JP4678336B2 - Diagnostic apparatus and diagnostic method for air-fuel ratio sensor - Google Patents

Diagnostic apparatus and diagnostic method for air-fuel ratio sensor Download PDF

Info

Publication number
JP4678336B2
JP4678336B2 JP2006150794A JP2006150794A JP4678336B2 JP 4678336 B2 JP4678336 B2 JP 4678336B2 JP 2006150794 A JP2006150794 A JP 2006150794A JP 2006150794 A JP2006150794 A JP 2006150794A JP 4678336 B2 JP4678336 B2 JP 4678336B2
Authority
JP
Japan
Prior art keywords
fuel ratio
air
feedback control
sensor
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006150794A
Other languages
Japanese (ja)
Other versions
JP2007321604A (en
Inventor
理恵 ▲高▼津戸
毅 露木
孝根 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006150794A priority Critical patent/JP4678336B2/en
Publication of JP2007321604A publication Critical patent/JP2007321604A/en
Application granted granted Critical
Publication of JP4678336B2 publication Critical patent/JP4678336B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

本発明は、内燃機関の排気系に設けられた空燃比センサの異常・故障を診断する技術に関する。   The present invention relates to a technique for diagnosing abnormality / failure of an air-fuel ratio sensor provided in an exhaust system of an internal combustion engine.

車両用内燃機関の分野では、排気系に空燃比センサを設け、排気の実空燃比に応じたセンサ出力に基づいて、例えば燃料噴射量を増減変化させることで、内燃機関の空燃比を目標空燃比例えば理論空燃比にクローズドループ制御する、いわゆる空燃比フィードバック制御が一般的に行われている。このようなセンサには異常・故障の診断が義務付けられており、その診断手法として、例えば特許文献1では、広域型の空燃比センサの診断技術について記載されている。簡単に説明すると、機関の始動からセンサの活性後に、理論空燃比(ストイキ)とは異なる所定の空燃比へ向けたフィードフォワード制御を行い、このフィードフォワード制御中に、センサ出力がストイキに対応するものである場合に、センサの中間電位故障(異常)と判定している。また、燃料カット中にセンサ出力がストイキに対応するものである場合にも、センサの中間電位故障と判定している。
特開2001−241346号公報
In the field of internal combustion engines for vehicles, an air-fuel ratio sensor is provided in an exhaust system, and the air-fuel ratio of the internal combustion engine is set to a target air-fuel ratio by, for example, changing the fuel injection amount based on the sensor output corresponding to the actual air-fuel ratio of the exhaust. In general, so-called air-fuel ratio feedback control, in which closed loop control is performed to a fuel ratio, for example, a theoretical air-fuel ratio, is performed. Such a sensor is obligated to diagnose abnormality / failure. For example, Patent Document 1 describes a diagnostic technique for a wide-range air-fuel ratio sensor. Briefly, after the engine is activated from the start of the engine, feedforward control toward a predetermined air-fuel ratio different from the stoichiometric air-fuel ratio (stoichiometric) is performed, and the sensor output corresponds to the stoichiometry during this feedforward control. If it is, it is determined that the sensor has an intermediate potential failure (abnormality). Further, when the sensor output corresponds to the stoichiometry during the fuel cut, it is determined that the sensor has an intermediate potential failure.
JP 2001-241346 A

上記特許文献1のように、センサの異常・故障を診断するために、理論空燃比から外れた所定の空燃比へ向けたフィードフォーワード制御を行うものでは、この診断中の機関運転性の低下や排気エミッションの低下が懸念される。また、上記の特許文献1では、センサ出力がストイキに対応する以外の電圧域で固定されるような中間電位故障以外のセンサの異常・故障については考察されていない。更に、フィードフォワード制御を行う領域、つまりはセンサの診断が行われる領域がアイドル運転時に限定されるため、例えば車両走行中にセンサの異常・故障が生じても、アイドル運転へ移行するまで診断が行われないために、その異常・故障を検出できないという問題がある。   In the case of performing feedforward control toward a predetermined air-fuel ratio deviating from the stoichiometric air-fuel ratio in order to diagnose a sensor abnormality / failure as in the above-mentioned Patent Document 1, a decrease in engine operability during the diagnosis is performed. There is a concern that exhaust emissions will decline. Further, in Patent Document 1 described above, no consideration is given to sensor abnormalities / failures other than intermediate potential failures in which the sensor output is fixed in a voltage range other than that corresponding to stoichiometry. Furthermore, since the area where feedforward control is performed, that is, the area where sensor diagnosis is performed is limited to idle operation, for example, even if a sensor abnormality or failure occurs while the vehicle is running, the diagnosis is continued until the operation shifts to idle operation. Since it is not performed, there is a problem that the abnormality / failure cannot be detected.

ところで、空燃比フィードバック制御が良好に行われずに制御不良となる要因として、燃料噴射弁やエアフローメータ等の故障の他、蒸発燃料処理装置により吸気系へパージされる蒸発燃料の影響等が挙げられる。すなわち、蒸発燃料処理装置により吸気系へパージされる蒸発燃料の影響により、例えばリッチとリーンとの切換周期が長くなって、実空燃比が目標空燃比へ良好に追従しなくなる。このようなパージ等に起因するフィードバックの制御不良からフィードバック制御が正常に行われる状態へ復帰させるように、例えば、制御不良時には、空燃比補正係数を所定期間だけ「1」に初期化・クランプして、空燃比フィードバック制御を一時的に中断し、燃料噴射量をオープンループ制御することが考えられる。   By the way, factors that cause poor control due to poor air-fuel ratio feedback control include the effects of evaporated fuel purged to the intake system by the evaporated fuel processing device, as well as failure of the fuel injection valve, air flow meter, and the like. . That is, due to the influence of the evaporated fuel purged to the intake system by the evaporated fuel processing device, for example, the switching cycle between rich and lean becomes longer, and the actual air-fuel ratio does not follow the target air-fuel ratio well. In order to return to a state where feedback control is normally performed from such feedback control failure caused by purge or the like, for example, at the time of control failure, the air-fuel ratio correction coefficient is initialized and clamped to “1” for a predetermined period. Thus, it is conceivable that the air-fuel ratio feedback control is temporarily interrupted and the fuel injection amount is controlled in an open loop.

そして本発明は、上述したような空燃比センサの異常・故障時にも、フィードバックの制御不良と判定され、上記のフィードバック制御の中断が行われることに着目してなされたものである。   The present invention has been made paying attention to the fact that the feedback control is determined to be defective even when the air-fuel ratio sensor is abnormal or failed as described above, and the feedback control is interrupted.

本発明は、内燃機関の排気系に設けられた空燃比センサの診断に関し、排気の実空燃比に応じた空燃比センサのセンサ出力に基づいて、目標空燃比へ向けた空燃比フィードバック制御を行い、この空燃比フィードバック制御中に、上記目標空燃比に対して実空燃比が追従しないフィードバックの制御不良を判定し、この制御不良と判定されたときに、所定期間、上記空燃比フィードバック制御を中断し、上記所定期間の空燃比フィードバック制御の中断の後、空燃比フィードバック制御を再開するとともに、上記制御不良の判定を行い、上記空燃比フィードバック制御の中断中のセンサ出力の変動幅が所定の基準変動幅を超えることなく、上記制御不良との判定が繰り返されることによる空燃比フィドバック制御の中断回数が所定の基準回数を超えると、上記空燃比センサ異常であると判定する、ことを特徴としている。 The present invention relates to diagnosis of an air-fuel ratio sensor provided in an exhaust system of an internal combustion engine, and performs air-fuel ratio feedback control toward a target air-fuel ratio based on the sensor output of the air-fuel ratio sensor corresponding to the actual air-fuel ratio of exhaust gas. During the air-fuel ratio feedback control, a feedback control failure is detected in which the actual air-fuel ratio does not follow the target air-fuel ratio. When the control failure is determined, the air-fuel ratio feedback control is interrupted for a predetermined period. Then, after the air-fuel ratio feedback control is interrupted for the predetermined period, the air-fuel ratio feedback control is resumed, the control failure is determined, and the fluctuation range of the sensor output during the interruption of the air-fuel ratio feedback control is a predetermined reference. The number of interruptions of the air-fuel ratio feedback control due to repeated determination of the control failure without exceeding the fluctuation range is a predetermined reference number. Beyond determines that the air-fuel ratio sensor is abnormal, it is characterized in that.

本発明によれば、パージ等に起因するフィードバックの制御不良からフィードバック制御が正常に行われる状態へ復帰させるように、空燃比フィードバック制御を一時的に中断する処理を利用した簡素な制御処理で、空燃比センサの診断を行うことができ、演算負荷や記憶される制御処理を軽減することができる。また、センサの診断のためだけに特別な運転を行う必要がなく、空燃比フィードバック制御中であれば、このフィードバックの制御不良の判定が行われることから、実質的に空燃比センサの診断が行われることとなり、診断の機会が多く、センサの異常・故障を早期に検出することができる。   According to the present invention, a simple control process using a process of temporarily interrupting the air-fuel ratio feedback control so as to return to a state in which feedback control is normally performed from a feedback control failure caused by purging or the like, The air-fuel ratio sensor can be diagnosed, and the calculation load and stored control processing can be reduced. In addition, it is not necessary to perform a special operation only for the diagnosis of the sensor, and if the air-fuel ratio feedback control is being performed, this feedback control failure determination is performed, so that the air-fuel ratio sensor is substantially diagnosed. Therefore, there are many opportunities for diagnosis, and it is possible to detect abnormalities and failures of the sensor at an early stage.

以下、本発明の好ましい実施例を図面に基づいて説明する。図1は、この発明の一実施例に係る空燃比センサの診断装置が適用された内燃機関のシステム構成を示している。内燃機関20の燃焼室21には、略中央上部に点火プラグ9が配設されているとともに、吸気弁22を介して吸気通路23と、排気弁24を介して排気通路25と、が接続されている。吸気通路23には、上流側より順に、エアクリーナ26、吸気流量を計測するエアフロメータ3、吸気通路23を開閉する電子制御式のスロットル弁27及びそのスロットル開度を検出するスロットル開度センサ4、及び吸気通路23の吸気ポート23Aへ燃料を噴射する燃料噴射弁5が設けられている。なお、このようなポート噴射式の内燃機関に限らず、燃料噴射弁から燃焼室内に直接燃料を噴射する筒内直噴型の内燃機関に本発明を適用することもできる。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows the system configuration of an internal combustion engine to which an air-fuel ratio sensor diagnostic apparatus according to an embodiment of the present invention is applied. In the combustion chamber 21 of the internal combustion engine 20, a spark plug 9 is disposed substantially at the upper center, and an intake passage 23 is connected via an intake valve 22 and an exhaust passage 25 is connected via an exhaust valve 24. ing. In the intake passage 23, in order from the upstream side, an air cleaner 26, an air flow meter 3 for measuring the intake flow rate, an electronically controlled throttle valve 27 for opening and closing the intake passage 23, and a throttle opening sensor 4 for detecting the throttle opening, A fuel injection valve 5 for injecting fuel into the intake port 23A of the intake passage 23 is provided. The present invention can be applied not only to such a port injection type internal combustion engine but also to a direct injection type internal combustion engine that directly injects fuel from a fuel injection valve into a combustion chamber.

