JPH0933478A - Apparatus for diagnosing response of oxygen sensor in internal combustion engine - Google Patents

Apparatus for diagnosing response of oxygen sensor in internal combustion engine

Info

Publication number
JPH0933478A
JPH0933478A JP7182789A JP18278995A JPH0933478A JP H0933478 A JPH0933478 A JP H0933478A JP 7182789 A JP7182789 A JP 7182789A JP 18278995 A JP18278995 A JP 18278995A JP H0933478 A JPH0933478 A JP H0933478A
Authority
JP
Japan
Prior art keywords
catalyst
oxygen sensor
response
air
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7182789A
Other languages
Japanese (ja)
Inventor
Toru Sakuma
徹 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisia Jecs Corp filed Critical Unisia Jecs Corp
Priority to JP7182789A priority Critical patent/JPH0933478A/en
Publication of JPH0933478A publication Critical patent/JPH0933478A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To avoid a wrong diagnosis by an oxygen sensor, by detecting a parameter indicating an output response of the oxygen sensor, comparing the parameter with a parameter judgment value set based on an activity degree and a deterioration degree of a catalyst, and diagnosing a response deterioration of the sensor. SOLUTION: A control unit 12 detects an output inverse frequency of an oxygen sensor 17 as a parameter indicating an output response when a diagnosis permission condition is satisfied. Then, a parameter judgment value is set from a catalyst activity degree estimated from a catalyst temperature and a catalyst deterioration degree obtained by comparing output inverse frequencies of oxygen sensors 16, 17. The output inverse frequency of the sensor 17 is compared with the parameter judgment value. Only a response change of the sensor 17 is detected irrespective of a change of an air-fuel ratio change speed at the downstream side. In other words, when the output inverse frequency is smaller than the judgment value, it is detected as the response deterioration of the sensor 17. Accordingly, the output response of the sensor 17 is prevented from being diagnosed wrong.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は内燃機関における酸
素センサの応答診断装置に関し、詳しくは、触媒下流側
に設けられて機関吸入混合気の空燃比と密接な関係にあ
る排気中の酸素濃度を検出する酸素センサの応答劣化を
診断する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a response diagnostic device for an oxygen sensor in an internal combustion engine, and more specifically, it shows the oxygen concentration in the exhaust gas which is provided on the downstream side of the catalyst and is closely related to the air-fuel ratio of the engine intake air-fuel mixture. The present invention relates to a technique for diagnosing a response deterioration of a detecting oxygen sensor.

【0002】[0002]

【従来の技術】従来から、排気浄化用に排気通路に介装
される触媒の上流側と下流側とにそれぞれ酸素センサを
設け、これらの2つの酸素センサの検出結果に基づい
て、機関吸入混合気の空燃比を目標空燃比に近づけるよ
うに機関への燃料供給量をフィードバック制御する空燃
比フィードバック制御装置が知られている。
2. Description of the Related Art Conventionally, an oxygen sensor is provided on each of an upstream side and a downstream side of a catalyst provided in an exhaust passage for purifying exhaust gas, and engine intake mixing is performed based on the detection results of these two oxygen sensors. There is known an air-fuel ratio feedback control device that feedback-controls a fuel supply amount to an engine so that an air-fuel ratio of air approaches a target air-fuel ratio.

【0003】例えば特開平4−72438号公報に開示
される空燃比フィードバック制御装置では、上流側酸素
センサの出力に基づいて目標空燃比に対する実際の空燃
比のリッチ・リーンを判定し、該判定結果に基づいて燃
料供給量を補正するための空燃比フィードバック補正係
数を比例・積分制御する一方、下流側の酸素センサで検
出されるリッチ・リーンに基づいて前記比例制御におけ
る操作量(比例分)を補正することにより、上流側酸素
センサの検出結果に基づく空燃比制御点のずれを補償す
るようになっている。
For example, in the air-fuel ratio feedback control device disclosed in Japanese Unexamined Patent Publication No. 4-72438, the rich / lean of the actual air-fuel ratio with respect to the target air-fuel ratio is judged based on the output of the upstream oxygen sensor, and the judgment result. While proportionally / integrally controlling the air-fuel ratio feedback correction coefficient for correcting the fuel supply amount based on the above, the operation amount (proportional amount) in the proportional control based on the rich lean detected by the oxygen sensor on the downstream side is controlled. By making the correction, the deviation of the air-fuel ratio control point based on the detection result of the upstream oxygen sensor is compensated.

【0004】[0004]

【発明が解決しようとする課題】上記のように酸素セン
サによって空燃比を検出して燃料供給量をフィードバッ
ク制御する装置では、酸素センサの劣化があると制御精
度が低下し、排気性状の悪化などを招く惧れがあるた
め、酸素センサの劣化を診断する必要がある。ところ
が、触媒下流側の排気空燃比(酸素濃度)の変化速度
は、触媒の影響を受けて変化するために、触媒下流側に
設けられる酸素センサの応答劣化を診断するときに、前
記触媒の影響で誤診断が発生する惧れがあった。
As described above, in the device for detecting the air-fuel ratio by the oxygen sensor and feedback-controlling the fuel supply amount, if the oxygen sensor is deteriorated, the control accuracy is deteriorated and the exhaust property is deteriorated. Therefore, it is necessary to diagnose deterioration of the oxygen sensor. However, the rate of change of the exhaust air-fuel ratio (oxygen concentration) on the downstream side of the catalyst changes under the influence of the catalyst, so when diagnosing the response deterioration of the oxygen sensor provided on the downstream side of the catalyst, the influence of the catalyst is affected. There was a risk that a misdiagnosis would occur.

【0005】例えば、図5に示すように、触媒の劣化時
には(図5(b)参照)、非劣化時(図5(a)参照)
に比して、触媒下流側における排気空燃比の変化速度が
速くなるため、下流側酸素センサの応答劣化があるにも
関わらず、正常判定がなされてしまう惧れがあった。即
ち、酸素センサに応答劣化が生じていても、触媒劣化時
の応答速度Bは、触媒非劣化時の正常な応答を示す酸素
センサにおける応答速度Aよりも大きいために、酸素セ
ンサの応答劣化を診断できなくなってしまうものであ
る。
For example, as shown in FIG. 5, when the catalyst is deteriorated (see FIG. 5B), it is not deteriorated (see FIG. 5A).
In comparison with the above, since the change speed of the exhaust air-fuel ratio on the downstream side of the catalyst becomes faster, there is a fear that the normal determination may be made despite the deterioration of the response of the downstream side oxygen sensor. That is, even if the response deterioration of the oxygen sensor occurs, the response speed B when the catalyst is deteriorated is larger than the response speed A of the oxygen sensor that shows a normal response when the catalyst is not deteriorated. The diagnosis cannot be made.

【0006】同様に、触媒の活性度が低いときには、活
性状態に比して触媒下流側における排気空燃比の変化速
度が速くなるため、触媒活性度が低いときには、下流側
酸素センサの応答劣化があるにも関わらず、正常判定が
なされてしまう惧れがあった。本発明は上記問題点に鑑
みなされたものであり、触媒の劣化・活性状態に影響さ
れて触媒下流側酸素センサの応答劣化が誤診断されるこ
とを回避できる内燃機関における酸素センサの応答診断
装置を提供することを目的とする。
Similarly, when the activity of the catalyst is low, the rate of change of the exhaust air-fuel ratio on the downstream side of the catalyst becomes faster than that in the active state. Therefore, when the activity of the catalyst is low, the response of the downstream oxygen sensor deteriorates. Despite that, there was a fear that the judgment would be normal. The present invention has been made in view of the above problems, and an oxygen sensor response diagnostic device in an internal combustion engine that can avoid erroneous diagnosis of response degradation of a catalyst downstream side oxygen sensor that is influenced by the catalyst deterioration / active state. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】そのため請求項1記載の
発明は、図1に示すように構成される。図1において、
酸素センサは、機関排気通路に介装された触媒の下流側
に設けられ、排気中の酸素濃度に感応して出力値が変化
するセンサである。また、応答パラメータ検出手段は、
前記触媒下流側の酸素センサの出力応答を示すパラメー
タを検出する。
Therefore, the invention according to claim 1 is constructed as shown in FIG. In FIG.
The oxygen sensor is a sensor that is provided on the downstream side of the catalyst installed in the engine exhaust passage and whose output value changes in response to the oxygen concentration in the exhaust gas. Further, the response parameter detecting means,
A parameter indicating the output response of the oxygen sensor downstream of the catalyst is detected.

【0008】一方、触媒活性度検出手段は前記触媒の活
性度を検出し、触媒劣化度検出手段は前記触媒の劣化度
を検出する。そして、判定値設定手段は、前記検出され
た前記触媒の活性度及び劣化度に基づいて前記パラメー
タの判定値を設定する。ここで、応答診断手段は、判定
値設定手段で設定された判定値と前記応答パラメータ検
出手段で検出されたパラメータとを比較して、前記酸素
センサの応答劣化を診断する。
On the other hand, the catalyst activity detecting means detects the activity of the catalyst, and the catalyst deterioration detecting means detects the deterioration of the catalyst. Then, the determination value setting means sets the determination value of the parameter based on the detected activity and deterioration of the catalyst. Here, the response diagnosing means compares the judgment value set by the judgment value setting means with the parameter detected by the response parameter detecting means to diagnose the response deterioration of the oxygen sensor.

【0009】かかる構成によると、触媒下流側の酸素セ
ンサの応答劣化を診断するに当たって、前記酸素センサ
の出力応答を示すパラメータと比較する判定値を、触媒
の劣化度及び活性度に応じて設定するから、劣化度や活
性度によって触媒下流側の排気空燃比の変化速度が変化
しても、これに影響されて、酸素センサの出力応答が誤
診断されることを回避できる。即ち、劣化時や非活性時
で触媒下流側での排気空燃比の変化が速くなった場合に
は、前記判定値をこれに対応して変化させることで、触
媒の影響で速くなる排気空燃比変化を基準として実際の
酸素センサの出力応答を診断できる。
According to this structure, in diagnosing the deterioration of the response of the oxygen sensor on the downstream side of the catalyst, the judgment value to be compared with the parameter indicating the output response of the oxygen sensor is set according to the degree of deterioration and the activity of the catalyst. Therefore, even if the change rate of the exhaust air-fuel ratio on the downstream side of the catalyst changes due to the degree of deterioration and the activity, it is possible to prevent the output response of the oxygen sensor from being erroneously diagnosed due to the change. That is, when the change in the exhaust air-fuel ratio on the downstream side of the catalyst becomes faster at the time of deterioration or inactivity, the exhaust air-fuel ratio becomes faster due to the influence of the catalyst by changing the judgment value correspondingly. The actual output response of the oxygen sensor can be diagnosed based on the change.

【0010】請求項2記載の発明では、前記触媒上流側
に設けられた酸素センサの出力に基づいて機関吸入混合
気の空燃比をフィードバック制御する空燃比フィードバ
ック制御手段を備え、前記応答パラメータ検出手段が、
前記空燃比フィードバック制御手段による空燃比フィー
ドバック制御中の所定運転条件における前記触媒下流側
の酸素センサの出力変動周波数を、前記出力応答を示す
パラメータとして検出する構成とした。
According to a second aspect of the present invention, there is provided air-fuel ratio feedback control means for feedback-controlling the air-fuel ratio of the engine intake air-fuel mixture based on the output of the oxygen sensor provided on the upstream side of the catalyst, and the response parameter detection means. But,
The output fluctuation frequency of the oxygen sensor downstream of the catalyst under a predetermined operating condition during the air-fuel ratio feedback control by the air-fuel ratio feedback control means is detected as a parameter indicating the output response.

【0011】かかる構成によると、前記所定の運転条件
での空燃比フィードバック制御で予測される出力変動周
波数が、実際に下流側の酸素センサ出力に現れるか否か
に基づいて応答劣化が診断される。請求項3記載の発明
では、前記触媒活性度検出手段が、触媒温度を触媒活性
度を示すパラメータとして検出する構成とした。
According to this structure, the response deterioration is diagnosed based on whether or not the output fluctuation frequency predicted by the air-fuel ratio feedback control under the predetermined operating conditions actually appears in the output of the oxygen sensor on the downstream side. . In the invention according to claim 3, the catalyst activity detecting means detects the catalyst temperature as a parameter indicating the catalyst activity.

【0012】かかる構成によると、触媒が活性温度に対
しているか否かに基づいて活性度が検出されることにな
る。請求項4記載の発明では、前記触媒活性度検出手段
が、機関運転条件から触媒温度を推定する構成とした。
かかる構成によると、触媒温度を直接的に検出する代わ
りに、例えば機関負荷や機関回転速度などに基づいて推
定される排気温度や、排気流量によって推定される触媒
の受熱量に基づいて、触媒温度を間接的に検出できる。
According to this structure, the activity is detected based on whether or not the catalyst is at the activation temperature. In the invention according to claim 4, the catalyst activity detection means estimates the catalyst temperature from the engine operating condition.
According to this configuration, instead of directly detecting the catalyst temperature, the catalyst temperature is estimated based on, for example, the exhaust temperature estimated based on the engine load or the engine rotation speed, or the heat receiving amount of the catalyst estimated based on the exhaust flow rate. Can be detected indirectly.

【0013】請求項5記載の発明では、前記触媒上流側
に設けられた酸素センサの出力に基づいて機関吸入混合
気の空燃比をフィードバック制御する空燃比フィードバ
ック制御手段を備え、前記触媒劣化度検出手段が、前記
空燃比フィードバック制御手段による空燃比フィードバ
ック制御中における上流側酸素センサの出力変動周波数
と下流側酸素センサの出力変動周波数との比に基づいて
前記触媒の劣化度を検出する構成とした。
According to a fifth aspect of the present invention, there is provided air-fuel ratio feedback control means for feedback-controlling the air-fuel ratio of the engine intake air-fuel mixture based on the output of the oxygen sensor provided on the upstream side of the catalyst, and the catalyst deterioration degree detection is provided. The means is configured to detect the degree of deterioration of the catalyst based on the ratio of the output fluctuation frequency of the upstream oxygen sensor and the output fluctuation frequency of the downstream oxygen sensor during the air-fuel ratio feedback control by the air-fuel ratio feedback control means. .

【0014】かかる構成によると、触媒の非劣化状態で
は、触媒の酸素ストレージ効果によって、触媒上流側の
排気空燃比変化に対して、触媒下流側の排気空燃比変化
が大きく遅れることになるから、上流側での変化に対し
て下流側の変化が近づいているときに触媒の劣化を推定
できる。
According to this structure, in the non-deteriorated state of the catalyst, the oxygen storage effect of the catalyst causes a great delay in the change of the exhaust air-fuel ratio on the downstream side of the catalyst with respect to the change of the exhaust air-fuel ratio on the upstream side of the catalyst. The deterioration of the catalyst can be estimated when the change on the downstream side is close to the change on the upstream side.

【0015】[0015]

【発明の実施の形態】以下に本発明の実施の形態を説明
する。一実施形態を示す図2において、内燃機関1に
は、エアクリーナ2から吸気ダクト3,スロットル弁4
及び吸気マニホールド5を介して空気が吸入される。吸
気マニホールド5のブランチ部には各気筒毎に燃料噴射
弁6が設けられている。前記燃料噴射弁6は、ソレノイ
ドに通電されて開弁し、通電停止されて閉弁する電磁式
燃料噴射弁であって、後述するコントロールユニット12
からの噴射パルス信号により通電されて開弁し、図示し
ない燃料ポンプから圧送されプレッシャレギュレータに
より所定の圧力に調整された燃料を吸気マニホールド5
内に噴射供給する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. In FIG. 2 showing an embodiment, the internal combustion engine 1 includes an air cleaner 2, an intake duct 3, and a throttle valve 4.
Air is taken in through the intake manifold 5. At the branch portion of the intake manifold 5, a fuel injection valve 6 is provided for each cylinder. The fuel injection valve 6 is an electromagnetic fuel injection valve that is energized by a solenoid to open the valve, and deenergized to close the valve.
Is opened by energization by an injection pulse signal from the intake manifold 5 which is fed from a fuel pump (not shown) and adjusted to a predetermined pressure by a pressure regulator.
Inject and supply.

【0016】機関1の燃焼室にはそれぞれ点火栓7が設
けられていて、これにより火花点火して混合気を着火燃
焼させる。そして、機関1からは、排気マニホールド
8,排気ダクト9,排気浄化用の三元触媒10及びマフラ
ー11を介して排気が排出される。前記三元触媒10は、前
述の酸素ストレージ効果を有するものであって、排気成
分中のCO,HCを酸化し、また、NOx を還元して、
他の無害な物質に転換する触媒であり、機関吸入混合気
を理論空燃比で燃焼させたときに両転換効率が最も良好
なものとなる。
A spark plug 7 is provided in each combustion chamber of the engine 1, and spark ignition is performed by the spark plug 7 to ignite and burn the air-fuel mixture. Exhaust gas is discharged from the engine 1 through the exhaust manifold 8, the exhaust duct 9, the exhaust purification three-way catalyst 10 and the muffler 11. The three-way catalyst 10 has the above-mentioned oxygen storage effect, oxidizes CO and HC in exhaust components, and reduces NOx,
It is a catalyst that converts to other harmless substances, and has the highest conversion efficiency when the engine intake air-fuel mixture is burned at the stoichiometric air-fuel ratio.

【0017】コントロールユニット12は、CPU,RO
M,RAM,A/D変換器及び入出力インタフェイスを
含んで構成されるマイクロコンピュータを備え、各種の
センサからの検出信号を入力して、前記噴射パルス信号
の噴射パルス幅を制御する。前記各種のセンサとして
は、吸気ダクト3中に熱線式或いはフラップ式などのエ
アフローメータ13が設けられていて、機関1の吸入空気
量Qに応じた電圧信号を出力する。
The control unit 12 includes a CPU and RO
A microcomputer including an M, a RAM, an A / D converter and an input / output interface is provided, and detection signals from various sensors are input to control the injection pulse width of the injection pulse signal. As the various sensors, a hot-wire type or flap type air flow meter 13 is provided in the intake duct 3 and outputs a voltage signal according to the intake air amount Q of the engine 1.

【0018】また、クランク角センサ14が設けられてい
て、所定ピストン位置毎の基準角度信号REFと、単位
角度毎の単位角度信号POSとを出力する。ここで、前
記基準角度信号REFの発生周期、或いは、所定時間内
における前記単位角度信号POSの発生数を計測するこ
とより、機関回転速度Neを算出することができる。ま
た、機関1のウォータジャケットの冷却水温度Twを検
出する水温センサ15が設けられている。
A crank angle sensor 14 is provided to output a reference angle signal REF for each predetermined piston position and a unit angle signal POS for each unit angle. Here, the engine rotation speed Ne can be calculated by measuring the generation cycle of the reference angle signal REF or the number of generations of the unit angle signal POS within a predetermined time. Further, a water temperature sensor 15 for detecting a cooling water temperature Tw of the water jacket of the engine 1 is provided.

【0019】更に、前記三元触媒10の上流側となる排気
マニホールド8の集合部に第1酸素センサ16が設けられ
ており、また、前記三元触媒10の下流側でマフラー11の
上流側には第2酸素センサ17が設けられている。前記第
1酸素センサ16及び第2酸素センサ17は、排気中の酸素
濃度に感応して出力値が変化する公知の酸素濃淡電池型
のセンサであり、理論空燃比を境に排気中の酸素濃度が
急変することを利用し、理論空燃比に対する排気空燃比
のリッチ・リーンを検出し得るリッチ・リーンセンサで
ある。
Further, a first oxygen sensor 16 is provided at a collecting portion of the exhaust manifold 8 which is an upstream side of the three-way catalyst 10, and a downstream side of the three-way catalyst 10 is upstream of a muffler 11. Is provided with a second oxygen sensor 17. The first oxygen sensor 16 and the second oxygen sensor 17 are known oxygen concentration battery type sensors whose output value changes in response to the oxygen concentration in the exhaust gas, and the oxygen concentration in the exhaust gas at the theoretical air-fuel ratio. This is a rich lean sensor that can detect the rich lean of the exhaust air-fuel ratio with respect to the stoichiometric air-fuel ratio by utilizing the sudden change of the.

【0020】ここにおいて、コントロールユニット12に
内蔵されたマイクロコンピュータのCPUは、所定のフ
ィードバック制御条件が成立しているときに、図3のフ
ローチャートに示すように、前記第1酸素センサ16及び
第2酸素センサ17の出力が目標空燃比(理論空燃比)に
相当する値に近づく方向に空燃比フィードバック補正係
数LMDを比例・積分制御する。
Here, the CPU of the microcomputer incorporated in the control unit 12 is operated by the first oxygen sensor 16 and the second oxygen sensor 16 as shown in the flow chart of FIG. 3 when a predetermined feedback control condition is satisfied. The air-fuel ratio feedback correction coefficient LMD is proportionally / integrally controlled so that the output of the oxygen sensor 17 approaches a value corresponding to the target air-fuel ratio (theoretical air-fuel ratio).

【0021】尚、本実施形態において、空燃比フィード
バック制御手段としての機能は、前記図3のフローチャ
ートに示すように、コントロールユニット12がソフトウ
ェア的に備えている。図3のフローチャートにおいて、
まず、ステップ1(図中ではS1としてある。以下同
様)では、上流側の第1酸素センサ16の出力電圧を読み
込む。
In this embodiment, the function as the air-fuel ratio feedback control means is provided by the control unit 12 as software, as shown in the flow chart of FIG. In the flowchart of FIG.
First, in step 1 (denoted as S1 in the figure. The same applies hereinafter), the output voltage of the first oxygen sensor 16 on the upstream side is read.

【0022】次のステップ2では、前記ステップ1で読
み込んだ出力電圧と目標空燃比(理論空燃比)相当の所
定値とを比較することで、目標空燃比に対する実際の空
燃比のリッチ・リーンを判別する。出力電圧が所定値よ
りも大きく空燃比がリッチであると判別されたときに
は、ステップ3へ進み、かかるリッチ判別が初回である
か否かを判別する。
In the next step 2, the output voltage read in step 1 is compared with a predetermined value corresponding to the target air-fuel ratio (theoretical air-fuel ratio) to obtain the rich lean of the actual air-fuel ratio with respect to the target air-fuel ratio. Determine. When it is determined that the output voltage is larger than the predetermined value and the air-fuel ratio is rich, the routine proceeds to step 3, where it is determined whether or not this rich determination is the first time.

【0023】リッチ判別の初回でるときには、ステップ
4へ進み、前回までの空燃比フィードバック補正係数L
MD(初期値1.0 )から、後述するようにして設定され
る比例分PR を減算する比例制御を行って、空燃比フィ
ードバック補正係数LMDを更新する。一方、リッチ判
別の初回でないとステップ3で判別されたときには、ス
テップ5へ進み、前回までの空燃比フィードバック補正
係数LMDから所定の積分分Iを減算する積分制御を行
って、空燃比フィードバック補正係数LMDを更新す
る。
When it is the first time for rich determination, the routine proceeds to step 4, where the air-fuel ratio feedback correction coefficient L up to the previous time is set.
The air-fuel ratio feedback correction coefficient LMD is updated by performing proportional control for subtracting a proportional amount P R set as described later from MD (initial value 1.0). On the other hand, when it is determined in step 3 that it is not the first time of rich determination, the process proceeds to step 5, and integral control for subtracting a predetermined integral amount I from the air-fuel ratio feedback correction coefficient LMD up to the previous time is performed to perform the air-fuel ratio feedback correction coefficient. Update LMD.

【0024】前記空燃比フィードバック補正係数LMD
の減少制御は、燃料噴射量Tiの減量補正に相当するか
ら、前記ステップ5における積分制御を繰り返すこと
で、空燃比がリーンに反転するようになる。そして、空
燃比がリーンに反転したことがステップ2で判別される
と、ステップ6へ進み、リーン判別の初回であるか否か
を判別する。
Air-fuel ratio feedback correction coefficient LMD
The reduction control of 1 corresponds to the reduction correction of the fuel injection amount Ti, so by repeating the integral control in step 5, the air-fuel ratio is reversed to lean. Then, when it is determined in step 2 that the air-fuel ratio has reversed to lean, the process proceeds to step 6 and it is determined whether or not it is the first lean determination.

【0025】リーン判別の初回であるときには、ステッ
プ7へ進み、前回までの空燃比フィードバック補正係数
LMDに対して、後述するようにして設定される比例分
Lを加算する比例制御を行って、空燃比フィードバッ
ク補正係数LMDを更新する。リーン判別の初回でない
場合には、ステップ8へ進み、前回までの空燃比フィー
ドバック補正係数LMDに所定の積分分Iを加算する積
分制御を行って、空燃比フィードバック補正係数LMD
を更新する。
If it is the first time of lean determination, the routine proceeds to step 7, where proportional control is performed to add a proportional amount P L set as described later to the air-fuel ratio feedback correction coefficient LMD up to the previous time, The air-fuel ratio feedback correction coefficient LMD is updated. If it is not the first time the lean determination is made, the routine proceeds to step 8, where integration control for adding a predetermined integral amount I to the air-fuel ratio feedback correction coefficient LMD up to the previous time is performed, and the air-fuel ratio feedback correction coefficient LMD is performed.
To update.

【0026】一方、ステップ9では、前述の第1酸素セ
ンサ16の出力電圧に基づく空燃比フィードバック補正係
数LMDの比例積分制御と同様にして、第2酸素センサ
17の出力電圧に基づく比例積分制御によって、基本比例
分PRB,PLBを補正するための補正値PHOS(初期値
=0)を、第2酸素センサ17による検出空燃比が目標空
燃比(理論空燃比)に近づく方向に制御する。
On the other hand, in step 9, the second oxygen sensor is operated in the same manner as the proportional-integral control of the air-fuel ratio feedback correction coefficient LMD based on the output voltage of the first oxygen sensor 16 described above.
By the proportional-plus-integral control based on the output voltage of 17, the correction value PHOS (initial value = 0) for correcting the basic proportional components P RB and P LB , the air-fuel ratio detected by the second oxygen sensor 17 is the target air-fuel ratio (theoretical The air-fuel ratio) is controlled to approach.

【0027】ステップ10では、基本比例分PRBから前記
補正値PHOSを減算し、該減算結果を比例分PR (←
RB−PHOS)にセットすると共に、前記基本比例分
LBに前記補正値PHOSを加算して、該加算結果を比
例分PL (←PLB+PHOS)にセットする。前記比例
分PR は前述のようにリッチ判別の初回に空燃比フィー
ドバック補正係数LMDの減少制御に用いられる比例分
であり、また、前記比例分PL は前述のようにリーン判
別の初回に空燃比フィードバック補正係数LMDの増大
制御に用いられる比例分であり、更に、補正値PHOS
は、第2酸素センサ17によるリッチ検出時には減少設定
されるから、第2酸素センサ17でリッチ検出されている
ときには、前記比例分PR によるリーン方向への制御が
増大し、逆に、前記比例分PL によるリッチ方向への制
御が減少し、第2酸素センサ17で検出されるリッチ空燃
比を目標空燃比に近づける方向に空燃比フィードバック
補正係数LMDの比例制御特性が変更されることにな
る。
In step 10, the correction value PHOS is subtracted from the basic proportional component P RB, and the subtraction result is proportional component P R (←
P RB -PHOS), the correction value PHOS is added to the basic proportional amount P LB , and the addition result is set to the proportional amount P L (← P LB + PHOS). The proportional component P R is a proportional component used for the reduction control of the air-fuel ratio feedback correction coefficient LMD in the first rich determination as described above, and the proportional component P L is empty in the first lean determination as described above. It is a proportional amount used for the increase control of the fuel ratio feedback correction coefficient LMD.
Is set to decrease when the second oxygen sensor 17 detects a rich condition, and therefore, when the second oxygen sensor 17 detects a rich condition, the control in the lean direction by the proportional amount P R increases, and conversely, the proportional ratio increases. The control in the rich direction by the amount P L is reduced, and the proportional control characteristic of the air-fuel ratio feedback correction coefficient LMD is changed in the direction in which the rich air-fuel ratio detected by the second oxygen sensor 17 approaches the target air-fuel ratio. .

【0028】従って、第1酸素センサ16の検出結果を用
いた空燃比フィードバック制御における空燃比制御点の
ずれが、第2酸素センサ17を用いて設定される補正値P
HOSによって補償されることになる。尚、第2酸素セ
ンサ17の検出結果を用いた補正制御は、上記の比例分P
R ,P L の補正制御に限定されず、例えば、第1酸素セ
ンサ16の出力に基づいてリッチ・リーンを判定するとき
に用いるスレッシュホールドレベルの変更や、第1酸素
センサ16のリッチ・リーン検出に対して比例制御の実行
を強制的に遅らせる時間の変更などによって、空燃比フ
ィードバック制御の特性を変更する構成であっても良
い。
Therefore, the detection result of the first oxygen sensor 16 is used.
Of the air-fuel ratio control point
The deviation is the correction value P set by using the second oxygen sensor 17.
Will be compensated by HOS. The second oxygen cell
The correction control using the detection result of the sensor 17 is performed by the proportional portion P above.
R, P LThe correction control is not limited to
To determine rich lean based on the output of sensor 16
Change the threshold level used for
Proportional control for rich / lean detection of sensor 16
The air-fuel ratio
It may be configured to change the feedback control characteristics.
No.

【0029】上記のようにして、三元触媒10の上流側の
第1酸素センサ16と、下流側の第2酸素センサ17の出力
値とに基づいて設定される空燃比フィードバック補正係
数LMDは、次のステップ11における燃料噴射量Tiの
演算に用いられる。具体的には、吸入空気量Qと機関回
転速度Neとに基づいて基本燃料噴射量Tp(←K×Q
/Ne:Kは定数)を演算する一方、冷却水温度Tw等
の運転条件に基づいた各種補正係数COEF、バッテリ
電圧に応じた電圧補正分Ts等を演算する。そして、前
記基本燃料噴射量Tpを、前記空燃比フィードバック補
正係数LMD,各種補正係数COEF,電圧補正分Ts
等で補正し、該補正結果を最終的な燃料噴射量Ti(←
Tp×COEF×LMD+Ts)として設定する。
As described above, the air-fuel ratio feedback correction coefficient LMD set based on the output values of the first oxygen sensor 16 on the upstream side of the three-way catalyst 10 and the second oxygen sensor 17 on the downstream side is: It is used to calculate the fuel injection amount Ti in the next step 11. Specifically, based on the intake air amount Q and the engine rotation speed Ne, the basic fuel injection amount Tp (← K × Q
/ Ne: K is a constant), while various correction coefficients COEF based on operating conditions such as cooling water temperature Tw and voltage correction amount Ts according to battery voltage are calculated. Then, the basic fuel injection amount Tp is set to the air-fuel ratio feedback correction coefficient LMD, various correction coefficients COEF, and voltage correction amount Ts.
Etc., and the corrected fuel injection amount Ti (←
Tp × COEF × LMD + Ts).

【0030】コントロールユニット12は、最新に演算さ
れた前記燃料噴射量Tiに相当するパルス幅の噴射パル
ス信号を所定の噴射タイミングで燃料噴射弁6に出力し
て、燃料噴射弁6による噴射量を制御し、以て、目標空
燃比(理論空燃比)の混合気を形成させる。ところで、
本実施形態において、コントロールユニット12は、図4
のフローチャートに示すように、下流側の第2酸素セン
サ17の応答劣化を診断する診断機能、即ち、応答パラメ
ータ検出手段,触媒活性度検出手段,触媒劣化度検出手
段,判定値設定手段,応答診断手段としての機能(図1
参照)をソフトウェア的に備えている。
The control unit 12 outputs an injection pulse signal having a pulse width corresponding to the most recently calculated fuel injection amount Ti to the fuel injection valve 6 at a predetermined injection timing so that the injection amount by the fuel injection valve 6 is determined. The air-fuel mixture is controlled to form an air-fuel mixture having a target air-fuel ratio (theoretical air-fuel ratio). by the way,
In this embodiment, the control unit 12 is shown in FIG.
As shown in the flowchart of FIG. 2, a diagnostic function for diagnosing the response deterioration of the second oxygen sensor 17 on the downstream side, that is, response parameter detecting means, catalyst activity detecting means, catalyst deterioration degree detecting means, judgment value setting means, response diagnosis Function as a means (Fig. 1
See) as software.

【0031】図4のフローチャートにおいて、ステップ
21では、所定の診断許可条件が成立しているか否かを判
別する。前記診断許可条件は、例えば、前記空燃比フィ
ードバック制御中で、かつ、機関負荷を代表する前記基
本燃料噴射量Tp及び機関回転速度Neがそれぞれ所定
範囲内である定常運転条件であり、更に、第1,第2酸
素センサ16,17が活性状態にある条件とすることが好ま
しい。
Steps in the flowchart of FIG.
At 21, it is determined whether or not a predetermined diagnosis permission condition is satisfied. The diagnosis permission condition is, for example, a steady operating condition during the air-fuel ratio feedback control, in which the basic fuel injection amount Tp and the engine rotation speed Ne representing the engine load are each within a predetermined range. It is preferable that the first and second oxygen sensors 16 and 17 are in an active state.

【0032】尚、酸素センサ16,17の活性状態は、リッ
チ出力とリーン出力との差が所定値以上であるか否かに
基づいて判別できる。診断許可条件が成立している場合
には、ステップ22へ進み、下流側の第2酸素センサ17の
出力反転周波数を、出力応答を示すパラメータとして検
出する。即ち、酸素センサに応答劣化が生じると、図5
に示すように、排気空燃比の変化に対してセンサ出力の
応答が遅れて前記反転周波数が小さくなる(反転周期が
延びる)ので、反転周波数の変動要因となる機関負荷及
び機関回転速度を診断許可条件として特性しておいて、
そのときに実際に検出された反転周波数に基づいて応答
劣化を示す反転周波数の低下があるか否かを判別させる
ものである。
The active state of the oxygen sensors 16 and 17 can be determined based on whether or not the difference between the rich output and the lean output is a predetermined value or more. When the diagnosis permission condition is satisfied, the routine proceeds to step 22, and the output inversion frequency of the second oxygen sensor 17 on the downstream side is detected as a parameter indicating the output response. That is, when the response deterioration occurs in the oxygen sensor, as shown in FIG.
As shown in, since the response of the sensor output is delayed with respect to the change of the exhaust air-fuel ratio and the reversal frequency becomes smaller (the reversal period is extended), the engine load and the engine speed that cause the fluctuation of the reversal frequency are diagnosed. Characterize as a condition,
At this time, it is determined whether or not there is a decrease in the inversion frequency, which indicates deterioration in response, based on the inversion frequency actually detected.

【0033】ステップ23では、前記出力応答を示すパラ
メータとして検出した出力反転周波数と比較する判定値
を、後述するようにして検出される触媒活性度及び触媒
劣化度に応じて設定する。即ち、触媒劣化時や非活性時
には、触媒下流側における排気空燃比の変化速度が相対
的に速くなるため、かかる排気空燃比変化を検出する第
2酸素センサ17に応答遅れがあっても、排気空燃比変化
が速くなっている分だけ前記反転周波数が酸素センサの
劣化を示すだけの小さな値を示さなくなって、応答劣化
が生じている酸素センサを正常であると誤診断すること
になってしまう(図5参照)。
In step 23, a judgment value to be compared with the output inversion frequency detected as the parameter indicating the output response is set according to the catalyst activity and the catalyst deterioration detected as described later. That is, when the catalyst is deteriorated or inactive, the rate of change of the exhaust air-fuel ratio on the downstream side of the catalyst becomes relatively fast, so even if there is a response delay in the second oxygen sensor 17 that detects this change in the exhaust air-fuel ratio, As the air-fuel ratio changes faster, the reversal frequency does not show a small value indicating the deterioration of the oxygen sensor, and the oxygen sensor with the response deterioration is erroneously diagnosed as normal. (See Figure 5).

【0034】そこで、ステップ23では、触媒劣化度が大
きいときほど、また、活性度が低いときほど、前記判定
値(周波数の閾値)を大きくして(換言すれば、出力応
答の要求としてより速くして)、触媒の劣化又は非活性
による触媒下流側での排気空燃比の変化速度の変化に対
応できるようにしてある。従って、前記判定値と前記出
力応答を示すパラメータとして検出した出力反転周波数
とを比較させれば、触媒の劣化度や活性度による触媒下
流側の空燃比変化速度の変動に影響されずに、第2酸素
センサ17の応答変化のみを判別できる。
Therefore, in step 23, the larger the catalyst deterioration degree and the lower the activity degree, the larger the judgment value (threshold value of frequency) (in other words, the faster the output response request is made). Therefore, it is possible to cope with the change in the changing speed of the exhaust air-fuel ratio on the downstream side of the catalyst due to the deterioration or inactivity of the catalyst. Therefore, by comparing the determination value with the output reversal frequency detected as the parameter indicating the output response, the change in the air-fuel ratio change speed on the downstream side of the catalyst due to the degree of deterioration or activity of the catalyst is not affected, and 2 Only the change in the response of the oxygen sensor 17 can be identified.

【0035】ステップ24では、前記ステップ22で検出し
た出力反転周波数と、前記ステップ23で設定した判定値
とを比較し、出力反転周波数が判定値よりも小さいとき
には、第2酸素センサ17の応答劣化によってその出力反
転周波数が小さくなったものと判断し、ステップ25へ進
んで、第2酸素センサ17の応答劣化の発生を判定する。
In step 24, the output inversion frequency detected in step 22 is compared with the judgment value set in step 23. When the output inversion frequency is smaller than the judgment value, the response deterioration of the second oxygen sensor 17 is deteriorated. Thus, it is determined that the output inversion frequency has decreased, and the routine proceeds to step 25, where it is determined whether the second oxygen sensor 17 has deteriorated response.

【0036】尚、応答劣化の発生が判定されたときに
は、応答劣化の発生を運転者に警告したり、空燃比フィ
ードバック制御に第2酸素センサ17の出力を用いること
を禁止したりすると良い。前記ステップ23において判定
値の設定に用いる触媒劣化度及び活性度は、以下のよう
にして検出することができる。
When it is determined that the response deterioration has occurred, it is advisable to warn the driver of the occurrence of the response deterioration or prohibit the use of the output of the second oxygen sensor 17 for the air-fuel ratio feedback control. The degree of catalyst deterioration and the degree of activity used for setting the determination value in step 23 can be detected as follows.

【0037】まず、触媒活性度は触媒温度に相関するの
で、触媒温度を検出することで触媒活性度を推定でき
る。触媒温度は、温度センサで直接的に検出しても良い
が、例えば図6に示すように、予め基本燃料噴射量Tp
(機関負荷)と機関回転速度Neとで複数に区分される
運転領域毎に定常時の触媒温度(触媒入口排気温度)を
記憶したマップを備えておき、かかるマップの該当する
運転領域の触媒温度を検索して求めると共に、検索され
た触媒温度に対して触媒温度変化の遅れに対応する遅れ
補正を施して触媒温度を推定しても良い。
First, since the catalyst activity correlates with the catalyst temperature, the catalyst activity can be estimated by detecting the catalyst temperature. The catalyst temperature may be directly detected by a temperature sensor, but as shown in FIG. 6, for example, the basic fuel injection amount Tp is previously set.
A map that stores the catalyst temperature (catalyst inlet exhaust gas temperature) in the steady state is stored for each operating region divided into a plurality of (engine load) and engine rotation speed Ne, and the catalyst temperature of the corresponding operating region of the map is provided. The catalyst temperature may be estimated by performing a delay correction corresponding to the delay of the catalyst temperature change on the retrieved catalyst temperature.

【0038】また、基本燃料噴射量Tp(機関負荷)と
機関回転速度Neとで複数に区分される運転領域を、触
媒温度を活性温度以上に昇温させる領域(排気温度が高
い領域)と、触媒温度を活性温度以下に低下させる領域
(排気温度が低い領域)とに分け、昇温させる領域に該
当している間は所定時間毎にポイントをアップさせる一
方、前記温度低下領域に該当しているときには、前記ポ
イントを所定時間毎にダウンさせ、前記ポイントを活性
度を示すパラメータとしても良い。
Further, an operating region divided into a plurality of regions by the basic fuel injection amount Tp (engine load) and the engine rotation speed Ne is a region in which the catalyst temperature is raised above the activation temperature (a region in which the exhaust temperature is high). The catalyst temperature is divided into a region where the temperature is lower than the activation temperature (a region where the exhaust gas temperature is low), and the points are increased every predetermined time while the region where the temperature is raised corresponds to the region where the temperature falls. When it is present, the point may be lowered every predetermined time, and the point may be used as a parameter indicating the degree of activity.

【0039】更に、触媒を通過する排気流量を積算し、
該積算値に基づいて触媒温度を推定するなどしても良
い。一方、触媒が劣化すると、前述のように、触媒下流
側における排気空燃比の変化速度が相対的に速くなるの
で、空燃比フィードバック制御中において、上流側の第
1酸素センサ16の出力反転周波数と下流側の第2酸素セ
ンサ17の出力反転周波数とを比較すれば、触媒の劣化に
よって触媒下流側の排気空燃比変化速度が速くなってい
ることを診断できる。
Further, the exhaust flow rate passing through the catalyst is integrated,
The catalyst temperature may be estimated based on the integrated value. On the other hand, if the catalyst deteriorates, as described above, the rate of change of the exhaust air-fuel ratio on the downstream side of the catalyst becomes relatively fast, so during the air-fuel ratio feedback control, the output reversal frequency of the first oxygen sensor 16 on the upstream side becomes By comparing with the output reversal frequency of the second oxygen sensor 17 on the downstream side, it can be diagnosed that the exhaust air-fuel ratio change speed on the downstream side of the catalyst is increasing due to the deterioration of the catalyst.

【0040】ここで、触媒劣化による触媒下流側におけ
る排気空燃比の変化速度の増大に対して、酸素センサ17
の応答劣化による出力反転周波数の低下は相対的に小さ
く、触媒が劣化しているのに酸素センサ17の応答劣化に
よって、触媒の非劣化時と同等の出力反転比を示すよう
になることはないので、酸素センサ17に応答劣化がある
状態であっても、触媒劣化を診断し得る。
Here, the oxygen sensor 17 responds to an increase in the rate of change of the exhaust air-fuel ratio on the downstream side of the catalyst due to catalyst deterioration.
The decrease in the output inversion frequency due to the deterioration of the response is relatively small, and the deterioration of the response of the oxygen sensor 17 does not cause the same output inversion ratio as that when the catalyst is not deteriorated, even though the catalyst is deteriorated. Therefore, even if the oxygen sensor 17 has a response deterioration, the catalyst deterioration can be diagnosed.

【0041】[0041]

【発明の効果】以上説明したように、請求項1記載の発
明によると、触媒下流側の酸素センサの応答劣化を診断
するに当たって、前記酸素センサの出力応答を示すパラ
メータと比較する判定値を、触媒の劣化度及び活性度に
応じて設定するから、劣化度や活性度によって触媒下流
側の排気空燃比の変化速度が変化しても、これに影響さ
れて、酸素センサの出力応答が誤診断されることを回避
できるという効果がある。
As described above, according to the first aspect of the present invention, in diagnosing the deterioration of the response of the oxygen sensor on the downstream side of the catalyst, the judgment value to be compared with the parameter indicating the output response of the oxygen sensor, Since it is set according to the degree of deterioration and activity of the catalyst, even if the rate of change of the exhaust air-fuel ratio on the downstream side of the catalyst changes due to the degree of deterioration and activity, it is affected by this and the output response of the oxygen sensor is erroneously diagnosed. The effect is that it can be avoided.

【0042】請求項2記載の発明によると、空燃比フィ
ードバック制御に伴う排気空燃比の変動に対する触媒下
流側の酸素センサの出力応答に基づいて、前記酸素セン
サの出力応答劣化を診断できるという効果がある。請求
項3記載の発明によると、触媒の活性度に相関する触媒
温度を検出することで、簡易に触媒活性を検出できると
いう効果がある。
According to the second aspect of the present invention, it is possible to diagnose the deterioration of the output response of the oxygen sensor based on the output response of the oxygen sensor on the downstream side of the catalyst with respect to the variation of the exhaust air-fuel ratio due to the air-fuel ratio feedback control. is there. According to the invention described in claim 3, there is an effect that the catalyst activity can be easily detected by detecting the catalyst temperature that correlates with the activity of the catalyst.

【0043】請求項4記載の発明によると、触媒温度を
直接的に検出する代わりに、例えば機関負荷や機関回転
速度などの機関運転条件に基づいて触媒温度を間接的に
検出でき、専用の温度センサの設置を省略できるという
効果がある。請求項5記載の発明によると、触媒の酸素
ストレージ効果によって、触媒上流側の排気空燃比変化
に対して触媒下流側の排気空燃比変化が大きく遅れる特
性に基づいて、前記酸素ストレージ効果の低下を伴う触
媒劣化を診断できるという効果がある。
According to the fourth aspect of the present invention, instead of directly detecting the catalyst temperature, the catalyst temperature can be indirectly detected based on the engine operating conditions such as the engine load and the engine rotation speed. The effect is that the installation of the sensor can be omitted. According to the fifth aspect of the invention, the oxygen storage effect of the catalyst causes a decrease in the oxygen storage effect based on the characteristic that the change in the exhaust air-fuel ratio on the catalyst downstream side is greatly delayed with respect to the change in the exhaust air-fuel ratio on the catalyst upstream side. This has the effect of diagnosing the accompanying catalyst deterioration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1記載の発明の構成ブロック図。FIG. 1 is a configuration block diagram of the invention according to claim 1.

【図2】本発明の一実施形態を示すシステム概略図。FIG. 2 is a system schematic diagram showing an embodiment of the present invention.

【図3】空燃比フィードバック制御の実施形態を示すフ
ローチャート。
FIG. 3 is a flowchart showing an embodiment of air-fuel ratio feedback control.

【図4】応答劣化診断の実施形態を示すフローチャー
ト。
FIG. 4 is a flowchart showing an embodiment of response deterioration diagnosis.

【図5】触媒劣化と酸素センサの応答劣化との相関を示
す線図であり、(a)は触媒の非劣化時、(b)は触媒
劣化時での相関を示す。
FIG. 5 is a diagram showing a correlation between catalyst deterioration and oxygen sensor response deterioration, where (a) shows a correlation when the catalyst is not deteriorated and (b) shows a correlation when the catalyst is deteriorated.

【図6】触媒温度の推定制御を説明するための図。FIG. 6 is a diagram for explaining estimation control of catalyst temperature.

【符号の説明】[Explanation of symbols]

1 機関 6 燃料噴射弁 10 三元触媒 12 コントロールユニット 13 エアフローメータ 14 クランク角センサ 16 第1酸素センサ 17 第2酸素センサ 1 engine 6 fuel injection valve 10 three-way catalyst 12 control unit 13 air flow meter 14 crank angle sensor 16 first oxygen sensor 17 second oxygen sensor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G01N 27/00 G01N 27/00 L 27/409 27/58 B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location G01N 27/00 G01N 27/00 L 27/409 27/58 B

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】機関排気通路に介装された触媒の下流側に
設けられ、排気中の酸素濃度に感応して出力値が変化す
る酸素センサの応答診断装置であって、 前記触媒下流側の酸素センサの出力応答を示すパラメー
タを検出する応答パラメータ検出手段と、 前記触媒の活性度を検出する触媒活性度検出手段と、 前記触媒の劣化度を検出する触媒劣化度検出手段と、 前記検出された前記触媒の活性度及び劣化度に基づいて
前記パラメータの判定値を設定する判定値設定手段と、 該判定値設定手段で設定された判定値と前記応答パラメ
ータ検出手段で検出されたパラメータとを比較して、前
記酸素センサの応答劣化を診断する応答診断手段と、 を含んで構成されたことを特徴とする内燃機関における
酸素センサの応答診断装置。
1. A response diagnostic device for an oxygen sensor, which is provided on a downstream side of a catalyst interposed in an engine exhaust passage and whose output value changes in response to an oxygen concentration in exhaust gas. Response parameter detecting means for detecting a parameter indicating the output response of the oxygen sensor, catalyst activity detecting means for detecting the activity of the catalyst, catalyst deterioration detecting means for detecting the deterioration degree of the catalyst, and the detected A judgment value setting means for setting a judgment value of the parameter based on the activity and deterioration degree of the catalyst, a judgment value set by the judgment value setting means, and a parameter detected by the response parameter detecting means. In comparison, a response diagnostic device for an oxygen sensor in an internal combustion engine, comprising: a response diagnostic means for diagnosing the response deterioration of the oxygen sensor.
【請求項2】前記触媒上流側に設けられた酸素センサの
出力に基づいて機関吸入混合気の空燃比をフィードバッ
ク制御する空燃比フィードバック制御手段を備え、 前記応答パラメータ検出手段が、前記空燃比フィードバ
ック制御手段による空燃比フィードバック制御中の所定
運転条件における前記触媒下流側の酸素センサの出力変
動周波数を、前記出力応答を示すパラメータとして検出
することを特徴とする請求項1記載の内燃機関における
酸素センサの応答診断装置。
2. An air-fuel ratio feedback control means for feedback-controlling an air-fuel ratio of an engine intake air-fuel mixture based on an output of an oxygen sensor provided on the upstream side of the catalyst, wherein the response parameter detection means has the air-fuel ratio feedback. The oxygen sensor for an internal combustion engine according to claim 1, wherein an output fluctuation frequency of the oxygen sensor downstream of the catalyst under a predetermined operating condition during the air-fuel ratio feedback control by the control means is detected as a parameter indicating the output response. Response diagnostic device.
【請求項3】前記触媒活性度検出手段が、触媒温度を触
媒活性度を示すパラメータとして検出することを特徴と
する請求項1又は2記載の内燃機関における酸素センサ
の応答診断装置。
3. The response diagnostic device for an oxygen sensor in an internal combustion engine according to claim 1, wherein the catalyst activity detecting means detects the catalyst temperature as a parameter indicating the catalyst activity.
【請求項4】前記触媒活性度検出手段が、機関運転条件
から触媒温度を推定することを特徴とする請求項3記載
の内燃機関における酸素センサの応答診断装置。
4. The response diagnostic device for an oxygen sensor in an internal combustion engine according to claim 3, wherein said catalyst activity detecting means estimates the catalyst temperature from engine operating conditions.
【請求項5】前記触媒上流側に設けられた酸素センサの
出力に基づいて機関吸入混合気の空燃比をフィードバッ
ク制御する空燃比フィードバック制御手段を備え、 前記触媒劣化度検出手段が、前記空燃比フィードバック
制御手段による空燃比フィードバック制御中における上
流側酸素センサの出力変動周波数と下流側酸素センサの
出力変動周波数との比に基づいて前記触媒の劣化度を検
出することを特徴とする請求項1〜4のいずれか1つに
記載の内燃機関における酸素センサの応答診断装置。
5. An air-fuel ratio feedback control means for feedback-controlling an air-fuel ratio of an engine intake air-fuel mixture based on an output of an oxygen sensor provided on the upstream side of the catalyst, wherein the catalyst deterioration degree detection means is the air-fuel ratio. The deterioration degree of the catalyst is detected based on a ratio between an output fluctuation frequency of the upstream oxygen sensor and an output fluctuation frequency of the downstream oxygen sensor during the air-fuel ratio feedback control by the feedback control means. 5. The response diagnostic device for an oxygen sensor in an internal combustion engine according to any one of 4 above.
JP7182789A 1995-07-19 1995-07-19 Apparatus for diagnosing response of oxygen sensor in internal combustion engine Pending JPH0933478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7182789A JPH0933478A (en) 1995-07-19 1995-07-19 Apparatus for diagnosing response of oxygen sensor in internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7182789A JPH0933478A (en) 1995-07-19 1995-07-19 Apparatus for diagnosing response of oxygen sensor in internal combustion engine

Publications (1)

Publication Number Publication Date
JPH0933478A true JPH0933478A (en) 1997-02-07

Family

ID=16124456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7182789A Pending JPH0933478A (en) 1995-07-19 1995-07-19 Apparatus for diagnosing response of oxygen sensor in internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0933478A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6915203B2 (en) 2002-02-12 2005-07-05 Denso Corporation Apparatus and method for diagnosis of vehicular system
EP1600619A2 (en) * 2004-05-26 2005-11-30 Hitachi, Ltd. Diagnostic device and method of engine exhaust purifying system
KR100680358B1 (en) * 2005-12-14 2007-02-08 현대자동차주식회사 Method for thwarting diagnosis error of down stream oxygen sensor
KR100774312B1 (en) * 2001-10-16 2007-11-08 현대자동차주식회사 Diagnosis method for detecting o2 sensor of no activity for vehicles
JP2010180843A (en) * 2009-02-09 2010-08-19 Nissan Motor Co Ltd Diagnostic device of exhaust gas sensor
CN110863917A (en) * 2019-11-26 2020-03-06 奇瑞汽车股份有限公司 Diagnostic method of oxygen sensor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100774312B1 (en) * 2001-10-16 2007-11-08 현대자동차주식회사 Diagnosis method for detecting o2 sensor of no activity for vehicles
US6915203B2 (en) 2002-02-12 2005-07-05 Denso Corporation Apparatus and method for diagnosis of vehicular system
EP1600619A2 (en) * 2004-05-26 2005-11-30 Hitachi, Ltd. Diagnostic device and method of engine exhaust purifying system
US7549284B2 (en) 2004-05-26 2009-06-23 Hitachi, Ltd. Diagnostic device and method of engine exhaust purifying system
EP1600619A3 (en) * 2004-05-26 2012-03-14 Hitachi, Ltd. Diagnostic device and method of engine exhaust purifying system
KR100680358B1 (en) * 2005-12-14 2007-02-08 현대자동차주식회사 Method for thwarting diagnosis error of down stream oxygen sensor
JP2010180843A (en) * 2009-02-09 2010-08-19 Nissan Motor Co Ltd Diagnostic device of exhaust gas sensor
CN110863917A (en) * 2019-11-26 2020-03-06 奇瑞汽车股份有限公司 Diagnostic method of oxygen sensor

Similar Documents

Publication Publication Date Title
JP2858288B2 (en) Self-diagnosis device in air-fuel ratio control device of internal combustion engine
JP2893308B2 (en) Air-fuel ratio control device for internal combustion engine
US8302378B2 (en) Degradation diagnosis device for catalyst
JP4497132B2 (en) Catalyst degradation detector
JP2916831B2 (en) Diagnosis device for air-fuel ratio control device
JPH07127441A (en) Catalyst temperature detecting device for vehicle
US6470674B1 (en) Deterioration detecting apparatus and method for engine exhaust gas purifying device
JP3855877B2 (en) Deterioration detection device for air-fuel ratio detection device
JP3759567B2 (en) Catalyst degradation state detection device
US11067026B2 (en) Engine controller, engine control method, and memory medium
KR100204831B1 (en) Method and apparatus for controlling air-fuel ratio of an internal combustion engine
JP3149714B2 (en) Catalyst deterioration diagnosis device for internal combustion engine
JPH0933478A (en) Apparatus for diagnosing response of oxygen sensor in internal combustion engine
JP3988073B2 (en) Abnormality diagnosis device for exhaust gas sensor
JP5427715B2 (en) Engine control device
JP2946379B2 (en) Air-fuel ratio feedback control device for internal combustion engine
JP3318702B2 (en) Catalyst deterioration diagnosis device for internal combustion engine
JPH0763045A (en) Exhaust emission controlling catalytic degradation diagnoser of internal combustion engine
JP2884469B2 (en) Air-fuel ratio control device for internal combustion engine
JP2737482B2 (en) Degradation diagnosis device for catalytic converter device in internal combustion engine
JP2000291485A (en) Misfire detecting device for engine
JP2879301B2 (en) Catalyst deterioration diagnosis device for internal combustion engine
JPH07109918A (en) Catalysis degradation diagnosing device for internal combustion engine
JP3161249B2 (en) Catalyst deterioration diagnosis device for internal combustion engine
JP3601210B2 (en) Engine air-fuel ratio control device