORADV is compared with a predetermined determination value (a value smaller than 1). If WORADV is larger than the determination value, it is determined that the ignition timing retardation control is normal (step 165). If WORADV is equal to or less than the determination value, it is determined that the ignition timing increase control is abnormal (step 166).

は、本実施例に係る冷機始動時のタイムチャートであり、図中実線NCの特性が正常時(Normal Condition)に対応し、破線MCの特性が異常時(Malfunction condition)に対応している。横軸はクランク角(基準クランク位置REF)に相当する。同図に示すように、本実施例では機関回転数NEや点火時期等を加味して触媒排出量SIMTTPEを求めているので、機関回転数NEの変動にかかわらず、触媒排出量SIMTTPEがクランク角(燃焼間隔)にほぼ比例して増加し、触媒残存率ITAT50が0となる時点の付近で上限値に達することになる。従って、この時点での触媒排出量SIMTTPEを判定値EMNGと比較することにより、短い診断時間で精度の高い診断を行うことができる。 FIG. 9 is a time chart at the time of cold start according to the present embodiment, in which the characteristic of the solid line NC corresponds to the normal condition (Normal Condition), and the characteristic of the broken line MC corresponds to the abnormal condition (Malfunction condition). Yes. The horizontal axis corresponds to the crank angle (reference crank position REF). As shown in the figure, in this embodiment, the catalyst discharge amount SIMTTPE is obtained by taking into account the engine speed NE, ignition timing, etc., so that the catalyst discharge amount SIMTTPE is determined by the crank angle regardless of the fluctuation of the engine speed NE. It increases almost in proportion to (combustion interval), and reaches the upper limit in the vicinity of the time when the catalyst remaining rate ITAT50 becomes zero. Therefore, by comparing the catalyst discharge amount SIMTTPE at this time with the determination value EMNG, a highly accurate diagnosis can be performed in a short diagnosis time.

次に、上記実施例の特徴的な構成及び作用効果について列記する。但し、本発明は参照符号を付した図示実施例の構成に限定されるものではなく、その趣旨を逸脱しない範囲で種々の変形・変更を含むものである。   Next, the characteristic configuration and operational effects of the above embodiment will be listed. However, the present invention is not limited to the configuration of the illustrated embodiment with reference numerals, and includes various modifications and changes without departing from the spirit of the present invention.

(1)内燃機関20の排気系に設けられて特定成分を浄化する少なくとも一つの触媒13,14と、機関冷機時に、機関回転数の増加制御と点火時期の遅角制御とを併用して触媒の昇温を促進する触媒昇温促進手段と、を有する排気浄化システムと、上記機関冷機時に上記排気浄化システムを診断する制御部1と、を有する。機関回転数に基づいて回転数補正係数G(N)を算出し(ステップ103A)、点火時期に基づいて点火時期補正係数G(ADV)を算出し(ステップ103B)、これら回転数補正係数G(N)及び点火時期補正係数G(ADV)に基づいて、特定成分の触媒下流側への排出量に相当する触媒排出量SIMTTPEを推定し(ステップ108)、この触媒排出量SIMTTPEに基づいて排気浄化システムの正常・異常を判定する(ステップ110〜112)。加えて、回転数補正係数G(N)に基づいて、回転数増加制御の正常レベルWORNEを算出するとともに(ステップ141,142)、点火時期補正係数G(ADV)に基づいて、点火時期遅角制御の正常レベルWORADVを算出する(ステップ143,144)。   (1) At least one catalyst 13, 14 provided in the exhaust system of the internal combustion engine 20 for purifying a specific component, and a catalyst that combines engine speed increase control and ignition timing retardation control when the engine is cold. An exhaust purification system having a catalyst temperature increase promoting means for promoting the temperature increase of the engine, and a control unit 1 for diagnosing the exhaust purification system when the engine is cold. A rotation speed correction coefficient G (N) is calculated based on the engine speed (step 103A), an ignition timing correction coefficient G (ADV) is calculated based on the ignition timing (step 103B), and these rotation speed correction coefficients G ( N) and the catalyst discharge amount SIMTTPE corresponding to the discharge amount of the specific component to the catalyst downstream side are estimated based on the ignition timing correction coefficient G (ADV) (step 108), and exhaust purification is performed based on the catalyst discharge amount SIMTTPE. It is determined whether the system is normal or abnormal (steps 110 to 112). In addition, based on the rotational speed correction coefficient G (N), the normal level WARNE of the rotational speed increase control is calculated (steps 141 and 142), and based on the ignition timing correction coefficient G (ADV), the ignition timing retardation is calculated. The normal level of control WORADV is calculated (steps 143 and 144).

回転数増加制御と点火時期遅角制御とを併用した触媒昇温促進制御が行われる機関冷機時に、この制御の不具合を生じると、最終的には触媒下流側へ排出される特定成分である炭化水素HCの総排出量に相当する触媒排出量SIMTTPEが大きくなる。従って、触媒排出量SIMTTPEを推定し、この触媒排出量SIMTTPEに基づいて診断を行うことにより、精度の高い診断を触媒温度センサ等を敢えて必要としない簡素な構成で行うことができる。   If this control malfunction occurs during engine cooling when the catalyst temperature increase promotion control is performed using both the rotation speed increase control and the ignition timing retard control, the carbonization, which is a specific component that is finally discharged downstream of the catalyst The catalyst discharge amount SIMTTPE corresponding to the total discharge amount of hydrogen HC increases. Therefore, by estimating the catalyst discharge amount SIMTTPE and making a diagnosis based on the catalyst discharge amount SIMTTPE, a highly accurate diagnosis can be performed with a simple configuration that does not require a catalyst temperature sensor or the like.

上述した従来例のように単に機関回転数や点火時期に基づいて診断を行うものでは、診断を行う領域が実質的にアイドルなどの特定の運転領域に限定されてしまう。これに対して本実施例では、触媒昇温促進制御(触媒暖機制御)のパラメータである機関回転数及び点火時期による影響を考慮して、回転数補正係数G(N)と点火時期補正係数G(ADV)を算出し、これらの補正係数に基づいて触媒排出量SIMTTPEを設定しているために、機関回転数や点火時期の変動による影響を有効に低減・排除した形で触媒排出量SIMTTPEを求めることができ、比較的幅広い機関運転領域で精度の高い診断を行うことができる。   When the diagnosis is performed simply based on the engine speed and the ignition timing as in the above-described conventional example, the region in which the diagnosis is performed is substantially limited to a specific operation region such as idle. In contrast, in this embodiment, the engine speed correction coefficient G (N) and the ignition timing correction coefficient are considered in consideration of the influence of the engine speed and ignition timing, which are parameters for catalyst temperature increase promotion control (catalyst warm-up control). Since G (ADV) is calculated and the catalyst emission amount SIMTTPE is set based on these correction factors, the catalyst emission amount SIMTTPE is effectively reduced and eliminated due to fluctuations in engine speed and ignition timing. Therefore, a highly accurate diagnosis can be performed in a relatively wide range of engine operation.

そして、このようにシステムの診断、より具体的には触媒排出量SIMTTPEの算出過程で用いられる補正係数G(N),G(ADV)を利用して、触媒昇温のための回転数増加制御の正常レベルと点火時期増加制御の正常レベルとを容易に精度良く求めることができる。つまり、新たな制御パラメータの設定・適合等を敢えて必要とすることなく、回転数増加制御と点火時期遅角制御の正常・異常度合いを求めることができ、演算負荷や使用メモリを軽減することができる。   Thus, by using the correction coefficients G (N) and G (ADV) used in the diagnosis of the system, more specifically, in the process of calculating the catalyst discharge amount SIMTTPE, the rotational speed increase control for increasing the temperature of the catalyst is performed. Therefore, the normal level of the ignition timing and the normal level of the ignition timing increase control can be obtained easily and accurately. In other words, it is possible to determine the normality / abnormality of the rotation speed increase control and ignition timing retardation control without the need to set / adjust new control parameters, etc., and to reduce the calculation load and memory used. it can.

(2)上記の正常レベルWORNE,WORADVは下式により算出される。   (2) The normal levels WARNE and WORADV are calculated by the following formula.

WORNE=(AVNE−AVFNE)/(AVTNE−AVFNE)
WORADV=(AVADV−AVFADV)/(AVTADV−AVFADV)
このように、予め設定された異常時・正常時の固定値を利用して、個々の正常度合い指数を求めている。従って、排気浄化システムの異常判定時に、両者WORNE,WORADVを比較することによって(ステップ153)、回転数増加制御と点火時期遅角制御のいずれが相対的に異常(正常)であるかを容易に特定することができる。
WORNE = (AVNE−AVFNE) / (AVVTNE−AVFNE)
WORADV = (AVADV−AVFADV) / (AVTADV−AVFADV)
As described above, each normality index is obtained by using a preset fixed value at the time of abnormality / normality. Therefore, it is easy to determine which of the engine speed increase control and the ignition timing retard control is relatively abnormal (normal) by comparing both WORDE and WORADV (step 153) when determining the abnormality of the exhaust purification system. Can be identified.