排気通路25には、燃焼室21に近く比較的排気温度の高い排気マニホールド集合部25A又はその近傍の上流位置にフロント触媒13が配設されているとともに、このフロント触媒13よりも下流側であって、比較的排気温度の低い車両の床下位置にリア触媒14が配設されている。つまり、冷機始動時を含めて高効率に排気を浄化するために、排気通路25の中で周囲温度の異なる複数箇所に触媒を直列に配置した触媒システムとなっている。フロント触媒13は、好ましくは、理論空燃比近傍でNO,HC,COをほぼ0(零)まで低減可能な三元触媒と、この三元触媒が活性化する前に排出されるHCを一時的に吸着するHC吸着触媒とを組み合わせたHC吸着型三元触媒であり、リア触媒14は、例えば上記のHC吸着触媒である。但し、これに限らず、上記の三元触媒、HC吸着触媒の他、リーン運転時のような酸素過剰な領域でNOXをトラップし、ストイキ又はリッチ運転時にはNOXを放出,還元するNOトラップ触媒等の他の触媒を単独又は組み合わせて用いても良い。 A front catalyst 13 is disposed in the exhaust passage 25 at an upstream position near the combustion chamber 21 and at a relatively high exhaust temperature, or at an upstream position in the vicinity thereof, and further downstream than the front catalyst 13. Thus, the rear catalyst 14 is disposed at a position under the floor of the vehicle having a relatively low exhaust temperature. That is, in order to purify the exhaust gas with high efficiency including when the cold machine is started, the catalyst system is configured such that the catalyst is arranged in series at a plurality of locations having different ambient temperatures in the exhaust passage 25. The front catalyst 13 preferably has a three-way catalyst capable of reducing NO x , HC and CO to almost 0 (zero) in the vicinity of the stoichiometric air-fuel ratio, and temporary HC discharged before the three-way catalyst is activated. The rear catalyst 14 is, for example, the above-described HC adsorption catalyst. However, not limited thereto, the above-mentioned three-way catalyst, other HC adsorption catalyst, to trap NO X in an oxygen excess region, such as during the lean operation, releases NO X during stoichiometric or rich operation, reducing to NO X Other catalysts such as a trap catalyst may be used alone or in combination.

また、排気通路25には、フロント触媒13の上流側に空燃比センサ11が設けられている。なお、センサ11として、この実施例では排気の実空燃比に応じたセンサ出力(電圧)を出力し、排気の実空燃比を幅広く検出可能な広域型の空燃比センサが用いられている。但し、簡易的な酸素センサ(Oセンサ)を用いたものに本発明を適用することも可能である。機関回転速度(機関回転数)は、例えばクランクシャフトの回転角位置を検出するポジション(POS)センサ7とカムシャフトの位相を検出する位相(PHASE)センサ8との検出信号に基づいて演算される。また、内燃機関20のシリンダブロックには、ノッキング(ノック)の発生を検出するノックセンサ6や、機関温度としての機関水温を検出する水温センサ10が取り付けられている。 Further, the air-fuel ratio sensor 11 is provided in the exhaust passage 25 on the upstream side of the front catalyst 13. In this embodiment, the sensor 11 is a wide-range air-fuel ratio sensor that outputs a sensor output (voltage) corresponding to the actual air-fuel ratio of exhaust gas and can widely detect the actual air-fuel ratio of exhaust gas. However, the present invention can be applied to a device using a simple oxygen sensor (O 2 sensor). The engine speed (engine speed) is calculated based on detection signals from, for example, a position (POS) sensor 7 that detects the rotational angle position of the crankshaft and a phase (PHASE) sensor 8 that detects the phase of the camshaft. . Further, a knock sensor 6 that detects the occurrence of knocking (knock) and a water temperature sensor 10 that detects the engine water temperature as the engine temperature are attached to the cylinder block of the internal combustion engine 20.

燃料蒸発処理装置としてのキャニスタ30は、周知のように、活性炭等の吸着剤が充填されており、燃料タンク31内の蒸発燃料を一時的に吸着し、所定のパージ時には、吸着剤からパージ(脱離)された蒸発燃料を含んだガスを、パージ通路32を通して、スロットル下流の吸気通路23へ供給するものである。パージ通路32には、パージ流量を制御するパージ制御弁33が設けられている。   As is well known, the canister 30 as a fuel evaporation processing device is filled with an adsorbent such as activated carbon, temporarily adsorbs the evaporated fuel in the fuel tank 31, and purges ( The desorbed gas containing the evaporated fuel is supplied to the intake passage 23 downstream of the throttle through the purge passage 32. A purge control valve 33 that controls the purge flow rate is provided in the purge passage 32.

制御部(エンジンコントロールモジュール)1は、CPU,ROM,RAM及び入出力インターフェースを備えた周知のデジタルコンピュータシステムであって、各種制御処理を記憶及び実行する機能を有している。この制御部1には、スタータ信号やイグニッション信号等の各種信号が入力されるとともに、上記の各種センサ類3,4,6〜8,10〜11から入力される検出信号に基づいて、各種アクチュエータ類へ制御信号を出力し、その動作を制御する。例えば、エアフロメータ3や水温センサ10等の検出信号に基づいて基本噴射パルス幅Tpを算出するとともに、空燃比センサ11のセンサ出力に基づいて、空燃比のクローズドループ制御を行う。すなわち、主に吸入空気量および機関回転数から基本噴射パルス幅Tpを求めるとともに、排気の実空燃比に応じた空燃比センサ11のセンサ出力に基づく擬似的なPI制御等によって空燃比フィードバック補正係数αを逐次算出し、上記基本噴射パルス幅Tpに上記補正係数αを乗じて、最終的な噴射パルス幅Tiつまり燃料噴射量を決定する。この空燃比フィードバック制御により、実際の空燃比は、目標空燃比を中心として周期的に振れるように変動することになる。更に、上記のパージ制御弁33のON・OFFをデューティー制御することによって、パージのON・OFFが切り換えられるとともに、そのパージ流量が制御される。   The control unit (engine control module) 1 is a known digital computer system including a CPU, a ROM, a RAM, and an input / output interface, and has a function of storing and executing various control processes. Various signals such as a starter signal and an ignition signal are input to the control unit 1 and various actuators based on the detection signals input from the various sensors 3, 4, 6-8, and 10-11. A control signal is output to the class and its operation is controlled. For example, the basic injection pulse width Tp is calculated based on detection signals from the air flow meter 3, the water temperature sensor 10, etc., and the air-fuel ratio closed-loop control is performed based on the sensor output of the air-fuel ratio sensor 11. That is, the basic injection pulse width Tp is mainly obtained from the intake air amount and the engine speed, and the air-fuel ratio feedback correction coefficient is obtained by pseudo PI control based on the sensor output of the air-fuel ratio sensor 11 corresponding to the actual air-fuel ratio of the exhaust gas. α is sequentially calculated, and the basic injection pulse width Tp is multiplied by the correction coefficient α to determine the final injection pulse width Ti, that is, the fuel injection amount. By this air-fuel ratio feedback control, the actual air-fuel ratio fluctuates so as to periodically swing around the target air-fuel ratio. Further, by performing duty control of ON / OFF of the purge control valve 33, the purge ON / OFF is switched and the purge flow rate is controlled.

図2及び図3は上記の制御部1により記憶及び極短期間(例えば10ms、あるいは所定クランク角)毎に繰り返し実行される制御処理の流れを示すフローチャートである。図2のステップS11では、図3のルーチンにより設定される空燃比補正係数αの初期化要求フラグFLGを読み込む。図3を参照して、ステップS30では、上記の空燃比フィードバック(F/B)制御を行う条件が成立するかを判定する。例えば、始動時、低水温時、高水温時、高負荷時、減速時、及びNからDへのシフト直後を除き、空燃比フィードバック制御が行われる。空燃比フィードバック制御が行われる運転領域でなければ、本ルーチンを終了し、空燃比フィードバック制御中であれば、ステップS31以降へ進む。   FIGS. 2 and 3 are flowcharts showing the flow of control processing executed repeatedly by the control unit 1 for each storage and extremely short period (for example, 10 ms or a predetermined crank angle). In step S11 of FIG. 2, the initialization request flag FLG of the air-fuel ratio correction coefficient α set by the routine of FIG. 3 is read. Referring to FIG. 3, in step S <b> 30, it is determined whether a condition for performing the air-fuel ratio feedback (F / B) control is satisfied. For example, air-fuel ratio feedback control is performed except at start-up, low water temperature, high water temperature, high load, deceleration, and immediately after a shift from N to D. If it is not in the operating range in which air-fuel ratio feedback control is performed, this routine is terminated.

ステップS31では、空燃比センサ11のセンサ出力に基づいて、空燃比フィードバック制御中に目標空燃比tAFSに対して実空燃比rAFSが良好に追従しない状態、つまり空燃比補正係数αの初期化要求がある状態であるか否かを判定する。例えば、目標空燃比tAFSに対する実空燃比rAFSの偏差が所定値以上の状態が所定期間を超え、結果的に空燃比補正係数αが最小又は最大側のリミットに張り付いているような場合に、フィードバックの制御不良であると判定し、ステップS32〜S34の処理が実行される。ステップS32では、上記の初期化要求フラグFLGを「1」に設定する。ステップS33では、空燃比フィードバック制御を中断する。具体的には、上記の空燃比補正係数αを「1(100%)」に強制的に初期化・クランプして、冷却水温などのパラメータに応じた他の補正係数でもって燃料噴射量をオープンループ制御する。ステップS34では、上記のキャニスタ30によるパージを禁止する。具体的には、パージ制御弁33を閉として、蒸発燃料を含むガスの吸気系への供給を禁止する。   In step S31, based on the sensor output of the air-fuel ratio sensor 11, a state where the actual air-fuel ratio rAFS does not follow the target air-fuel ratio tAFS well during the air-fuel ratio feedback control, that is, an initialization request for the air-fuel ratio correction coefficient α is made. It is determined whether or not there is a certain state. For example, when the deviation of the actual air-fuel ratio rAFS with respect to the target air-fuel ratio tAFS exceeds a predetermined value exceeds the predetermined period, and as a result, the air-fuel ratio correction coefficient α sticks to the minimum or maximum limit, It is determined that there is a feedback control failure, and the processes of steps S32 to S34 are executed. In step S32, the initialization request flag FLG is set to “1”. In step S33, the air-fuel ratio feedback control is interrupted. Specifically, the air-fuel ratio correction coefficient α is forcibly initialized and clamped to “1 (100%)”, and the fuel injection amount is opened with another correction coefficient according to a parameter such as cooling water temperature. Loop control. In step S34, purging by the canister 30 is prohibited. Specifically, the purge control valve 33 is closed to prohibit the supply of gas containing evaporated fuel to the intake system.

ステップS35では、適宜なカウンタやタイマ等を用いて、ステップS33でのフィードバック制御の中断から所定期間ΔD1(例えば4〜6秒程度)が経過したかを判定する。所定期間ΔD1が経過していれば、ステップS36へ進み、上記のフラグFLGを0(ゼロ)に設定するとともに、ステップS37において、上記の空燃比フィードバック制御を再開する。つまり、センサ出力に基づいて空燃比補正係数αを算出し、この空燃比補正係数αにより燃料噴射量を増減する。   In step S35, it is determined whether a predetermined period ΔD1 (for example, about 4 to 6 seconds) has elapsed since the interruption of the feedback control in step S33 using an appropriate counter, timer, or the like. If the predetermined period ΔD1 has elapsed, the process proceeds to step S36, the flag FLG is set to 0 (zero), and the air-fuel ratio feedback control is resumed in step S37. That is, the air-fuel ratio correction coefficient α is calculated based on the sensor output, and the fuel injection amount is increased or decreased by the air-fuel ratio correction coefficient α.

再び図2を参照して、ステップS12では、上記のフラグFLGが0から1へ切り替わったかを判定する。例えば、前回演算時のFLGの値を記憶しておき、前回演算時のFLGの値が「0」で、今回のFLGの値が「1」である場合、FLGが0から1へ切り替わったと判定する。   Referring to FIG. 2 again, in step S12, it is determined whether the flag FLG has been switched from 0 to 1. For example, the FLG value at the previous calculation is stored, and if the FLG value at the previous calculation is “0” and the current FLG value is “1”, it is determined that the FLG has been switched from 0 to 1. To do.

FLGが0から1となると、中断の頻度・回数を表すカウンタCLPCNTの値に1をインクリメントし、つまりCLPCNTに1を加えて更新するとともに(ステップS13)、実空燃比に応じた空燃比センサ11のセンサ出力の最大値AFSMAX及び最小値AFSMAXの値を「0」に初期化する(ステップS14)。   When FLG is changed from 0 to 1, the value of the counter CLPCNT indicating the frequency and number of interruptions is incremented by 1, that is, CLPCNT is incremented by 1 (step S13), and the air-fuel ratio sensor 11 corresponding to the actual air-fuel ratio is updated. The sensor output maximum value AFSMAX and minimum value AFSMAX are initialized to “0” (step S14).

ステップS15では、フラグFLGの値が「1」であるかを判定し、1でなければ本ルーチンを終了し、1であればステップS16以降へ進む。ステップS16及びS17では、実空燃比(センサ出力)rAFSが最大値AFSMAXを超えていれば、最大値AFSMAXを現在の実空燃比rAFSの値に更新する。ステップS18及びS19では、実空燃比rAFSが最小値AFSMINよりも低ければ、最小値AFSMINを現在の実空燃比rAFSの値に更新する。   In step S15, it is determined whether or not the value of the flag FLG is "1". If it is not 1, this routine is terminated. If it is 1, the process proceeds to step S16 and subsequent steps. In steps S16 and S17, if the actual air-fuel ratio (sensor output) rAFS exceeds the maximum value AFSMAX, the maximum value AFSMAX is updated to the current actual air-fuel ratio rAFS. In steps S18 and S19, if the actual air-fuel ratio rAFS is lower than the minimum value AFSMIN, the minimum value AFSMIN is updated to the current actual air-fuel ratio rAFS.

ステップS20では、実空燃比の変動幅(AFSMAX−AFSMIN)が、予め設定・記憶された所定の基準変動幅ΔAFS0を超えているかを判定する。実空燃比の変動幅(AFSMAX−AFSMIN)が基準変動幅ΔAFS0を超えていれば、ステップS21へ進み、中断回数のカウンタ値CLPCNTを0に初期化する。   In step S20, it is determined whether the fluctuation range (AFSMAX-AFSMIN) of the actual air-fuel ratio exceeds a predetermined reference fluctuation range ΔAFS0 set and stored in advance. If the fluctuation range (AFSMAX-AFSMIN) of the actual air-fuel ratio exceeds the reference fluctuation range ΔAFS0, the process proceeds to step S21, and the interruption count value CLPCNT is initialized to zero.

ステップS22では、中断回数CLPCNTが、予め設定・記憶された所定の基準回数NGCNT以上であるかを判定する。CLPCNTがNGCNT以上であれば、ステップS23及びステップS24の処理を実行する。ステップS23では、空燃比センサ11の異常・故障であると判定する。この判定に応じて、警告ランプや警告音により運転者にセンサの異常・故障を知らせるとともに、空燃比フィードバック制御の中止等の制御処理が行われる。   In step S22, it is determined whether or not the number of interruptions CLPCNT is equal to or greater than a predetermined reference number NGCNT set and stored in advance. If CLPCNT is greater than or equal to NGCNT, the processing of step S23 and step S24 is executed. In step S23, it is determined that the air-fuel ratio sensor 11 is abnormal or out of order. In response to this determination, the driver is notified of the abnormality / failure of the sensor by a warning lamp or a warning sound, and control processing such as cancellation of air-fuel ratio feedback control is performed.

ステップS24では、この異常と判定された時点での実空燃比の最大値AFSMAXと最小値AFSMINとを、それぞれDAFSX,DAFSNとして記憶する。これらのDAFSX,DAFSNを利用して、例えばDAFSXとDAFSNがともに0(V)に近い小さな値であればセンサ断線、5(V)付近であればショートしているなどと、空燃比センサ11の異常の態様を識別することができる。   In step S24, the maximum value AFSMAX and the minimum value AFSMIN of the actual air-fuel ratio at the time when this abnormality is determined are stored as DAFSX and DAFSN, respectively. Using these DAFSX and DAFSN, for example, if DAFSX and DAFSN are both small values close to 0 (V), the sensor is disconnected, and if it is close to 5 (V), it is short-circuited. Abnormal aspects can be identified.

このような本実施例による作用効果について、図4のタイムチャートを参照して説明する。時期T1において、何らかの不具合によって空燃比センサ11が故障し、そのセンサ出力(電圧)が例えば0Vに固定されると、目標空燃比tAFSに対してセンサ出力(実空燃比)rAFSが良好に追従しなくなり、空燃比補正係数αの値がリミット値に張り付く形となり、所定時間ΔD2経過後の時期T2において、フィードバックの制御不良と判定され、上述したように、初期化要求フラグFLGが「1」に設定される。これによって、フィードバック補正係数αが「1」にクランプ(初期化)され、冷却水温などのパラメータに応じた他の補正係数でもって燃料噴射量がオープンループ制御され、かつ、キャニスタ30によるパージが禁止される。また、フィードバックの制御不良と判定された時点T2からセンサ出力(電圧値)をモニタし、その最小値AFSMINと最大値AFSMAXとを逐次更新する。   Such operational effects of the present embodiment will be described with reference to the time chart of FIG. At time T1, if the air-fuel ratio sensor 11 fails due to some trouble and the sensor output (voltage) is fixed at 0 V, for example, the sensor output (actual air-fuel ratio) rAFS follows the target air-fuel ratio tAFS well. The value of the air-fuel ratio correction coefficient α sticks to the limit value, and at time T2 after the lapse of the predetermined time ΔD2, it is determined that the feedback control is defective. As described above, the initialization request flag FLG is set to “1”. Is set. As a result, the feedback correction coefficient α is clamped (initialized) to “1”, the fuel injection amount is open-loop controlled with another correction coefficient according to parameters such as cooling water temperature, and purging by the canister 30 is prohibited. Is done. In addition, the sensor output (voltage value) is monitored from time T2 when it is determined that the feedback control is defective, and the minimum value AFSMIN and the maximum value AFSMAX are sequentially updated.

このフィードバック制御の中断から所定期間ΔD1が経過すると、時期T3において、フラグFLGが「0」にリセットされて、上記の空燃比フィードバック制御が再開される。そして、上記最小値AFSMINと最大値AFSMAXとの偏差である実空燃比の変動幅が所定の基準変動幅を超えることなく、上記のフィードバック制御の中断が所定の異常基準回数NGCNT(この例では「3」)だけ繰り返されると、時期T4において、空燃比センサ11が異常・故障であると判定される。   When the predetermined period ΔD1 has elapsed since the interruption of the feedback control, the flag FLG is reset to “0” at time T3, and the above-described air-fuel ratio feedback control is resumed. Then, the fluctuation range of the actual air-fuel ratio, which is a deviation between the minimum value AFSMIN and the maximum value AFSMAX, does not exceed a predetermined reference fluctuation range, and the interruption of the feedback control is performed for a predetermined abnormality reference number NGCNT (in this example, “ 3)), the air-fuel ratio sensor 11 is determined to be abnormal / failure at time T4.

仮に空燃比センサ11が異常・故障しておらず、パージ流量の影響でフィードバック制御が制御不良に陥っているような場合には、上記のフィードバック制御の中断を所定期間ΔD1行うことによって、多くの場合、空燃比フィードバック制御が正常化される。また、燃料噴射弁や点火プラグ等の他の部品の異常・故障により初期化要求FLGが「1」にクランプされた場合には、センサ出力の変動幅が上記の基準変動幅ΔAFS0をはるかに超えて大きくなることから、空燃比センサ11の異常と判定されることはない。   If the air-fuel ratio sensor 11 is not abnormal or malfunctioning and the feedback control is in a control failure due to the influence of the purge flow rate, the feedback control is interrupted for a predetermined period ΔD1 to obtain a large amount of feedback control. In this case, the air-fuel ratio feedback control is normalized. In addition, when the initialization request FLG is clamped to “1” due to abnormality or failure of other parts such as the fuel injection valve and the spark plug, the fluctuation range of the sensor output far exceeds the reference fluctuation range ΔAFS0. Therefore, it is not determined that the air-fuel ratio sensor 11 is abnormal.

以上のような本実施例によれば、パージ等に起因するフィードバックの制御不良からフィードバック制御が正常に行われる状態へ復帰させるように、空燃比フィードバック制御を一時的に中断するという制御処理を利用し、この中断の頻度、より具体的にはセンサ出力(実空燃比)の変動幅が基準変動幅ΔAFS0を超えることのない状態での中断回数CLPCNTを用いた簡素な制御処理によって空燃比センサ11の診断を行うことができ、演算負荷や記憶される制御処理を軽減することができる。また、空燃比フィードバック制御中であれば、フィードバックの制御不良の判定が行われることから、実質的に空燃比センサ11の診断が行われることとなり、診断の機会が多く、センサの異常・故障を早期に検出することができ、かつ、センサ診断のためだけに特別な運転を行う必要もない。しかも、センサの異常・故障と診断されたときの最小値AFSMINと最大値AFSMAXとを記憶しておき、これらを利用して空燃比センサ11の異常の態様を簡便に識別することができる。   According to the present embodiment as described above, a control process is used in which air-fuel ratio feedback control is temporarily interrupted so as to return to a state in which feedback control is normally performed from a feedback control failure caused by purging or the like. Then, the air-fuel ratio sensor 11 is obtained by a simple control process using the number of interruptions CLPCNT in a state where the frequency of interruption, more specifically, the fluctuation range of the sensor output (actual air-fuel ratio) does not exceed the reference fluctuation width ΔAFS0. Thus, it is possible to reduce the calculation load and the stored control processing. Further, if the air-fuel ratio feedback control is being performed, a feedback control failure determination is made, so that the air-fuel ratio sensor 11 is substantially diagnosed, and there are many opportunities for diagnosis, and sensor abnormalities / failures are detected. It can be detected at an early stage, and there is no need to perform a special operation only for sensor diagnosis. In addition, the minimum value AFSMIN and the maximum value AFSMAX when the sensor is diagnosed as having an abnormality / failure are stored, and the abnormal state of the air-fuel ratio sensor 11 can be easily identified using these values.

本発明の一実施例が適用された内燃機関のシステム構成を示す構成図。1 is a configuration diagram showing a system configuration of an internal combustion engine to which an embodiment of the present invention is applied. 空燃比センサの診断処理の流れを示すフローチャート。The flowchart which shows the flow of the diagnostic process of an air fuel ratio sensor. 初期化要求フラグの設定処理及びフィードバック制御の中断処理の流れを示すフローチャート。6 is a flowchart showing a flow of initialization request flag setting processing and feedback control interruption processing. 空燃比センサの異常時の制御の流れを示すタイムチャート。The time chart which shows the flow of control at the time of abnormality of an air fuel ratio sensor.

符号の説明Explanation of symbols

1…制御部
11…空燃比センサ
13…フロント触媒
14…リア触媒
20…内燃機関
25…排気通路(排気系)
30…キャニスタ(蒸発燃料処理装置)
33…パージ制御弁
DESCRIPTION OF SYMBOLS 1 ... Control part 11 ... Air-fuel ratio sensor 13 ... Front catalyst 14 ... Rear catalyst 20 ... Internal combustion engine 25 ... Exhaust passage (exhaust system)
30 ... Canister (evaporative fuel treatment device)
33 ... Purge control valve

Claims (5)

内燃機関の排気系に設けられた空燃比センサと、排気の実空燃比に応じた上記空燃比センサのセンサ出力に基づいて、目標空燃比へ向けた空燃比フィードバック制御を行う制御部と、を有する空燃比センサの診断装置において、
上記制御部は、
上記空燃比フィードバック制御中に、上記目標空燃比に対して実空燃比が追従しないフィードバックの制御不良を判定し、
上記制御不良と判定されたときに、所定期間、上記空燃比フィードバック制御を中断し、
上記所定期間の空燃比フィードバック制御の中断の後、空燃比フィードバック制御を再開するとともに、上記制御不良の判定を行い、
上記空燃比フィードバック制御の中断中のセンサ出力の変動幅が所定の基準変動幅を超えることなく、上記制御不良との判定が繰り返されることによる空燃比フィドバック制御の中断回数が所定の基準回数を超えると、上記空燃比センサ異常であると判定する、
ことを特徴とする空燃比センサの診断装置。
An air-fuel ratio sensor provided in the exhaust system of the internal combustion engine, and a control unit that performs air-fuel ratio feedback control toward the target air-fuel ratio based on the sensor output of the air-fuel ratio sensor according to the actual air-fuel ratio of the exhaust In the diagnostic apparatus for an air-fuel ratio sensor,
The control unit
During the air-fuel ratio feedback control, determine a feedback control failure that the actual air-fuel ratio does not follow the target air-fuel ratio,
When the control failure is determined, the air-fuel ratio feedback control is interrupted for a predetermined period,
After interruption of the air-fuel ratio feedback control for the predetermined period, the air-fuel ratio feedback control is restarted, and the control failure is determined,
The fluctuation range of the sensor output during the interruption of the air-fuel ratio feedback control does not exceed the predetermined reference fluctuation width, and the number of interruptions of the air-fuel ratio feedback control due to repeated determination of the control failure exceeds the predetermined reference number And determining that the air-fuel ratio sensor is abnormal.
A diagnostic apparatus for an air-fuel ratio sensor.
上記空燃比センサが実空燃比を幅広く検出可能な広域型のものであことを特徴とする請求項1に記載の空燃比センサの診断装置。 Diagnosis device for an air-fuel ratio sensor according to claim 1, wherein the air-fuel ratio sensor is Ru der those widely detectable wide-area the actual air-fuel ratio. 上記制御部は、上記センサ出力の最大値と最小値との偏差により上記変動幅を算出し、かつ、上記空燃比センサが異常であると判定されたときに、上記最大値と最小値とを記憶し、
この記憶された最大値と最小値とに基づいて空燃比センサの異常の態様を識別可能であることを特徴とする請求項1又は2に記載の空燃比センサの診断装置。
The control unit calculates the fluctuation range based on a deviation between the maximum value and the minimum value of the sensor output, and determines the maximum value and the minimum value when it is determined that the air-fuel ratio sensor is abnormal. Remember,
Diagnosis device for an air-fuel ratio sensor according to claim 1 or 2, characterized in that it is identifiable aspects of abnormality of the air-fuel ratio sensor on the basis of the maximum value and the minimum value that this stored.
燃料系で発生した蒸発燃料を一時的に吸着し、これをパージして吸気系へ供給する蒸発燃料処理装置と、そのパージ流量を制御するパージ制御弁と、を有し、
上記制御部は、上記フィードバックの制御不良を判定すると、所定期間、上記空燃比フィードバック制御を中断するとともに、上記パージを禁止することを特徴とする請求項1〜3のいずれかに記載の空燃比センサの診断装置。
An evaporative fuel processing device that temporarily adsorbs evaporative fuel generated in the fuel system, purges the fuel and supplies it to the intake system, and a purge control valve that controls the purge flow rate;
The air-fuel ratio according to any one of claims 1 to 3, wherein when the control unit determines that the feedback control is poor, the air-fuel ratio feedback control is interrupted for a predetermined period and the purge is prohibited. Sensor diagnostic device.
内燃機関の排気系に設けられた空燃比センサの診断方法において、
排気の実空燃比に応じた空燃比センサのセンサ出力に基づいて、目標空燃比へ向けた空燃比フィードバック制御を行い、
この空燃比フィードバック制御中に、上記目標空燃比に対して実空燃比が追従しないフィードバックの制御不良を判定し、
この制御不良と判定されたときに、所定期間、上記空燃比フィードバック制御を中断し、
上記所定期間の空燃比フィードバック制御の中断の後、空燃比フィードバック制御を再開するとともに、上記制御不良の判定を行い、
上記空燃比フィードバック制御の中断中のセンサ出力の変動幅が所定の基準変動幅を超えることなく、上記制御不良との判定が繰り返されることによる空燃比フィドバック制御の中断回数が所定の基準回数を超えると、上記空燃比センサ異常であると判定する、
ことを特徴とする空燃比センサの診断方法。
In the diagnostic method of the air-fuel ratio sensor provided in the exhaust system of the internal combustion engine,
Based on the sensor output of the air-fuel ratio sensor corresponding to the actual air-fuel ratio of the exhaust, air-fuel ratio feedback control toward the target air-fuel ratio is performed,
During this air-fuel ratio feedback control, a feedback control failure that the actual air-fuel ratio does not follow the target air-fuel ratio is determined,
When the control failure is determined, the air-fuel ratio feedback control is interrupted for a predetermined period,
After interruption of the air-fuel ratio feedback control for the predetermined period, the air-fuel ratio feedback control is restarted and the control failure is determined,
The fluctuation range of the sensor output during the interruption of the air-fuel ratio feedback control does not exceed the predetermined reference fluctuation width, and the number of interruptions of the air-fuel ratio feedback control due to repeated determination of the control failure exceeds the predetermined reference number And determining that the air-fuel ratio sensor is abnormal.
A diagnostic method for an air-fuel ratio sensor.
JP2006150794A 2006-05-31 2006-05-31 Diagnostic apparatus and diagnostic method for air-fuel ratio sensor Expired - Fee Related JP4678336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006150794A JP4678336B2 (en) 2006-05-31 2006-05-31 Diagnostic apparatus and diagnostic method for air-fuel ratio sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006150794A JP4678336B2 (en) 2006-05-31 2006-05-31 Diagnostic apparatus and diagnostic method for air-fuel ratio sensor

Publications (2)

Publication Number Publication Date
JP2007321604A JP2007321604A (en) 2007-12-13
JP4678336B2 true JP4678336B2 (en) 2011-04-27

Family

ID=38854653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006150794A Expired - Fee Related JP4678336B2 (en) 2006-05-31 2006-05-31 Diagnostic apparatus and diagnostic method for air-fuel ratio sensor

Country Status (1)

Country Link
JP (1) JP4678336B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108884769A (en) * 2015-12-18 2018-11-23 法国大陆汽车公司 For diagnosing the diagnostic method of oxygen probe

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013221453A1 (en) * 2013-10-23 2015-04-23 Conti Temic Microelectronic Gmbh Regulation of a hydraulic pressure of a flow gear
JP6798367B2 (en) * 2017-03-08 2020-12-09 株式会社デンソー Engine control unit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003193903A (en) * 2001-12-25 2003-07-09 Mitsubishi Motors Corp Failure determining device for air/fuel ratio detection means

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63113158A (en) * 1986-10-30 1988-05-18 Mazda Motor Corp Air-fuel ratio control device for engine
JPH04365950A (en) * 1991-06-13 1992-12-17 Daihatsu Motor Co Ltd Deterioration detecting method for oxygen sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003193903A (en) * 2001-12-25 2003-07-09 Mitsubishi Motors Corp Failure determining device for air/fuel ratio detection means

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108884769A (en) * 2015-12-18 2018-11-23 法国大陆汽车公司 For diagnosing the diagnostic method of oxygen probe
CN108884769B (en) * 2015-12-18 2021-06-08 法国大陆汽车公司 Diagnostic method for diagnosing an oxygen probe

Also Published As

Publication number Publication date
JP2007321604A (en) 2007-12-13

Similar Documents

Publication Publication Date Title
JP4345688B2 (en) Diagnostic device and control device for internal combustion engine
US6976382B2 (en) Abnormality diagnosing apparatus of exhaust gas sensor
US7240479B1 (en) Abnormality diagnosis apparatus for internal combustion engine
JP2004003430A (en) Diagnostic apparatus for engine
US7096861B1 (en) Control system for internal combustion engine
JP2003193900A (en) Malfunction diagnosis device for vehicle
JP2009180171A (en) Abnormality diagnostic device for internal combustion engine
JP2006057587A (en) Malfunction diagnosing device for air/fuel ratio sensor
JP4678336B2 (en) Diagnostic apparatus and diagnostic method for air-fuel ratio sensor
WO2011129267A1 (en) Air-fuel ratio learning control device for bifuel engine
JP4736796B2 (en) Diagnostic apparatus and diagnostic method for internal combustion engine
JP2010163932A (en) Catalyst degradation diagnostic device for internal combustion engine
JP3561650B2 (en) Evaporative fuel treatment system for internal combustion engine
JP2001329894A (en) Fuel system abnormality diagnostic device for internal combustion engine
JP3481681B2 (en) Failure diagnosis device for fuel evaporative gas treatment device
JP4101133B2 (en) Self-diagnosis device for air-fuel ratio control device of internal combustion engine
JP2009209861A (en) Exhaust system diagnostic apparatus of internal combustion engine
JP2004278542A (en) Fault diagnosing device in fuel supply system of internal combustion engine
JP3738724B2 (en) Air-fuel ratio control device for internal combustion engine
JP2008157036A (en) Control device of internal combustion engine
JP4736797B2 (en) Diagnostic apparatus and diagnostic method for internal combustion engine
JP5093079B2 (en) Engine exhaust purification system
JP2775676B2 (en) Fuel supply control device for internal combustion engine
JP4277776B2 (en) Diagnostic apparatus and diagnostic method for internal combustion engine
JP3975436B2 (en) Abnormality diagnosis device for exhaust gas sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees