KR20100063676A - 배전 시스템 - Google Patents

배전 시스템 Download PDF

Info

Publication number
KR20100063676A
KR20100063676A KR1020090119093A KR20090119093A KR20100063676A KR 20100063676 A KR20100063676 A KR 20100063676A KR 1020090119093 A KR1020090119093 A KR 1020090119093A KR 20090119093 A KR20090119093 A KR 20090119093A KR 20100063676 A KR20100063676 A KR 20100063676A
Authority
KR
South Korea
Prior art keywords
power
modular
transformer
subsea
distribution
Prior art date
Application number
KR1020090119093A
Other languages
English (en)
Other versions
KR101655457B1 (ko
Inventor
리차드 에스 장
라지브 다타
크리스토프 마틴 실러
만구엘르 요셉 송
Original Assignee
제너럴 일렉트릭 캄파니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제너럴 일렉트릭 캄파니 filed Critical 제너럴 일렉트릭 캄파니
Publication of KR20100063676A publication Critical patent/KR20100063676A/ko
Application granted granted Critical
Publication of KR101655457B1 publication Critical patent/KR101655457B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/20Arrangements for adjusting, eliminating or compensating reactive power in networks in long overhead lines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B7/00Enclosed substations, e.g. compact substations
    • H02B7/06Distribution substations, e.g. for urban network
    • H02B7/08Underground substations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Rectifiers (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

해저 배전 시스템(10)은, 사이트 확장 요건 및 전기 부하 토폴로지를 충족시키도록 적층되어 상호 접속된 전원측(20)과 해저 부하측(30)의 각각에 복수의 모듈러 변전기 구축 블록(12, 13)을 포함한다. 배전 시스템(10)은 시스템 DC 송전 링크/버스(14)를 포함하며, 여기서, 시스템 DC 링크(14)는 육상의 전력 설비(utility) 또는 최상위측 전원(20)으로부터 복수의 해저 부하 모듈(18)에 HVDC 또는 MVDC 전력을 송전하도록 구성되어 있다. 해저 배전 시스템(10)의 해저측에서의 적층형 모듈러 변전기 토폴로지는 해저 배전 시스템(10)의 육상/최상위측에서의 적층형 모듈러 변전기 토폴로지와 대칭이다.

Description

배전 시스템{MODULAR STACKED SUBSEA POWER SYSTEM ARCHITECTURES}
본 출원은, 35 U.S.C.§119(e)(1)하에서, Richard S. Zhang 등에 의해 2008년 12월 3일에 가출원된 미국 가특허 출원 제 61/119,490 호를 우선권으로서 주장한다.
본 발명은 일반적으로 직류(DC) 송전 버스를 통한 근해 및 해저 전기 부하용의 배전 시스템(electrical power delivery system)에 관한 것이다. DC 송전 버스의 수전단과 송전단 각각은 구조적으로 대칭인 모듈러 적층형 변전기(modular stacked power converters)를 포함한다. 수전단의 변전기는, 사이트 확장 요건에 근거하여, 또한 부하 유형 및 구성에 근거하여, 재구성이 가능하다.
육상 또는 근해의 플랫폼으로부터 해저 또는 먼바다에 위치하는 전기 부하로, 또는 역으로 근해의 발전(power generation) 타이백(tie-back)을 위한 역 전력 흐름 방향으로, 저비용 및 고 신뢰성/고 보수가능성, 고 효율성 및 고 전력 밀도로 보다 효율적으로 배전(deliver power)할 필요성이 산업계에서 늘고 있다. 오일 및 가스 산업에 있어서의 해저 처리 및 근해의 풍력 발전 등의 여러 애플리케이션에서 의 전화(electrification)의 경향에 의해 이러한 필요성이 점점 더 가속화되고 있다.
특히, 오일 및 가스 산업의 해저 처리에 있어, (1) 해저 처리를 위한 전기 드라이브 및 모터 구동 펌프 및 컴프레서, 해저 제어 및 통신 전자 장비, 전기 파이프라인 히팅(heating), 분리기/접착기용의 전력 공급 등과 같은 전기 부하가 늘어나고 있으며, (2) 프로젝트마다 수 kW ~ 대략 100MW 범위의 더 높은 전력이 요구되고 있고, (3) 수십 km에서 100~600km까지 거리가 더 길어지며, (4) 수심 1km ~ 3km의 더 깊어지고 있는 경향들을 보이고 있다.
단거리 또는 장거리에 거쳐 해저 및 근해 위치에서의 어느 영역에 분포된 많은 수의 전기 부하에 전력을 공급하기 위해, 전형적으로, 전력은, 육상 또는 근해의 플랫폼의 전원으로부터 송전 버스를 통해 해저 또는 근해의 전력 변전소(substation)로 송전되고, 그 후, 배전 버스를 통해 그들의 전기 부하에 또한 배전되어야 한다. 일부의 경우에, 전기 부하를 갖는, 새롭게 발견된 오일 및 가스 저장소는, 인근의 이미 설립된 발전/송전/배전 인프라구조에 타이백(tie-back)되어야 한다.
그들의 해저 및 근해 부하에 효율적으로 송전 및 배전하는 시스템 구조는, 시스템의 토폴로지 구조에서, 교류(AC) 또는 직류(DC) 송전 및 배전의 선택으로부터, 송전 및 배전을 위한 저압 레벨의 선택까지, 매우 중요하다. 이들 시스템 구조는 시스템 비용, 신뢰성/보수가능성, 시스템 복잡성, 효율성 및 전력 밀도에 상당히 영향을 준다. 예를 들어, 전형적으로, 송전을 위한 근해 또는 해저 케이블은 전체 시스템 비용의 상당한 부분을 차지한다. 3상 AC 송전과 비교하여, DC 송전은 케이블의 수와 중량을 감소시켜, 잠재적으로 재료 및 설치 비용을 감소시킨다. 송전/배전을 위한 더 높은 전압은 케이블 손실을 감소시키기 때문에, 효율성은 높아지고 케이블 비용은 적어진다. 그러나, 전기 부하는 중간 전압 또는 저전압을 필요로 할 수 있으며, 송전/배전 전압을 필요한 부하 전압 레벨로 변전하는 추가의 변전 스테이지가 필요할 수 있다. 최적의 시스템 구조는 시스템의 복잡성과 비용을 상당히 적게 할 수 있다. 웨트 메이트(wet-mate) 및 드라이 메이트(dry-mate) 커넥터 등의 해저 커넥터와, 결함 부품을 회피하는 결함 허용 운용 능력은 시스템의 신뢰성 및 보수가능성에 크게 영향을 준다. 해저 커넥터의 수를 감소시킬 수 있고, 결함 허용 운용 능력을 제공하는 시스템 구조는 해저 및 근해의 애플리케이션에 대한 장기 신뢰가능한 운용에 있어 가장 중요하다.
3상 50/60 Hz의 AC 송전 및 배전은 충분히 발달된 기술이다. 그러나, 장거리 및 고전력의 해저 또는 근해의 애플리케이션에서, 또는 단거리이지만 전원의 한정된 용량 마진을 가진 애플리케이션에서조차도, 나름대로의 제한사항들이 존재한다. 케이블의 캐패시턴스로 인해, 부하가 필요로 하는 유효 전력에 부가하여, 상당량의 무효 전력이 전원으로부터 공급되어 케이블에 의해 배송되어야 한다. 그 결과, 케이블 손실이 높아지고, 전류 정격이 높아지고, 케이블의 수가 많아지고 비 용이 높아지며, 케이블을 통과하는 전압 손실이 높아진다. 오일 및 가스 해저 프로젝트의 장거리 및 고 전력 송전에 있어, 이들은 문제점은 더 심각하게 된다. 단거리 송전/배전에 있어서 조차도, 이들 문제점은 전원의 한정된 용량 마진을 가진 애플리케이션에 있어 여전히 존재한다. 예를 들어, 한정된 용량 마진을 가진 근해 플랫폼 상의 기존의 전력 인프라구조에 타이백되어 있는 전기 부하에 있어, 비교적 많은 양의 무효 전력이 시스템의 안정성 문제점을 유발할 수 있거나, 전원의 전류 정격 한계값을 초과할 수 있다.
50/60 Hz의 AC 송전/배전의 단점은, AC 주파수를, 예를 들어, 16 2/3 Hz로 감소시켜 동일한 케이블의 캐패시턴스 하에서 무효 전력의 양을 감소시킴으로써 완화될 수 있다. 그러나, 이러한 해결책은 변압기 등의 자기 부품(magnetic component)의 크기를 비례해서 증가시킨다는 것이다. 고 전력 레벨에서는, 크기 및 중량의 불이익이 과도하게 커질 수 있다.
직류(DC) 송전 및 배전은 배전에 있어서의 케이블의 캐패시턴스 및 무효 전력의 문제점을 기본적으로 극복할 수 있으며, 고전압은 송전 및 배전에서의 손실을 더 감소시킬 수 있다. 기존의 고전압의 직류 기술은, 변전을 위한 고전압 능력을 제공하기 위해, 단지 2 레벨 회로 토폴로지를 이용하고, 프레스 팩 IGBT 및 사이리스터(thyristor) 등의 다수의 특수 전력 스위치의 직렬 접속에 의존한다. 2 레벨 회로를 이용한 고전압 스위칭으로 인해, 입력 및 출력을 평탄하게 하는데 큰 필터가 필요하다. 이들 특수 전력 스위치(밸브) 및 큰 필터는 기존의 고전압 직류 기술은 비싸고 규모가 큰 해저 애플리케이션 해결책이 되어질 수 있다.
다른 고전압 또는 중간 전압의 직류 기술은 다수의 모듈러 변전기의 구축 블록(building block)을 이용하여 적층하는 DC 송전 또는 배전 버스를 형성한다. 이들 구축 블록은 다른 표준의 드라이브 애플리케이션에서 동일하게 만들어질 수 있기 때문에, 적층형 모듈러 DC 기술은 잠재적으로 상당히 낮은 비용 및 상당히 높은 신뢰성을 제공한다. 또한, 더 낮은 비용으로 필터를 상당히 소형화할 수 있도록, 이들 모듈러 변전기를 위한 제어 수단이 AC 측에서의 고조파를 소거할 수 있다.
다수의 전기 부하에 작용하는 송전 및 배전용의 모듈러 적층형 변전기에 의해 형성된 DC 전송 버스에 근거한 시스템 구조에 주목할 필요가 있다. 주된 목적은, 낮은 시스템 비용 및 복잡성, 높은 시스템 신뢰성/보수가능성, 높은 효율성 및 전력 밀도를 가진 최적의 배전 시스템을 달성하는 것이다. 대상은, 단수 또는 복수의 전기 부하가, 해저 또는 근해에서, 장거리 또는 단거리로, 또한 고전력 또는 저전력으로, 전력을 공급받도록 하는 애플케이션이다.
본 발명의 실시예는, DC 송전 버스를 통해 하나 또는 복수의 AC 부하에 전력을 배전하도록 구성된 AC 전원을 포함하는 배전 시스템을 포함하되, 상기 DC 송전 버스는 송전단과 수전단을 포함하며, 상기 송전단은 적층형 모듈러 변전기 토폴로지로 구성된 복수의 모듈러 변전기에 접속되며, 상기 수전단은 적층형 모듈러 변전기 토폴로지로 구성된 복수의 모듈러 변전기에 접속되며, 상기 수전단에서의 상기 적층형 모듈러 변전기 토폴로지는 상기 송전단에서의 상기 적층형 모듈러 변전기 토폴로지와 대칭이다.
본 발명에 따르면, 낮은 시스템 비용 및 복잡성, 높은 시스템 신뢰성/보수가능성, 높은 효율성 및 전력 밀도를 가진 최적의 배전 시스템을 제공할 수 있다.
도 1은, 본 발명의 일실시예에 따라, 시스템의 최상위(top)측/육상측 및 해저측 모두의 모듈러 적층형 변전기 구축 블록(12, 13)을 구비한 해저 배전 시스템(10)을 예시하는 개략도이다. 해저 배전 시스템(10)은 중간 전압의 직류(MVDC) 또는 고전압의 직류(HVDC) 케이블일 수 있는 시스템 DC 송전 링크/버스(케이블)(14)를 포함하며, 여기서 송전 DC 버스(14)는 최상위측 또는 육상의 전력 모듈(16)으로부터 적어도 하나의 해저 부하 모듈(18)로 전력을 배송하도록 구성되어 있다. 전력 모듈(16)과 해저 부하 모듈(18)은 모두 각각이 하나 이상의 개별적인 적층형 모듈러 변전기 구축 블록(12, 13)을 포함할 수 있다. 각각의 모듈러 변전기 구축 블록(12, 13)은 다수의 기존의 모터 드라이브 유형에서는 일반적인 DC-AC 변환기, AC-AC 변전기, DC-DC 변전기, 또는 AC-DC 변환기 등의 모듈러 변전기를 포함하며, 전력 모듈(16)과 해저 부하 모듈(18)은, 예를 들어, 고전압 절연 레벨을 필요로 하는 그들의 토폴로지 등의 다른 종류의 전기적인 해저 부하 토폴로지와 사이트 확장 요건을 충족시키기 위해, 맞춤형의 변전기를 필요로 하지 않는다.
또한, 해저 배전 시스템(10)은, 예를 들어, 터빈(24)을 통해 구동되어 AC 전력을 생성하는 발전기(22)를 포함할 수 있는 발전 시스템(20)을 포함한다. 발전 시스템(20)은, 중간 전압의 직류(MVDC) 또는 고전압의 직류(HVDC) 전력을 생성하기 위해, 발전기(22) 및 터빈(24)과 함께 적층되어 구성되어 있는 복수의 산업 표준의 모듈러 변전기(12)를 각각이 포함할 수 있는 적어도 하나의 전력 모듈(16)을 더 포함한다.
해저 배전 시스템(30)은, 발전 시스템(20)을 통해 생성된 중간 전압의 DC 송전 전력 또는 고전압의 DC 송전 전력 레벨에 응답하여, 시스템의 해저 부하 모듈측에 함께 적층되어 구성되어 있는 복수의 산업 표준의 모듈러 변전기(13)를 각각이 포함할 수 있는 적어도 하나의 해저 부하 모듈(18)을 포함한다.
모듈러 적층형 변전기(13) 및 본 명세서에 기재된 다른 구성 요소뿐만 아니라, 표준의 모듈러 적층형 변전기(12) 간의 상호 접속은, 사이트 확장 요건 및 전기적인 해저 부하 토폴로지에 근거하여, MVDC 송전 전압, HVDC 송전 전압, 및 원하는 해저 배전 시스템 전압을 생성하도록, 또한, 예를 들어, 매칭되거나 매칭되지 않는 송전 및 배전 전압과 해저 부하 모듈 전압 사이의 매칭을 최적화하도록 쉽게 구성될 수 있다.
도 2는 종래의 해저 변전기 모듈(32)을 예시하는 개략도이다. 종래의 해저 변전기 모듈(32)은, 변전기 모듈(32)의 고장의 경우에 변전기 모듈(32)을 절연하도록 동작하는 스위치기어(switchgear)(34)를 더 포함하는 것으로 볼 수 있다. 변압기(36)는 스위치기어(34)의 출력에서의 AC 송전 전압을 해저 부하에 유용한 레벨까 지 감소시키는데 사용된다. 또한, 해저 커넥터(38)는 스위치기어(34)를 변압기(36)에 접속하기 위해 필요하며, 이는 해저 배전 네트워크의 신뢰성에 악영향을 준다. 종래의 변전기 모듈(32)은 AC-DC 변환기(40)와 DC-AC 변환기(42)를 포함하는 것으로 볼 수 있다.
도 3은, 본 발명의 특정 실시예에 따라, 통합된 바이패스 및 조정 기능을 가진 해저 변전기 모듈(13)을 도시한다. 통합된 바이패스 및 조정 기능을 가진 적층형 변전기 모듈(13)을 포함하는 해저 배전 네트워크를 통해 사용될 수 있는 변전기 모듈(13)은 변전기 모듈(32)에 비해 상당히 간단한 구조를 가진 것으로 볼 수 있다. 변전기 모듈(13)은, 예를 들어, DC 입력 전압에 응답하여 동작하기 때문에 AC-DC 변전 스테이지(40)를 필요로 하지 않아, 전체적인 시스템 신뢰성을 향상시키고 비용을 감소시킨다. 변전기 모듈(13)은, 예를 들어, 전압 조정기와 바이패스 스위치의 둘 다로서 구성될 수 있는 DC 초퍼 소자(DC chopper element)(44)를 더 포함하는 것으로 볼 수 있다. 초퍼 소자(44)는 상술한 스위치기어(34)를 대신하며, 변전기 모듈(12)의 고장시에 해저 변전기 모듈(13)을 바이패스하는 기능을 행한다. 초퍼 소자(44)는 대응하는 모듈러 적층형 변전기(13)에 대한 DC 버스 송전 전압을 조정하도록 구성될 수 있다. 따라서, 초퍼 소자(44)는, 스위치기어(34)와 변압기(36) 사이에, 또한 변압기(36)와 해저 변전기(32) 사이에 추가적인 해저 커넥터의 필요성을 제거하여, 상술한 바와 같이, 시스템의 신뢰성을 개선시키고 시스템 비용을 감소시킨다. 변전기 모듈(13)은, 본 발명의 일측면에 따라, 변전기 모듈(13)의 입력 브리지 부분의 2개의 절연된 게이트 바이폴러 트랜지스터(IGBT) 중 하나만이 동작가능할 때조차, 계속해서 동작할 수 있다는 점에서, 충분히 중복적으로 동작한다.
본 명세서에 기재된 다른 예시적인 변전기 모듈의 실시예뿐만 아니라 변전기 모듈(13)은 추가적인 필터 소자, 예를 들어, 인덕터를 사용할 수 있다. 이들 추가적인 필터 소자는, 그들 소자가 본 명세서에 기재된 신규한 원리의 이해에 필수적인 것이 아니기 때문에, 추가로 상세히 설명되거나 도면에 도시되어 있지 않다. 본 발명의 특정 실시예에 관련해서 본 명세서에 설명된 도면은 간결함을 유지하기 위해 또한 이들 신규한 원리의 이해를 돕기 위해 간략화되어 있다.
도 4는 본 발명의 실시예에 따라, 복수의 DC 송전 기반 해저 배전 시스템 토폴로지(50)를 나타내는 고레벨의 도면이다. DC 송전 기반 토폴로지(50) 각각은 본 명세서에 추가로 상세히 설명되는 대칭적인 모듈러 적층형 변전기의 개념으로 구현된다. 이들 모듈러 적층형 변전기는, 해저 배전 시스템이 사이트 확장 요건을 충족하거나 초과하며 다양한 전기적인 해저 부하 토폴로지를 지원하도록, 해저 배전 시스템을 쉽게 재구성하는 수단을 제공한다. 예를 들어, 짧거나 긴 송전 거리에 걸쳐 동작가능한 해결책을 제공하고, 고전력 또는 저전력의 부하 소비 요건을 수용하고, 및/또는 매칭되지 않은 송전/배전 전압 및 해저 부하 전압을 수용하는 해저 배전 시스템(10)이 필요할 수 있다.
복수의 모듈러 적층 해저 배전 시스템의 토폴로지(50)는 1) 송전 및 배전 전압이 모두 DC 전압이고 모듈러 적층형 변전기가 해저 부하에 통합되는 통합 가변 속도 드라이브 시스템을 가진 DC 배전(52)과, 2) 송전 및 배전 전압이 모두 DC 전 압이고 배전 전압이 송전 전압과 분리되지 않은 시스템(54)과, 3) 송전 전압과 배전 전압이 모두 DC 전압이고 배전 전압이 송전 전압과 분리된(즉, 변압기를 통한 전기적 분리(galvanic isolation)) 시스템(56)과, 4) 송전 전압이 DC 전압이고 배전 전압이 분리된 AC 전압인 시스템(58)과, 5) 송전 전압이 DC 전압이고 배전 전압이 DC 전압과 AC 전압의 모두를 포함하는 시스템(60)을 포함하는 것으로 볼 수 있다. 토폴로지(50) 각각에서의 송전 전압은, AC 송전 전압 케이블 비용과 비교하여 송전 케이블(14)의 비용이 감소되는 DC 송전 전압이다.
도 5는, 본 발명의 일실시예에 따라, DC 송전선의 송전단이 적층형 모듈러 변전기로 구현되고, DC 송전선의 수전단이 복수의 부하를 DC 송전선에 통합하도록 구성되고, 도 4에 나타낸 하나의 토폴로지에 대응하는 예시적인 해저 배전 시스템(46)을 예시한다. 본 발명에 따르면, 해저 배전 시스템(46)은, 송전/배전 전압이 총 소비 전압과 실질적으로 일치한 경우에 사용하기에 적합하다. 해저측의 모듈러 적층형 변전기의 토폴로지는 해저 배전 시스템(46)의 육상 또는 최상위측의 모듈러 적층형 변전기의 토폴로지와 대칭인 것으로 볼 수 있다.
도 6은, 본 발명의 일실시예에 따라, 수전단이 DC 송전 전압을 수전하기 위해 모듈러 적층형 변전기(55)로 구현되고, 직렬 접속된 인덕턴스(61)를 통해 대응하는 모듈러 변전기(55)에 접속된 하나 이상의 AC-DC 변전기(59)를 통해 하나 이상의 중간 DC 배전 버스(57)를 제공하도록 구성되며, 도 4에 나타낸 하나의 토폴로지(54)에 대응하는 해저 배전 시스템에 있어서의 DC 송전선의 수전단에 대한 상세도이다. DC 배전 버스(57)는, 예를 들어, DC 전력을 하나 이상의 전기 부하(63)에 배전하기 위해 래디얼(radial) 구조 또는 링 구조를 이용하여 구성될 수 있다.
도 7은, 본 발명의 일실시예에 따라, DC 송전선의 수전단이 DC 송전 전압을 수전하기 위해 모듈러 적층형 변전기(62)로 구현되고, 하나 이상의 전기적 분리 변압기(65)를 통해 대응하는 모듈러 변전기(62)에 접속된 하나 이상의 AC-DC 변전기(71)를 통해 DC 전력을 하나 이상의 전기 부하(67)에 배전하기 위한 하나 이상의 중간 DC 배전 버스(69)를 제공하도록 구성되며, 도 4에 나타낸 하나의 토폴로지(56)에 대응하는 해저 배전 시스템의 송전단 및 수전단에 대한 상세도이다. 시스템 토폴로지(56)는, 총 DC 송전 전압이 총 해저 부하 전압과 실질적으로 일치하지 않는 경우에 사용하기에 적합하다. 이 경우에, 송전 스테이지에서의 전압은 절연 변압기(65)에 의해 배전 시스템의 전압까지 단계적으로 낮추어진다. 본 발명의 특정 실시예에 따르면, 절연 변압기(65)는 저주파수의 변압기, 중간 주파수의 변압기, 고주파수의 변압기, 또는 이들의 조합일 수 있다. 저주파수는, 예를 들어, 16.7 Hz, 50 Hz, 또는 60 Hz일 수 있다. 중간 주파수는 대략 200 Hz와 대략 1 kHz 사이의 주파수일 수 있다. 고주파수는 대략 5 kHz와 대략 20 kHz 사이의 주파수일 수 있다. 그러나, 본 발명은 이에 한정되는 것은 아니며, 본 명세서에 기재된 이론에 따라 구현되는 다른 실시예가 대략 10 Hz와 대략 20 kHz 사이의 주파수 범위 중 어느 하나 이상의 주파수에서 동작하도록 구성된 절연 변압기를 이용하여 실행가능한 해결책을 제공할 수 있다.
도 1에 도시된 발전 시스템(20)은, 예를 들어 터빈(24)을 통해 구동되는 발전기(22)에 의해 전력이 제공될 수 있는, 본 명세서에 기재된 모듈러 적층 배전 시 스템의 각각에서 이용하기에 적합하다. 일실시예에 따르면, 육상 또는 최상위측 부하 모듈(16)은 복수의 모듈러 AC-DC 정류기 구축 블록(64)을 포함하며, 각각의 정류기(64)는 폴리건 변압기(polygon transformer)(66) 등의 변압기를 통한 감소된 발전기 신호에 응답한다. 간략화를 위해서 2 레벨 정류기만이 예시되어 있지만, 각각의 정류기 구축 블록(64)은, 예를 들어, 2 레벨 또는 3 레벨 정류기일 수 있다. 각각의 정류기 구축 블록(64)은, 타이밍 위상 시프트 출력 신호로 되는 방식으로 스위칭된다. 각각의 폴리건 변압기(66)는, 잔여 변압기 출력 신호에 대하여 공간적으로 위상 시프트된 출력 신호로 되는 방식으로 동작한다. 동시에, 바람직하게, 이들 타이밍 위상 시프트 및 공간 위상 시프트는, 송전 전압, 배전 전압, 및/또는 부하 전압 상에 나타날 수 있는 고조파 성분을 소거하도록 동작한다. 최상위측 또는 육상의 부하 모듈(16)은, 각각의 초퍼 모듈(44)이 자신의 대응하는 정류기(64)의 고장으로 인해 필요하다면 자신의 대응하는 정류기(64)에 대한 바이패스를 제공할 수 있도록, 바이패스 스위치로서 동작하도록 구성되는 복수의 초퍼 모듈(44)을 더 포함할 수 있다.
모듈러 적층 해저 DC 배전 시스템 토폴로지(56)의 해저 부분은 적층 토폴로지에서 복수의 모듈러 DC-DC 변전기(62)를 포함한다. 또한, 각각의 모듈러 변전기(62)는 고장시에 초퍼 모듈(44)을 통해 바이패스될 수 있다. DC 송전 버스/링크(14)의 해저측 상의 모듈러 적층형 변전기 토폴로지는 DC 송전 버스/링크(14)의 육상/최상위측 상의 모듈러 적층형 변전기 토폴로지와 대칭인 것으로 볼 수 있다.
도 8은, 본 발명의 일실시예에 따라, DC 송전선의 수전단이 DC 송전 전압을 수전하기 위해 모듈러 적층형 변전기(72)로 구현되고, 하나 이상의 변압기(65)를 통해 하나 이상의 중간 AC 배전 버스(74)를 제공하도록 구성되며, 도 4에 나타낸 하나의 토폴로지(58)에 대응하는 해저 배전 시스템의 수전단에 대한 상세도이다. 각각의 해저 부하(68)는 자기 자신의 가변 속도 드라이브(70)를 갖는 것으로 볼 수 있다. 하나의 토폴로지(58)에서의 해저 부하 모듈(18)은, 함께 적층되어 적어도 하나의 AC 전압을 생성하는 복수의 모듈러 DC-AC 변전기 구축 블록(72)을 포함한다. 변압기(65)는 대응하는 가변 속도 드라이브(70)를 통해 구동되는 해저 부하(68)와 해저 부하 모듈(18)의 수전단 사이를 분리한다.
본 발명의 특정 측면에 따르면, 해저 변압기(65)는 1차측의 복수의 3상 권선과 2차측의 탭 절환기(tap changer)를 포함한다. 탭 절환기는 부하가 있는 상태에서 동작하지 않아야 하며, 동작시에 직렬 접속된 송전 모듈의 개수와 접속된 해저 부하(68)의 개수에 따라 출력 전압을 적응시키는 메카니즘을 제공하기 때문에, 이러한 특징은 기존의 해저 배전 시스템에 비해 상당한 유연성을 갖는다. 해저 변압기(65)는 상이한 출력 전압을 공급하기 위해, 병렬 또는 직렬 접속될 수 있거나, 전환 스위치에 의해 접속되어, 예를 들어, 병렬 접속식으로부터 직렬 접속식으로 변경될 수 있다.
도 9는, 본 발명의 일실시예에 따라, DC 송전선의 수전단이 DC 송전 전압을 수전하기 위해 모듈러 적층형 변전기(76)로 구현되고, 1) 하나 이상의 절연 변압기(65)를 통해 절연되거나 절연되지 않은 하나 이상의 중간 DC 배전 버스(77)와, 2) 하나 이상의 대응하는 변압기(65)를 통한 하나 이상의 중간 AC 배전 버스(79) 와, 3) DC 송전선에 통합된 하나 이상의 부하(80)를 제공하도록 구성되고, 도 4에 나타낸 하나 이상의 합성 토폴로지(60)에 대응하는 해저 배전 시스템의 수전단에 대한 상세도이다.
시스템 토폴로지(60)는, 모듈러 적층 해저 부하 모듈의 DC-AC 변환기 부분(82)과 모듈러 해저 부하 모듈의 DC-DC 변전기 부분(84)을 제공하도록 적층될 수 있는 복수의 모듈러 변전기 구축 블록(76)을 포함한다. DC-AC 변환기(76)는 복수의 가변 속도 DC 드라이브(86)를 위한 MVDC 또는 HVDC 전력을 생성하는 인덕터 소자(61) 및 정류기 메카니즘(78)으로 구성될 수 있다. 또한, DC-AC 변환기(76)는 복수의 가변 속도 AC 드라이브(88)를 위한 MVAC 또는 HVAC 전력을 직접 생성하도록 구성될 수 있다. 통합된 변압기(65)를 구비한 모듈러 DC-DC 변전기 부분(84)은 DC 커플러로서 동작하여 고 DC 전압을, 대응하는 해저 부하에서 이용하기에 적합한 저 DC 전압 레벨로 감소시킬 수 있다.
도 10은, 본 발명의 일실시예에 따라, DC 송전선의 수전단이 DC 송전 전압을 수전하기 위해 모듈러 적층형 변전기(76)로 구현되고, 전기적 분리 변압기(65)로 DC 송전선의 수전단에서의 제어 전력을 AC 배전 버스(92)에 제공하도록 구성되며, 도 4에 나타낸 하나 이상의 토폴로지에 대응하는 해저 배전 시스템의 수전단에 대한 상세도이다.
모든 해저 설비는 제어 시스템을 필요로 한다. 해저 제어 시스템은 수십 또는 수백의 저전력 소비 부품, 예를 들어, 밸브의 물리적인 변위를 위한 전기 구동 액츄레이터로 구성될 수 있다. 장거리에 걸쳐 해저 제어 시스템용 전력을 송전하 는 것은 도전을 받고 있는데, 왜냐하면 이들 부하는 전형적으로 일정한 해저 버스 바 전압(sub-sea bus bar voltage)을 필요로 하기 때문이다. 도 10에 도시된 적층형 변전기 토폴로지는 수백 km에 걸쳐 신뢰성 있는 방식으로 제어 전력을 공급하는 해결책을 제공한다. 일반적으로, 공급되어야 하는 부하는 저전압/저전력(반드시 모터 구동의 부하일 필요는 없다)이며, AC 공급 전압, 예를 들어, 400V, 60Hz로 일반적으로 설계되는 상당수의 해저 저전력 소비 부품일 수 있다.
설명을 요약하면, 몇몇 해저 배전 시스템의 실시예가 본 명세서에 기재되어 있다. 이들 해저 배전 시스템의 실시예는, 사이트 확장 요건 및 전기 부하 토폴로지에 근거하여 용이하게 적층되어 구성되는 모듈러 변전기 구축 블록을 사용한다. 각각의 해저 배전 시스템의 실시예는 최상위측 또는 육상의 전원으로부터 적어도 하나의 해저 부하 모듈에 전력을 송전하도록 구성된 시스템 DC 송전 버스/링크를 포함할 수 있다. 최상위측 또는 육상의 전원과 함께 적층되어 구성되어 있는 복수의 모듈러 변전기를 포함하는 발전 시스템이 사용되어, DC 송전 버스/링크를 통해 송전되는 중간 전압의 직류(MVDC) 또는 고전압의 직류(HVDC) 전력을 생성한다. 시스템의 해저 부하측에 함께 적층되어 구성되어 있는 복수의 모듈러 변전기를 포함하는 해저 배전 시스템은 MVDC 또는 HVDC 송전 전력에 응답하여 원하는 해저 배전 시스템 전압을 생성한다. 해저 배전 시스템에서의 해저측 상의 적층형 모듈러 변전기 토폴로지는 해저 배전 시스템에서의 육상/최상위측의 적층형 모듈러 변전기 토폴로지와 대칭이다.
본 명세서에서 본 발명의 특정 실시예만이 예시되고 설명되었지만, 당업자에 의해 다수의 변경 및 수정이 일어날 수 있다. 따라서, 첨부한 청구범위는 본 발명의 진정한 사상의 범위 내에서 이러한 모든 수정 및 변경을 커버하고자 한다.
본 발명의 상술한 특징 및 다른 특징, 측면 및 장점은, 동일 부호가 도면 전체에 걸쳐 유사한 부분을 나타내는 첨부 도면과 결부시켜 설명된 상세한 설명으로부터 알 수 있다.
도 1은 본 발명에 따른 시스템의 육상측 또는 최상위측 및 해저측의 양쪽 상의 적층형 모듈러 변전기의 구축 블록을 가진 해저 배전 시스템을 예시하는 개략도,
도 2는 해저 배전 네트워크에서 알려져 있는 종래의 해저 변전기 모듈을 예시하는 개략도,
도 3은 해저 배전 네트워크에 있어 본 발명의 일실시예에 따른 통합 바이패스 및 조정 기능을 가진 해저 변전기 모듈을 예시하는 개략도,
도 4는 본 발명의 실시예에 따른 복수의 모듈러 적층 해저 배전 시스템의 토폴로지를 나타내는 도면,
도 5는, 본 발명의 일실시예에 따라, DC 송전선의 송전단이 적층형 모듈러 변전기로 구현되고, DC 송전선의 수전단이 복수의 부하를 DC 송전선에 통합하도록 구성되고, 도 4에 나타낸 하나의 토폴로지에 대응하는 예시적인 해저 배전 시스템을 예시하는 도면,
도 6은, 본 발명의 일실시예에 따라, 수전단이 DC 송전 전압을 수전하기 위해 모듈러 적층형 변전기로 구현되고, 직렬 접속된 인덕턴스를 통해 대응하는 모듈러 변전기에 접속된 하나 이상의 AC-DC 변전기를 통해 하나 이상의 중간 DC 배전 버스를 제공하도록 구성되며, 도 4에 나타낸 하나의 토폴로지에 대응하는 해저 배전 시스템에 있어서의 DC 송전선의 수전단에 대한 상세도,
도 7은, 본 발명의 일실시예에 따라, DC 송전선의 수전단이 DC 송전 전압을 수전하기 위해 모듈러 적층형 변전기로 구현되고, 하나 이상의 전기적 분리 변압기를 통해 대응하는 모듈러 변전기에 접속된 하나 이상의 AC-DC 변전기를 통해 하나 이상의 중간 DC 배전 버스를 제공하도록 구성되며, 도 4에 나타낸 하나의 토폴로지에 대응하는 해저 배전 시스템에 대한 상세도,
도 8은, 본 발명의 일실시예에 따라, DC 송전선의 수전단이 DC 송전 전압을 수전하기 위해 모듈러 적층형 변전기로 구현되고, 하나 이상의 변압기를 통해 하나 이상의 중간 AC 배전 버스를 제공하도록 구성되며, 도 4에 나타낸 하나의 토폴로지에 대응하는 해저 배전 시스템의 수전단에 대한 상세도,
도 9는, 본 발명의 일실시예에 따라, DC 송전선의 수전단이 DC 송전 전압을 수전하기 위해 모듈러 적층형 변전기로 구현되고, 1) 하나 이상의 절연 변압기를 통해 절연되거나 절연되지 않은 하나 이상의 중간 DC 배전 버스와, 2) 하나 이상의 대응하는 변압기를 통한 하나 이상의 중간 AC 배전 버스와, 3) DC 송전선에 통합된 하나 이상의 부하를 제공하도록 구성되고, 도 4에 나타낸 하나 이상의 토폴로지에 대응하는 해저 배전 시스템의 수전단에 대한 상세도,
도 10은, 본 발명의 일실시예에 따라, DC 송전선의 수전단이 DC 송전 전압을 수전하기 위해 모듈러 적층형 변전기로 구현되고, 전기적 분리 변압기로 DC 송전선의 수전단에서의 제어 전력을 AC 배전 버스에 제공하도록 구성되며, 도 4에 나타낸 하나 이상의 토폴로지에 대응하는 해저 배전 시스템의 수전단에 대한 상세도.
상술한 도면은 대안의 실시예를 설명하는 반면, 상세한 설명에서 설명하는 바와 같이, 본 발명의 다른 실시예가 또한 고려된다. 어떤 경우든, 이러한 설명은 제한이 아닌 대표로서 본 발명의 예시된 실시예를 제공한다. 다수의 다른 수정 및 실시예는 본 발명의 이론의 범위 및 사상을 벗어나지 않고 당업자에 의해 개조될 수 있다.
도면의 주요 부분에 대한 부호의 설명
10 : 해저 배전 시스템 12, 13 : 모듈러 변전기
14 : DC 송전 링크/버스/케이블 16 : 육상의 전력 모듈
18 : 해저 부하 모듈 20 : 발전 시스템
22 : 발전기 24 : 터빈
30 : 해저 배전 시스템 32 : 종래의 해저 변전기 모듈
34 : 종래의 해저 변전기 모듈 스위치기어
36 : 변압기
40 : 종래의 해저 변압기 모듈 AC-DC 변환기
42 : 종래의 해저 변압기 모듈 DC-AC 변환기
44 : DC 초퍼 46 : 해저 배전 시스템
50 : DC 송전 기반의 해저 배전 시스템 토폴로지
52 : 통합된 가변 속도 드라이브 시스템을 구비한 DC 배전
54 : 송전 및 배전 전압이 모두 DC 전압이고 배저 전압이 송전 전압과 분리되지 않은 시스템
55 : 모듈러 적층형 변전기
56 : 송전 및 배전 전압이 모두 DC 전압이고 배저 전압이 송전 전압과 분리된 시스템
57 : 중간 DC 배전 버스
58 : 송전 전압이 DC 전압이고 배전 전압이 분리된 AC 전압인 시스템
59 : AC-DC 변전기
60 : 송전 전압이 DC 전압이고 배전 전압이 DC 전압과 AC 전압을 모두 포함하는 시스템
61 : 직렬 접속의 인덕턴스 62 : 모듈러 적층형 변전기
63 : 전기 부하 64 : 모듈러 AC-DC 정류기 구축 블록
65 : 절연 변압기 66 : 폴리건 변압기
67 : 전기 부하 68 : 해저 부하
69 : 중간 DC 배전 버스 70 : 해저 부하 가변 속도 드라이브
71 : AC-DC 변전기 72 : 모듈러 적층형 변전기
74 : 중간 AC 배전 버스 76 : 모듈러 적층형 변전기
77 : 중간 DC 배전 버스 78 : 정류기 메카니즘
79 : 중간 AC 배전 버스 80 : 부하
82 : DC-AC 변환기 84 : DC-AC 변전기
86 : 가변 속도 DC 드라이브 88 : 가변 속도 AC 드라이브
92 : AC 배전 버스

Claims (10)

  1. 배전 시스템(10)으로서,
    DC 송전 버스(14)를 통해 하나 이상의 AC 부하에 전력을 배전하도록 구성된 AC 전원(20)을 포함하되,
    상기 DC 송전 버스(14)는 송전단과 수전단을 포함하며,
    상기 송전단은 적층형 모듈러 변전기 토폴로지로 구성된 복수의 모듈러 변전기(12)에 접속되며,
    상기 수전단은 적층형 모듈러 변전기 토폴로지로 구성된 복수의 모듈러 변전기(13)에 접속되며,
    상기 수전단에서의 상기 적층형 모듈러 변전기 토폴로지는 상기 송전단에서의 상기 적층형 모듈러 변전기 토폴로지와 대칭인
    배전 시스템.
  2. 제 1 항에 있어서,
    상기 하나 이상의 AC 부하는 하나 이상의 대응하는 수전단의 모듈러 변전기에 직접 접속되어 있는 배전 시스템.
  3. 제 1 항에 있어서,
    상기 하나 이상의 AC 부하는 적어도 하나의 변압기를 통해 하나 이상의 대응하는 수전단의 모듈러 변전기(13)에 접속되어 있는 배전 시스템.
  4. 제 1 항에 있어서,
    상기 DC 송전 버스(14)의 상기 수전단에서의 상기 모듈러 변전기 토폴로지는 중간 DC 배전 버스를 제공하도록 구성된 DC-DC 변전 스테이지를 포함하는 배전 시스템.
  5. 제 4 항에 있어서,
    상기 DC 송전 버스(14)의 상기 수전단에서의 상기 모듈러 변전기 토폴로지는 AC 버스를 제공하도록 구성된 DC-AC 변전 스테이지를 더 포함하는 배전 시스템.
  6. 제 5 항에 있어서,
    상기 DC-AC 변전 스테이지의 AC 출력에 접속된 AC-DC 변전 스테이지를 더 포함하는 배전 시스템.
  7. 제 4 항에 있어서,
    상기 DC 송전 버스(14)의 상기 수전단에서의 상기 복수의 적층형 모듈러 변전기(13)는, 상기 중간의 DC 배전 버스에 접속되어 하나 이상의 해저 부하를 구동하도록 구성된 하나 또는 복수의 DC-AC 변전기를 더 포함하는 배전 시스템.
  8. 제 1 항에 있어서,
    상기 수전단은,
    복수의 별개의 중간 DC 배전 버스로서, 각각이, 대응하는 변압기 및 대응하는 정류기 메카니즘와 함께 구성되어 대응하는 중간 DC 배전 버스를 제공하는 모듈러 DC/AC 변전기를 포함하는, 상기 복수의 별개의 중간 DC 배전 버스와,
    중간 AC 배전 버스로서, 함께 구성된 하나 이상의 모듈러 DC/AC 변전기 및 대응하는 변압기를 포함하는, 상기 중간 AC 배전 버스
    를 포함하는 배전 시스템.
  9. 제 1 항에 있어서,
    적어도 하나의 수전단의 모듈러 변전기(13)는, 대응하는 해저 부하를 제어하기 위해, 변전기와, 통합된 가변 속도 드라이브의 둘 다로서 구성되는 배전 시스 템.
  10. 제 1 항에 있어서,
    상기 수전단의 적층형 모듈러 변전기(13)는, MVDC 또는 HVDC의 해저 부하와, MVAC 또는 HVAC의 해저 부하의 둘 다를 수용하도록 구성되는 배전 시스템.
KR1020090119093A 2008-12-03 2009-12-03 배전 시스템 KR101655457B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US11949008P 2008-12-03 2008-12-03
US61/119,490 2008-12-03
US12/317,306 US8692408B2 (en) 2008-12-03 2008-12-22 Modular stacked subsea power system architectures
US12/317,306 2008-12-22

Publications (2)

Publication Number Publication Date
KR20100063676A true KR20100063676A (ko) 2010-06-11
KR101655457B1 KR101655457B1 (ko) 2016-09-07

Family

ID=42062048

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090119093A KR101655457B1 (ko) 2008-12-03 2009-12-03 배전 시스템

Country Status (7)

Country Link
US (1) US8692408B2 (ko)
EP (1) EP2194638A3 (ko)
JP (1) JP5627879B2 (ko)
KR (1) KR101655457B1 (ko)
CN (1) CN101753039B (ko)
CA (1) CA2686177A1 (ko)
RU (1) RU2518163C2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200067169A (ko) * 2017-10-06 2020-06-11 제네럴 일렉트릭 테크놀러지 게엠베하 컨버터 설계
US11792950B2 (en) 2021-01-15 2023-10-17 Amir KHALAJI Modular upgradable low voltage power supply

Families Citing this family (118)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1908163A1 (en) * 2005-07-01 2008-04-09 Vestas Wind Systems A/S A variable rotor speed wind turbine, wind park, method of transmitting electric power and method of servicing or inspecting a variable rotor speed wind turbine
GB2443843B (en) 2006-11-14 2011-05-25 Statoil Asa Seafloor-following streamer
GB0722469D0 (en) 2007-11-16 2007-12-27 Statoil Asa Forming a geological model
GB0724847D0 (en) * 2007-12-20 2008-01-30 Statoilhydro Method of and apparatus for exploring a region below a surface of the earth
CN102349223B (zh) * 2009-03-11 2015-03-25 Abb技术有限公司 模块化的电压源变换器
US20100290261A1 (en) * 2009-05-17 2010-11-18 CapTech Development Corporation Machine, Computer Program Product And Method For Implementing An Improved Efficiency And Reduced Harmonic Distortion Inverter
EP2293407A1 (en) * 2009-09-08 2011-03-09 Converteam Technology Ltd Power transmission and distribution systems
GB2479200A (en) 2010-04-01 2011-10-05 Statoil Asa Interpolating pressure and/or vertical particle velocity data from multi-component marine seismic data including horizontal derivatives
US8757270B2 (en) * 2010-05-28 2014-06-24 Statoil Petroleum As Subsea hydrocarbon production system
CN103026603B (zh) * 2010-06-18 2016-04-13 阿尔斯通技术有限公司 用于hvdc传输和无功功率补偿的转换器
CN101882792B (zh) * 2010-06-30 2012-08-22 国家电网公司 一种用于特高压直流输电的接线方法及特高压换流站
US20150036256A1 (en) * 2010-07-30 2015-02-05 Exxon Mobil Upstream Research Company Method for Design of Subsea Electrical Substation and Power Distribution System
EP2606547A1 (en) * 2010-09-24 2013-06-26 Siemens Aktiengesellschaft Subsea dc transmission system
DE102010043176A1 (de) * 2010-10-29 2012-05-03 Converteam Gmbh Elektrische Schaltung zur Umwandlung elektrischer Energie zwischen einem dreiphasigen Stromnetz und einem einphasigen Stromnetz
US9450412B2 (en) * 2010-12-22 2016-09-20 General Electric Company Method and system for control power in remote DC power systems
CN102111077B (zh) * 2011-02-24 2013-12-11 丰汇新能源有限公司 充电电源系统
US8624431B2 (en) * 2011-02-26 2014-01-07 General Electric Company System and method for power sharing of front-end converters without communication link in a modular-stacked DC transmission system
CN102136725A (zh) * 2011-03-02 2011-07-27 荣信电力电子股份有限公司 一种轻型直流输电系统拓扑
US8743514B2 (en) * 2011-04-25 2014-06-03 General Electric Company HVDC power transmission with cable fault ride-through capability
CN102185277B (zh) * 2011-04-29 2013-09-18 深圳市行健自动化股份有限公司 海上电网优先脱扣控制方法及装置
US8624530B2 (en) 2011-06-14 2014-01-07 Baker Hughes Incorporated Systems and methods for transmission of electric power to downhole equipment
US8922054B2 (en) * 2011-07-31 2014-12-30 General Electric Company Distributed DC energy storage for supplying an intermittent subsea load
US20130033103A1 (en) * 2011-08-02 2013-02-07 Mcjunkin Samuel T Systems and Methods For Distributed Impedance Compensation In Subsea Power Distribution
US20130175958A1 (en) * 2011-08-04 2013-07-11 Samuel T. McJunkin Systems and methods for transmitting and/or utilizing hvdc power in a submarine environment
US9151131B2 (en) * 2011-08-16 2015-10-06 Zeitecs B.V. Power and control pod for a subsea artificial lift system
US8379416B1 (en) * 2011-08-29 2013-02-19 General Electric Company Power conversion system and method
FR2982092B1 (fr) * 2011-11-02 2015-01-02 Valeo Systemes De Controle Moteur Module de puissance et dispositif electrique pour l'alimentation et la charge combinees respectivement d'un accumulateur et d'un moteur
PL2592734T3 (pl) * 2011-11-14 2020-04-30 Vetco Gray Scandinavia As Osprzęt elektryczny oraz sposób eksploatacji maszyn obracających się z dużą prędkością
US8928259B2 (en) 2011-11-30 2015-01-06 General Electric Company Modular stacked DC architecture traction system and method of making same
US9143029B2 (en) * 2011-12-15 2015-09-22 General Electric Company System and method for power distribution
US9048694B2 (en) * 2012-02-01 2015-06-02 Abb Research Ltd DC connection scheme for windfarm with internal MVDC collection grid
US9300132B2 (en) 2012-02-02 2016-03-29 Abb Research Ltd Medium voltage DC collection system
US9013904B2 (en) * 2012-03-30 2015-04-21 General Electric Company System and method for DC power transmission
US9281666B2 (en) * 2012-04-28 2016-03-08 Schneider Electric Industries Sas Subsea electrical distribution system having redundant circuit breaker control and method for providing same
US9960602B2 (en) 2012-05-02 2018-05-01 The Aerospace Corporation Maximum power tracking among distributed power sources
US9325176B2 (en) * 2012-05-02 2016-04-26 The Aerospace Corporation Optimum power tracking for distributed power sources
US20130313906A1 (en) * 2012-05-23 2013-11-28 General Electric Company Remote load bypass system
CA2872466A1 (en) * 2012-06-15 2013-12-19 Exxonmobil Upstream Resarch Company System and method to control electrical power input to direct electric heat pipeline
US9178357B2 (en) 2012-06-20 2015-11-03 Siemens Aktiengesellschaft Power generation and low frequency alternating current transmission system
RU2598080C2 (ru) * 2012-06-27 2016-09-20 Адб Бвба Модульный регулятор постоянного тока
US9325251B2 (en) * 2012-08-30 2016-04-26 Siemens Aktiengesellschaft Power delivery systems and methods for offshore applications
US9331481B2 (en) 2012-08-31 2016-05-03 General Electric Company Systems and methods for power transmission with cable segment failover support
WO2014037583A2 (en) * 2012-09-10 2014-03-13 Abb Technology Ag Power distribution system for autonomous facilities
WO2014044561A1 (en) * 2012-09-24 2014-03-27 Abb Technology Ltd Direct current power transmission networks operating at different voltages
US9525284B2 (en) 2012-10-01 2016-12-20 Abb Research Ltd Medium voltage DC collection system with power electronics
US9410410B2 (en) 2012-11-16 2016-08-09 Us Well Services Llc System for pumping hydraulic fracturing fluid using electric pumps
US10254732B2 (en) 2012-11-16 2019-04-09 U.S. Well Services, Inc. Monitoring and control of proppant storage from a datavan
US10232332B2 (en) 2012-11-16 2019-03-19 U.S. Well Services, Inc. Independent control of auger and hopper assembly in electric blender system
US10526882B2 (en) 2012-11-16 2020-01-07 U.S. Well Services, LLC Modular remote power generation and transmission for hydraulic fracturing system
US10020711B2 (en) 2012-11-16 2018-07-10 U.S. Well Services, LLC System for fueling electric powered hydraulic fracturing equipment with multiple fuel sources
US9745840B2 (en) 2012-11-16 2017-08-29 Us Well Services Llc Electric powered pump down
US11449018B2 (en) 2012-11-16 2022-09-20 U.S. Well Services, LLC System and method for parallel power and blackout protection for electric powered hydraulic fracturing
US9970278B2 (en) 2012-11-16 2018-05-15 U.S. Well Services, LLC System for centralized monitoring and control of electric powered hydraulic fracturing fleet
US10036238B2 (en) * 2012-11-16 2018-07-31 U.S. Well Services, LLC Cable management of electric powered hydraulic fracturing pump unit
US10119381B2 (en) 2012-11-16 2018-11-06 U.S. Well Services, LLC System for reducing vibrations in a pressure pumping fleet
US11476781B2 (en) 2012-11-16 2022-10-18 U.S. Well Services, LLC Wireline power supply during electric powered fracturing operations
US9893500B2 (en) 2012-11-16 2018-02-13 U.S. Well Services, LLC Switchgear load sharing for oil field equipment
US11959371B2 (en) 2012-11-16 2024-04-16 Us Well Services, Llc Suction and discharge lines for a dual hydraulic fracturing unit
US9995218B2 (en) 2012-11-16 2018-06-12 U.S. Well Services, LLC Turbine chilling for oil field power generation
US10407990B2 (en) 2012-11-16 2019-09-10 U.S. Well Services, LLC Slide out pump stand for hydraulic fracturing equipment
US9840901B2 (en) 2012-11-16 2017-12-12 U.S. Well Services, LLC Remote monitoring for hydraulic fracturing equipment
US9650879B2 (en) 2012-11-16 2017-05-16 Us Well Services Llc Torsional coupling for electric hydraulic fracturing fluid pumps
US8994206B2 (en) 2013-01-14 2015-03-31 Abb Technology Ag Turbine-based energy generation system with DC output
WO2014116257A1 (en) * 2013-01-28 2014-07-31 General Electric Company Modular converter for subsea applications
US9438042B2 (en) * 2013-02-19 2016-09-06 General Electric Company Direct current power delivery system and method
WO2014131456A1 (de) * 2013-02-28 2014-09-04 Siemens Aktiengesellschaft Umrichterstation mit diodengleichrichter
EP2824822B1 (en) 2013-07-09 2017-05-03 ABB Schweiz AG A power transmission and distribution system supplying a plurality of subsea loads
US9496702B2 (en) * 2013-07-15 2016-11-15 General Electric Company Method and system for control and protection of direct current subsea power systems
US9178349B2 (en) 2013-09-11 2015-11-03 General Electric Company Method and system for architecture, control, and protection systems of modular stacked direct current subsea power system
US20150102671A1 (en) * 2013-10-15 2015-04-16 General Electric Company Direct current power transmission system
US9705324B2 (en) 2013-12-03 2017-07-11 Abb Schweiz Ag Converter system for AC power sources
US9627862B2 (en) 2013-12-26 2017-04-18 General Electric Company Methods and systems for subsea direct current power distribution
US9611855B2 (en) 2013-12-27 2017-04-04 General Electric Company Methods and systems for direct current power system subsea boosting
US9951779B2 (en) * 2013-12-27 2018-04-24 General Electric Company Methods and systems for subsea boosting with direct current and alternating current power systems
US9774183B2 (en) * 2013-12-27 2017-09-26 General Electric Company Methods and systems for subsea direct current power distribution
US9537428B2 (en) 2014-01-14 2017-01-03 General Electric Company Combined power transmission and heating systems and method of operating the same
CN104953609A (zh) * 2014-03-27 2015-09-30 通用电气公司 直流电能传输系统和方法
US9537311B2 (en) 2014-05-23 2017-01-03 General Electric Company Subsea power transmission
EP2961021A1 (en) 2014-06-27 2015-12-30 Siemens Aktiengesellschaft Subsea power distribution system and method
DE102014110410A1 (de) * 2014-07-23 2016-01-28 Universität der Bundeswehr München Modulares Energiespeicher-Direktumrichtersystem
US9800054B2 (en) 2014-07-31 2017-10-24 Abb Schweiz Ag DC connection system for renewable power generators
WO2016066188A1 (de) * 2014-10-28 2016-05-06 Siemens Aktiengesellschaft Umrichteranordnung mit einer mehrzahl von umrichtern für einen windpark
NO338399B1 (no) * 2014-11-10 2016-08-15 Vetco Gray Scandinavia As Anlegg for å levere elektrisk kraft til undersjøiske lavspenningslaster
US9595884B2 (en) * 2014-12-18 2017-03-14 General Electric Company Sub-sea power supply and method of use
DE102015000257A1 (de) 2015-01-16 2016-07-21 Thyssenkrupp Ag Autonome Unterwasserenergieversorgungsvorrichtung
US9680396B2 (en) * 2015-04-13 2017-06-13 Alexey TYSHKO Multi-vector outphasing DC to AC converter and method
WO2016165719A1 (en) * 2015-04-16 2016-10-20 Vestas Wind Systems A/S Wind turbine converter control
NO339899B1 (en) * 2015-05-14 2017-02-13 Vetco Gray Scandinavia As A control system for controlling a subsea gas compression system
DE102015121226A1 (de) * 2015-12-07 2017-06-08 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Umrichter, Elektrisches Polyphasensystem und Verfahren
GB2545455A (en) * 2015-12-17 2017-06-21 General Electric Technology Gmbh Power supply apparatus
EP3249801A1 (de) * 2016-05-23 2017-11-29 Siemens Aktiengesellschaft Anlage und verfahren zum erzeugen einer in ein stromnetz einzuspeisenden dreiphasenwechselspannung
US10120402B2 (en) 2016-06-14 2018-11-06 Raytheon Company Large scale sub-sea high voltage distributed DC power infrastructure using series adaptive clamping
WO2018044323A1 (en) 2016-09-02 2018-03-08 Halliburton Energy Services, Inc. Hybrid drive systems for well stimulation operations
CA2987665C (en) 2016-12-02 2021-10-19 U.S. Well Services, LLC Constant voltage power distribution system for use with an electric hydraulic fracturing system
EP3337290B1 (en) * 2016-12-13 2019-11-27 Nexans Subsea direct electric heating system
EP3626027A1 (en) * 2017-05-18 2020-03-25 Nvent Services Gmbh Universal power converter
US11011894B2 (en) * 2017-05-24 2021-05-18 J. Ray Mcdermott, S.A. HVDC modular platform design
US10280724B2 (en) 2017-07-07 2019-05-07 U.S. Well Services, Inc. Hydraulic fracturing equipment with non-hydraulic power
US10840693B2 (en) 2017-08-04 2020-11-17 Electro-Mechanical Corporation Modular power center
WO2019071086A1 (en) 2017-10-05 2019-04-11 U.S. Well Services, LLC SYSTEM AND METHOD FOR FLOWING INSTRUMENTED FRACTURING SLUDGE
WO2019075475A1 (en) 2017-10-13 2019-04-18 U.S. Well Services, LLC AUTOMATIC FRACTURING SYSTEM AND METHOD
US10655435B2 (en) 2017-10-25 2020-05-19 U.S. Well Services, LLC Smart fracturing system and method
CA3084607A1 (en) 2017-12-05 2019-06-13 U.S. Well Services, LLC High horsepower pumping configuration for an electric hydraulic fracturing system
WO2019113147A1 (en) 2017-12-05 2019-06-13 U.S. Well Services, Inc. Multi-plunger pumps and associated drive systems
WO2019152981A1 (en) 2018-02-05 2019-08-08 U.S. Well Services, Inc. Microgrid electrical load management
US20190267810A1 (en) * 2018-02-27 2019-08-29 Ideal Power, Inc. HVDC/MVDC Systems and Methods with Low-Loss Fully-Bidirectional BJT Circuit Breakers
AR115054A1 (es) 2018-04-16 2020-11-25 U S Well Services Inc Flota de fracturación hidráulica híbrida
CA3103490A1 (en) 2018-06-15 2019-12-19 U.S. Well Services, LLC Integrated mobile power unit for hydraulic fracturing
US10648270B2 (en) 2018-09-14 2020-05-12 U.S. Well Services, LLC Riser assist for wellsites
CA3115669A1 (en) 2018-10-09 2020-04-16 U.S. Well Services, LLC Modular switchgear system and power distribution for electric oilfield equipment
US11604169B2 (en) * 2019-01-10 2023-03-14 Shuyong Paul Du Renewable power system and method for pipeline inspection tools
US11578577B2 (en) 2019-03-20 2023-02-14 U.S. Well Services, LLC Oversized switchgear trailer for electric hydraulic fracturing
CA3139970A1 (en) 2019-05-13 2020-11-19 U.S. Well Services, LLC Encoderless vector control for vfd in hydraulic fracturing applications
WO2021022048A1 (en) 2019-08-01 2021-02-04 U.S. Well Services, LLC High capacity power storage system for electric hydraulic fracturing
US11009162B1 (en) 2019-12-27 2021-05-18 U.S. Well Services, LLC System and method for integrated flow supply line
US11916450B2 (en) * 2020-04-08 2024-02-27 Halliburton Energy Services, Inc. Axial flux submersible electric motor
US11888398B2 (en) 2021-06-25 2024-01-30 Ge Energy Power Conversion Technology Limited Self reconfigurable, adaptable power electronics building block (A-PEBB)
EP4329128A1 (en) * 2022-08-23 2024-02-28 General Electric Technology GmbH Hvdc transformer configuration for split pccs

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000245066A (ja) * 1999-02-19 2000-09-08 Hitachi Ltd 直流送電システムの制御装置
JP2004513595A (ja) * 2000-10-30 2004-04-30 クーパー キャメロン コーポレイション 制御および供給システム
US20080252142A1 (en) * 2005-09-09 2008-10-16 Siemens Aktiengesellschaft Apparatus for Electrical Power Transmission

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE363001B (ko) 1972-05-18 1973-12-27 Asea Ab
SE380687B (sv) * 1974-03-15 1975-11-10 Asea Ab Forfarande vid drift av en tvapolig likstromsoverforing jemte likstromsoverforing avsedd att drivas enligt forfarandet.
DE2435755A1 (de) * 1974-07-25 1976-02-05 Bbc Brown Boveri & Cie Energieuebertragungssystem mit sammelleitung fuer gleichstrom
GB1520884A (en) 1975-07-22 1978-08-09 Nii Postoyan Toka Dc Power transmission methods and systems
JPS5850110B2 (ja) * 1976-02-18 1983-11-08 株式会社日立製作所 サイリスタ高圧変換装置
EP0290914B1 (de) * 1987-05-15 1991-12-04 Siemens Aktiengesellschaft Zustandssignalbildung zur Anzeige des Überganges in die Betriebsart "Bypass" bei einer Einrichtung zur Hochspannungsgleichstromübertragung
RU2058644C1 (ru) * 1994-01-12 1996-04-20 Дальневосточный государственный технический университет Устройство для электроснабжения подводного аппарата с судна-носителя
FR2727581B1 (fr) * 1994-11-24 1996-12-27 Cegelec Systeme d'alimentation d'auxiliaires pour station de pompage alimentee a distance
JPH1189235A (ja) 1997-09-08 1999-03-30 Tokyo Electric Power Co Inc:The 自励式直流送電システムにおける直流電圧分担バランス制御装置
DE19847680A1 (de) 1998-10-15 2000-04-27 Siemens Ag Verfahren zur Steuerung eines 12-pulsigen Stromrichters
SE518121C2 (sv) 1999-12-23 2002-08-27 Abb Ab Elkraftsystem baserat på förnyelsebara energikällor
US7615893B2 (en) * 2000-05-11 2009-11-10 Cameron International Corporation Electric control and supply system
US6683389B2 (en) * 2000-06-30 2004-01-27 Capstone Turbine Corporation Hybrid electric vehicle DC power generation system
US6670721B2 (en) * 2001-07-10 2003-12-30 Abb Ab System, method, rotating machine and computer program product for enhancing electric power produced by renewable facilities
GB2397445A (en) 2003-01-14 2004-07-21 Alstom Power transmission circuits
US7117070B2 (en) * 2003-06-30 2006-10-03 Rensselaer Polytechnic Institute Power flow controller responsive to power circulation demand for optimizing power transfer
US7969755B2 (en) * 2005-09-09 2011-06-28 Siemens Aktiengesellschaft Apparatus for electrical power transmission
US8044537B2 (en) * 2006-06-28 2011-10-25 Abb Technology Ltd. Modular HVDC converter
US7532490B2 (en) * 2006-08-14 2009-05-12 General Electric Company Converter topology and methods for interfacing an electrical machine to electrical power grid
US7851943B2 (en) * 2006-12-08 2010-12-14 General Electric Company Direct current power transmission and distribution system
US7633770B2 (en) * 2006-12-08 2009-12-15 General Electric Company Collection and transmission system
US7688048B2 (en) * 2007-02-21 2010-03-30 American Power Conversion Corporation 3-phase high power UPS
EP2023475B1 (de) * 2007-08-04 2016-10-12 SMA Solar Technology AG Wechselrichter für eine geerdete Gleichspannungsquelle, insbesondere einen Photovoltaikgenerator
DE102008022618A1 (de) * 2008-05-07 2009-12-31 Siemens Aktiengesellschaft Stromversorgungseinrichtung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000245066A (ja) * 1999-02-19 2000-09-08 Hitachi Ltd 直流送電システムの制御装置
JP2004513595A (ja) * 2000-10-30 2004-04-30 クーパー キャメロン コーポレイション 制御および供給システム
US20080252142A1 (en) * 2005-09-09 2008-10-16 Siemens Aktiengesellschaft Apparatus for Electrical Power Transmission
JP2009507463A (ja) * 2005-09-09 2009-02-19 シーメンス アクチエンゲゼルシヤフト 電気エネルギー伝送のための装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200067169A (ko) * 2017-10-06 2020-06-11 제네럴 일렉트릭 테크놀러지 게엠베하 컨버터 설계
US11792950B2 (en) 2021-01-15 2023-10-17 Amir KHALAJI Modular upgradable low voltage power supply

Also Published As

Publication number Publication date
JP2010136615A (ja) 2010-06-17
US20100133901A1 (en) 2010-06-03
CN101753039B (zh) 2014-09-17
JP5627879B2 (ja) 2014-11-19
US8692408B2 (en) 2014-04-08
EP2194638A2 (en) 2010-06-09
CA2686177A1 (en) 2010-06-03
RU2009145979A (ru) 2011-06-10
EP2194638A3 (en) 2017-05-31
RU2518163C2 (ru) 2014-06-10
CN101753039A (zh) 2010-06-23
KR101655457B1 (ko) 2016-09-07

Similar Documents

Publication Publication Date Title
KR101655457B1 (ko) 배전 시스템
RU2543516C2 (ru) Система передачи и распределения электроэнергии
US10811988B2 (en) Power management utilizing synchronous common coupling
US11539302B2 (en) Direct electrical heating arrangement with a power electronic converter
US10608545B2 (en) Power management utilizing synchronous common coupling
US8044537B2 (en) Modular HVDC converter
US7633770B2 (en) Collection and transmission system
US20120175962A1 (en) Power Collection and Transmission Systems
EP2341594A1 (en) Power collection and transmission systems
NO328333B1 (no) Omformeranordning for likespenning.
JP2013541934A (ja) 整流装置に接続されるモジュール式多電圧値出力変換器装置
WO2014037583A2 (en) Power distribution system for autonomous facilities
CN111052588B (zh) 具有Scott变压器的功率转换装置
US10193348B2 (en) Arrangement and installation for transmitting electric power with a reserve rectifier
US9531182B2 (en) Energizing system and method
CN103354968A (zh) 用于将电能馈送至能量供给系统中的装置
CN105474497A (zh) 电气组件
Sonnathi et al. Alternative configurations and utilisation of HVDC converters

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant