JP4736796B2 - Diagnostic apparatus and diagnostic method for internal combustion engine - Google Patents

Diagnostic apparatus and diagnostic method for internal combustion engine Download PDF

Info

Publication number
JP4736796B2
JP4736796B2 JP2005374037A JP2005374037A JP4736796B2 JP 4736796 B2 JP4736796 B2 JP 4736796B2 JP 2005374037 A JP2005374037 A JP 2005374037A JP 2005374037 A JP2005374037 A JP 2005374037A JP 4736796 B2 JP4736796 B2 JP 4736796B2
Authority
JP
Japan
Prior art keywords
catalyst
engine
internal combustion
specific component
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005374037A
Other languages
Japanese (ja)
Other versions
JP2007177629A (en
Inventor
理恵 ▲高▼津戸
浩志 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005374037A priority Critical patent/JP4736796B2/en
Priority to US11/644,035 priority patent/US7444233B2/en
Priority to CNB2006101721192A priority patent/CN100520030C/en
Publication of JP2007177629A publication Critical patent/JP2007177629A/en
Application granted granted Critical
Publication of JP4736796B2 publication Critical patent/JP4736796B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

本発明は、内燃機関の排気の特定成分を浄化する触媒を備えた排気浄化システムを診断する技術に関し、特に、冷機始動時のように触媒の昇温を促進する制御を行っている状況で、この制御を含めた排気浄化システムの異常を検出することに適した診断装置及び診断方法に関する。   The present invention relates to a technology for diagnosing an exhaust purification system provided with a catalyst for purifying a specific component of exhaust gas of an internal combustion engine, and in particular, in a situation where control for promoting the temperature rise of the catalyst is performed as in cold start. The present invention relates to a diagnostic apparatus and a diagnostic method suitable for detecting an abnormality of an exhaust purification system including this control.

近年の自動車用内燃機関の分野では、排気浄化、特に触媒が不活性状態である冷機始動(コールドスタート)時からの排気浄化技術の向上が強く望まれ、また法規による規制が厳しくなっている。そこで、冷機始動時には早期に触媒を活性化させるために、アイドル回転数の増加による吸入空気量の増量制御や点火時期の遅角制御等の触媒昇温促進制御が良く行われている。また、このような制御を含めた冷機始動時における排気浄化システムが正常に機能しているかの診断が要求され、また法規制が強化される傾向にある。   In the field of internal combustion engines for automobiles in recent years, it is strongly desired to improve exhaust gas purification technology, particularly from the cold start when the catalyst is in an inactive state, and regulations by regulations have become strict. Therefore, in order to activate the catalyst at an early stage when the cold engine is started, catalyst temperature increase promotion control such as intake air amount increase control by ignition speed increase or ignition timing retardation control is often performed. In addition, a diagnosis of whether the exhaust purification system at the time of cold start including such control is functioning normally is required, and there is a tendency that regulations are strengthened.

特許文献1には、このような診断技術として、冷機始動時に、エンジン回転数フィードバック制御と点火時期フィードバック制御とを組み合わせた昇温促進制御を開始してから所定の遅延時間が経過した時点からエンジン回転数や点火時期を監視し、エンジン回転数が所定値以下又は点火時期が所定値以上の状態が所定時間経過すると、故障と判定している。
特開2001−132526号公報
In Patent Document 1, as such a diagnostic technique, at the time of cold start, the engine is started from the time when a predetermined delay time has elapsed since the start of temperature increase promotion control that combines engine speed feedback control and ignition timing feedback control. The engine speed and ignition timing are monitored, and it is determined that a failure has occurred when a predetermined time has elapsed when the engine speed is equal to or lower than a predetermined value or the ignition timing is equal to or higher than a predetermined value.
JP 2001-132526 A

上記特許文献1のものでは、アイドルのようにエンジン回転数フィードバック制御と点火時期フィードバック制御の双方を行っている一定の機関運転状態で、かつ、所定の遅延時間が経過した後でないと診断を開始することができないので、例えば冷機始動後に比較的短い時間で加速・走行モードへ移行するような使われ方では診断が行われず、診断頻度が非常に少なくなることがある。従って、実際には異常であるのに診断が行われないままとなることがあり、更なる改良が望まれていた。   In the above-mentioned Patent Document 1, diagnosis is started in a certain engine operating state in which both engine speed feedback control and ignition timing feedback control are performed as in the case of idle and after a predetermined delay time has not elapsed. Therefore, for example, the diagnosis is not performed in the usage that shifts to the acceleration / running mode in a relatively short time after the cold start, and the diagnosis frequency may be very low. Therefore, there is a case where the diagnosis is not performed although it is actually abnormal, and further improvement has been desired.

また、触媒の活性状態は主として触媒温度つまり触媒に供給される排気ガスの供給熱量に大きく依存しており、この排気供給熱量は、上記の点火時期や機関回転数のみならず、触媒を通過する排気ガスのマスボリューム(吸気量や排気量)によっても変動する。このマスボリュームは機関運転状態に応じて変化し、例えばアイドルから車両走行へ移行するとマスボリュームが増加する。従って、上記特許文献1のように主として機関回転数や点火時期に基づいて診断を行うものでは、アイドルなどの特定の運転状態に限定すれば比較的精度の良い診断を行うことができるものの、市場での様々な走行パターンに対応することができない。   Further, the active state of the catalyst largely depends on the catalyst temperature, that is, the supply heat amount of the exhaust gas supplied to the catalyst. This exhaust supply heat amount passes through the catalyst as well as the ignition timing and the engine speed. It also varies depending on the exhaust gas mass volume (intake and displacement). This mass volume changes according to the engine operating state. For example, the mass volume increases when shifting from idle to vehicle running. Therefore, in the case of making a diagnosis mainly based on the engine speed and the ignition timing as in Patent Document 1, a relatively accurate diagnosis can be made if limited to a specific operating state such as an idle. It is not possible to cope with various driving patterns in

本発明は、このような課題に鑑みてなされたものである。すなわち、本発明は、
内燃機関の排気系に設けられて特定成分を浄化する少なくとも一つの触媒と、機関回転数の増加と点火時期の遅角の少なくとも一方を行うことにより、機関冷機時に触媒の昇温を促進する触媒昇温促進手段と、を有する排気浄化システムを診断する内燃機関の診断装置において、
上記機関冷機中に、燃料噴射量と、上記触媒昇温促進手段による機関回転数の変化と点火時期の変化の少なくとも一方と、を用いて、機関冷機中に触媒下流側へ排出された特定成分の総排出量を推定する特定成分総排出量推定手段と、
この特定成分の総排出量に基づいて、上記排気浄化システムの正常・異常を判定する判定手段と、
上記機関冷機中にアイドル運転が行われる割合を求め、この割合が所定の判定値より低い場合に、上記判定手段による排気浄化システムの正常・異常の判定を禁止する判定禁止手段と、
を有することを特徴としている。
The present invention has been made in view of such problems. That is, the present invention
At least one catalyst that is provided in an exhaust system of an internal combustion engine and purifies a specific component, and a catalyst that promotes the temperature rise of the catalyst when the engine is cooled by performing at least one of an increase in engine speed and a retard of ignition timing In the diagnostic device for an internal combustion engine for diagnosing an exhaust purification system having a temperature rise promoting means,
A specific component discharged to the downstream side of the catalyst in the engine cooler using the fuel injection amount and at least one of a change in engine speed and a change in ignition timing by the catalyst temperature increase promotion means during the engine cooler a specific component total emissions estimating means for estimating the total emissions,
Determination means for determining normality / abnormality of the exhaust purification system based on the total emission amount of the specific component ;
A determination prohibiting means for determining the normality / abnormality of the exhaust purification system by the determination means when the ratio at which the idle operation is performed during the engine cold machine is lower than a predetermined determination value;
It is characterized by having.

本発明によれば、触媒昇温促進手段による触媒の昇温促進が行われる機関冷機中に、燃料噴射量と、上記触媒昇温促進手段による機関回転数の変化と点火時期の変化の少なくとも一方と、を用いて、特定成分の触媒下流側への排出量を推定し、この排出量に基づいて診断を行うことにより、幅広い機関運転領域で精度の高い診断を行うことができる。 According to the present invention, at least one of a change in the fuel injection amount, an engine speed by the catalyst temperature increase promotion means, and a change in ignition timing during the engine cooler in which the temperature increase promotion of the catalyst by the catalyst temperature increase promotion means is performed. Are used to estimate the total discharge amount of the specific component to the downstream side of the catalyst and make a diagnosis based on the total discharge amount, thereby making it possible to make a highly accurate diagnosis in a wide range of engine operation.

また、機関冷機中にアイドル運転の割合が所定の判定値より低ければ正常・異常の判定を禁止しており、言い換えると、機関冷機中のアイドル運転の割合が判定値以上の場合にのみ判定を行うようにしているために、上記の判定値を適切に設定することによって、診断頻度の低下を抑制しつつ、その診断精度を有効に向上することができ、診断頻度の向上と診断精度の向上とを高いレベルで両立することができる。   In addition, if the ratio of idle operation during engine cold is lower than a predetermined judgment value, normal / abnormal judgment is prohibited.In other words, the judgment is made only when the percentage of idle operation in engine cold is greater than or equal to the judgment value. Therefore, by appropriately setting the above judgment value, it is possible to effectively improve the diagnostic accuracy while suppressing a decrease in the diagnostic frequency, and to improve the diagnostic frequency and diagnostic accuracy. Can be achieved at a high level.

以下、本発明の好ましい実施例を図面に基づいて説明する。図1は、本発明の一実施例に係るガソリン内燃機関の排気浄化システムを簡略的に示している。内燃機関20の燃焼室21には、略中央上部に点火プラグ9が配設されているとともに、吸気弁22を介して吸気通路23と、排気弁24を介して排気通路25と、が接続されている。吸気通路23には、上流側より順に、エアクリーナ26、吸気流量を計測するエアフロメータ3、吸気通路23を開閉する電子制御式のスロットル弁27及びそのスロットル開度を検出するスロットル開度センサ4、及び吸気通路23の吸気ポート23Aへ燃料を噴射する燃料噴射弁5が設けられている。なお、このようなポート噴射式の内燃機関に限らず、燃料噴射弁から燃焼室内に直接燃料を噴射する筒内直噴型の内燃機関に本発明を適用することもできる。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 schematically shows an exhaust gas purification system for a gasoline internal combustion engine according to an embodiment of the present invention. In the combustion chamber 21 of the internal combustion engine 20, a spark plug 9 is disposed substantially at the upper center, and an intake passage 23 is connected via an intake valve 22 and an exhaust passage 25 is connected via an exhaust valve 24. ing. In the intake passage 23, in order from the upstream side, an air cleaner 26, an air flow meter 3 for measuring the intake flow rate, an electronically controlled throttle valve 27 for opening and closing the intake passage 23, and a throttle opening sensor 4 for detecting the throttle opening, A fuel injection valve 5 for injecting fuel into the intake port 23A of the intake passage 23 is provided. The present invention can be applied not only to such a port injection type internal combustion engine but also to a direct injection type internal combustion engine that directly injects fuel from a fuel injection valve into a combustion chamber.

排気通路25には、燃焼室21に近く比較的排気温度の高い排気マニホールド集合部25A又はその近傍の上流位置にフロント触媒13が配設されているとともに、このフロント触媒13よりも下流側であって、比較的排気温度の低い車両の床下位置にリア触媒14が配設されている。つまり、冷機始動時を含めて高効率に排気を浄化するために、排気通路25の中で周囲温度の異なる複数箇所に触媒を直列に配置した触媒システムとなっている。フロント触媒13は、好ましくは、理論空燃比近傍でNOx,HC,COをほぼ0(零)まで低減可能な三元触媒13Aと、この三元触媒13Aが活性化する前に排出されるHCを一時的に吸着するHC吸着触媒13Bとを組み合わせたHC吸着型三元触媒であり、リア触媒14は、例えば上記のHC吸着触媒である。但し、これに限らず、上記の三元触媒、HC吸着触媒の他、リーン運転時のような酸素過剰な領域でNOをトラップし、ストイキ又はリッチ運転時にはNOを放出,還元するNOxトラップ触媒等の他の触媒を単独又は組み合わせて用いても良い。 A front catalyst 13 is disposed in the exhaust passage 25 at an upstream position near the combustion chamber 21 and at a relatively high exhaust temperature, or at an upstream position in the vicinity thereof, and further downstream than the front catalyst 13. Thus, the rear catalyst 14 is disposed at a position under the floor of the vehicle having a relatively low exhaust temperature. That is, in order to purify the exhaust gas with high efficiency including when the cold machine is started, the catalyst system is configured such that the catalyst is arranged in series at a plurality of locations having different ambient temperatures in the exhaust passage 25. The front catalyst 13 preferably has a three-way catalyst 13A capable of reducing NOx, HC, CO to almost 0 (zero) in the vicinity of the theoretical air-fuel ratio, and HC discharged before the three-way catalyst 13A is activated. An HC adsorption type three-way catalyst combined with an HC adsorption catalyst 13B that temporarily adsorbs, and the rear catalyst 14 is, for example, the HC adsorption catalyst described above. However, not limited thereto, the above-mentioned three-way catalyst, other HC adsorption catalyst, to trap NO X in an oxygen excess region, such as during the lean operation, releases NO X during stoichiometric or rich operation, NOx trap to reduce Other catalysts such as a catalyst may be used alone or in combination.

また、排気通路25には、フロント触媒13の上流側及び下流側にそれぞれ上流側酸素センサ11及び下流側酸素センサ12が設けられている。なお、センサ11,12としては、簡素な酸素センサ(Oセンサ)に代えて、幅広い空燃比を検出可能な広域型の空燃比センサを用いても良い。機関回転速度(機関回転数)は、例えばクランクシャフトの回転角位置を検出するポジション(POS)センサ7とカムシャフトの位相を検出する位相(PHASE)センサ8との検出信号に基づいて演算される。また、内燃機関20のシリンダブロックには、ノッキング(ノック)の発生を検出するノックセンサ6や機関水温を検出する水温センサ10が取り付けられている。 The exhaust passage 25 is provided with an upstream oxygen sensor 11 and a downstream oxygen sensor 12 on the upstream side and the downstream side of the front catalyst 13, respectively. As the sensors 11 and 12, wide-range air-fuel ratio sensors that can detect a wide range of air-fuel ratios may be used instead of simple oxygen sensors (O 2 sensors). The engine speed (engine speed) is calculated based on detection signals from, for example, a position (POS) sensor 7 that detects the rotational angle position of the crankshaft and a phase (PHASE) sensor 8 that detects the phase of the camshaft. . Further, a knock sensor 6 for detecting the occurrence of knocking (knock) and a water temperature sensor 10 for detecting the engine water temperature are attached to the cylinder block of the internal combustion engine 20.

電子制御装置としてのエンジンコントローラ1は、CPU,ROM,RAM及び入出力インターフェースを備えた周知のデジタルコンピュータシステムであって、各種制御処理を記憶及び実行する機能を有している。このエンジンコントローラ1には、スタータ信号やイグニッション信号等の各種信号が信号線2を介して入力されるとともに、上記の各種センサ類3,4,6〜8,10〜12から入力される検出信号に基づいて、各種アクチュエータ類へ制御信号を出力し、その動作を制御する。例えば、燃料噴射弁5による燃料噴射量及び噴射時期、点火プラグ9による点火時期を制御する。また、上記の酸素センサ11,12の出力に基づいて空燃比のフィードバック制御を行う。   The engine controller 1 as an electronic control device is a known digital computer system having a CPU, a ROM, a RAM, and an input / output interface, and has a function of storing and executing various control processes. Various signals such as a starter signal and an ignition signal are input to the engine controller 1 via the signal line 2 and detection signals input from the various sensors 3, 4, 6 to 8 and 10 to 12. Based on the above, control signals are output to various actuators to control the operation. For example, the fuel injection amount and injection timing by the fuel injection valve 5 and the ignition timing by the spark plug 9 are controlled. Also, air-fuel ratio feedback control is performed based on the outputs of the oxygen sensors 11 and 12.

機関始動から数十秒間の冷機始動時のように、触媒が低温で未だ活性化していない機関冷機時には、多くの炭化水素(HC)が未浄化のまま触媒から排出されるおそれがある。このようなコールドエミッション対策として、この触媒浄化システムでは、上記のHC吸蔵触媒13B,14を設けているとともに、フロント触媒13を排気マニホールド集合部25Aの近傍に配置して昇温化を促進しており、かつ、アイドル回転数制御におけるアイドル回転数の増加制御や点火時期の遅角化等の触媒昇温促進制御を行う(触媒昇温促進手段)。なお、このような触媒昇温促進制御は例えば上記の特許文献1にも詳しく記載されている。 When the engine is not activated at a low temperature, such as when the engine is started for several tens of seconds after the engine is started, a large amount of hydrocarbons (HC) may be discharged from the catalyst without being purified. As a countermeasure against such cold emission, in this catalyst purification system, the above-described HC storage catalysts 13B and 14 are provided, and the front catalyst 13 is disposed in the vicinity of the exhaust manifold assembly portion 25A to promote temperature rise. In addition, catalyst temperature increase promotion control such as idle speed increase control and ignition timing retardation in idle rotation speed control is performed (catalyst temperature increase promotion means). Note that such catalyst temperature increase promotion control is also described in detail in, for example, the above-mentioned Patent Document 1.

図2は、触媒昇温促進制御を行う機関冷機時に排気浄化システムが正常に機能しているかを診断する診断制御処理の流れを示すフローチャートである。このルーチンは上記のエンジンコントローラ1により機関始動とともに開始され、極短い所定期間、具体的には一単位(1〜数回)の燃焼が行われる所定のクランク角毎に繰り返し実行される。   FIG. 2 is a flowchart showing a flow of diagnostic control processing for diagnosing whether the exhaust purification system is functioning normally at the time of engine cooling for performing catalyst temperature increase promotion control. This routine is started by the engine controller 1 when the engine is started, and is repeatedly executed for a very short predetermined period, specifically, every predetermined crank angle at which one unit (one to several times) of combustion is performed.

ステップ101では、内燃機関20の運転状態が冷機始動時のように上記の触媒昇温促進制御を行う稼働領域であるか、すなわち触媒が未だ活性していない機関冷機時であるかを判定する。具体的には、機関水温が25〜30℃程度の所定温度以下であるか等の幾つかの条件により判定が行われる。   In step 101, it is determined whether the operating state of the internal combustion engine 20 is an operating region in which the above-described catalyst temperature increase promotion control is performed as in cold start, that is, whether the engine is cold when the catalyst is not yet active. Specifically, the determination is made based on several conditions such as whether the engine water temperature is equal to or lower than a predetermined temperature of about 25 to 30 ° C.

ステップ102では、所定の診断許可条件が成立しているかを判定する。この診断許可条件としては、排気昇温促進制御に関わるセンサ類、例えばエアフロメータ3,ポジションセンサ7,位相センサ8及び酸素センサ11,12が正常であるか等の条件が含まれる。但し、本実施例は後述するように機関冷機中にアイドル運転が所定の割合以上行われていれば良いという比較的幅広い機関運転領域で診断可能であることを一つの特徴としており、従って、基本的には個々の運転状態(アイドル等),機関負荷及び機関回転数等の条件がこのステップ102での診断許可条件には含まれていない。   In step 102, it is determined whether a predetermined diagnosis permission condition is satisfied. The diagnosis permission condition includes conditions such as whether the sensors related to the exhaust gas temperature increase promotion control, for example, the air flow meter 3, the position sensor 7, the phase sensor 8, and the oxygen sensors 11, 12 are normal. However, as described later, this embodiment has one feature that it can be diagnosed in a relatively wide engine operation region in which the idling operation should be performed at a predetermined rate or more during the engine cold machine. Specifically, conditions such as individual operation states (idle, etc.), engine load, and engine speed are not included in the diagnosis permission conditions in step 102.

ステップ102Aのサブルーチンでは、診断判定キャンセルフラグCFLGを設定する。具体的には、図3に示すように、先ずステップ121では、触媒昇温促進制御が行われる機関冷機中における(単位)燃焼回数の積算値であるモニタ中累積燃焼カウンタの値CSMRFCTに1を加算・インクリメントする。ステップ122では、アイドル運転中であるか、例えばアイドルスイッチがONであるかを判定する。アイドル運転中には、機関回転数が所定の目標アイドル回転数にフィードバック制御されている。ここで、機関冷機状態でのアイドル運転時には、触媒昇温促進・暖機促進のために、上記の目標アイドル回転数が暖機状態に比して高く設定されており、つまり上記の触媒昇温促進制御としての回転数増加制御が行われる。ステップ123では、機関冷機中にアイドル運転が行われる(単位)燃焼回数の積算値に相当するアイドル中累積燃焼カウンタの値CSMIDCTに1を加算・インクリメントする。ステップ124では、機関冷機中におけるアイドル運転が行われる割合に相当するアイドル分担率CSMIDLを演算する。具体的には、モニタ中累積燃焼カウンタの値CSMRFCTに対するアイドル中累積燃焼カウンタの値CSMIDCTの比(CSMIDCT/CSMRFCT)をアイドル分担率CSMIDLとして求める。   In the subroutine of step 102A, the diagnosis determination cancel flag CFLG is set. Specifically, as shown in FIG. 3, first, in step 121, 1 is added to the value CSMRFCT of the monitored cumulative combustion counter, which is an integrated value of the (unit) number of combustions in the engine cold air under which the catalyst temperature increase promotion control is performed. Add and increment. In step 122, it is determined whether the idle operation is being performed, for example, whether the idle switch is ON. During idle operation, the engine speed is feedback-controlled to a predetermined target idle speed. Here, during idle operation in the engine cold state, the target idle speed is set higher than the warm-up state in order to promote catalyst temperature rise and warm-up, that is, the catalyst temperature rise described above. Rotational speed increase control as acceleration control is performed. In step 123, 1 is added to and incremented by the value CSMIDCT of the idling cumulative combustion counter corresponding to the integrated value of the number of times of combustion (unit) in which idling is performed during engine cooling. In step 124, an idle share ratio CSMIDL corresponding to the ratio of idle operation in the engine cold machine is calculated. Specifically, the ratio (CSMIDCT / CSMRFCT) of the idle cumulative combustion counter value CSMIDCT to the monitored cumulative combustion counter value CSMRFCT is obtained as the idle share rate CSMIDL.

ステップ125では、このアイドル分担率CSMIDLを、予め設定された所定の判定値CSMIDL#と比較する。この判定値CSMIDL#は、例えば0.4〜0.6、より好ましくは0.6程度の値とされる。すなわち、機関冷機中に約半分程度の割合でアイドル運転が行われていれば診断を行うようにしている。アイドル分担率CSMIDLが判定値CSMIDL#より低ければ、ステップ125からステップ126へ進み、上記の診断判定キャンセルフラグCFLGを「1」に設定する。一方、アイドル分担率CSMIDLが判定値CSMIDL#以上であれば、上記の診断判定キャンセルフラグCFLGを「0」とする。   In step 125, the idle share rate CSMIDL is compared with a predetermined determination value CSMIDL # set in advance. This determination value CSMIDL # is, for example, a value of about 0.4 to 0.6, more preferably about 0.6. That is, if the idling operation is performed at a rate of about half during the engine cold machine, the diagnosis is performed. If the idle share rate CSMIDL is lower than the determination value CSMIDL #, the process proceeds from step 125 to step 126, and the diagnosis determination cancel flag CFLG is set to “1”. On the other hand, if the idle share ratio CSMIDL is equal to or greater than the determination value CSMDL #, the diagnosis determination cancel flag CFLG is set to “0”.

再び図2を参照して、ステップ103では、内燃機関の一回(一単位)の燃焼で供給される排気ガスの熱量に相当する単位排気供給熱量QEXSTを推定・算出する。具体的には、次式(1)によりQEXSTを算出する。
QEXST=TP×G(ADV)×G(N)…(1)
「TP」は燃料噴射量であり、「G(ADV)」は点火時期補正係数であり、「G(N)」は回転数補正係数である。G(ADV)は、最適点火時期MBTに対するリタード量ADV−MBTCALに基づいて図4に示すような制御マップ・テーブルを参照して求められる。同図に示すように、点火時期のリタード量が大きくなるほど、燃焼効率が低下して排気ガス温度が高くなることから、単位排気供給熱量QEXSTが大きくなるように、G(ADV)が設定されている。G(N)は、機関回転数NEに基づいて図5に示すような制御マップ・テーブルを参照して求められる。同図に示すように、回転数NEが高くなるほど、燃焼間隔の実際の時間が短くなって放熱量が小さくなることから、単位排気供給熱量QEXSTが大きくなるように、G(N)が設定されている。従って、機関回転数や点火時期の変動による単位排気供給量QEXSTの変動分を良好に吸収・相殺することができる。
Referring to FIG. 2 again, in step 103, a unit exhaust supply heat quantity QEXST corresponding to the heat quantity of the exhaust gas supplied in one (one unit) combustion of the internal combustion engine is estimated and calculated. Specifically, QEXST is calculated by the following equation (1).
QEXST = TP × G (ADV) × G (N) (1)
“TP” is a fuel injection amount, “G (ADV)” is an ignition timing correction coefficient, and “G (N)” is a rotation speed correction coefficient. G (ADV) is obtained by referring to a control map table as shown in FIG. 4 based on the retard amount ADV-MBTCAL with respect to the optimum ignition timing MBT. As shown in the figure, the larger the ignition timing retard amount, the lower the combustion efficiency and the higher the exhaust gas temperature. Therefore, G (ADV) is set so that the unit exhaust gas supply heat amount QEXST increases. Yes. G (N) is obtained by referring to a control map table as shown in FIG. 5 based on the engine speed NE. As shown in the figure, the higher the rotational speed NE, the shorter the actual time of the combustion interval and the smaller the heat release, so G (N) is set so that the unit exhaust supply heat quantity QEXST increases. ing. Accordingly, it is possible to satisfactorily absorb and cancel out the fluctuation of the unit exhaust supply amount QEXTT due to fluctuations in the engine speed and ignition timing.

ステップ104では、単位排気供給熱量QEXSTを積算して、機関冷機時に触媒へ供給された排気ガスの総熱量に相当する排気供給総熱量QEXSTPを算出する。具体的には、一演算前の総熱量QEXSTPに対し、単位排気供給熱量QEXSTに一演算前からの燃焼回数(つまり、一単位での燃焼回数)を乗算した値を加算して、QEXSTPを更新する。   In step 104, the unit exhaust gas supply heat quantity QEXST is integrated to calculate the exhaust gas supply total heat quantity QEXTTP corresponding to the total heat quantity of the exhaust gas supplied to the catalyst when the engine is cold. Specifically, QEXTTP is updated by adding the value obtained by multiplying the unit exhaust supply heat quantity QEXST by the number of combustions from the previous calculation (that is, the number of combustions per unit) to the total heat quantity QEXTTP before one calculation. To do.

ステップ105では、触媒に残存するHC(炭化水素)の割合に相当する触媒HC残存率ITAT50を算出する。触媒HC残存率ITAT50は排気供給総熱量QEXSTPに大きく依存しているため、この実施例では次式(2)に示すように、簡易的に排気供給総熱量QEXSTPのみに基づいて触媒HC残存率ITAT50を算出している。
ITAT50=1−QEXSTP/QT50…(2)
「QT50」は、触媒が活性するのに必要な排気熱量に相当し、予め設定された固定値である。
In step 105, a catalyst HC remaining rate ITAT50 corresponding to the ratio of HC (hydrocarbon) remaining in the catalyst is calculated. Since the catalyst HC remaining rate ITAT50 greatly depends on the exhaust gas supply total heat amount QEXTP, in this embodiment, as shown in the following equation (2), the catalyst HC remaining rate ITAT50 is simply based on the exhaust gas supply total heat amount QEXTP alone. Is calculated.
ITAT50 = 1-QEXTTP / QT50 (2)
“QT50” corresponds to the amount of exhaust heat necessary for activation of the catalyst, and is a fixed value set in advance.

ステップ106では、一回の燃焼で内燃機関の燃焼室から排気系へ排出されるHCの排出量EOE、すなわち触媒に供給されるHCの供給量に相当する単位機関HC排出量SIMEOEを推定する。図6に示すように、HC排出量EOEは燃料噴射量にほぼ比例することとなっており、燃料噴射量に対するHC排出量EOEの割合COE1はほぼ一定である。従って、このステップ106では、簡易的に、上記の割合COE1を固定係数として燃料噴射量TPのみに基づいて単位機関HC排出量SIMEOEを演算している。 In step 106, the unit engine HC emission amount SIMEOE corresponding to the HC emission amount EOE discharged from the combustion chamber of the internal combustion engine to the exhaust system in one combustion, that is, the supply amount of HC supplied to the catalyst is estimated. As shown in FIG. 6, the HC emission amount EOE is substantially proportional to the fuel injection amount, and the ratio COE1 of the HC emission amount EOE to the fuel injection amount is substantially constant. Therefore, in step 106, the unit engine HC emission amount SIMEOE is simply calculated based on only the fuel injection amount TP with the ratio COE1 as a fixed coefficient.

ステップ107では、単位機関HC排出量SIMEOEと現時点での触媒HC残存率ITAT50とに基づいて、一単位の燃焼で触媒下流に排出されるHCの排出量に相当する単位触媒HC総排出量(単位テールパイプHC)SIMTPEを算出する。ステップ108では、上記の単位触媒HC排出量SIMTPEを積算して、触媒下流に排出されるテールパイプHCの総量に相当する触媒HC総排出量SIMTTPEを算出する。具体的には、一演算前のSIMTTPEに対し、一単位の燃焼回数にSIMTPEを乗算した値を加算することにより、触媒HC総排出量SIMTTPEを逐次更新している。 In step 107, based on the unit engine HC emission amount SIMEOE and the current catalyst HC residual rate ITAT50, the unit catalyst HC total emission amount (unit: unit HC equivalent to the HC emission amount discharged downstream of the catalyst in one unit combustion) Tail pipe HC) SIMTPE is calculated. In step 108, the unit catalyst HC emission amount SIMTPE is integrated to calculate a catalyst HC total emission amount SIMTTPE corresponding to the total amount of tail pipe HC discharged downstream of the catalyst. Specifically, the catalyst HC total emission amount SIMTTPE is sequentially updated by adding a value obtained by multiplying the number of combustions per unit by SIMTPE to the SIMMTPE before one calculation.

ステップ109では、触媒HC残存率ITAT50が所定の判定値である0(零)になったか、すなわち触媒が活性化したかを判定する。なお、判定値としては上記の値(0)に限らず、診断期間短縮化のためにより大きな値としても良く、あるいは診断精度向上のためにより小さな値としても良い。 In step 109, it is determined whether the catalyst HC remaining rate ITAT50 has reached a predetermined determination value of 0 (zero), that is, whether the catalyst has been activated. The determination value is not limited to the above value (0), and may be a larger value for shortening the diagnosis period or a smaller value for improving diagnosis accuracy.

ステップ109Aでは、ステップ102A(図3参照)により設定される診断判定キャンセルフラグCFLGが「0」であるか、すなわちアイドル分担率が判定値以上で診断可能な状況であるかを判定する。   In Step 109A, it is determined whether or not the diagnosis determination cancel flag CFLG set in Step 102A (see FIG. 3) is “0”, that is, whether or not the idle sharing ratio is greater than or equal to the determination value.

上記のステップ109及び109Aの判定がともに肯定されると、ステップ110へ進み、この排気浄化システムの正常・異常の判定・診断を行う。具体的には、上記の触媒HC総排出量SIMTTPEが所定の判定値EMNG以下であるかを判定する。この判定値EMNGは、予め設定される固定値であって、例えば正常な場合の触媒HC総排出量SIMTTPEの1.5倍程度の値に設定される。ステップ110の判定が肯定されると正常と判定し、否定されると異常と判定して例えば警告ランプや警告音等により運転者に異常であることを報知する。 If both the determinations in steps 109 and 109A are affirmed, the process proceeds to step 110, and normality / abnormality determination / diagnosis of the exhaust purification system is performed. Specifically, it is determined whether the catalyst HC total discharge amount SIMTTPE is equal to or less than a predetermined determination value EMNG. This determination value EMNG is a fixed value that is set in advance, and is set to a value that is, for example, about 1.5 times the normal catalyst HC total discharge amount SIMTTPE. If the determination in step 110 is affirmative, it is determined to be normal, and if it is negative, it is determined to be abnormal, and the driver is notified of an abnormality by, for example, a warning lamp or a warning sound.

図7は、本実施例に係る冷機始動時のタイムチャートであり、図中実線NCの特性が正常時(Normal Condition)に対応し、破線MCの特性が異常時(Malfunction condition)に対応している。横軸はクランク角(基準クランク位置REF)に相当する。同図に示すように、本実施例では機関回転数NEや点火時期等を加味して触媒HC総排出量SIMTTPEを求めているので、機関回転数NEの変動にかかわらず、触媒HC総排出量SIMTTPEがクランク角(燃焼間隔)にほぼ比例して増加し、触媒HC残存率ITAT50が0となる時点の付近で上限値に達することになる。従って、この時点での触媒HC総排出量SIMTTPEを判定値EMNGと比較することにより、短い診断時間で精度の高い診断を行うことができる。 FIG. 7 is a time chart at the time of cold start according to the present embodiment, in which the characteristic of the solid line NC corresponds to the normal condition (Normal Condition), and the characteristic of the broken line MC corresponds to the abnormal condition (Malfunction condition). Yes. The horizontal axis corresponds to the crank angle (reference crank position REF). As shown in the figure, in this embodiment, since seeking catalysts total HC emission amount SIMTTPE in consideration of the engine rotational speed NE and the ignition timing, etc., regardless of the fluctuation of the engine rotational speed NE, the catalyst total HC emission amount SIMTTPE increases substantially in proportion to the crank angle (combustion interval), and reaches the upper limit in the vicinity of the time when the catalyst HC remaining rate ITAT50 becomes zero. Therefore, by comparing the catalyst HC total emission amount SIMMTPE at this time with the determination value EMNG, a highly accurate diagnosis can be performed in a short diagnosis time.

次に、本発明の特徴的な構成及び作用効果について、図示実施例を参照しつつ列記する。但し、本発明は参照符号により特定される図示実施例の構成に限定されるものではなく、その趣旨を逸脱しない範囲で種々の変形・変更を含むものである。   Next, characteristic configurations and operational effects of the present invention will be listed with reference to the illustrated embodiments. However, the present invention is not limited to the configuration of the illustrated embodiment specified by the reference numerals, and includes various modifications and changes without departing from the spirit thereof.

(1)内燃機関20の排気系(排気通路)25に設けられて特定成分(HC)を浄化する少なくとも一つの触媒13,14と、機関冷機時に触媒の昇温を促進する触媒昇温促進手段(アイドル回転数増加制御、点火時期リタード制御等)と、を有する排気浄化システムを診断する内燃機関の診断装置において、上記機関冷機時に、上記触媒の状態に基づいて、上記特定成分の触媒下流側への排出量に相当する触媒HC総排出量SIMTTPEを推定する特定成分総排出量推定手段(ステップ108)と、この触媒HC総排出量SIMTTPEに基づいて、上記排気浄化システムの正常・異常を判定する判定手段(ステップ110〜112)と、を有している。 (1) At least one catalyst 13, 14 provided in the exhaust system (exhaust passage) 25 of the internal combustion engine 20 for purifying the specific component (HC), and catalyst temperature increase promotion means for promoting the temperature increase of the catalyst when the engine is cooled. In an internal combustion engine diagnostic apparatus for diagnosing an exhaust gas purification system having idle speed increase control, ignition timing retard control, etc., the downstream side of the specific component based on the state of the catalyst when the engine is cold Specific component total emission amount estimation means (step 108) for estimating the catalyst HC total emission amount SIMTTPE corresponding to the emission amount to the exhaust gas, and whether the exhaust purification system is normal or abnormal is determined based on this catalyst HC total emission amount SIMTTPE Determination means (steps 110 to 112).

言い換えると、内燃機関の排気系に設けられて特定成分を浄化する触媒と、機関冷機時に触媒の昇温を促進する触媒昇温促進手段と、を有する排気浄化システムを診断する診断方法において、機関冷機時に、上記触媒の状態に基づいて、触媒下流側に排出される上記特定成分の排出量に相当する触媒HC総排出量SIMTTPEを推定し(ステップ108)、この触媒HC総排出量SIMTTPEに基づいて、上記排気浄化システムの正常・異常を判定する(ステップ110〜112)。 In other words, in a diagnostic method for diagnosing an exhaust purification system having a catalyst that is provided in an exhaust system of an internal combustion engine and purifies a specific component, and a catalyst temperature increase promotion means that accelerates the temperature increase of the catalyst when the engine is cold. Based on the state of the catalyst at the time of cooling, a catalyst HC total discharge amount SIMTTPE corresponding to the discharge amount of the specific component discharged downstream of the catalyst is estimated (step 108), and based on the catalyst HC total discharge amount SIMTTPE Then, the normality / abnormality of the exhaust purification system is determined (steps 110 to 112).

アイドル回転数増加制御や点火時期リタード制御等の触媒昇温促進制御が行われる機関冷機時に、制御の不具合等の異常が生じると、最終的には触媒下流側へ排出される特定成分(HC)の総排出量に相当する触媒HC総排出量SIMTTPEが大きくなる。この触媒HC総排出量SIMTTPEは、機関から排出されるHC排出量だけではなく、例えば触媒に残存するHCの触媒残存比率ITAT50のような触媒の(活性)状態によって変動する。従って、触媒の状態に応じて触媒HC総排出量SIMTTPEを推定し、この触媒HC総排出量SIMTTPEに基づいて診断を行うことにより、精度の高い診断を触媒温度センサ等を敢えて必要としない簡素な構成で行うことができる。 When an abnormality such as a control failure occurs during engine cooling in which catalyst temperature increase promotion control such as idle speed increase control or ignition timing retard control is performed, a specific component (HC) that is finally discharged downstream of the catalyst The total catalyst HC discharge amount SIMTTPE corresponding to the total discharge amount increases. The total catalyst HC emission amount SIMTTPE varies depending not only on the HC emission amount discharged from the engine but also on the (active) state of the catalyst such as the catalyst remaining ratio ITAT50 of HC remaining in the catalyst. Therefore, the catalyst HC total emission amount SIMTTPE is estimated according to the state of the catalyst, and the diagnosis is performed based on the catalyst HC total emission amount SIMTTPE. Can be done in configuration.

上述した従来例のように主として機関回転数や点火時期に基づいて診断を行うものでは、診断を行う領域が実質的にアイドルなどの特定の運転領域に限定されてしまう。これに対して本実施例では、後述するように触媒昇温促進制御(触媒暖機制御)のパラメータである点火時期及び機関回転数(燃焼間隔)等の影響を考慮して上記の触媒HC残存率ITAT50や触媒HC総排出量SIMTTPEを設定し、つまり機関回転数の変動等による影響を有効に低減・排除した形で触媒HC総排出量SIMTTPEを求め、この触媒HC総排出量SIMTTPEに基づいて診断を行うことにより、比較的幅広い機関運転領域で精度の高い診断を行うことができる。 In the case where the diagnosis is performed mainly based on the engine speed and the ignition timing as in the above-described conventional example, the region for the diagnosis is substantially limited to a specific operation region such as an idle. On the other hand, in this embodiment, the catalyst HC remains in consideration of the influence of the ignition timing and the engine speed (combustion interval), which are parameters of the catalyst temperature increase promotion control (catalyst warm-up control), as will be described later. Rate ITAT50 and catalyst HC total emission amount SIMTTPE are set, that is, the catalyst HC total emission amount SIMTTPE is obtained in a form that effectively reduces or eliminates the influence of fluctuations in engine speed, etc., and based on this catalyst HC total emission amount SIMTTPE By performing the diagnosis, a highly accurate diagnosis can be performed in a relatively wide engine operation region.

上記の診断制御は、基本的には機関冷機中における触媒昇温制御、具体的にはアイドル回転数制御での回転数増加制御と点火時期のリタード制御が正常に行われているかを診断するものである。ここで、触媒活性には回転数の上昇が大きく寄与することから、例えばドライバのトルク要求により冷機始動直後から加速・走行状態へ移行するような場合には、トルクの増加に応じて回転数が大きく増加して、上記の触媒昇温制御とは別の要因により触媒活性が急速に促進されることとなり、この触媒昇温制御の診断を正確に行うことができない。しかしながら、機関冷機中にアイドル運転が継続されている状況でのみ診断を行うようにすると、診断頻度が非常に少なくなるおそれがある。   The above diagnostic control basically diagnoses whether the catalyst temperature increase control in the engine cooler, specifically, whether the engine speed increase control and the ignition timing retard control in the idling engine speed control are normally performed. It is. Here, since the increase in the rotational speed greatly contributes to the catalyst activity, for example, in the case of shifting to the acceleration / running state immediately after the start of the cold engine due to the torque request of the driver, the rotational speed is increased according to the increase in the torque. The catalyst activity is rapidly increased by a factor different from the catalyst temperature increase control described above, and the catalyst temperature increase control cannot be diagnosed accurately. However, if the diagnosis is performed only in the situation where the idling operation is continued during the engine cold, the diagnosis frequency may be very low.

そこで、本発明では、機関冷機中に、触媒昇温制御の一つとしてのアイドル回転数増加制御が行われるアイドル運転が行われる割合CSMIDLを求め、この割合CSMIDLが所定の判定値CSMIDL#より低い場合に、上記判定手段の実行を禁止しており(ステップ125,126)、アイドル運転の割合が判定値以上の場合にのみ判定を行うようにしている(ステップ125,127)。従って、判定値CSMIDL#を適切に設定することによって、診断頻度の低下を抑制しつつ、その診断精度を有効に向上することができ、診断頻度の向上と診断精度の向上とを高いレベルで両立することができる。   Therefore, in the present invention, a ratio CSMIDL in which the idling operation in which the idling speed increase control as one of the catalyst temperature increase control is performed is obtained during the engine cooler, and this ratio CSMIDL is lower than the predetermined determination value CSMIDL #. In this case, execution of the determination means is prohibited (steps 125 and 126), and determination is made only when the ratio of idle operation is equal to or greater than the determination value (steps 125 and 127). Therefore, by appropriately setting the judgment value CSMIDL #, it is possible to effectively improve the diagnostic accuracy while suppressing a decrease in the diagnostic frequency, and to improve both the diagnostic frequency and the diagnostic accuracy at a high level. can do.

(2)内燃機関の一単位の燃焼により触媒下流側へ排出される特定成分の排出量に相当する単位触媒HC排出量SIMTPEを推定する単位触媒特定成分排出量推定手段(ステップ107)を有し、上記特定成分総排出量推定手段が、上記単位触媒HC排出量を積算して触媒HC総排出量を算出している(ステップ108)。このように、一単位の燃焼毎に単位触媒HC排出量SIMTPEを推定することにより、例えばアイドルからの加速時のように機関運転状態の切換過渡期でのHC排出量の変動を精度良く相殺・吸収することができる。「一単位」の燃焼とは、好ましくは一回の燃焼であり、あるいは制御ルーチンの演算間隔(クランク角)に応じた数回の燃焼回数であっても良い。 (2) It has unit catalyst specific component emission amount estimation means (step 107) for estimating a unit catalyst HC emission amount SIMTPE corresponding to the emission amount of the specific component discharged downstream of the catalyst by combustion of one unit of the internal combustion engine. The specific component total discharge amount estimating means integrates the unit catalyst HC discharge amount to calculate the catalyst HC total discharge amount (step 108). In this way, by estimating the unit catalyst HC emission amount SIMTPE for each unit of combustion, for example, the fluctuation of the HC emission amount in the transition period of the engine operating state, such as when accelerating from idle, can be accurately canceled out. Can be absorbed. The “one unit” combustion is preferably one combustion, or may be several times of combustion according to the calculation interval (crank angle) of the control routine.

(3)上記「触媒の状態」とは、触媒の活性状態に関するもので、典型的には触媒に残存する特定成分の比率に相当する触媒HC残存率ITAT50である。但し、触媒温度センサ等により検出又は推定される触媒温度のように触媒の活性状態を示す他のパラメータであっても良い。 (3) The “catalyst state” relates to the active state of the catalyst, and is typically the catalyst HC remaining rate ITAT50 corresponding to the ratio of the specific component remaining in the catalyst. However, other parameters indicating the active state of the catalyst, such as a catalyst temperature detected or estimated by a catalyst temperature sensor or the like, may be used.

(4)燃料噴射量に基づいて一単位の燃焼により内燃機関より排出される特定成分の排出量に相当する単位機関HC排出量SIMEOEを推定する単位機関特定成分排出量推定手段(ステップ106)を有し、上記単位触媒特定成分排出量推定手段が、上記触媒HC残存率ITAT50と単位機関HC排出量SIMEOEとに基づいて単位触媒HC排出量SIMTPEを算出する(ステップ107)。このように、内燃機関から排出される単位機関HC排出量SIMEOEと、その時点での触媒の状態を示す触媒HC残存率ITAT50と、に基づいて、一単位の燃焼毎に単位触媒HC排出量SIMTPEを算出しているので、単位機関HC排出量SIMEOEに触媒の活性状態を反映した形で単位機関HC排出量SIMTPEを精度良く求めることができる。 (4) Unit engine specific component emission amount estimation means (step 106) for estimating a unit engine HC emission amount SIMEOE corresponding to the emission amount of the specific component discharged from the internal combustion engine by one unit of combustion based on the fuel injection amount. The unit catalyst specific component emission amount estimating means calculates a unit catalyst HC emission amount SIMTPE based on the catalyst HC remaining rate ITAT50 and the unit engine HC emission amount SIMEOE (step 107). Thus, based on the unit engine HC emission amount SIMEOE discharged from the internal combustion engine and the catalyst HC remaining rate ITAT50 indicating the state of the catalyst at that time, the unit catalyst HC emission amount SIMTPE for each unit of combustion. Therefore, the unit engine HC emission amount SIMTPE can be obtained with high accuracy in a form that reflects the active state of the catalyst in the unit engine HC emission amount SIMEOE.

(5)燃料噴射量TPに基づいて、内燃機関の一単位の燃焼により排気系へ供給される排気熱量に相当する単位排気供給熱量QEXSTを推定する単位排熱量推定手段(ステップ103)と、この単位排気供給熱量QEXSTを積算することにより、機関冷機時に排気系に供給される排気熱量に相当する排気供給熱量QEXSTPを算出する排熱量算出手段(ステップ104)と、この排気供給熱量QEXSTPに基づいて上記触媒HC残存率ITAT50を推定する触媒HC残存率推定手段(ステップ105)と、を有する。このように、触媒の温度を直接的に検出する温度センサ等を敢えて必要としない簡素な構成でありながら、排気供給熱量QEXSTPに基づいて触媒HC残存率ITAT50を精度良く推定することができる。しかも、一単位の燃焼毎の単位排気供給熱量QEXSTを積算して排気供給熱量QEXSTPを算出しているので、機関運転状態が変化する過渡期を含めて排気供給熱量を精度良く求めることができる。 (5) Unit exhaust heat quantity estimation means (step 103) for estimating a unit exhaust supply heat quantity QEXST corresponding to the exhaust heat quantity supplied to the exhaust system by combustion of one unit of the internal combustion engine based on the fuel injection quantity TP, Based on the exhaust heat quantity calculation means (step 104) that calculates the exhaust heat quantity QEXTTP corresponding to the exhaust heat quantity that is supplied to the exhaust system when the engine is cooled, by integrating the unit exhaust heat quantity QEXTST, and based on the exhaust heat quantity QEXTTP Catalyst HC remaining rate estimating means (step 105) for estimating the catalyst HC remaining rate ITAT50. In this way, the catalyst HC remaining rate ITAT50 can be accurately estimated based on the exhaust heat supply amount QEXTTP, while having a simple configuration that does not require a temperature sensor or the like that directly detects the temperature of the catalyst. In addition, since the exhaust gas supply heat quantity QEXTP is calculated by integrating the unit exhaust gas supply heat quantity QEXTT for each unit of combustion, the exhaust gas supply heat quantity can be accurately obtained including the transition period in which the engine operating state changes.

(6)好ましくは、下式により触媒HC残存率を算出する(ステップ105)。
ITAT50=1−QEXSTP/QT50
ITAT50:触媒HC残存率
QEXSTP:排気供給熱量
QT50:触媒活性に必要な排気熱量
このQT50は予め設定される固定値であり、従って、実質的には排気供給熱量QEXSTPのみに基づいて触媒HC残存率ITAT50を簡便に精度良く求めることができ、演算負荷やメモリ使用量等が軽減される。
(6) Preferably, the catalyst HC remaining rate is calculated by the following equation (step 105).
ITAT50 = 1-QEXTTP / QT50
ITAT50: catalyst HC remaining rate QEXTTP: exhaust heat supply amount QT50: exhaust heat amount required for catalyst activity This QT50 is a preset fixed value. Therefore, the catalyst HC remaining rate is substantially based only on the exhaust supply heat amount QEXTTP. The ITAT 50 can be obtained easily and accurately, and the calculation load and memory usage are reduced.

(7)典型的には、図3に示すように、機関冷機中の単位燃焼回数の積算値CSMRFCTを求めるとともに、機関冷機中にアイドル運転が行われる単位燃焼回数の積算値CSMIDCTを求め、両積算値に基づいてアイドル運転が行われる割合CSMIDLを容易かつ精度良く求めることができる。   (7) Typically, as shown in FIG. 3, the integrated value CSMRFCT of the unit combustion frequency in the engine cooler is obtained, and the integrated value CSMIDCT of the unit combustion frequency in which the idle operation is performed in the engine cooler is obtained. Based on the integrated value, it is possible to easily and accurately obtain the ratio CSMIDL at which idle operation is performed.

(8)点火時期のリタード量が大きくなるほど、燃焼効率が低下して排気ガス温度が高くなる。従って、好ましくは図4に示すように、最適点火時期に対する点火時期のリタード量ADV−MBTCALが大きいときに単位排気供給熱量(点火時期補正係数G(ADV))が大きくなるように、点火時期のリタード量ADV−MBTCALに基づいて単位排気供給熱量を算出する。これにより、点火時期のリタード量に起因する排気供給熱量の変動分を一単位の燃焼毎に精度良く吸収・相殺することができる。   (8) The larger the retard amount of the ignition timing, the lower the combustion efficiency and the higher the exhaust gas temperature. Therefore, preferably, as shown in FIG. 4, when the retard amount ADV-MBTCAL of the ignition timing with respect to the optimal ignition timing is large, the unit exhaust gas supply heat amount (ignition timing correction coefficient G (ADV)) becomes large. A unit exhaust heat supply amount is calculated based on the retard amount ADV-MBTCAL. Thereby, the fluctuation | variation of the exhaust_gas | exhaustion supply calorie | heat amount resulting from the retard amount of ignition timing can be absorbed / cancelled accurately for every unit of combustion.

(9)回転数NEが高くなるほど、燃焼間隔の実際の時間が短くなって放熱量が小さくなり、排気供給熱量が小さくなる。従って、好ましくは図5に示すように、機関回転数NEが高いときに単位排気供給熱量QEXST(回転数補正係数G(N))が大きくなるように、機関回転数NEに基づいて単位排気供給熱量QEXSTを算出する。これにより、機関回転数NEに起因する排気供給熱量の変動分を一単位の燃焼毎に良好に吸収・相殺することができる。   (9) The higher the rotational speed NE, the shorter the actual time of the combustion interval, the smaller the heat release amount, and the smaller the exhaust heat supply amount. Therefore, preferably, as shown in FIG. 5, when the engine speed NE is high, the unit exhaust gas supply heat quantity QEXST (the engine speed correction coefficient G (N)) is increased based on the engine speed NE. The amount of heat QEXST is calculated. Thereby, the fluctuation | variation of the exhaust_gas | exhaustion supply calorie | heat amount resulting from engine speed NE can be absorbed and canceled favorably for every unit of combustion.

(10)触媒HC残存率ITAT50が所定値(典型的には0)まで低下したかを判定する残存率判定手段(ステップ109)を有し、この残存率判定手段により触媒HC残存率ITAT50が所定値まで低下したと判定された場合に(ITAT50=0)、上記判定手段による判定が実行される(ステップ110〜112)。このように、SIMTPEの算出に用いられる触媒HC残存率ITAT50を利用して診断時期を設定することができ、判定用のパラメータを追加することなく診断期間を有効に短縮化することができる。 (10) Remaining rate determining means (step 109) for determining whether the catalyst HC remaining rate ITAT50 has decreased to a predetermined value (typically 0) is provided, and the catalyst HC remaining rate ITAT50 is determined by this remaining rate determining unit. When it is determined that the value has decreased to the value (ITAT50 = 0), the determination by the determination unit is executed (steps 110 to 112). As described above, the diagnosis time can be set by using the catalyst HC remaining rate ITAT50 used for calculating SIMTPE, and the diagnosis period can be effectively shortened without adding a determination parameter.

(11)上記特定成分は、典型的にはガソリン内燃機関における炭化水素(HC)である。但し、ディーゼル機関における粒子状物質(PM)、窒素酸化物(NOx)、一酸化炭素(CO)等を上記の特定成分とする排気浄化システムに本発明を適用することも可能である。   (11) The specific component is typically hydrocarbon (HC) in a gasoline internal combustion engine. However, it is also possible to apply the present invention to an exhaust purification system using particulate matter (PM), nitrogen oxide (NOx), carbon monoxide (CO), etc. in the diesel engine as the specific component.

本発明に係る内燃機関の排気浄化システムの一例を示すシステム図。1 is a system diagram showing an example of an exhaust gas purification system for an internal combustion engine according to the present invention. 本発明の一実施例に係る排気浄化システムの診断処理の流れを示すフローチャート。The flowchart which shows the flow of the diagnostic process of the exhaust gas purification system which concerns on one Example of this invention. 図2のステップ102Aの診断判定キャンセルフラグ設定のサブルーチンを示すフローチャート。The flowchart which shows the subroutine of the diagnosis determination cancellation flag setting of step 102A of FIG. 図2のステップ103で用いられる点火時期補正係数G(ADV)の設定マップの一例。An example of a setting map of an ignition timing correction coefficient G (ADV) used in step 103 of FIG. 図2のステップ103で用いられる回転数補正係数G(N)の設定マップの一例。An example of the setting map of the rotation speed correction coefficient G (N) used in step 103 of FIG. 燃料噴射量とHCの機関HC排出量との関係を示すグラフ。The graph which shows the relationship between the amount of fuel injection, and the engine HC discharge | emission amount of HC . 機関冷機始動時における正常状態及び異常状態での各種パラメータの変化を示すタイムチャート。The time chart which shows the change of the various parameters in the normal state and abnormal state at the time of engine cold start.

1…エンジンコントローラ
13…フロント触媒
14…リア触媒
20…内燃機関
25…排気通路(排気系)
DESCRIPTION OF SYMBOLS 1 ... Engine controller 13 ... Front catalyst 14 ... Rear catalyst 20 ... Internal combustion engine 25 ... Exhaust passage (exhaust system)

Claims (7)

内燃機関の排気系に設けられて特定成分を浄化する少なくとも一つの触媒と、機関回転数の増加と点火時期の遅角の少なくとも一方を行うことにより、機関冷機時に触媒の昇温を促進する触媒昇温促進手段と、を有する排気浄化システムを診断する内燃機関の診断装置において、
上記機関冷機中に、燃料噴射量と、上記触媒昇温促進手段による機関回転数の変化と点火時期の変化の少なくとも一方と、を用いて、機関冷機中に触媒下流側へ排出された特定成分の総排出量を推定する特定成分総排出量推定手段と、
この特定成分の総排出量に基づいて、上記排気浄化システムの正常・異常を判定する判定手段と、
上記機関冷機中にアイドル運転が行われる割合を求め、この割合が所定の判定値より低い場合に、上記判定手段による排気浄化システムの正常・異常の判定を禁止する判定禁止手段と、
を有することを特徴とする内燃機関の診断装置。
At least one catalyst that is provided in an exhaust system of an internal combustion engine and purifies a specific component, and a catalyst that promotes the temperature rise of the catalyst when the engine is cooled by performing at least one of an increase in engine speed and a retard of ignition timing In the diagnostic device for an internal combustion engine for diagnosing an exhaust purification system having a temperature rise promoting means,
A specific component discharged to the downstream side of the catalyst in the engine cooler using the fuel injection amount and at least one of a change in engine speed and a change in ignition timing by the catalyst temperature increase promotion means during the engine cooler a specific component total emissions estimating means for estimating the total emissions,
Determination means for determining normality / abnormality of the exhaust purification system based on the total emission amount of the specific component ;
A determination prohibiting means for determining the normality / abnormality of the exhaust purification system by the determination means when the ratio at which the idle operation is performed during the engine cold machine is lower than a predetermined determination value;
A diagnostic apparatus for an internal combustion engine, comprising:
上記特定成分総排出量推定手段は、
燃料噴射量と、上記触媒昇温促進手段による機関回転数の変化と点火時期の変化の少なくとも一方と、を用いて、機関冷機中における触媒の総熱量を所定期間毎に逐次算出し、
この触媒の総熱量と、燃料噴射量と、に基づいて、所定期間毎に触媒下流側へ排出される特定成分の排出量を逐次算出し、
この排出量を積算することにより、上記機関冷機中に触媒下流側へ排出された特定成分の総排出量を推定することを特徴とする請求項1に記載の内燃機関の診断装置。
The specific component total emission estimating means is:
Using the fuel injection amount and at least one of the change in engine speed and the change in ignition timing by the catalyst temperature increase promotion means, the total heat amount of the catalyst in the engine cooler is sequentially calculated every predetermined period,
Based on the total heat amount of the catalyst and the fuel injection amount, the discharge amount of the specific component discharged to the catalyst downstream side every predetermined period is sequentially calculated,
2. The diagnostic apparatus for an internal combustion engine according to claim 1, wherein a total emission amount of the specific component discharged to the downstream side of the catalyst during the engine cooler is estimated by integrating the emission amount .
上記判定手段は、上記触媒の総熱量に基づいて、触媒の活性状態求め、この触媒の活性状態に基づいて触媒が活性していると判定されたときに、上記特定成分の総排出量に基づいて排気浄化システムの正常・異常を判定することを特徴とする請求項2に記載の内燃機関の診断装置。 The determination means obtains the active state of the catalyst based on the total heat amount of the catalyst, and when it is determined that the catalyst is active based on the active state of the catalyst, the determination means determines the total discharge amount of the specific component. The diagnostic apparatus for an internal combustion engine according to claim 2, wherein normality / abnormality of the exhaust purification system is determined based on the determination. 上記特定成分総排出量推定手段は、
燃料噴射量と、上記触媒昇温促進手段による機関回転数の変化と点火時期の変化の少なくとも一方と、を用いて、所定期間毎に内燃機関から排出される特定成分の排出量を逐次算出するとともに、
この排出量と、上記触媒の活性状態、に基づいて、上記所定期間毎に触媒下流側へ排出される特定成分の排出量を逐次算出することを特徴とする請求項3に記載の内燃機関の診断装置。
The specific component total emission estimating means is:
Using the fuel injection amount and at least one of the change in engine speed and the change in ignition timing by the catalyst temperature increase promotion means, the emission amount of the specific component discharged from the internal combustion engine every predetermined period is sequentially calculated. With
And the discharge amount, and the active state of the catalyst, based on the internal combustion engine of claim 3, characterized in that sequentially calculates the discharge amount of the specific components discharged to the downstream side of the catalyst for each of the predetermined time period Diagnostic equipment.
ITAT50=1−QEXSTP/QT50
ITAT50:触媒に残存する特定成分の残存率
QEXSTP:触媒の総熱量
QT50:触媒活性に必要な熱量
上記制御部が上式により上記触媒の活性状態に対応する上記残存率を算出することを特徴とする請求項3又は4に記載の内燃機関の診断装置。
ITAT50 = 1-QEXTTP / QT50
ITAT50: Remaining rate of the specific component remaining in the catalyst QEXTTP: Total heat amount of the catalyst QT50: Heat amount necessary for the catalyst activity The control unit calculates the remaining rate corresponding to the active state of the catalyst according to the above equation. The diagnostic device for an internal combustion engine according to claim 3 or 4.
上記判定禁止手段は、上記機関冷機中の単位燃焼回数を積算するとともに、上記機関冷機中にアイドル運転が行われる単位燃焼回数を積算し、両積算値に基づいてアイドル運転が行われる割合を算出することを特徴とする請求項1〜のいずれかに記載の内燃機関の診断装置。 The determination prohibiting means accumulates the number of unit combustions in the engine cold machine, accumulates the number of unit combustions in which the idle operation is performed in the engine cold machine, and calculates the ratio of idle operation based on both accumulated values. The diagnostic device for an internal combustion engine according to any one of claims 1 to 5 , wherein: 内燃機関の排気系に設けられて特定成分を浄化する触媒と、機関回転数の増加と点火時期の遅角の少なくとも一方を行うことにより、機関冷機時に触媒の昇温を促進する触媒昇温促進手段と、を有する排気浄化システムを診断する内燃機関の診断方法において、
上記機関冷機時に、燃料噴射量と、上記触媒昇温促進手段による機関回転数の変化と点火時期の変化の少なくとも一方と、を用いて、機関冷機中に触媒下流側へ排出された特定成分の総排出量を推定し、
上記機関冷機中にアイドル運転が行われる割合を求め、この割合が所定の判定値以上である場合に、上記特定成分の総排出量に基づいて、上記排気浄化システムの正常・異常を判定することを特徴とする内燃機関の診断方法。
A catalyst provided in an exhaust system of an internal combustion engine to purify a specific component, and a catalyst temperature increase promotion that accelerates the temperature increase of the catalyst when the engine is cooled by at least one of increasing the engine speed and retarding the ignition timing A diagnostic method for an internal combustion engine for diagnosing an exhaust purification system comprising:
During the engine cold, the fuel injection amount, using, at least one of the engine speed changes in the ignition timing changes due to the catalyst temperature increase promotion means, of the specific component discharged to the downstream side of the catalyst while the engine is cold Estimate total emissions ,
Obtaining the rate at which idle operation is performed during the engine cold, and determining whether the exhaust purification system is normal or abnormal based on the total emission amount of the specific component when this rate is equal to or greater than a predetermined determination value A diagnostic method for an internal combustion engine.
JP2005374037A 2005-12-27 2005-12-27 Diagnostic apparatus and diagnostic method for internal combustion engine Expired - Fee Related JP4736796B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005374037A JP4736796B2 (en) 2005-12-27 2005-12-27 Diagnostic apparatus and diagnostic method for internal combustion engine
US11/644,035 US7444233B2 (en) 2005-12-27 2006-12-22 Diagnostic apparatus and diagnostic method for an internal combustion engine
CNB2006101721192A CN100520030C (en) 2005-12-27 2006-12-27 Diagnostic apparatus and diagnostic method for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005374037A JP4736796B2 (en) 2005-12-27 2005-12-27 Diagnostic apparatus and diagnostic method for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2007177629A JP2007177629A (en) 2007-07-12
JP4736796B2 true JP4736796B2 (en) 2011-07-27

Family

ID=38213608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005374037A Expired - Fee Related JP4736796B2 (en) 2005-12-27 2005-12-27 Diagnostic apparatus and diagnostic method for internal combustion engine

Country Status (2)

Country Link
JP (1) JP4736796B2 (en)
CN (1) CN100520030C (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024991A (en) * 2008-07-18 2010-02-04 Hitachi Ltd Control device for internal combustion engine
DE102010030200A1 (en) * 2010-06-17 2011-12-22 Robert Bosch Gmbh Collection system for a toll system, toll system and a method for determining a toll
CN102374002B (en) * 2010-08-13 2013-09-18 长春易控汽车电子有限公司 Oxygen sensor diagnostic method
US8301358B2 (en) * 2011-06-21 2012-10-30 Ford Global Technologies, Llc Method of engine starting
CN116009501B (en) * 2023-03-22 2023-06-16 山东瑞芝生物科技股份有限公司 Primary pulp production machine management and control system based on data analysis

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH094437A (en) * 1995-06-15 1997-01-07 Nippondenso Co Ltd Nitrogen oxide cleaning device of internal combustion engine
JPH09166040A (en) * 1995-12-13 1997-06-24 Matsushita Electric Ind Co Ltd Air-fuel ratio controller of internal combustion engine
JPH09310612A (en) * 1996-03-19 1997-12-02 Denso Corp Deterioration detection device for exhaust emission controlling catalyst
JPH11294224A (en) * 1998-04-06 1999-10-26 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2002364345A (en) * 2001-06-08 2002-12-18 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2003176714A (en) * 2002-12-09 2003-06-27 Hitachi Ltd Function diagnosis device for exhaust emission control device in internal combustion engine
JP2003201906A (en) * 2001-11-05 2003-07-18 Denso Corp Failure diagnostic device for catalyst pre-warming up system
JP2004169607A (en) * 2002-11-19 2004-06-17 Toyota Motor Corp Control device for internal combustion engine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH094437A (en) * 1995-06-15 1997-01-07 Nippondenso Co Ltd Nitrogen oxide cleaning device of internal combustion engine
JPH09166040A (en) * 1995-12-13 1997-06-24 Matsushita Electric Ind Co Ltd Air-fuel ratio controller of internal combustion engine
JPH09310612A (en) * 1996-03-19 1997-12-02 Denso Corp Deterioration detection device for exhaust emission controlling catalyst
JPH11294224A (en) * 1998-04-06 1999-10-26 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2002364345A (en) * 2001-06-08 2002-12-18 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2003201906A (en) * 2001-11-05 2003-07-18 Denso Corp Failure diagnostic device for catalyst pre-warming up system
JP2004169607A (en) * 2002-11-19 2004-06-17 Toyota Motor Corp Control device for internal combustion engine
JP2003176714A (en) * 2002-12-09 2003-06-27 Hitachi Ltd Function diagnosis device for exhaust emission control device in internal combustion engine

Also Published As

Publication number Publication date
CN100520030C (en) 2009-07-29
CN1991139A (en) 2007-07-04
JP2007177629A (en) 2007-07-12

Similar Documents

Publication Publication Date Title
US7444233B2 (en) Diagnostic apparatus and diagnostic method for an internal combustion engine
US8234916B2 (en) Abnormality diagnosis device for air-fuel ratio sensor
JP2860866B2 (en) Vehicle catalyst temperature detector
JP4253294B2 (en) Engine self-diagnosis device
JP6287989B2 (en) Abnormality diagnosis device for NOx storage reduction catalyst
US9416716B2 (en) Control apparatus for an internal combustion engine
JP2004003430A (en) Diagnostic apparatus for engine
WO2014193333A1 (en) Upstream nox estimation
US10648391B2 (en) Abnormality diagnosis system for an exhaust gas purification apparatus
WO2008020287A2 (en) Catalyst monitoring system and method
JP4736796B2 (en) Diagnostic apparatus and diagnostic method for internal combustion engine
CN110578576A (en) Remedial measures for ineffective particulate filter soot
US7513104B2 (en) Diagnostic apparatus for internal combustion engine
JP4736797B2 (en) Diagnostic apparatus and diagnostic method for internal combustion engine
JP4692274B2 (en) Diagnostic apparatus and diagnostic method for internal combustion engine
WO2012008487A1 (en) Engine control device
JP4678336B2 (en) Diagnostic apparatus and diagnostic method for air-fuel ratio sensor
JP2003176714A (en) Function diagnosis device for exhaust emission control device in internal combustion engine
JP4055256B2 (en) Exhaust gas purification device for internal combustion engine
JP4605397B2 (en) NOx catalyst deterioration diagnosis device
JPH0933478A (en) Apparatus for diagnosing response of oxygen sensor in internal combustion engine
JP2006329113A (en) Catalytic deterioration detecting device
JP2015014213A (en) Deterioration detection device for selective reduction type catalyst
JP2017129037A (en) Abnormality diagnosis device of nox occlusion reduction-type catalyst
JP2024040775A (en) engine control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081028

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100709

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees