CN101753039B - 模块化堆叠海底电力系统架构 - Google Patents
模块化堆叠海底电力系统架构 Download PDFInfo
- Publication number
- CN101753039B CN101753039B CN200910252699.XA CN200910252699A CN101753039B CN 101753039 B CN101753039 B CN 101753039B CN 200910252699 A CN200910252699 A CN 200910252699A CN 101753039 B CN101753039 B CN 101753039B
- Authority
- CN
- China
- Prior art keywords
- power
- receiving terminal
- modular
- seabed
- power converter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 103
- 238000012546 transfer Methods 0.000 claims description 18
- 230000008859 change Effects 0.000 claims description 9
- 230000000903 blocking effect Effects 0.000 claims description 6
- 230000007246 mechanism Effects 0.000 claims description 4
- 230000005611 electricity Effects 0.000 description 23
- 238000011068 loading method Methods 0.000 description 16
- 238000002955 isolation Methods 0.000 description 10
- 239000003653 coastal water Substances 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 4
- 230000010363 phase shift Effects 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000009711 regulatory function Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/18—Arrangements for adjusting, eliminating or compensating reactive power in networks
- H02J3/20—Arrangements for adjusting, eliminating or compensating reactive power in networks in long overhead lines
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M5/00—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
- H02M5/40—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
- H02M5/42—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
- H02M5/44—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
- H02M5/453—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
- H02M5/458—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02B—BOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
- H02B7/00—Enclosed substations, e.g. compact substations
- H02B7/06—Distribution substations, e.g. for urban network
- H02B7/08—Underground substations
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/36—Arrangements for transfer of electric power between ac networks via a high-tension dc link
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/003—Constructional details, e.g. physical layout, assembly, wiring or busbar connections
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/12—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/60—Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
- Direct Current Feeding And Distribution (AREA)
- Rectifiers (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
本发明涉及模块化堆叠海底电力系统架构。一种海底电力输送系统(10)包括被堆叠并互连以满足现场扩展要求和电负载拓扑结构的在电源(20)侧和海底负载侧(30)中的每一侧的多个模块化功率转换器构件(12)、(13)。电力输送系统(10)包括系统DC传输链路/总线(14),其中,系统DC链路(14)被配置为从岸上公共事业设备或顶侧电源(20)向多个海底负载模块(18)载送HDVC或MVDC功率。海底电力输送系统(10)的海底侧的堆叠模块化功率转换器拓扑结构与海底电力输送系统(10)的岸上/顶侧的堆叠模块化功率转换器拓扑结构对称。
Description
对临时申请优先权的要求
根据美国法典第35章条款119(e)(1),本申请要求由RichardS.Zhang等人于2008年12月3日提交的临时申请序列号61/119,490的优先权。
技术领域
本发明一般涉及经由直流(DC)传输总线(transmission bus)用于近海和海底电负载的电力输送系统。DC传输总线的接收端和发送端每个包括在结构上对称的模块化堆叠功率转换器(modular stackedpower converter)。接收端转换器可基于现场扩展要求及负载类型和配置重新配置。
背景技术
存在对从岸上或近海平台向海底或远岸位置处的电负载、或相反地沿着用于近海发电回接(tie-back)的相反电力流动方向更有效地以低成本和较高可靠性/可维护性、效率和功率密度来输送电力的日益增长的工业需求。这种日益增长的需求由各种应用中的电气化趋势所推动,诸如用于油和天然气工业的海底处理和近海风力发电。
特别是对于用于油和天然气工业的海底处理,所述趋势是(1)更多的电负载,诸如电驱动器及电动机驱动泵和压缩机,其用于海底处理、海底控制和通信电子装置、电管线加热、用于分离器/聚结器(separator/coalescer)的电源;(2)较高功率-每个工程从几千瓦至接近100MW范围;(3)较长距离-从数十千米至100~600km;以及(4)较深的水深-从1km至3km。
为了为在短距离或长距离内分布在海底和近海位置处的区域中的许多电负载提供服务,通常需要经由电力传输总线从岸上或近海平台电源向海底或近海变电站(power substation)传输电力,并经由配电总线进一步将其分配给那些电负载。在某些情况下,需要将用电负载新发现的油和天然气储藏回接到已经建立的相邻发电/传输/配电基础设施。
有效地向那些海底和近海负载输电和配电的系统架构非常重要-从交流(AC)或直流(DC)输电和配电的选择、到用于输电和配电的电压电平的选择、到系统拓扑架构。它们严重影响系统成本、可靠性/可维护性、系统复杂性、效率和功率密度。例如,用于输电的近海或海底电缆通常构成整个系统成本的主要部分。与三相AC输电相比,DC输电减少电缆的数目和重量,并潜在地降低材料和安装成本。用于输电/配电的较高电压将降低电缆损耗,并因此得到较高的效率和较低的电缆成本。然而,电负载可能需要中压或低压,并且将需要附加功率转换级以将输电/配电电压转换成必需的负载电压电平。最优系统架构将得到显著降低的系统复杂性和成本。诸如水下和水上插拔连接器(dry-mate connector)等海底连接器和通过旁路故障元件实现的容错操作能力对系统可靠性和可维护性有很大影响。允许减少海底连接器的数目并提供容错操作能力的系统架构对于海底和近海应用的长时间可靠操作来说极其重要。
三相50/60Hz AC输电和配电是一项成熟技术。然而,其对于长距离和高功率海底或近海应用、甚至对于短距离但具有有限的电源容量裕度(margin)的应用而言具有固有限制。由于电缆电容,除负载所需的有功功率之外,还需要从电源供应并通过电缆载送大量的无功功率。这导致较高的电缆损耗、较高的电流额定值和更大且更昂贵的电缆、以及沿电缆的更高电压损耗。对于用于油和天然气海底工程的长距离和高功率输电,这些问题被加重。甚至对于短距离输电/配电,对于有限的电源容量裕度的应用而言这些问题仍然存在。例如,对于被回接到具有有限容量裕度的近海平台上的现有电力基础设施的电负载,相对大量的无功功率可能触发电力系统稳定性问题或超过电源的电流额定极限。
可以通过将AC频率降低至例如162/3Hz来缓解50/60Hz AC输电和配电的限制,从而减少相同电缆电容下的无功功率的量。然而,这种解决方案的代价是诸如变压器等磁性组件的尺寸按比例增加。在高功率级(power level)下,该尺寸和重量损失将过大。
直流(DC)输电和配电可以在根本上克服用于电力输送的电缆电容和无功功率问题;并且高压还将降低用于输电和配电的损耗。现有的高压直流技术使用简单的2级电路拓扑结构并依赖于诸如紧压包装IGBT和闸流晶体管等大量的特殊电源开关的串联连接来提供用于功率转换的高电压能力。由于用2级电路进行高压切换,所以需要大滤波器来使输入和输出平滑。那些特殊电源开关(阀门)和大滤波器使得现有高压直流技术成为海底应用的昂贵且体积庞大的解决方案。
替换的高压或中压直流技术使用许多模块化功率转换器构件(building block)形成DC输电或配电总线堆。由于可以使那些构件与其它标准驱动器应用中的那些相同,所以堆叠模块化DC技术潜在地提供低得多的成本和较高可靠性。此外,可以通过用于那些模块化转换器的控制装置来实现AC侧的谐波消除,使得在较低的成本下滤波器可以显著减小。
需要提出一种基于由用于为多个电负载提供服务的输电和配电的模块化堆叠转换器形成的DC传输总线的系统架构。关键目标是实现具有低系统成本和复杂性、高系统可靠性/可维护性、高效率和功率密度的最佳电力输送系统。该目标是针对需要以长距离或短距离并以高功率和低功率在海底或近海位置处为单个或多个电负载提供服务的应用而言。
发明内容
本发明的示例性实施例包括电力输送系统,该电力输送系统包括被配置为经由DC传输总线向一个或多个AC负载输送电力的AC电源,所述DC传输总线包括发送端和接收端,所述发送端耦合到以堆叠模块化功率转换器拓扑结构配置的多个模块化功率转换器,所述接收端耦合到以堆叠模块化功率转换器拓扑结构配置的多个模块化功率转换器,其中,接收端处的堆叠模块化功率转换器拓扑结构与发送端处的堆叠模块化功率转换器拓扑结构对称。
附图说明
通过结合附图进行的以下详细说明,本发明的前述及其它特征、方面和优点显而易见,在附图中,相同的附图标记在图中自始至终表示相同的部分,其中:
图1是示出根据本发明的一个实施例的在系统的岸上或顶侧(topside)及海底侧均具有堆叠模块化功率转换器构件的海底电力输送系统的简图;
图2是示出用于海底配电网的现有技术中已知的传统海底功率转换器模块的简图;
图3是示出用于海底配电网的根据本发明的一个实施例的具有集成旁路(integrated bypass)和调节功能的海底功率转换器模块的简图;
图4是标识依照本发明的示例性实施例的多个模块化堆叠海底电力输送系统拓扑结构的图示;
图5举例说明根据本发明的一个实施例的示例性海底电力输送系统且对应于在图4中标识的一种拓扑结构,其中用堆叠模块化功率转换器来实现DC传输线的发送端且DC传输线的接收端被配置为将多个负载集成到DC传输线;
图6是根据本发明的一个实施例的用于海底电力输送系统的DC传输线的接收端的详图,并对应于在图4中标识的一种拓扑结构,其中用模块化堆叠功率转换器来实现接收端以接收DC传输电压(transmission voltage),且接收端被配置为通过经由串联连接的电感连接到相应模块化转换器的一个或多个AC-DC转换器来提供一个或多个中间DC配电总线;
图7是根据本发明的一个实施例的海底电力输送系统的详图,并对应于在图4中标识的一种拓扑结构,其中用模块化堆叠功率转换器来实现DC传输线的接收端以接收DC传输电压,且接收端被配置为通过经由一个或多个电隔离(galvanic isolation)变压器连接到相应模块化转换器的一个或多个AC-DC转换器来提供一个或多个中间DC配电总线;
图8是根据本发明的一个实施例的海底电力输送系统的接收端的详图,并对应于在图4中标识的一种拓扑结构,其中用模块化堆叠功率转换器来实现DC传输线的接收端以接收DC传输电压且其被配置为通过一个或多个变压器来提供一个或多个中间AC配电总线;
图9是根据本发明的一个实施例的海底电力输送系统的接收端的详图,并对应于在图4中标识的一种或多种拓扑结构,其中用模块化堆叠功率转换器来实现DC传输线的接收端以接收DC传输电压且其被配置为提供1)有或没有通过一个或多个隔离变压器隔离的一个或多个中间DC配电总线,2)通过一个或多个相应变压器的一个或多个中间AC配电总线,以及3)集成到DC传输线的一个或多个负载;以及
图10是根据本发明的一个实施例的海底电力输送系统的接收端的详图并对应于在图4中标识的一种拓扑结构,其中用模块化堆叠功率转换器来实现DC传输线的接收端以接收DC传输电压且其被配置为提供用于在电隔离的情况下控制DC传输线的接收端处的功率的AC配电总线。
虽然上述附图阐述了替代实施例,但如在讨论中表明的那样,还设想本发明的其它实施例。在任何情况下,本公开通过表示而非限制来提出本发明的所示实施例。本领域的技术人员可以设计在本发明原理的范围和精神内的许多其它修改和实施例。
具体实施方式
图1是示出根据本发明的一个实施例的在系统的顶侧/岸上侧及海底侧均具有模块化堆叠功率转换器构件12、13的海底电力输送系统10的简图。海底电力输送系统10包括可以是中压直流(MVDC)或高压直流(HVDC)电缆的系统DC传输链路/总线(电缆)14,其中,传输DC总线14被配置为从顶侧或岸上电源模块(power module)16向至少一个海底负载模块18载送电力。电源模块16和海底负载模块18每个可以包括一个或多个各自的堆叠模块化功率转换器构件12、13。每个模块化功率转换器构件12、13包括诸如DC至AC逆变器、AC至AC转换器、DC至DC转换器、或AC至DC逆变器等许多已知类型的电动机驱动器所通用的模块化功率转换器;因此,电源模块16和海底负载模块18不需要定制的功率转换器来满足现场扩展要求和各种电气海底负载拓扑结构,诸如要求高电压隔离水平的那些拓扑结构。
海底电力输送系统10还包括发电系统20,发电系统20可以包括例如经由涡轮24来驱动以产生AC电力的发电机22。发电系统20还包括至少一个电源模块16,电源模块16每个可以包括被与发电机22和涡轮24堆叠并配置在一起以产生中压直流(MVDC)或高压直流(HVDC)电力的多个行业标准模块化功率转换器12。
海底配电系统30包括至少一个海底负载模块18,海底负载模块18每个可以包括在系统的海底负载模块侧堆叠并配置在一起以响应于经由发电系统20产生的中压DC输电或高压DC输电电平而产生海底配电系统电压的多个行业标准模块化功率转换器13。
标准模块化堆叠功率转换器12之间以及模块化堆叠功率转换器13与本文所述的其它组件之间的互连可以轻易地被配置为基于现场扩展要求和电气海底负载拓扑结构而产生MVDC传输电压、HVDC传输电压和期望的海底配电系统电压并对例如匹配或不匹配传输和配电电压和海底负载模块电压之间的匹配进行优化。
图2是示出传统海底功率转换器模块32的简图。可以看到传统海底功率转换器模块32还包括用于在转换器模块32出现故障的情况下将转换器模块32隔离的开关装置34。采用变压器36来将开关装置34的输出端处的AC传输电压降低至可由海底负载使用的电平。还需要海底连接器38以便将开关装置34连接至变压器36,即对海底配电网的可靠性有负面影响的部件。可以看到传统转换器模块32包括AC至DC转换器40和DC至AC逆变器42。
图3举例说明根据本发明的特定实施例的具有集成旁路和调节功能的海底功率转换器模块13。可以看到可以经由包括具有集成旁路和调节功能的堆叠功率转换器模块13的海底配电网采用的功率转换器模块13具有比转换器模块32简单得多的架构。例如,功率转换器模块13不需要AC至DC转换级40,因为其响应于DC输入电压而工作,结果总体系统可靠性提高且成本降低。可以看到功率转换器模块13还包括可以被配置为例如电压调节器和旁路开关两者的DC斩波器元件44。斩波器元件44替换如上所述的开关装置34,并用于在转换器模块12出现故障期间旁路海底转换器模块13。斩波器元件44可以被配置为调节用于相应模块化堆叠功率转换器13的DC总线传输电压。因此,斩波器元件44消除了对开关装置34与变压器36之间和变压器36与海底转换器32之间的附加海底连接器的需要而如上所述地改善系统可靠性并降低系统成本。根据本发明的一方面,功率转换器模块13完全多余,因为其将持续运行,即使当转换器模块13的输入桥部分的两个绝缘栅双极晶体管(IGBT)中只有一个可供使用时。
转换器模块13以及本文所述的其它示例性转换器模块可以采用附加滤波器元件,例如电感器。这些附加滤波器元件在图中未示出或未进行更详细的描述,因为它们对于理解本文所述的新型原理来说不是必需的。本文相对于本发明的特定实施例所描述的图被简化以保持简洁性并加强对这些新型原理的理解。
图4是标识依照本发明的示例性实施例的多个基于DC传输的海底电力输送系统的拓扑结构50。用在本文中更详细地描述的对称模块化堆叠转换器构思来实现基于DC传输的拓扑结构50。这些模块化堆叠转换器提供用于轻易地重新配置海底电力输送系统、使得该系统满足或超过现场扩展要求并支持各种电气海底负载拓扑结构的装置。例如,可能需要海底电力输送系统10以提供短或长传输距离内的可用解决方案,以适应高功率或低功率负载消耗要求、和/或以适应不匹配的传输/配电电压和海底负载电压。
可以看到所述多个模块化堆叠海底电力输送系统拓扑结构50包括1)用集成变速驱动系统52实现的DC配电,其中传输和配电电压两者均是DC电压且模块化堆叠转换器被集成到海底负载中,2)系统54,其中传输和配电电压两者均是DC电压且配电电压未与传输电压隔离,3)系统56,其中传输和配电电压两者均是DC电压,且配电电压与传输系统隔离(即经由变压器而电隔离),4)系统58,其中传输电压是DC电压且配电电压是隔离AC电压,以及5)系统60,其中传输电压是DC电压且配电电压包括DC电压和AC电压两者。与AC传输电压电缆成本相比时,每种拓扑结构50中的传输电压是引起传输电缆14成本降低的DC传输电压。
图5举例说明根据本发明的一个实施例的示例性海底电力输送系统46并对应于在图4中标识的一种拓扑结构,其中用堆叠模块化功率转换器来实现DC传输线的发送端且DC传输线的接收端被配置为将多个负载集成到DC传输线中。根据本发明的一方面,海底电力输送系统46适合于在传输/配电电压基本与总用电设备(consumer)电压匹配时使用。可以看到海底侧的模块化堆叠功率转换器与系统46的岸上或顶侧的模块化堆叠功率转换器拓扑结构对称。
图6是根据本发明的一个实施例的用于海底电力输送系统的DC传输线的接收端的详图,并且其对应于在图4中标识的一种拓扑结构54,其中用模块化堆叠功率转换器55来实现接收端以接收DC传输电压,且接收端被配置为通过经由串联连接的电感61连接到相应模块化转换器55的一个或多个AC-DC转换器59来提供一个或多个中间DC配电总线57。可以使用例如辐射状结构或环状结构来配置DC配电总线57以便向一个或多个电负载63输送DC电力。
图7是根据本发明的一个实施例的海底电力输送系统的发送端和接收端的详图,并且其对应于在图4中标识的一种拓扑结构56,其中用模块化堆叠功率转换器62来实现DC传输线的接收端以接收DC传输电压,且接收端被配置为提供一个或多个中间DC配电总线69,用于通过经由一个或多个电隔离变压器65连接到相应模块化转换器62的一个或多个AC-DC转换器71来向一个或多个电负载67输送DC电力。系统拓扑结构56适合于在总DC传输电压基本上不与总海底负载电压匹配时使用。在这种情况下,传输级的电压借助于隔离变压器65逐渐减低至配电系统的电压。根据本发明的特定实施例,隔离变压器65可以是低频变压器、中频变压器、高频变压器或其组合。低频可以是例如16.7Hz、50Hz或60Hz。中频可以在约200Hz至约1kHz之间的频率范围内。高频可以在约5kHz至约20kHz之间的频率范围内。然而,本发明不限于此,且应理解的是根据本文所述的原理实现的其它实施例可以使用被配置为在约10Hz与约20kHz之间的频率范围内的任何一个或多个频率下工作的隔离变压器提供可用解决方案。
图1中描绘的发电系统20适合于在本文所述的每个模块化堆叠电力输送系统中使用,其中可以由例如经由涡轮24驱动的发电机22来提供电力。根据一个实施例,岸上或顶侧负载模块16包括多个模块化AC至DC整流器构件64,每个整流器64可以经由诸如多绕组变压器(polygon transformer)66等变压器对减小的发电机信号作出响应。例如,每个整流器构件64可以是二电平(two-level)或三电平整流器,虽然出于简化的目的只举例说明了二电平整流器。以得到定时相移输出信号的方式来切换每个整流器构件64。每个多绕组变压器66以相对于其余变压器输出信号得到空间相移输出信号的方式工作。同时,这些定时相移和空间相移有利地用于消除否则将在传输电压、配电电压、和/或(多个)负载电压上出现的谐波分量。顶侧或岸上负载模块16还可以包括多个斩波器模块44,斩波器模块44被配置为充当旁路开关,使得每个斩波器模块44可以在由于相应整流器64的故障而需要时为其相应整流器64提供旁路。
模块化堆叠海底DC电力输送系统拓扑结构56的海底部分包括呈堆叠拓扑结构的多个模块化DC至DC转换器62。在出现故障的情况下,还可以经由斩波器模块44为每个模块化转换器62提供旁路。可以看到DC传输总线/链路14的海底侧的模块化堆叠转换器拓扑结构与DC传输总线/链路14的岸上/顶侧上的模块化堆叠转换器拓扑结构对称。
图8是根据本发明的一个实施例的海底电力输送系统的接收端的详图,并且其对应于在图4中标识的一种拓扑结构58,其中用模块化堆叠功率转换器72来实现DC传输线的接收端以接收DC传输电压且其被配置为通过一个或多个变压器65来提供一个或多个中间AC配电总线74。可以看到每个海底负载68具有其自己的变速驱动器70。在一种拓扑结构58中海底负载模块18包括被堆叠在一起以产生至少一个AC电压的多个模块化DC至AC转换器构件72。变压器65提供DC传输18的接收端与经由相应变速驱动器70驱动的海底负载68之间的隔离。
根据本发明的特定实施例,海底变压器65包括初级侧的多个三相绕组和次级侧的抽头转换开关(tap changer)。此特征提供相对于已知海底配电系统的显著灵活性,因为抽头转换开关不必在负载下工作并根据工作中的串联连接的传输模块的数目且根据连接的海底负载68的数目来提供修改(多个)输出电压的机制。例如,海底变压器65可以是串联或并联的,或者通过转换开关连接,以从并联变成串联以便适应不同的输出电压。
图9是根据本发明的一个实施例的海底电力输送系统的接收端的详图,并且其对应于在图4中标识的混合拓扑结构60,其中用模块化堆叠功率转换器76来实现DC传输线的接收端以接收DC传输电压且其被配置为提供1)有或没有通过一个或多个隔离变压器65的隔离的一个或多个中间DC配电总线77,2)通过一个或多个相应变压器65实现的一个或多个中间AC配电总线79,以及3)集成到DC传输线的一个或多个负载80。
系统拓扑结构60包括可以被堆叠以提供模块化堆叠海底负载模块的DC至AC逆变器部分82和模块化堆叠海底负载模块的DC至DC转换器部分84的多个模块化转换器构件76。可以用电感器元件61和整流器机构78来配置DC至AC逆变器76以产生用于多个变速DC驱动器86的MVDC或HVDC功率以便向一个或多个电负载89输送DC电力。DC至AC逆变器76还可以被配置为直接产生用于多个变速AC驱动器88的MVAC或HVAC功率。具有集成变压器65的模块化DC至DC转换器部分84可以充当DC耦合器以将高DC电压降低至适合用于相应海底负载的低DC电压电平。
图10是根据本发明的一个实施例的海底电力输送系统的接收端90的详图并且其对应于在图4中标识的至少一种拓扑结构,其中用模块化堆叠功率转换器76来实现DC传输线的接收端以接收DC传输电压且其被配置为提供AC配电总线92,用于在有电隔离65的情况下控制DC传输线的接收端处的功率。
所有海底装置都需要控制系统。海底控制系统可以由几十个或几百个低功率用电设备组成,例如用于阀门的物理移位的电驱动致动器。在长距离内为海底控制系统输电存在挑战性,因为这些负载通常需要恒定的海底母线(bus bar)电压。图10所示的堆叠转换器拓扑结构提供以可靠的方式在几百公里内供应控制功率的解决方案。要供应的负载通常是低电压/低功率(不一定是电动机驱动负载);而且可能存在通常为例如400V、60Hz的AC电源电压而设计的许多海底低功率用电设备。
总而言之,本文已描述了多个海底电力输送系统实施例。这些海底电力输送系统实施例采用基于现场扩展要求和电负载拓扑结构而轻易地堆叠和配置的模块化功率转换器构件。每个海底电力输送系统实施例可以包括被配置为从顶侧或岸上电源向至少一个海底负载模块载送电力的系统DC传输总线/链路。采用包括被与顶侧或岸上电源堆叠并配置在一起的多个模块化功率转换器的发电系统来产生经由DC传输总线/链路传输的中压直流(MVDC)或高压直流(HVDC)电力。包括在系统的海底负载侧被堆叠并配置在一起的多个模块化功率转换器的海底电力输送系统响应于MVDC或HVDC输电而产生期望的海底配电系统电压。海底电力输送系统的海底侧的堆叠模块化功率转换器拓扑结构与海底电力输送系统的岸上/顶侧上的堆叠模块化功率转换器拓扑结构对称。
虽然本文只举例说明并描述了本发明的某些特征,但本领域的技术人员将想到许多修改和变更。因此,应理解的是随附权利要求意图涵盖属于本发明的实质范围内的所有此类修改和变更。
部件列表
(10) 海底电力输送系统
(12) 模块化功率转换器
(13) 模块化功率转换器
(14) DC传输链路/总线/电缆
(16) 岸上电源模块
(18) 海底负载模块
(20) 发电系统
(22) 发电机
(24) 涡轮
(30) 海底配电系统
(32) 传统海底功率转换器模块
(34) 传统海底功率转换器模块开关装置
(36) 变压器
(40) 传输海底功率转换器模块AC至DC逆变器
(42) 传统海底功率转换器模块AC至DC逆变器
(44) DC斩波器
(46) 海底电力输送系统
(50) 基于DC传输的海底电力输送系统拓扑结构
(52) 用集成变速驱动系统进行DC配电
(54) 其中传输和配电电压均是DC电压且配电电压未与传输电压隔离的系统
(55) (多个)模块化堆叠功率转换器
(56) 其中传输和配电电压均是DC电压且配电电压与传输系统隔离的系统
(57) (多个)中间DC配电总线
(58) 其中传输电压是DC电压且配电电压是隔离AC电压的系统
(59) (多个)AC至DC转换器
(60) 其中传输电压是DC电压且配电电压包括DC电压和AC电压两者的系统
(61) (多个)串联连接的电感
(62) (多个)模块化堆叠功率转换器
(63) (多个)电负载
(64) (多个)模块化AC至DC整流器构件
(65) (多个)隔离变压器
(66) (多个)多绕组变压器
(67) (多个)电负载
(68) (多个)海底负载
(69) (多个)中间DC配电总线
(70) (多个)海底负载变速驱动器
(71) (多个)AC至DC转换器
(72) (多个)模块化堆叠功率转换器
(74) (多个)中间AC配电总线
(76) (多个)模块化堆叠功率转换器
(77) (多个)中间DC配电总线
(78) (多个)整流器机构
(79) (多个)中间AC配电总线
(80) (多个)负载
(82) (多个)DC至AC逆变器
(84) (多个)DC至DC转换器
(86) (多个)变速DC驱动器
(88) (多个)变速AC驱动器
(92) AC配电总线
Claims (10)
1.一种电力输送系统(10),包括被配置为经由DC传输总线(14)向一个或多个AC负载输送电力的AC电源(20),DC传输总线(14)包括发送端和接收端,所述发送端耦合到以堆叠模块化功率转换器拓扑结构配置的多个模块化功率转换器(12),所述接收端耦合到以堆叠模块化功率转换器拓扑结构配置的多个模块化功率转换器(13),其中,所述接收端处的堆叠模块化功率转换器拓扑结构与所述发送端处的堆叠模块化功率转换器拓扑结构对称;其中至少一个接收端处的模块化功率转换器包括斩波器元件,所述斩波器元件被配置成作为模块化功率转换器的旁路开关操作,且进一步被配置成以调节相应模块化堆叠功率转换器的DC总线传输电压。
2.根据权利要求1所述的电力输送系统(10),其中,一个或多个AC负载被直接连接到一个或多个相应接收端模块化转换器。
3.根据权利要求1所述的电力输送系统(10),其中,一个或多个AC负载经由至少一个变压器连接到一个或多个相应的接收端模块化转换器(13)。
4.根据权利要求1所述的电力输送系统(10),其中,DC传输总线(14)的接收端处的模块化功率转换器拓扑结构包括被配置为提供中间DC配电总线的DC至DC转换级。
5.如权利要求4所述的电力输送系统(10),其中,DC传输总线(14)的接收端处的模块化功率转换器拓扑结构还包括被配置为提供AC总线的DC至AC转换级。
6.如权利要求5所述的电力输送系统(10),还包括耦合到DC至AC转换级的AC输出端的AC至DC转换级。
7.如权利要求4所述的电力输送系统(10),其中,DC传输总线(14)的接收端处的所述多个堆叠模块化功率转换器(13)还包括耦合到所述中间DC配电总线且被配置为驱动一个或多个海底负载的一个或多个DC至AC转换器。
8.根据权利要求1所述的电力输送系统(10),其中,所述接收端包括:
多个分开的中间DC配电总线,每个分开的中间DC配电总线包括与相应的变压器和相应的整流器机构配置在一起以提供相应的中间DC配电总线的模块化DC/AC转换器;以及
中间AC配电总线,包括被配置在一起以提供中间AC配电总线的一个或多个模块化DC/AC转换器和相应的变压器。
9.根据权利要求1所述的电力输送系统(10),其中,至少一个接收端模块化转换器(13)既被配置为功率转换器又被配置为集成变速驱动器以控制相应的海底负载。
10.根据权利要求1所述的电力输送系统(10),其中,接收端堆叠模块化功率转换器(13)被配置为适应中压(MV)DC或高压(HV)DC海底负载和MVAC或HVAC海底负载两者。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11949008P | 2008-12-03 | 2008-12-03 | |
US61/119490 | 2008-12-03 | ||
US12/317306 | 2008-12-22 | ||
US12/317,306 US8692408B2 (en) | 2008-12-03 | 2008-12-22 | Modular stacked subsea power system architectures |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101753039A CN101753039A (zh) | 2010-06-23 |
CN101753039B true CN101753039B (zh) | 2014-09-17 |
Family
ID=42062048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200910252699.XA Expired - Fee Related CN101753039B (zh) | 2008-12-03 | 2009-12-03 | 模块化堆叠海底电力系统架构 |
Country Status (7)
Country | Link |
---|---|
US (1) | US8692408B2 (zh) |
EP (1) | EP2194638A3 (zh) |
JP (1) | JP5627879B2 (zh) |
KR (1) | KR101655457B1 (zh) |
CN (1) | CN101753039B (zh) |
CA (1) | CA2686177A1 (zh) |
RU (1) | RU2518163C2 (zh) |
Families Citing this family (123)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2005334045B2 (en) * | 2005-07-01 | 2010-08-26 | Vestas Wind Systems A/S | A variable rotor speed wind turbine, wind park, method of transmitting electric power and method of servicing or inspecting a variable rotor speed wind turbine |
GB2443843B (en) | 2006-11-14 | 2011-05-25 | Statoil Asa | Seafloor-following streamer |
GB0722469D0 (en) | 2007-11-16 | 2007-12-27 | Statoil Asa | Forming a geological model |
GB0724847D0 (en) * | 2007-12-20 | 2008-01-30 | Statoilhydro | Method of and apparatus for exploring a region below a surface of the earth |
MX2011009479A (es) * | 2009-03-11 | 2011-09-28 | Abb Technology Ag | Convertidor de fuente de voltaje modular. |
US20100290258A1 (en) * | 2009-05-17 | 2010-11-18 | CapTech Development Corporation | Inverter Topology For Improved Efficiency And Reduced Harmonic Distortion |
EP2293407A1 (en) * | 2009-09-08 | 2011-03-09 | Converteam Technology Ltd | Power transmission and distribution systems |
GB2479200A (en) | 2010-04-01 | 2011-10-05 | Statoil Asa | Interpolating pressure and/or vertical particle velocity data from multi-component marine seismic data including horizontal derivatives |
US8757270B2 (en) * | 2010-05-28 | 2014-06-24 | Statoil Petroleum As | Subsea hydrocarbon production system |
CA2802933C (en) * | 2010-06-18 | 2018-01-02 | Alstom Technology Ltd | Converter for hvdc transmission and reactive power compensation |
CN101882792B (zh) * | 2010-06-30 | 2012-08-22 | 国家电网公司 | 一种用于特高压直流输电的接线方法及特高压换流站 |
US20150036256A1 (en) * | 2010-07-30 | 2015-02-05 | Exxon Mobil Upstream Research Company | Method for Design of Subsea Electrical Substation and Power Distribution System |
WO2012038100A1 (en) * | 2010-09-24 | 2012-03-29 | Siemens Aktiengesellschaft | Subsea dc transmission system |
DE102010043176A1 (de) * | 2010-10-29 | 2012-05-03 | Converteam Gmbh | Elektrische Schaltung zur Umwandlung elektrischer Energie zwischen einem dreiphasigen Stromnetz und einem einphasigen Stromnetz |
US9450412B2 (en) | 2010-12-22 | 2016-09-20 | General Electric Company | Method and system for control power in remote DC power systems |
CN102111077B (zh) * | 2011-02-24 | 2013-12-11 | 丰汇新能源有限公司 | 充电电源系统 |
US8624431B2 (en) * | 2011-02-26 | 2014-01-07 | General Electric Company | System and method for power sharing of front-end converters without communication link in a modular-stacked DC transmission system |
CN102136725A (zh) * | 2011-03-02 | 2011-07-27 | 荣信电力电子股份有限公司 | 一种轻型直流输电系统拓扑 |
US8743514B2 (en) * | 2011-04-25 | 2014-06-03 | General Electric Company | HVDC power transmission with cable fault ride-through capability |
CN102185277B (zh) * | 2011-04-29 | 2013-09-18 | 深圳市行健自动化股份有限公司 | 海上电网优先脱扣控制方法及装置 |
US8624530B2 (en) | 2011-06-14 | 2014-01-07 | Baker Hughes Incorporated | Systems and methods for transmission of electric power to downhole equipment |
US8922054B2 (en) * | 2011-07-31 | 2014-12-30 | General Electric Company | Distributed DC energy storage for supplying an intermittent subsea load |
US20130033103A1 (en) * | 2011-08-02 | 2013-02-07 | Mcjunkin Samuel T | Systems and Methods For Distributed Impedance Compensation In Subsea Power Distribution |
US20130175958A1 (en) * | 2011-08-04 | 2013-07-11 | Samuel T. McJunkin | Systems and methods for transmitting and/or utilizing hvdc power in a submarine environment |
US9151131B2 (en) * | 2011-08-16 | 2015-10-06 | Zeitecs B.V. | Power and control pod for a subsea artificial lift system |
US8379416B1 (en) * | 2011-08-29 | 2013-02-19 | General Electric Company | Power conversion system and method |
FR2982092B1 (fr) * | 2011-11-02 | 2015-01-02 | Valeo Systemes De Controle Moteur | Module de puissance et dispositif electrique pour l'alimentation et la charge combinees respectivement d'un accumulateur et d'un moteur |
EP2592734B1 (en) * | 2011-11-14 | 2019-09-11 | Vetco Gray Scandinavia AS | Electrical gear and method for operating a machinery rotating at high speed |
US8928259B2 (en) | 2011-11-30 | 2015-01-06 | General Electric Company | Modular stacked DC architecture traction system and method of making same |
US9143029B2 (en) * | 2011-12-15 | 2015-09-22 | General Electric Company | System and method for power distribution |
US9048694B2 (en) * | 2012-02-01 | 2015-06-02 | Abb Research Ltd | DC connection scheme for windfarm with internal MVDC collection grid |
US9300132B2 (en) | 2012-02-02 | 2016-03-29 | Abb Research Ltd | Medium voltage DC collection system |
US9013904B2 (en) * | 2012-03-30 | 2015-04-21 | General Electric Company | System and method for DC power transmission |
US9343880B2 (en) * | 2012-04-28 | 2016-05-17 | Schneider Electric Industries Sas | Modular subsea electrical distribution system having subsea cable harness assembly and method for assembling same |
US9960602B2 (en) | 2012-05-02 | 2018-05-01 | The Aerospace Corporation | Maximum power tracking among distributed power sources |
US9325176B2 (en) * | 2012-05-02 | 2016-04-26 | The Aerospace Corporation | Optimum power tracking for distributed power sources |
US20130313906A1 (en) * | 2012-05-23 | 2013-11-28 | General Electric Company | Remote load bypass system |
WO2013188012A1 (en) * | 2012-06-15 | 2013-12-19 | Exxonmobil Upstream Resarch Company | System and method to control electrical power input to direct electric heat pipeline |
US9178357B2 (en) | 2012-06-20 | 2015-11-03 | Siemens Aktiengesellschaft | Power generation and low frequency alternating current transmission system |
EP2868165B1 (en) * | 2012-06-27 | 2016-08-31 | Adb Bvba | Modular constant current regulator |
US9325251B2 (en) * | 2012-08-30 | 2016-04-26 | Siemens Aktiengesellschaft | Power delivery systems and methods for offshore applications |
US9331481B2 (en) | 2012-08-31 | 2016-05-03 | General Electric Company | Systems and methods for power transmission with cable segment failover support |
WO2014037583A2 (en) * | 2012-09-10 | 2014-03-13 | Abb Technology Ag | Power distribution system for autonomous facilities |
WO2014044561A1 (en) * | 2012-09-24 | 2014-03-27 | Abb Technology Ltd | Direct current power transmission networks operating at different voltages |
US9525284B2 (en) | 2012-10-01 | 2016-12-20 | Abb Research Ltd | Medium voltage DC collection system with power electronics |
US9410410B2 (en) | 2012-11-16 | 2016-08-09 | Us Well Services Llc | System for pumping hydraulic fracturing fluid using electric pumps |
US9745840B2 (en) | 2012-11-16 | 2017-08-29 | Us Well Services Llc | Electric powered pump down |
US10020711B2 (en) | 2012-11-16 | 2018-07-10 | U.S. Well Services, LLC | System for fueling electric powered hydraulic fracturing equipment with multiple fuel sources |
US11959371B2 (en) | 2012-11-16 | 2024-04-16 | Us Well Services, Llc | Suction and discharge lines for a dual hydraulic fracturing unit |
US11476781B2 (en) | 2012-11-16 | 2022-10-18 | U.S. Well Services, LLC | Wireline power supply during electric powered fracturing operations |
US9650879B2 (en) | 2012-11-16 | 2017-05-16 | Us Well Services Llc | Torsional coupling for electric hydraulic fracturing fluid pumps |
US10036238B2 (en) * | 2012-11-16 | 2018-07-31 | U.S. Well Services, LLC | Cable management of electric powered hydraulic fracturing pump unit |
US9893500B2 (en) | 2012-11-16 | 2018-02-13 | U.S. Well Services, LLC | Switchgear load sharing for oil field equipment |
US10254732B2 (en) | 2012-11-16 | 2019-04-09 | U.S. Well Services, Inc. | Monitoring and control of proppant storage from a datavan |
US10232332B2 (en) | 2012-11-16 | 2019-03-19 | U.S. Well Services, Inc. | Independent control of auger and hopper assembly in electric blender system |
US10526882B2 (en) | 2012-11-16 | 2020-01-07 | U.S. Well Services, LLC | Modular remote power generation and transmission for hydraulic fracturing system |
US9970278B2 (en) | 2012-11-16 | 2018-05-15 | U.S. Well Services, LLC | System for centralized monitoring and control of electric powered hydraulic fracturing fleet |
US10119381B2 (en) | 2012-11-16 | 2018-11-06 | U.S. Well Services, LLC | System for reducing vibrations in a pressure pumping fleet |
US10407990B2 (en) | 2012-11-16 | 2019-09-10 | U.S. Well Services, LLC | Slide out pump stand for hydraulic fracturing equipment |
US9995218B2 (en) | 2012-11-16 | 2018-06-12 | U.S. Well Services, LLC | Turbine chilling for oil field power generation |
US11449018B2 (en) | 2012-11-16 | 2022-09-20 | U.S. Well Services, LLC | System and method for parallel power and blackout protection for electric powered hydraulic fracturing |
US9840901B2 (en) | 2012-11-16 | 2017-12-12 | U.S. Well Services, LLC | Remote monitoring for hydraulic fracturing equipment |
US8994206B2 (en) * | 2013-01-14 | 2015-03-31 | Abb Technology Ag | Turbine-based energy generation system with DC output |
WO2014116257A1 (en) * | 2013-01-28 | 2014-07-31 | General Electric Company | Modular converter for subsea applications |
US9438042B2 (en) * | 2013-02-19 | 2016-09-06 | General Electric Company | Direct current power delivery system and method |
WO2014131456A1 (de) * | 2013-02-28 | 2014-09-04 | Siemens Aktiengesellschaft | Umrichterstation mit diodengleichrichter |
EP2824822B1 (en) | 2013-07-09 | 2017-05-03 | ABB Schweiz AG | A power transmission and distribution system supplying a plurality of subsea loads |
US9496702B2 (en) * | 2013-07-15 | 2016-11-15 | General Electric Company | Method and system for control and protection of direct current subsea power systems |
US9178349B2 (en) | 2013-09-11 | 2015-11-03 | General Electric Company | Method and system for architecture, control, and protection systems of modular stacked direct current subsea power system |
US20150102671A1 (en) * | 2013-10-15 | 2015-04-16 | General Electric Company | Direct current power transmission system |
US9705324B2 (en) | 2013-12-03 | 2017-07-11 | Abb Schweiz Ag | Converter system for AC power sources |
US9627862B2 (en) | 2013-12-26 | 2017-04-18 | General Electric Company | Methods and systems for subsea direct current power distribution |
US9951779B2 (en) * | 2013-12-27 | 2018-04-24 | General Electric Company | Methods and systems for subsea boosting with direct current and alternating current power systems |
US9774183B2 (en) | 2013-12-27 | 2017-09-26 | General Electric Company | Methods and systems for subsea direct current power distribution |
US9611855B2 (en) * | 2013-12-27 | 2017-04-04 | General Electric Company | Methods and systems for direct current power system subsea boosting |
US9537428B2 (en) | 2014-01-14 | 2017-01-03 | General Electric Company | Combined power transmission and heating systems and method of operating the same |
CN104953609A (zh) * | 2014-03-27 | 2015-09-30 | 通用电气公司 | 直流电能传输系统和方法 |
US9537311B2 (en) | 2014-05-23 | 2017-01-03 | General Electric Company | Subsea power transmission |
EP2961021A1 (en) | 2014-06-27 | 2015-12-30 | Siemens Aktiengesellschaft | Subsea power distribution system and method |
DE102014110410A1 (de) * | 2014-07-23 | 2016-01-28 | Universität der Bundeswehr München | Modulares Energiespeicher-Direktumrichtersystem |
US9800054B2 (en) | 2014-07-31 | 2017-10-24 | Abb Schweiz Ag | DC connection system for renewable power generators |
EP3186869B1 (de) * | 2014-10-28 | 2021-05-26 | Siemens Energy Global GmbH & Co. KG | Umrichteranordnung mit einer mehrzahl von umrichtern für einen windpark |
NO338399B1 (no) * | 2014-11-10 | 2016-08-15 | Vetco Gray Scandinavia As | Anlegg for å levere elektrisk kraft til undersjøiske lavspenningslaster |
US9595884B2 (en) * | 2014-12-18 | 2017-03-14 | General Electric Company | Sub-sea power supply and method of use |
DE102015000257A1 (de) | 2015-01-16 | 2016-07-21 | Thyssenkrupp Ag | Autonome Unterwasserenergieversorgungsvorrichtung |
US9680396B2 (en) * | 2015-04-13 | 2017-06-13 | Alexey TYSHKO | Multi-vector outphasing DC to AC converter and method |
ES2830028T3 (es) * | 2015-04-16 | 2021-06-02 | Vestas Wind Sys As | Control de convertidor de turbina eólica |
NO339899B1 (en) * | 2015-05-14 | 2017-02-13 | Vetco Gray Scandinavia As | A control system for controlling a subsea gas compression system |
US12078110B2 (en) | 2015-11-20 | 2024-09-03 | Us Well Services, Llc | System for gas compression on electric hydraulic fracturing fleets |
DE102015121226A1 (de) * | 2015-12-07 | 2017-06-08 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Umrichter, Elektrisches Polyphasensystem und Verfahren |
GB2545455A (en) * | 2015-12-17 | 2017-06-21 | General Electric Technology Gmbh | Power supply apparatus |
EP3249801A1 (de) * | 2016-05-23 | 2017-11-29 | Siemens Aktiengesellschaft | Anlage und verfahren zum erzeugen einer in ein stromnetz einzuspeisenden dreiphasenwechselspannung |
US10120402B2 (en) | 2016-06-14 | 2018-11-06 | Raytheon Company | Large scale sub-sea high voltage distributed DC power infrastructure using series adaptive clamping |
CA3030829A1 (en) | 2016-09-02 | 2018-03-08 | Halliburton Energy Services, Inc. | Hybrid drive systems for well stimulation operations |
US11181107B2 (en) | 2016-12-02 | 2021-11-23 | U.S. Well Services, LLC | Constant voltage power distribution system for use with an electric hydraulic fracturing system |
EP3337290B1 (en) * | 2016-12-13 | 2019-11-27 | Nexans | Subsea direct electric heating system |
CA3063970C (en) * | 2017-05-18 | 2024-02-06 | Nvent Services Gmbh | Universal power converter |
WO2018218040A1 (en) * | 2017-05-24 | 2018-11-29 | J. Ray Mcdermott, S.A. | Hvdc modular platform design |
US10280724B2 (en) | 2017-07-07 | 2019-05-07 | U.S. Well Services, Inc. | Hydraulic fracturing equipment with non-hydraulic power |
US10840693B2 (en) | 2017-08-04 | 2020-11-17 | Electro-Mechanical Corporation | Modular power center |
US11067481B2 (en) | 2017-10-05 | 2021-07-20 | U.S. Well Services, LLC | Instrumented fracturing slurry flow system and method |
EP3467986B1 (en) * | 2017-10-06 | 2022-07-13 | General Electric Technology GmbH | Converter scheme |
US10408031B2 (en) | 2017-10-13 | 2019-09-10 | U.S. Well Services, LLC | Automated fracturing system and method |
AR114805A1 (es) | 2017-10-25 | 2020-10-21 | U S Well Services Llc | Método y sistema de fracturación inteligente |
US10598258B2 (en) | 2017-12-05 | 2020-03-24 | U.S. Well Services, LLC | Multi-plunger pumps and associated drive systems |
CA3084607A1 (en) | 2017-12-05 | 2019-06-13 | U.S. Well Services, LLC | High horsepower pumping configuration for an electric hydraulic fracturing system |
US11114857B2 (en) | 2018-02-05 | 2021-09-07 | U.S. Well Services, LLC | Microgrid electrical load management |
US20190267810A1 (en) * | 2018-02-27 | 2019-08-29 | Ideal Power, Inc. | HVDC/MVDC Systems and Methods with Low-Loss Fully-Bidirectional BJT Circuit Breakers |
US11035207B2 (en) | 2018-04-16 | 2021-06-15 | U.S. Well Services, LLC | Hybrid hydraulic fracturing fleet |
US11211801B2 (en) | 2018-06-15 | 2021-12-28 | U.S. Well Services, LLC | Integrated mobile power unit for hydraulic fracturing |
US10648270B2 (en) | 2018-09-14 | 2020-05-12 | U.S. Well Services, LLC | Riser assist for wellsites |
US11208878B2 (en) | 2018-10-09 | 2021-12-28 | U.S. Well Services, LLC | Modular switchgear system and power distribution for electric oilfield equipment |
US11604169B2 (en) * | 2019-01-10 | 2023-03-14 | Shuyong Paul Du | Renewable power system and method for pipeline inspection tools |
US11578577B2 (en) | 2019-03-20 | 2023-02-14 | U.S. Well Services, LLC | Oversized switchgear trailer for electric hydraulic fracturing |
CA3139970A1 (en) | 2019-05-13 | 2020-11-19 | U.S. Well Services, LLC | Encoderless vector control for vfd in hydraulic fracturing applications |
WO2021022048A1 (en) | 2019-08-01 | 2021-02-04 | U.S. Well Services, LLC | High capacity power storage system for electric hydraulic fracturing |
US11009162B1 (en) | 2019-12-27 | 2021-05-18 | U.S. Well Services, LLC | System and method for integrated flow supply line |
US11916450B2 (en) * | 2020-04-08 | 2024-02-27 | Halliburton Energy Services, Inc. | Axial flux submersible electric motor |
US11792950B2 (en) | 2021-01-15 | 2023-10-17 | Amir KHALAJI | Modular upgradable low voltage power supply |
EP4063646A1 (en) * | 2021-03-25 | 2022-09-28 | ABB Schweiz AG | Power collection system for subsea transfer of power from offshore power generation units |
US11888398B2 (en) | 2021-06-25 | 2024-01-30 | Ge Energy Power Conversion Technology Limited | Self reconfigurable, adaptable power electronics building block (A-PEBB) |
CN115207956B (zh) * | 2022-06-09 | 2024-09-24 | 湖南大学 | 一种海底双端直流供电系统稳定性分析方法 |
EP4329128A1 (en) * | 2022-08-23 | 2024-02-28 | General Electric Technology GmbH | Hvdc transformer configuration for split pccs |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101197503A (zh) * | 2006-12-08 | 2008-06-11 | 通用电气公司 | 采集和传输系统 |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE363001B (zh) | 1972-05-18 | 1973-12-27 | Asea Ab | |
SE380687B (sv) | 1974-03-15 | 1975-11-10 | Asea Ab | Forfarande vid drift av en tvapolig likstromsoverforing jemte likstromsoverforing avsedd att drivas enligt forfarandet. |
DE2435755A1 (de) | 1974-07-25 | 1976-02-05 | Bbc Brown Boveri & Cie | Energieuebertragungssystem mit sammelleitung fuer gleichstrom |
GB1520884A (en) | 1975-07-22 | 1978-08-09 | Nii Postoyan Toka Dc | Power transmission methods and systems |
JPS5850110B2 (ja) * | 1976-02-18 | 1983-11-08 | 株式会社日立製作所 | サイリスタ高圧変換装置 |
ATE70147T1 (de) | 1987-05-15 | 1991-12-15 | Siemens Ag | Zustandssignalbildung zur anzeige des ueberganges in die betriebsart ''bypass'' bei einer einrichtung zur hochspannungsgleichstromuebertragung. |
RU2058644C1 (ru) * | 1994-01-12 | 1996-04-20 | Дальневосточный государственный технический университет | Устройство для электроснабжения подводного аппарата с судна-носителя |
FR2727581B1 (fr) * | 1994-11-24 | 1996-12-27 | Cegelec | Systeme d'alimentation d'auxiliaires pour station de pompage alimentee a distance |
JPH1189235A (ja) | 1997-09-08 | 1999-03-30 | Tokyo Electric Power Co Inc:The | 自励式直流送電システムにおける直流電圧分担バランス制御装置 |
DE19847680A1 (de) | 1998-10-15 | 2000-04-27 | Siemens Ag | Verfahren zur Steuerung eines 12-pulsigen Stromrichters |
JP2000245066A (ja) | 1999-02-19 | 2000-09-08 | Hitachi Ltd | 直流送電システムの制御装置 |
SE518121C2 (sv) | 1999-12-23 | 2002-08-27 | Abb Ab | Elkraftsystem baserat på förnyelsebara energikällor |
US7615893B2 (en) * | 2000-05-11 | 2009-11-10 | Cameron International Corporation | Electric control and supply system |
DE20018560U1 (de) * | 2000-10-30 | 2002-03-21 | CAMERON GmbH, 29227 Celle | Steuer- und Versorgungssystem |
US6683389B2 (en) * | 2000-06-30 | 2004-01-27 | Capstone Turbine Corporation | Hybrid electric vehicle DC power generation system |
US6670721B2 (en) | 2001-07-10 | 2003-12-30 | Abb Ab | System, method, rotating machine and computer program product for enhancing electric power produced by renewable facilities |
GB2397445A (en) | 2003-01-14 | 2004-07-21 | Alstom | Power transmission circuits |
US7117070B2 (en) * | 2003-06-30 | 2006-10-03 | Rensselaer Polytechnic Institute | Power flow controller responsive to power circulation demand for optimizing power transfer |
WO2007028349A1 (de) * | 2005-09-09 | 2007-03-15 | Siemens Aktiengesellschaft | Vorrichtung für die elektroenergieübertragung |
US20080252142A1 (en) * | 2005-09-09 | 2008-10-16 | Siemens Aktiengesellschaft | Apparatus for Electrical Power Transmission |
WO2008002226A1 (en) * | 2006-06-28 | 2008-01-03 | Abb Technology Ltd. | Modular hvdc converter |
US7532490B2 (en) | 2006-08-14 | 2009-05-12 | General Electric Company | Converter topology and methods for interfacing an electrical machine to electrical power grid |
US7851943B2 (en) * | 2006-12-08 | 2010-12-14 | General Electric Company | Direct current power transmission and distribution system |
US7688048B2 (en) * | 2007-02-21 | 2010-03-30 | American Power Conversion Corporation | 3-phase high power UPS |
EP2023475B1 (de) * | 2007-08-04 | 2016-10-12 | SMA Solar Technology AG | Wechselrichter für eine geerdete Gleichspannungsquelle, insbesondere einen Photovoltaikgenerator |
DE102008022618A1 (de) * | 2008-05-07 | 2009-12-31 | Siemens Aktiengesellschaft | Stromversorgungseinrichtung |
-
2008
- 2008-12-22 US US12/317,306 patent/US8692408B2/en not_active Expired - Fee Related
-
2009
- 2009-11-19 CA CA2686177A patent/CA2686177A1/en not_active Abandoned
- 2009-11-26 EP EP09177143.6A patent/EP2194638A3/en not_active Withdrawn
- 2009-12-01 JP JP2009273097A patent/JP5627879B2/ja not_active Expired - Fee Related
- 2009-12-02 RU RU2009145979/07A patent/RU2518163C2/ru not_active IP Right Cessation
- 2009-12-03 CN CN200910252699.XA patent/CN101753039B/zh not_active Expired - Fee Related
- 2009-12-03 KR KR1020090119093A patent/KR101655457B1/ko active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101197503A (zh) * | 2006-12-08 | 2008-06-11 | 通用电气公司 | 采集和传输系统 |
Also Published As
Publication number | Publication date |
---|---|
JP2010136615A (ja) | 2010-06-17 |
KR101655457B1 (ko) | 2016-09-07 |
RU2518163C2 (ru) | 2014-06-10 |
CA2686177A1 (en) | 2010-06-03 |
KR20100063676A (ko) | 2010-06-11 |
US8692408B2 (en) | 2014-04-08 |
CN101753039A (zh) | 2010-06-23 |
US20100133901A1 (en) | 2010-06-03 |
EP2194638A2 (en) | 2010-06-09 |
JP5627879B2 (ja) | 2014-11-19 |
RU2009145979A (ru) | 2011-06-10 |
EP2194638A3 (en) | 2017-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101753039B (zh) | 模块化堆叠海底电力系统架构 | |
RU2543516C2 (ru) | Система передачи и распределения электроэнергии | |
CN101479909B (zh) | 模块化高压直流变换器 | |
CN101197503B (zh) | 采集和传输系统 | |
CN102739095B (zh) | 用于功率转换的系统和方法 | |
CN103959634B (zh) | 用于hvdc应用的混合ac/dc转换器 | |
EP2341594A1 (en) | Power collection and transmission systems | |
NO328333B1 (no) | Omformeranordning for likespenning. | |
CN102780416B (zh) | 一种基于模块化多电平变流器柔性直流输电装置及其系统 | |
CN103444066A (zh) | 耦接到整流器系统的m2lc系统 | |
CN104485821A (zh) | 配电用直流变压器装置 | |
WO2014037583A2 (en) | Power distribution system for autonomous facilities | |
EP2621076B1 (en) | Multicell AC/DC power converter with isolated DC/DC converter stages | |
CN103441676A (zh) | 一种模块化的高压直流-直流变换装置 | |
CN103427658A (zh) | 一种基于多绕组变压器的高压直流-直流变换装置 | |
CN109617120B (zh) | 直流风力发电机组及风电场 | |
CN204392098U (zh) | 一种单相电力电子变压器及其应用系统 | |
CN109768551A (zh) | 一种柔性接入变电站及控制方法 | |
CN209448429U (zh) | 一种柔性接入变电站 | |
CN105474497A (zh) | 电气组件 | |
CN103354968A (zh) | 用于将电能馈送至能量供给系统中的装置 | |
US20240048042A1 (en) | Voltage transformer | |
EP3985821A1 (en) | Power grid | |
CN114336571A (zh) | 一种直流电网接入方法以及系统 | |
CN105991042A (zh) | 一种单相电力电子变压器及其应用系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140917 Termination date: 20161203 |
|
CF01 | Termination of patent right due to non-payment of annual fee |