(3)内燃機関の一単位の燃焼毎に、回転数補正係数及び点火時期補正係数に基づいて、触媒下流側へ排出される特定成分の排出量に相当する単位触媒排出量SIMTPEを逐次算出し(ステップ103C)、この単位触媒排出量を積算して触媒排出量を算出している。従って、機関回転数や点火時期の変動を一単位燃焼毎に吸収した形で触媒排出量を精度良く求めることができる。なお、「一単位」の燃焼とは、好ましくは一回の燃焼であり、あるいは制御ルーチンの演算間隔(クランク角)に応じた数回の燃焼回数であっても良い。   (3) For each unit of combustion of the internal combustion engine, the unit catalyst emission amount SIMTPE corresponding to the emission amount of the specific component discharged downstream of the catalyst is sequentially calculated based on the rotation speed correction coefficient and the ignition timing correction coefficient. (Step 103C), the unit catalyst discharge amount is integrated to calculate the catalyst discharge amount. Therefore, it is possible to accurately obtain the catalyst discharge amount in such a manner that the fluctuations in the engine speed and the ignition timing are absorbed for each unit combustion. The “one unit” combustion is preferably one combustion, or may be several times of combustion according to the calculation interval (crank angle) of the control routine.

(4)内燃機関の一単位の燃焼毎に、回転数補正係数の平均値AVNEを算出するとともに(ステップ142)、この平均値AVNEに基づいて回転数増加制御の正常レベルWORNEを算出している(ステップ151)。また、内燃機関の一単位の燃焼毎に、点火時期補正係数の平均値AVADVを算出するとともに(ステップ145)、この平均値AVADVに基づいて点火時期遅角制御の正常レベルWORADVを算出している(ステップ152)。従って、機関回転数や点火時期の変動を一単位の燃焼後毎に相殺・吸収した形で精度良く正常レベルを求めることができる。   (4) For each unit of combustion in the internal combustion engine, the average value AVNE of the rotational speed correction coefficient is calculated (step 142), and the normal level WARNE of the rotational speed increase control is calculated based on the average value AVNE. (Step 151). Further, for each unit of combustion of the internal combustion engine, an average value AVADV of the ignition timing correction coefficient is calculated (step 145), and a normal level WORADV of the ignition timing retardation control is calculated based on the average value AVADV. (Step 152). Accordingly, it is possible to obtain the normal level with high accuracy by offsetting and absorbing the fluctuation of the engine speed and the ignition timing after every unit of combustion.

(5)より具体的には、回転数補正係数G(N)及び点火時期補正係数G(ADV)に基づいて、触媒に残存する特定成分の比率に相当する触媒残存率ITAT50を算出し(ステップ105)、この触媒残存率に基づいて精度良く触媒排出量SIMTTPEを算出するようにしている(ステップ108)。   (5) More specifically, based on the rotational speed correction coefficient G (N) and the ignition timing correction coefficient G (ADV), a catalyst residual ratio ITAT50 corresponding to the ratio of the specific component remaining in the catalyst is calculated (step 105) The catalyst discharge amount SIMTTPE is accurately calculated based on the catalyst remaining rate (step 108).

(6)上記「触媒の状態」とは、触媒の活性状態・浄化性能に関するもので、典型的には触媒に残存する特定成分の比率に相当する触媒残存率ITAT50である。但し、触媒温度センサ等により検出又は推定される触媒温度のように触媒の活性状態を示す他のパラメータであっても良い。   (6) The “catalyst state” relates to the active state / purification performance of the catalyst, and is typically the catalyst residual ratio ITAT50 corresponding to the ratio of the specific component remaining in the catalyst. However, other parameters indicating the active state of the catalyst, such as a catalyst temperature detected or estimated by a catalyst temperature sensor or the like, may be used.

(7)燃料噴射量TPに基づいて、内燃機関の一単位の燃焼により排気系へ供給される排気熱量に相当する単位排気供給熱量QEXSTを推定し(ステップ103)、上記熱量の初期値TQEPINIに単位排気供給熱量QEXSTを積算したものを加算することによって、触媒総熱量QEXSTPを算出している(ステップ104)。このように、触媒の温度を直接的に検出する温度センサ等を敢えて必要としない簡素な構成でありながら、触媒総熱量QEXSTP精度良く求めることができる。しかも、一単位の燃焼毎の単位排気供給熱量QEXSTを積算して触媒総熱量QEXSTPを算出しているので、機関運転状態が変化する過渡期を含めて触媒総熱量QEXSTPを精度良く求めることができる。   (7) Based on the fuel injection amount TP, a unit exhaust supply heat quantity QEXST corresponding to the exhaust heat quantity supplied to the exhaust system by one unit combustion of the internal combustion engine is estimated (step 103), and the initial value TQEPINI of the heat quantity is set. The total catalyst heat quantity QEXTTP is calculated by adding the integrated unit exhaust heat supply quantity QEXST (step 104). In this way, the total catalyst heat quantity QEXTTP can be obtained with high accuracy while having a simple configuration that does not require a temperature sensor or the like that directly detects the temperature of the catalyst. In addition, since the total catalyst heat quantity QEXTTP is calculated by integrating the unit exhaust supply heat quantity QEXTST for each unit of combustion, the total catalyst heat quantity QEXTTP can be accurately obtained including the transition period in which the engine operating state changes. .

(8)燃料噴射量TPに基づいて一単位の燃焼により内燃機関より排出される特定成分の排出量に相当する単位機関排出量SIMEOEを推定し(ステップ106)、触媒残存率ITAT50と単位機関排出量SIMEOEとに基づいて単位触媒排出量SIMTPEを算出している(ステップ107)。このように、内燃機関から排出される単位機関排出量SIMEOEと、その時点での触媒の状態を示す触媒残存率ITAT50と、に基づいて、一単位の燃焼毎に単位触媒排出量SIMTPEを算出しているので、単位機関排出量SIMEOEに触媒の活性状態を反映した形で単位機関排出量SIMTPEを精度良く求めることができる。   (8) Based on the fuel injection amount TP, the unit engine emission amount SIMEOE corresponding to the emission amount of the specific component discharged from the internal combustion engine by one unit of combustion is estimated (step 106), and the catalyst remaining rate ITAT50 and unit engine emission The unit catalyst discharge amount SIMTPE is calculated based on the amount SIMEOE (step 107). Thus, the unit catalyst emission amount SIMTPE is calculated for each unit of combustion based on the unit engine emission amount SIMEOE discharged from the internal combustion engine and the catalyst remaining rate ITAT50 indicating the state of the catalyst at that time. Therefore, the unit engine emission amount SIMTPE can be obtained with high accuracy in a manner that reflects the active state of the catalyst in the unit engine emission amount SIMEOE.

(9)触媒残存率は下式により算出される(ステップ105)。
ITAT50=1−QEXSTP/QT50
ITAT50:触媒残存率
QEXSTP:触媒総熱量
QT50:触媒活性に必要な熱量
このQT50は予め設定される固定値であり、従って、実質的には触媒総熱量QEXSTPのみに基づいて触媒残存率ITAT50を簡便に精度良く求めることができ、演算負荷やメモリ使用量等が軽減される。
(9) The catalyst remaining rate is calculated by the following equation (step 105).
ITAT50 = 1-QEXTTP / QT50
ITAT50: catalyst remaining rate QEXTSP: total catalyst heat QT50: heat necessary for catalyst activity This QT50 is a fixed value set in advance. Therefore, the catalyst remaining rate ITAT50 is substantially simplified based on only the total catalyst heat QEXTTP. Therefore, the calculation load and memory usage can be reduced.

(10)触媒残存率ITAT50が所定値(典型的には0)まで低下したかを判定し(ステップ109)、触媒残存率ITAT50が所定値まで低下したと判定された場合に(ITAT50=0)、診断が実行される(ステップ110〜112)。このように、SIMTPEの算出に用いられる触媒残存率ITAT50を利用して診断時期を設定することができ、判定用のパラメータを追加することなく診断期間を有効に短縮化することができる。   (10) It is determined whether the catalyst remaining rate ITAT50 has decreased to a predetermined value (typically 0) (step 109). When it is determined that the catalyst remaining rate ITAT50 has decreased to the predetermined value (ITAT50 = 0) A diagnosis is executed (steps 110 to 112). Thus, the diagnosis time can be set using the catalyst remaining rate ITAT50 used for the calculation of SIMTPE, and the diagnosis period can be effectively shortened without adding a parameter for determination.

(11)上記特定成分は、典型的にはガソリン内燃機関における炭化水素(HC)である。但し、ディーゼル機関における粒子状物質(PM)、窒素酸化物(NOx)、一酸化炭素(CO)等を上記の特定成分とする排気浄化システムに本発明を適用することも可能である。   (11) The specific component is typically hydrocarbon (HC) in a gasoline internal combustion engine. However, it is also possible to apply the present invention to an exhaust purification system using particulate matter (PM), nitrogen oxide (NOx), carbon monoxide (CO), etc. in the diesel engine as the specific component.

本発明に係る内燃機関の排気浄化システムの一例を示すシステム図。1 is a system diagram showing an example of an exhaust gas purification system for an internal combustion engine according to the present invention. 本発明の一実施例に係る排気浄化システムの診断処理の流れを示すフローチャート。The flowchart which shows the flow of the diagnostic process of the exhaust gas purification system which concerns on one Example of this invention. 図2のステップ104Aの補正係数平均値算出のサブルーチンを示すフローチャート。3 is a flowchart showing a subroutine for calculating a correction coefficient average value in step 104A of FIG. 図2のステップ113の正常レベル算出のサブルーチンの一例を示すフローチャート。FIG. 3 is a flowchart showing an example of a normal level calculation subroutine of step 113 in FIG. 2. FIG. 図2のステップ113の正常レベル算出のサブルーチンの他の例を示すフローチャート。The flowchart which shows the other example of the subroutine of normal level calculation of step 113 of FIG. 図2のステップ103Aで用いられる点火時期補正係数G(ADV)の設定マップの一例。An example of a setting map of an ignition timing correction coefficient G (ADV) used in step 103A of FIG. 図2のステップ103Bで用いられる回転数補正係数G(N)の設定マップの一例。An example of the setting map of the rotation speed correction coefficient G (N) used in step 103B of FIG. 燃料噴射量とHCの機関排出量との関係を示すグラフ。The graph which shows the relationship between the fuel injection amount and the engine discharge amount of HC. 機関冷機始動時における正常状態及び異常状態での各種パラメータの変化を示すタイムチャート。The time chart which shows the change of the various parameters in the normal state and abnormal state at the time of engine cold start.

符号の説明Explanation of symbols

1…エンジンコントローラ(制御部)
13…フロント触媒
14…リア触媒
20…内燃機関
25…排気通路(排気系)
1 ... Engine controller (control unit)
DESCRIPTION OF SYMBOLS 13 ... Front catalyst 14 ... Rear catalyst 20 ... Internal combustion engine 25 ... Exhaust passage (exhaust system)

Claims (6)

内燃機関の排気系に設けられて特定成分を浄化する少なくとも一つの触媒と、機関冷機時に、機関回転数を増加する回転数増加制御と点火時期を遅角する点火時期遅角制御とを用いて触媒の昇温を促進する触媒昇温促進手段と、を有する排気浄化システムと、
上記機関冷機時に上記排気浄化システムを診断する制御部と、を有する内燃機関の診断装置において、
上記制御部が、
機関回転数に基づいて、上記回転数増加制御による機関回転数の増加に伴う触媒昇温の寄与度に相当し、機関回転数が増加するほど大きな値とされる回転数補正係数を算出し、
点火時期に基づいて、上記点火時期遅角制御による点火時期の遅角に伴う触媒昇温の寄与度に相当し、点火時期が遅角するほど大きな値とされる点火時期補正係数を算出し、
これら回転数補正係数及び点火時期補正係数と、燃料噴射量と、に基づいて、上記触媒昇温促進の間中に触媒へ供給された排気ガスの総熱量に相当する排気供給総熱量を算出し、
触媒に残存する上記特定成分の割合に相当する触媒残存率を、上記排気供給総熱量と、触媒が活性化するのに必要な熱量とに基づいて算出し、
上記触媒残存率と、触媒に供給される上記特定成分の供給量とに基づいて、上記特定成分の触媒下流側への排出量に相当する触媒排出量を推定し、
上記触媒残存率が所定の触媒残存率となったとき、上記触媒排出量を所定の触媒排出量と比較して、排気浄化システムの正常・異常を判定し、
上記回転数補正係数に基づいて、回転数増加制御の正常レベルを算出し、
上記点火時期補正係数に基づいて、点火時期遅角制御の正常レベルを算出し、
この回転数増加制御の正常レベルと点火時期遅角制御の正常レベルとに基づいて、上記回転数増加制御と点火時期遅角制御の異常を判定する、
ことを特徴とする内燃機関の診断装置。
Using at least one catalyst provided in an exhaust system of an internal combustion engine to purify a specific component, and when the engine is cold, the engine speed increase control for increasing the engine speed and the ignition timing retard control for retarding the ignition timing An exhaust gas purification system having catalyst temperature rise promotion means for promoting temperature rise of the catalyst;
A control unit for diagnosing the exhaust gas purification system when the engine is cold,
The control unit is
Based on the engine speed, the rotation speed correction coefficient corresponding to the contribution of the catalyst temperature increase accompanying the increase in the engine speed by the above-described engine speed increase control, and a larger value as the engine speed increases,
Based on the ignition timing, the ignition timing correction coefficient corresponding to the degree of contribution of the catalyst temperature rise accompanying the ignition timing retardation by the ignition timing retardation control, which is set to a larger value as the ignition timing is retarded, is calculated.
Based on these rotation speed correction coefficient, ignition timing correction coefficient, and fuel injection amount, the exhaust heat supply total heat amount corresponding to the total heat amount of the exhaust gas supplied to the catalyst during the catalyst temperature increase promotion is calculated. ,
A catalyst residual ratio corresponding to the ratio of the specific component remaining in the catalyst is calculated based on the exhaust heat total heat amount and a heat amount necessary for the catalyst to be activated,
Based on the catalyst remaining rate and the supply amount of the specific component supplied to the catalyst, a catalyst discharge amount corresponding to the discharge amount of the specific component to the catalyst downstream side is estimated,
When the catalyst remaining rate becomes a predetermined catalyst remaining rate, the catalyst discharge amount is compared with a predetermined catalyst discharge amount to determine normality / abnormality of the exhaust purification system,
Based on the rotation speed correction coefficient, the normal level of the rotation speed increase control is calculated,
Based on the ignition timing correction coefficient, a normal level of ignition timing retardation control is calculated,
Based on the normal level of the rotational speed increase control and the normal level of the ignition timing retard control, the abnormality of the rotational speed increase control and the ignition timing retard control is determined.
A diagnostic apparatus for an internal combustion engine.
上記制御部は、内燃機関の一単位の燃焼毎に、上記回転数補正係数及び点火時期補正係数に基づいて、触媒下流側へ排出される特定成分の排出量に相当する単位触媒排出量を逐次算出し、この単位触媒排出量を積算して触媒排出量を算出することを特徴とする請求項に記載の内燃機関の診断装置。 For each unit of combustion in the internal combustion engine, the control unit sequentially calculates a unit catalyst discharge amount corresponding to a discharge amount of the specific component discharged downstream of the catalyst based on the rotation speed correction coefficient and the ignition timing correction coefficient. 2. The diagnostic apparatus for an internal combustion engine according to claim 1 , wherein the catalyst discharge amount is calculated by calculating and integrating the unit catalyst discharge amount. 上記制御部は、
内燃機関の一単位の燃焼毎に、回転数補正係数の平均値を算出するとともに、この平均値に基づいて回転数増加制御の正常レベルを算出し、
内燃機関の一単位の燃焼毎に、点火時期補正係数の平均値を算出するとともに、この平均値に基づいて点火時期遅角制御の正常レベルを算出することを特徴とする請求項に記載の内燃機関の診断装置。
The control unit
For each unit of combustion of the internal combustion engine, an average value of the rotation speed correction coefficient is calculated, and a normal level of the rotation speed increase control is calculated based on the average value.
For each combustion of one unit of an internal combustion engine, it calculates the average value of the ignition timing correction coefficient, according to claim 2, characterized in that to calculate the normal level of the ignition timing retard control based on the average value A diagnostic device for an internal combustion engine.
WORNE=(AVNE−AVFNE)/(AVTNE−AVFNE)
WORADV=(AVADV−AVFADV)/(AVTADV−AVFADV)
WORNE:回転数増加制御の正常レベル
AVNE:回転数補正係数の平均値
AVFNE:異常時の回転数補正係数相当値
AVTNE:正常時の回転数補正係数相当値
WORADV:点火時期遅角制御の正常レベル
AVADV:点火時期補正係数の平均値
AVFADV:異常時の点火時期補正係数相当値
AVTADV:正常時の点火時期補正係数相当値
上記制御部は、上式により回転数増加制御の正常レベルと点火時期遅角制御の正常レベルを算出することを特徴とする請求項に記載の内燃機関の診断装置。
WORNE = (AVNE−AVFNE) / (AVVTNE−AVFNE)
WORADV = (AVADV−AVFADV) / (AVTADV−AVFADV)
WORNE: Normal level of rotational speed increase control AVNE: Average value of rotational speed correction coefficient AVFNE: Equivalent value of rotational speed correction coefficient at abnormal time AVTNE: Equivalent value of rotational speed correction coefficient at normal time WORADV: Normal level of ignition timing retardation control AVADV: Average value of the ignition timing correction coefficient AVFADV: Equivalent value of the ignition timing correction coefficient at the time of abnormality AVTADV: Equivalent value of the ignition timing correction coefficient at the time of normality The diagnostic device for an internal combustion engine according to claim 3 , wherein a normal level of the angle control is calculated.
上記制御部は、上記排気浄化システムの異常判定時に、回転数増加制御の正常レベルと点火時期遅角制御の正常レベルとを比較することを特徴とする請求項に記載の内燃機関の診断装置。 5. The diagnostic apparatus for an internal combustion engine according to claim 4 , wherein the control unit compares a normal level of the rotational speed increase control with a normal level of the ignition timing retardation control when determining an abnormality of the exhaust purification system. 6. . 内燃機関の排気系に設けられて特定成分を浄化する少なくとも一つの触媒と、機関冷機時に機関回転数を増加する回転数増加制御と点火時期を遅角する点火時期遅角制御とを併用して触媒の昇温を促進する触媒昇温促進手段と、を有する排気浄化システムを診断する内燃機関の診断方法であって、
機関回転数に基づいて、上記回転数増加制御による機関回転数の増加に伴う触媒昇温の寄与度に相当し、機関回転数が増加するほど大きな値とされる回転数補正係数を算出し、
点火時期に基づいて、上記点火時期遅角制御による点火時期の遅角に伴う触媒昇温の寄与度に相当し、点火時期が遅角するほど大きな値とされる点火時期補正係数を算出し、
これら回転数補正係数及び点火時期補正係数と、燃料噴射量と、に基づいて、上記触媒昇温促進の間中に触媒へ供給された排気ガスの総熱量に相当する排気供給総熱量を算出し、
触媒に残存する上記特定成分の割合に相当する触媒残存率を、上記排気供給総熱量と、触媒が活性化するのに必要な熱量とに基づいて算出し、
上記触媒残存率と、触媒に供給される上記特定成分の供給量とに基づいて、上記特定成分の触媒下流側への排出量に相当する触媒排出量を推定し、
上記触媒残存率が所定の触媒残存率となったとき、上記触媒排出量を所定の触媒排出量と比較して、排気浄化システムの正常・異常を判定し、
上記回転数補正係数に基づいて、回転数増加制御の正常レベルを算出し、
上記点火時期補正係数に基づいて、点火時期遅角制御の正常レベルを算出し、
この回転数増加制御の正常レベルと点火時期遅角制御の正常レベルとに基づいて、上記回転数増加制御と点火時期遅角制御の異常を判定する、
ことを特徴とする内燃機関の診断方法。
Combining at least one catalyst provided in an exhaust system of an internal combustion engine for purifying a specific component, and an engine speed increasing control for increasing the engine speed when the engine is cold and an ignition timing retarding control for retarding the ignition timing. An internal combustion engine diagnosis method for diagnosing an exhaust gas purification system having catalyst temperature increase promotion means for promoting temperature increase of the catalyst,
Based on the engine speed, the rotation speed correction coefficient corresponding to the contribution of the catalyst temperature increase accompanying the increase in the engine speed by the above-described engine speed increase control, and a larger value as the engine speed increases,
Based on the ignition timing, the ignition timing correction coefficient corresponding to the degree of contribution of the catalyst temperature rise accompanying the ignition timing retardation by the ignition timing retardation control, which is set to a larger value as the ignition timing is retarded, is calculated.
Based on these rotation speed correction coefficient, ignition timing correction coefficient, and fuel injection amount, the exhaust heat supply total heat amount corresponding to the total heat amount of the exhaust gas supplied to the catalyst during the catalyst temperature increase promotion is calculated. ,
A catalyst residual ratio corresponding to the ratio of the specific component remaining in the catalyst is calculated based on the exhaust heat total heat amount and a heat amount necessary for the catalyst to be activated,
Based on the catalyst remaining rate and the supply amount of the specific component supplied to the catalyst, a catalyst discharge amount corresponding to the discharge amount of the specific component to the catalyst downstream side is estimated,
When the catalyst remaining rate becomes a predetermined catalyst remaining rate, the catalyst discharge amount is compared with a predetermined catalyst discharge amount to determine normality / abnormality of the exhaust purification system,
Based on the rotation speed correction coefficient, the normal level of the rotation speed increase control is calculated,
Based on the ignition timing correction coefficient, a normal level of ignition timing retardation control is calculated,
Based on the normal level of the rotational speed increase control and the normal level of the ignition timing retard control, the abnormality of the rotational speed increase control and the ignition timing retard control is determined.
A diagnostic method for an internal combustion engine.
JP2005374039A 2005-12-27 2005-12-27 Diagnostic apparatus and diagnostic method for internal combustion engine Expired - Fee Related JP4692274B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005374039A JP4692274B2 (en) 2005-12-27 2005-12-27 Diagnostic apparatus and diagnostic method for internal combustion engine
US11/644,035 US7444233B2 (en) 2005-12-27 2006-12-22 Diagnostic apparatus and diagnostic method for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005374039A JP4692274B2 (en) 2005-12-27 2005-12-27 Diagnostic apparatus and diagnostic method for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2007177631A JP2007177631A (en) 2007-07-12
JP4692274B2 true JP4692274B2 (en) 2011-06-01

Family

ID=38303076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005374039A Expired - Fee Related JP4692274B2 (en) 2005-12-27 2005-12-27 Diagnostic apparatus and diagnostic method for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4692274B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5278054B2 (en) * 2009-03-06 2013-09-04 日産自動車株式会社 Control device for internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07229419A (en) * 1994-02-18 1995-08-29 Toyota Motor Corp Catalyst warming control device of internal combustion engine
JP2004003430A (en) * 2002-03-29 2004-01-08 Mazda Motor Corp Diagnostic apparatus for engine
JP2005098182A (en) * 2003-09-24 2005-04-14 Toyota Motor Corp Control device of internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07229419A (en) * 1994-02-18 1995-08-29 Toyota Motor Corp Catalyst warming control device of internal combustion engine
JP2004003430A (en) * 2002-03-29 2004-01-08 Mazda Motor Corp Diagnostic apparatus for engine
JP2005098182A (en) * 2003-09-24 2005-04-14 Toyota Motor Corp Control device of internal combustion engine

Also Published As

Publication number Publication date
JP2007177631A (en) 2007-07-12

Similar Documents

Publication Publication Date Title
US7444233B2 (en) Diagnostic apparatus and diagnostic method for an internal combustion engine
JP3674017B2 (en) Catalyst degradation detection device for exhaust gas purification
JP6229542B2 (en) Exhaust purification catalyst deterioration diagnosis method and deterioration diagnosis apparatus
US8234916B2 (en) Abnormality diagnosis device for air-fuel ratio sensor
JP6287989B2 (en) Abnormality diagnosis device for NOx storage reduction catalyst
JP4253294B2 (en) Engine self-diagnosis device
JP4816773B2 (en) Exhaust component concentration sensor response detection device
JP2009221992A (en) Malfunction diagnosing apparatus for exhaust gas sensor
JP2015068280A (en) Deterioration diagnosis device and deterioration diagnosis method for exhaust emission control catalyst
JP6729542B2 (en) Exhaust purification device abnormality diagnosis system
JP2006118505A (en) Method for operating internal combustion engine and device for performing the method
JP4736796B2 (en) Diagnostic apparatus and diagnostic method for internal combustion engine
CN110578576A (en) Remedial measures for ineffective particulate filter soot
KR20210013711A (en) Light-off management method of catalytic converter for pollution control
US8112988B2 (en) System and method for desulfating a NOx trap
US7513104B2 (en) Diagnostic apparatus for internal combustion engine
JP4736797B2 (en) Diagnostic apparatus and diagnostic method for internal combustion engine
JP4692274B2 (en) Diagnostic apparatus and diagnostic method for internal combustion engine
JP5427715B2 (en) Engine control device
JP3855720B2 (en) Abnormality diagnosis device for catalyst early warm-up control system of internal combustion engine
JP4678336B2 (en) Diagnostic apparatus and diagnostic method for air-fuel ratio sensor
JP2017129037A (en) Abnormality diagnosis device of nox occlusion reduction-type catalyst
JP5278054B2 (en) Control device for internal combustion engine
JP2000291485A (en) Misfire detecting device for engine
JP3975436B2 (en) Abnormality diagnosis device for exhaust gas sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees