RU2543516C2 - Система передачи и распределения электроэнергии - Google Patents

Система передачи и распределения электроэнергии Download PDF

Info

Publication number
RU2543516C2
RU2543516C2 RU2012102801/07A RU2012102801A RU2543516C2 RU 2543516 C2 RU2543516 C2 RU 2543516C2 RU 2012102801/07 A RU2012102801/07 A RU 2012102801/07A RU 2012102801 A RU2012102801 A RU 2012102801A RU 2543516 C2 RU2543516 C2 RU 2543516C2
Authority
RU
Russia
Prior art keywords
converter
primary
distribution
underwater
power
Prior art date
Application number
RU2012102801/07A
Other languages
English (en)
Other versions
RU2012102801A (ru
Inventor
Чанцзянь ЧЖАН
Эндрю Джеймс БАЛЛОК
Алан Дэвид КРЕЙН
Original Assignee
ДжиИ Энерджи Пауэр Конвершн Текнолоджи Лимитед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ДжиИ Энерджи Пауэр Конвершн Текнолоджи Лимитед filed Critical ДжиИ Энерджи Пауэр Конвершн Текнолоджи Лимитед
Publication of RU2012102801A publication Critical patent/RU2012102801A/ru
Application granted granted Critical
Publication of RU2543516C2 publication Critical patent/RU2543516C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/06Two-wire systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0074Plural converter units whose inputs are connected in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/3353Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having at least two simultaneously operating switches on the input side, e.g. "double forward" or "double (switched) flyback" converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

В изобретении предлагается система передачи и распределения электроэнергии, которая подходит для питания подводных электрических нагрузок. Система содержит первичный dc передающий кабель (8), который может быть подключен к береговому AC/DC преобразовательному модулю (2). Подводный конец кабеля (8) подключен к первичному подводному силовому распределительному блоку (10), который содержит DC/DC преобразовательный модуль (14), имеющий модульную топологию с группами взаимосвязанных DC/DC преобразовательных узлов, и первичную dc распределительную сеть (16). Вторичные dc передающие кабели (24) и связанные с ними автоматические выключатели (26) обеспечивают подключение первичного подводного силового распределительного блока (10) ко вторичным подводным силовым распределительным блокам (18а, 18b). Каждый подводный силовой распределительный блок (18а, 18b) содержит DC/DC преобразовательный модуль (20а), имеющий модульную топологию с группами взаимосвязанных DC/DC преобразовательных узлов. Соответствующие вторичные dc распределительные сети (22а, 22b) используют для подачи энергии на одну или несколько подводных электрических нагрузок. Технический результат - возможность уменьшения размера наземных компонентов. 11 з.п. ф-лы, 3 ил.

Description

Область применения изобретения
Настоящее изобретение в общем имеет отношение к созданию систем передачи и распределения электроэнергии, а в частности к созданию систем передачи и распределения электроэнергии для подводных энергосистем и подводных электрических нагрузок.
Следует иметь в виду, что любая сделанная здесь ссылка на "подводное" средство означает ссылку на те компоненты системы передачи и распределения электроэнергии, которые полностью или частично расположены в любом водном пространстве, в том числе в океанах, морях, озерах, водоемах, реках и других водных источниках. Аналогично, любая сделанная здесь ссылка на "береговое" средство необязательно означает ссылку на те компоненты, которые должны быть расположены на физической земле, а также включает в себя компоненты, которые расположены на прибрежных и плавучих платформах, на нефтяных или газовых морских буровых установках, а также на других стационарных и подвижных морских судах и т.п.
Предпосылки к созданию изобретения
Стандартная подводная система передачи и распределения электроэнергии типично представляет собой ас систему (систему переменного тока) с расположенным на суше повышающим трансформатором, ас передающим кабелем, с одним или несколькими подводными понижающими трансформаторами, а также с автоматическими выключателями и преобразователями частоты для энергоснабжения подводных электрических нагрузок, таких как компрессоры и насосы. Такие стандартные подводные системы передачи и распределения электроэнергии хорошо работают при относительно коротких расстояниях от берега (например, 10-20 км) и когда полная номинальная мощность находится в некоторых заданных пределах.
При более значительных расстояниях от берега ас передающий кабель генерирует значительный реактивный ток за счет его высокой емкости. Например, кабель из сшитого полиэтилена под напряжением 132 кВ может генерировать реактивный ток до 1000 kVAR/км. Это значительно снижает возможность передачи активной мощности ас передающего кабеля, когда расстояние от берега увеличивается до 100 км или больше. Тогда становится необходим шунтирующий реактор или некоторый вид компенсатора статического напряжения, для компенсации реактивной мощности и контроля стабильности напряжения.
Когда ас передающие кабели больше не годятся, тогда используют линии электропередачи высокого напряжения на постоянном токе (HVDC) для прибрежных применений. DC передающие кабели (передающие кабели постоянного тока) являются менее дорогими потому, что они могут надежно работать при более высоком токе для данной степени изоляции и количества меди. Таким образом, dc передающий кабель может передавать больше мощности при одинаковых затратах на кабель. Потери в dc передающем кабеле также меньше за счет отсутствия зарядных токов в главном проводнике и индуцированных токов в экранирующей оболочке. Кроме того, также отсутствует резонанс между dc передающим кабелем и стандартным ас оборудованием, которое связано с ас сетью (с сетью переменного тока) или с электроэнергетической системой.
В качестве примера имеющейся в продаже HVDC системы передачи электроэнергии можно привести HVDC LIGHT систему, выпускаемую фирмой ABB Ltd, Цюрих, Швейцария, которую уже используют для передачи dc мощности (мощности постоянного тока) от прибрежной электростанции в местечке Коллснес в Норвегии на нефтяную и газовую платформу Troll А. В этой системе используют VSC преобразователи (регулируемые преобразователи) с широтно-импульсной модуляцией (ШИМ) для развязки управления активной и реактивной мощностями. Однако высокие потери на переключение для применений с высокой мощностью означают, что частота переключения VSC преобразователя должна быть ограниченной. В HVDC LIGHT системе также необходимо использовать физически большие и дорогие ас фильтры и трансформатор, работающий на частоте напряжения сети питания (на сетевой частоте). Физический размер наземных компонентов может быть существенным недостатком в тех ситуациях, когда имеются практические ограничения размера преобразовательной подстанции.
Раскрытие изобретения
В соответствии с настоящим изобретением предлагается система передачи и распределения электроэнергии, которая содержит: первичный dc передающий кабель;
первичный подводный силовой распределительный блок (SPDU), имеющий DC/DC преобразовательный модуль, подключенный между первичным dc передающим кабелем и первичной dc распределительной сетью; вторичный SPDU, имеющий DC/DC преобразовательный модуль, подключенный между первичной dc распределительной сетью и вторичной dc распределительной сетью; и одну или несколько подводных электрических нагрузок, подключенных ко вторичной dc распределительной сети, возможно, при помощи подходящего силового преобразователя.
Такая система передачи и распределения электроэнергии позволяет обеспечивать экономичное решение проблемы передачи электроэнергии от наземной ас питающей электрической сети к подводным электрическим нагрузкам, таким как насосы, компрессоры и т.п. Она будет особенно полезна для использования при добыче нефти и газа, когда минеральные запасы находятся, например, на глубоководных участках, удаленных от берега или континентального шельфа.
Береговой AC/DC преобразовательный модуль преимущественно действует как активный входной каскад для системы передачи и распределения электроэнергии, для ее подключения к ас питающей электрической сети. Поэтому AC/DC преобразовательный модуль подключен между ас питающей электрической сетью и первичным dc передающим кабелем. Во многих ситуациях ас питающая электрическая сеть представляет собой обычную трехфазную электрическую сеть, работающую под напряжением 132-400 кВ, с частотой 50/60 Гц, однако это также может быть специально предназначенная электрическая сеть для снабжения энергией только системы передачи и распределения электроэнергии. Береговой AC/DC преобразовательный модуль преимущественно подключен к ас питающей электрической сети при помощи подходящего предохранительного распределительного устройства, которое содержит автоматические выключатели и объединенные с ними органы управления. Береговой AC/DC преобразовательный модуль может иметь любую подходящую конструкцию или топологию, например, с использованием стандартного выпрямителя с использованием тиристоров, так что это может быть LCC преобразователь или VSC HVDC преобразователь.
Первичный dc передающий кабель передает высокое напряжение (HV) или среднее напряжение (MV) на первичный SPDU, то есть он является HVDC или MVDC передающим кабелем. Рабочие параметры системы передачи и распределения электроэнергии зависят в некоторой степени от характеристик первичного dc передающего кабеля, который может иметь любую подходящую конструкцию для подводного использования.
DC/DC преобразовательный модуль первичного SPDU преимущественно работает как понижающий преобразователь и может быть сконфигурирован для подачи энергии в первичную dc распределительную сеть, с любым подходящим уровнем напряжения распределения. Первичная dc распределительная сеть может быть выполнена в виде подходящей шины или распределительного щита, например, имеющего пару dc магистралей. Подводные электрические нагрузки могут быть подключены к первичной dc распределительной сети непосредственно или при помощи любого подходящего силового преобразователя. В случае dc электрических нагрузок силовым преобразователем тогда может быть DC/DC преобразовательный узел, имеющий любую подходящую конструкцию или топологию. В случае ас электрических нагрузок силовым преобразователем тогда может быть DC/AC преобразовательный узел, имеющий любую подходящую конструкцию или топологию. Каждый силовой преобразователь может быть подключен к первичной dc распределительной сети при помощи разгруженного переключателя.
Система передачи и распределения электроэнергии может иметь любое подходящее число вторичных SPDU, подключенных параллельно к первичной dc распределительной сети. Каждый вторичный SPDU содержит DC/DC преобразовательный модуль, который преимущественно работает как понижающий преобразователь и может быть сконфигурирован для подачи энергии в связанную с ним вторичную dc распределительную сеть, с любьм подходящим уровнем напряжения распределения. Вторичные dc распределительные сети могут быть выполнены, например, в виде подходящей шины или в виде распределительного щита, например, имеющего пару dc магистралей. Вторичные dc распределительные сети могут иметь различные напряжения распределения, в зависимости от требований к функционированию или от напряжений подводных электрических нагрузок.
DC/DC преобразовательный модуль каждого вторичного SPDU может быть подключен к первичной dc распределительной сети первичного SPDU при помощи вторичного dc передающего кабеля и объединенного с ним подводного автоматического выключателя. Это позволяет размещать вторичные SPDU ближе к подводным электрическим нагрузкам и подключать их к первичному SPDU гибким и надежным образом. Вторичный dc передающий кабель (кабели) может иметь любую подходящую конструкцию для подводного использования и может передавать подходящее напряжение (типично, напряжение распределения первичной dc распределительной сети) от первичного SPDU к соответствующему вторичному SPDU.
DC/DC преобразовательные модули, которые используют в системе передачи и распределения электроэнергии, имеют встроенную защиту от перегрузки и короткого замыкания, что объясняется использованием выключаемых с управлением по затвору полупроводниковых устройств в DC/AC преобразовательных блоках (см. ниже). Это означает, что подводные автоматические выключатели, которые используют для подключения вторичных dc передающих кабелей к первичной dc распределительной сети, могут быть выполнены в виде физически компактных разгруженных переключателей, вместо законченных dc автоматических выключателей.
DC/DC преобразовательные модули могут получать питание от источника напряжения или от источник тока и могут иметь любую подходящую конструкцию или топологию. DC/DC преобразовательные модули преимущественно представляют собой резонансные DC/DC преобразовательные модули. Обычно является предпочтительным, чтобы DC/DC преобразовательные модули имели группы взаимосвязанных DC/DC преобразовательных узлов в последовательно-параллельной схеме подключения. Типично, все DC/DC преобразовательные узлы имеют одинаковую топологию, так что DC/DC преобразовательные модули преимущественно могут быть выполнены в виде модульной системы, в том, что касается сборки, технического обслуживания и ремонта. Модульная система позволяет легко согласовывать DC/DC преобразовательные модули с требуемыми напряжением и номинальной мощностью системы передачи и распределения электроэнергии и дополнительно повышать избыточность и, следовательно, надежность системы в целом.
Каждый из взаимосвязанных DC/DC преобразовательных узлов преимущественно содержит трансформатор, DC/AC преобразовательный блок, подключенный к первичной обмотке трансформатора (возможно через резонансный колебательный LC-контур), и AC/DC преобразовательный блок, подключенный ко вторичной обмотке трансформатора. Трансформатор обеспечивает гальваническую изоляцию и может быть трансформатором средней частоты или высокой частоты, например, однофазного или трехфазного типа. Трансформатор обычно является намного более физически компактным, чем трансформатор сетевой частоты той же самой номинальной мощности. Если используют трансформатор средней частоты, то тогда DC/DC преобразовательный модуль будет иметь очень высокую удельную мощность за счет его рабочей частоты около 1-20 кГц.
DC/AC и AC/DC преобразовательные блоки также могут иметь подходящую топологию, например, могут быть выполнены в виде стандартных мостов или полумостов с использованием любых подходящих силовых полупроводниковых переключающих устройств, таких как IGBT или обычные диодные мосты, которые обеспечивают, например, пассивное выпрямление.
DC входные клеммы DC/AC преобразовательных блоков преимущественно соединены последовательно.
В случае наличия DC/DC преобразовательного модуля для первичного SPDU первый DC/AC преобразовательный блок в группе последовательного соединения тогда преимущественно имеет первую dc клемму, соединенную с первой dc магистралью первичного dc передающего кабеля, и вторую dc клемму, соединенную с первой dc клеммой следующего DC/AC преобразовательного блока в группе. Каждый DC/AC преобразователь, кроме последнего DC/AC преобразовательного блока в группе последовательного соединения, преимущественно имеет вторую dc клемму, соединенную с первой dc клеммой следующего DC/AC преобразовательного блока в группе, а последний DC/AC преобразовательный блок в группе имеет вторую dc клемму, соединенную со второй dc магистралью первичного dc передающего кабеля.
В случае наличия DC/DC преобразовательного модуля для каждого вторичного SPDU первый DC/AC преобразовательный блок в группе последовательного соединения тогда преимущественно имеет первую dc клемму, соединенную с первой dc магистралью первичной dc распределительной сети, и вторую dc клемму, соединенную с первой dc клеммой следующего DC/AC преобразовательного блока в группе. Каждый DC/AC преобразовательный блок, кроме последнего DC/AC преобразовательного блока в группе последовательного соединения, преимущественно имеет вторую dc клемму, соединенную с первой dc клеммой следующего DC/AC преобразовательного блока в группе, а последний DC/AC преобразовательный блок в группе имеет вторую dc клемму, соединенную со второй dc магистралью первичной dc распределительной сети.
Первая dc клемма первого DC/AC преобразовательного блока в группе последовательного соединения может быть непосредственно соединена с первой dc магистралью первичной dc распределительной сети, а вторая dc клемма последнего DC/AC преобразовательного блока в группе может быть непосредственно соединена со второй dc магистралью первичной dc распределительной сети, однако эти соединения преимущественно являются косвенными соединениями, которые выполняют при помощи вторичного dc передающего кабеля и связанного с ним подводного автоматического выключателя. Более конкретно, первая dc клемма первого DC/AC преобразовательного блока в группе последовательного соединения может быть соединена с первой dc магистралью вторичного dc передающего кабеля, а вторая dc клемма последнего DC/AC преобразовательного блока в группе может быть соединена со второй dc магистралью вторичного dc передающего кабеля.
DC выходные клеммы AC/DC преобразовательных блоков могут быть соединены параллельно.
В случае наличия DC/DC преобразовательного модуля для первичного SPDU каждый AC/DC преобразовательный блок в группе тогда преимущественно имеет первую dc клемму, соединенную с первой dc магистралью первичной dc распределительной сети, и вторую dc клемму, соединенную со второй dc магистралью первичной dc распределительной сети.
В случае наличия DC/DC преобразовательного модуля для каждого вторичного SPDU каждый AC/DC преобразовательный блок в группе тогда преимущественно имеет первую dc клемму, соединенную с первой dc магистралью соответствующей вторичной dc распределительной сети, и вторую dc клемму, соединенную со второй dc магистралью соответствующей вторичной dc распределительной сети.
Первичный и вторичный SPDU являются физически компактными, эффективными и обладают преимуществами, возникающими за счет использования модульной топологии. Они могут работать при различных уровнях напряжения и при различных номинальная мощностях. Что является наиболее важным, не требуются преобразовательные трансформаторы частоты напряжения сети питания или ас фильтры.
Подводными электрическими нагрузками могут быть насосы, компрессоры и т.п., которые могут быть подключены ко вторичной dc распределительной сети непосредственно или при помощи любого подходящего силового преобразователя. В случае наличия dc электрических нагрузок силовым преобразователем тогда может быть DC/DC преобразовательный узел, имеющий любую подходящую конструкцию или топологию. В случае наличия ас электрических нагрузок силовым преобразователем тогда может быть DC/AC преобразовательный узел, имеющий любую подходящую конструкцию или топологию. Каждый силовой преобразователь может быть подключен ко вторичной dc распределительной сети при помощи разгруженного переключателя.
Все электрические соединения между компонентами системы передачи и распределения электроэнергии преимущественно выполнены с использованием известных мокрых сопрягаемых соединителей или разрывных концевых головок. Когда это требуется, соответствующие дополнительные компоненты могут быть выполнены в виде законченных блоков и расположены в водонепроницаемом кожухе, который заполнен, например, твердым изоляционным материалом или жидким диэлектриком.
Краткое описание чертежей
На фиг.1 показана блок-схема системы передачи и распределения электроэнергии в соответствии с настоящим изобретением.
На фиг.2 показана схема соединения DC/DC преобразовательных блоков каждого DC/DC преобразовательного модуля.
На фиг.3 показана блок-схема топологии DC/DC преобразовательных блоков каждого DC/DC преобразовательного модуля.
Подробное описание изобретения
Теперь со ссылкой на фиг.1 будет описана система передача и распределения электроэнергии, которая годится для использования с подводными электрическими нагрузками и энергосистемами.
Для удобства любая ссылка здесь на AC/DC и DC/AC преобразовательные блоки сделана в направлении потока мощности от береговой ас питающей электрической сети к подводным электрическим нагрузкам. Другими словами, DC/AC преобразовательный блок преобразует dc входную мощность в ас выходную мощность, a AC/DC преобразовательный блок (или модуль) преобразует ас входную мощность в dc выходную мощность, для направления потока мощности от ас питающей электрической сети к подводным электрическим нагрузкам.
Береговой AC/DC преобразовательный модуль 2 подключен к ас питающей электрической сети 4 при помощи предохранительного распределительного устройства 6. AC/DC преобразовательный модуль 2 преобразует ас мощность от ас питающей электрической сети 4 в dc мощность и подает ее в подводный dc передающий кабель (или "tieback") 8. DC передающий кабель 8 может иметь любую подходящую конструкцию и может иметь напряжение передачи 50 кВ.
Первичный подводный силовой распределительный блок (SPDU) 10 работает как центральный энергоблок системы распределения электроэнергии и подключен к подводному концу dc передающего кабеля 8 при помощи мокрого сопрягаемого соединителя 12 или разрывной концевой головки. Первичный SPDU 10 содержит DC/DC преобразовательный модуль 14 и первичную dc распределительную сеть 16, которые расположены внутри водонепроницаемого кожуха, который позволяет выдерживать соответствующие подводные давления. В этом кожухе также находятся соответствующие схемы управления и оборудование (не показаны), которые необходимы для нормальной работы первичного SPDU 10.
DC/DC преобразовательный модуль 14 действует как понижающий преобразователь и подает dc мощность в первичную dc распределительную сеть 16, которая в этом примере имеет напряжение распределения 10-20 кВ.
Группы вторичных SPDU подключены в параллель к первичному SPDU. Несмотря на то что на фиг.1 показаны только два вторичных SPDU 18а и 18b, легко можно понять, что любое их подходящее число может быть подключено к первичному SPDU 10 в пределах номинальной мощности и с использованием дополнительных автоматических выключателей и dc передающих кабелей (см. ниже), позволяющих осуществить такие подключения.
Каждый вторичный SPDU 18а и 18b содержит соответственно DC/DC преобразовательный модуль 20а и 20b и вторичную dc распределительную сеть (или шину) 22а и 22b, которые расположены внутри водонепроницаемого кожуха, который позволяет выдерживать соответствующие подводные давления. В этом кожухе также находятся соответствующие схемы управления и оборудование (не показаны), которые необходимы для нормальной работы вторичных SPDU 18а и 18b. DC/DC преобразовательные модули 20а и 20b действуют как понижающие преобразователи и подают dc мощность во вторичные dc распределительные сети 22а и 22b, которые в этом примере имеют соответствующие напряжения распределения 1-5 кВ dc и 5-10 кВ dc.
Каждый вторичный SPDU 18а и 18b подключен к первичному SPDU 10 при помощи dc передающего кабеля 24 и соответствующего автоматического выключателя 26. Каждый автоматический выключатель 26 содержит компактный разгруженный переключатель 28, расположенный внутри водонепроницаемого кожуха, который позволяет выдерживать соответствующие подводные давления. В этом кожухе также находятся соответствующие схемы управления и оборудование (не показаны), которые необходимы для нормальной работы автоматического выключателя 26.
DC передающие кабели 24 подключены ко вторичным SPDU и к автоматическим выключателям 26 при помощи мокрых сопрягаемых соединителей 12. Автоматические выключатели 26 также подключены к первичному SPDU 10 при помощи мокрых сопрягаемых соединителей 12.
Насосная нагрузка 1 подключена ко вторичной dc распределительной сети 22а при помощи силового преобразователя 30. Силовой преобразователь 30 содержит DC/AC преобразовательный узел 32 и разгруженный переключатель 34, расположенные внутри водонепроницаемого кожуха, который позволяет выдерживать соответствующие подводные давления. В этом кожухе также находятся соответствующие схемы управления и оборудование (не показаны), которые необходимы для нормальной работы силового преобразователя 30. Силовой преобразователь 30 подключен к насосной нагрузке и ко вторичному SPDU 18а при помощи мокрых сопрягаемых соединителей 12.
Два дополнительных силовых преобразователя 36 и 38 также подключены ко вторичной dc распределительной сети 22а при помощи мокрых сопрягаемых соединителей 12. Силовой преобразователь 36 содержит DC/DC преобразовательный узел 40 и образует регулируемый dc источник питания, к которому может быть подключена соответствующая dc электрическая нагрузка. Силовой преобразователь 38 содержит DC/AC преобразовательный узел 42 и образует регулируемый ас источник питания, к которому может быть подключена соответствующая ас электрическая нагрузка.
Три независимые компрессорные нагрузки подключены ко вторичной dc распределительной сети 22b при помощи силовых преобразователей 44. Каждый силовой преобразователь 44 содержит DC/AC преобразовательный узел 46 и разгруженный переключатель 48, расположенные внутри водонепроницаемого кожуха, который позволяет выдерживать соответствующие подводные давления. В этом кожухе также находятся соответствующие схемы управления и оборудование (не показаны), которые необходимы для нормальной работы силовых преобразовательных блоков 44. Силовые преобразователи 44 подключены к компрессорным нагрузкам и ко вторичным SPDU 18b при помощи мокрых сопрягаемых соединителей 12.
Таким образом, мокрые сопрягаемые соединители 12 обеспечивают безопасное и надежное электрическое соединение между следующими компонентами системы передачи и распределения электроэнергии:
- dc передающим кабелем 8 и dc входными клеммами DC/DC преобразовательного модуля 14 первичного SPDU 10;
- первичной dc распределительной сетью (или шиной) 16 и разгруженными переключателями 28 автоматических выключателей 26;
- разгруженными переключателями 28 автоматических выключателей 26 и dc передающими кабелями 24;
- dc передающими кабелями 24 и dc входными клеммами DC/DC преобразовательных модулей 20а и 20b вторичных SPDU 18а и 18b;
- вторичными dc распределительными сетями 22а и 22b и разгруженными переключателями 34 и 48, связанными с силовыми преобразователями 30, 36, 38 и 44;
- dc выходными клеммами DC/DC преобразовательного узла 40 и dc источником питания, ас клеммами DC/AC преобразовательного узла 42 и ас источником питания, и ас выходными клеммами DC/AC преобразовательных узлов 32, 42 и 46 и ас электрическими нагрузками (например, насосной нагрузкой и компрессорными нагрузками).
Далее со ссылкой на фиг.2 и 3 будут описаны более подробно DC/DC преобразовательные модули 14,20а и 20b.
Каждый DC/DC преобразовательный модуль содержит группы DC/DC преобразовательных узлов 50. Каждый DC/DC преобразовательный узел 50 содержит стандартный мостовой DC/AC преобразовательный блок 52, в котором использованы подходящие силовые полупроводниковые переключающие приборы Sp1…Sp4, и диодный мост 54, который работает как пассивный выпрямитель. DC/AC и AC/DC преобразовательные блоки 52 и 54 предусмотрены на каждой стороне трансформатора 56 средней или высокой частоты, который обеспечивает гальваническую изоляцию. DC/DC преобразовательный модуль обычно сконфигурирован для однонаправленного потока мощности (то есть от ас питающей электрической сети к подводным электрическим нагрузкам), и поэтому нет требований к AC/DC преобразовательному блоку 54 обеспечивать функцию инвертора.
Каждый DC/DC преобразовательный узел 50 может быть переключаемым при нулевом напряжении (ZVS) резонансным преобразователем или переключаемым при нулевом токе (ZCS) резонансным преобразователем, например, типа параллельного резонанса.
Каждый DC/DC преобразовательный узел 50 содержит первую пару dc клемм 58а и 58b и вторую пару dc клемм 60а и 60b. Первая пара dc клемм 58а и 58b представляет собой dc клеммы каждого DC/AC преобразовательного блока 52, в то время как вторая пара dc клемм 60а и 60b представляет собой dc клеммы каждого AC/DC преобразовательного блока 54. АС клеммы каждого DC/AC преобразовательного блока 52 соединены с резонансным колебательным LC-контуром 55, который, в свою очередь, подключен соответственно к первичной обмотке трансформатора 56. АС клеммы каждого AC/DC преобразовательного блока 54 подключены соответственно ко вторичной обмотке трансформатора 56.
DC/DC преобразовательные узлы 50 каждого DC/DC преобразовательного модуля соединены друг с другом так, как это описано далее более подробно. Несмотря на то что на фиг.2 показаны восемь DC/DC преобразовательных узлов 50 (то есть n=8), легко можно понять, что DC/DC преобразовательные модули могут иметь любое подходящее число DC/DC преобразовательных узлов, в зависимости от конструктивных требований.
DC входы DC/AC преобразовательных блоков 52 соединены последовательно (или каскадно).
Первая dc клемма 58а первого DC/AC преобразовательного блока 52 представляет собой первую dc входную клемму 62а DC/DC преобразовательного модуля и подключена к первой dc магистрали DC1.
За исключением DC/AC преобразовательного блока 52n, который является частью последнего DC/DC преобразовательного узла 50n, вторая dc клемма 58b каждого DC/AC преобразовательного блока 52 соединена последовательно с первой dc клеммой 58а DC/AC преобразовательного блока, который является частью следующего DC/DC преобразовательного узла в группе. Другими словами, вторая dc клемма 58b1 DC/AC преобразовательного блока 521, который является частью первого DC/DC преобразовательного узла 501, последовательно подключена к первой dc клемме 58а2 DC/AC преобразовательного блока 522, который является частью второго DC/DC преобразовательного узла 502 в группе, вторая dc клемма 58b2 DC/AC преобразовательного блока 522, который является частью второго DC/DC преобразователя 502, последовательно подключена к первой dc клемме 58а3 DC/AC преобразовательного блока 523, который является частью третьего DC/DC преобразовательного узла 503 в группе, и т.д. Вторая dc клемма 58b(n-1) DC/AC преобразовательного блока 52(n-1), который является частью предпоследнего DC/DC преобразовательного узла 50(n-1) в группе, подключена к первой dc клемме 58an DC/AC преобразовательного блока 52n, который является частью последнего DC/DC преобразовательного узла 50n в группе.
Вторая dc клемма 58bn DC/AC преобразовательного блока 52n, который является частью последнего DC/DC преобразовательного узла 50n в группе, представляет собой вторую dc выходную клемму 62b DC/DC преобразовательного модуля и подключена ко второй dc магистрали DC2.
DC выходные клеммы AC/DC преобразовательных блоков 54 включены параллельно.
Первые dc клеммы 60a1, 60а2…60аn AC/DC преобразовательных блоков 541, 542…54n соединены параллельно и образуют первую dc выходную клемму 64а DC/DC преобразовательного модуля. Вторые dc клеммы 60b1, 60b2…60bn AC/DC преобразовательных блоков 541, 542…54n соединены параллельно и образуют вторую dc выходную клемму 64b DC/DC преобразовательного модуля. Первая dc выходная клемма 64а подключен к третьей dc магистрали DC3, а вторая dc выходная клемма 64b подключена к четвертой dc магистрали DC4.
В случае наличия DC/DC преобразовательного модуля 14 для первичного SPDU 10 первая и вторая dc магистрали DC1 и DC2 тогда представляют собой dc магистрали dc передающего кабеля 8, а третья и четвертая dc магистрали DC3 и DC4 представляют собой dc магистрали первичной dc распределительной сети 16.
В случае наличия DC/DC преобразовательного модуля 20а и 20b для каждого вторичного SPDU 18а и 18b первая и вторая dc магистрали DC1 и DC2 тогда представляют собой dc магистрали соответствующего dc передающего кабеля 24 (которые, в свою очередь, подключены при помощи соответствующих автоматических выключателей 26 к dc магистралям первичной dc распределительной сети 16), а третья и четвертая dc магистрали DC3 и DC4 представляют собой dc магистрали соответствующей вторичной dc распределительной сети 22а и 22b.
В примере, показанном на фиг.1, заданная номинальная мощность составляет до 250 МВт, при dc передающем кабеле 8 длиной до 200 км. Первичный и вторичный SPDU могут быть погружены на глубину до 3000 м. Максимально допустимая нагрузка каждого вторичного SPDU доходит до 30 МВт. Само собой разумеется, что возможные и другие практические схемы построения.
При работе высокое напряжение (HV) или среднее напряжение (MV), подводимое при помощи dc передающего кабеля 8, понижается при помощи DC/DC преобразовательного модуля 14 первичного SPDU 10 до первого напряжения распределения (10-20 кВ), которое затем подается на вторичные SPDU 18а и 18b через первичную dc распределительную сеть 16. Вторичные SPDU подключены к первичной dc распределительной сети 16 при помощи dc передающих кабелей 25 и соответствующих автоматических выключателей 26. Первое напряжение распределения, подводимое при помощи dc передающих кабелей 24, понижается при помощи DC/DC преобразовательных модулей 20а и 20b, связанных с соответствующими вторичными SPDU, до соответствующих вторых напряжений распределения (1-5 кВ и 5-10 кВ), и подается на группы подводных электрических нагрузок через вторичные dc распределительные сети 22а и 22b. Заявленная система передача и распределения электроэнергии имеет преимущества по передаче по сравнению со стандартной линией электропередачи высокого напряжения на постоянном токе (HVDC), и при этом она сохраняет гибкость ас систем электропередачи, потому что в ней используют группы взаимосвязанных DC/DC преобразовательных узлов 50, которые работают как dc трансформаторы. За счет использования оптимизированной последовательно-параллельной комбинации DC/DC преобразовательных преобразовательного узла 50 система передачи и распределения электроэнергии легко может быть согласована с любым требуемым напряжением и с любой номинальной мощностью.
В случае короткого замыкания в одной из подводных электрических нагрузок срабатывает разгруженный переключатель, предусмотренный в соответствующем силовом преобразователе, который отключает эту нагрузку и позволяет дальше использовать систему передачи и распределения электроэнергии. Специфическая электрическая нагрузка или регулируемый источник питания также могут быть избирательно отключены для проведения технического обслуживания или ремонта. Аналогично, в случае короткого замыкания в одном из вторичных SPDLJ срабатывает разгруженный переключатель, предусмотренный в соответствующем автоматическом выключателе 26, который отключает вторичный SPDU от первичного SPDU 10, при этом энергия продолжает распределяться в остальные вторичные SPDU. Собственная ограничительная способность по току DC/DC преобразовательных узлов 50 способствует размыканию и отключению системы при любых авариях в dc сети.

Claims (12)

1. Система передачи и распределения электроэнергии, которая содержит:
первичный dc передающий кабель (8);
первичный подводный силовой распределительный блок (10), имеющий DC/DC преобразовательный модуль (14), подключенный между первичным dc передающим кабелем (8) и первичной dc распределительной сетью (16);
вторичный подводный силовой распределительный блок (18а), имеющий DC/DC преобразовательный модуль (20а), подключенный между первичной dc распределительной сетью (16) и вторичной dc распределительной сетью (22а); и
одну или несколько подводных электрических нагрузок, подключенных ко вторичной dc распределительной сети (22а).
2. Система передачи и распределения электроэнергии по п.1, в которой DC/DC преобразовательный модуль (14) первичного подводного силового распределительного блока (10) представляет собой понижающий преобразователь.
3. Система передачи и распределения электроэнергии по п.1 или 2, в которой DC/DC преобразовательный модуль (20а) вторичного подводного силового распределительного блока (18а) представляет собой понижающий преобразователь.
4. Система передачи и распределения электроэнергии по п.1, которая дополнительно содержит множество вторичных подводных силовых распределительных блоков (18а, 18b), каждый из которых подает энергию в связанную с ним вторичную dc распределительную сеть (22а, 22b).
5. Система передачи и распределения электроэнергии по п.4, в которой каждая вторичная dc распределительная сеть (22а, 22b) имеет различное напряжение распределения.
6. Система передачи и распределения электроэнергии по п.1, в которой DC/DC преобразовательный модуль (20а) одного или каждого вторичного подводного силового распределительного блока (18а) подключен к первичной dc распределительной сети (16) при помощи вторичного dc передающего кабеля (24) и связанного с ним подводного автоматического выключателя (26).
7. Система передачи и распределения электроэнергии по п.1, которая дополнительно содержит береговой AC/DC преобразовательный модуль (2), подключенный между ас питающей электрической сетью (4) и первичным dc передающим кабелем (8).
8. Система передачи и распределения электроэнергии по п.1, в которой DC/DC преобразовательные модули (14, 20а) представляют собой резонансные DC/DC преобразовательные модули.
9. Система передачи и распределения электроэнергии по п.1, в которой первичный dc передающий кабель (8) представляет собой HVDC передающий кабель.
10. Система передачи и распределения электроэнергии по п.1, в которой каждая подводная электрическая нагрузка, в частности насосная нагрузка 1, подключена к вторичной dc распределительной сети (22а) при помощи силового преобразователя (32) и связанного с ним подводного автоматического выключателя (34).
11. Система передачи и распределения электроэнергии по п.1, которая дополнительно содержит одну или несколько подводных электрических нагрузок, каждая из которых подключена к первичной dc распределительной сети (16) при помощи силового преобразователя и связанного с ним подводного автоматического выключателя.
12. Система передачи и распределения электроэнергии по п.1, в которой все электрические соединения между компонентами выполнены с использованием мокрых сопрягаемых соединителей (12) или разрывных концевых головок.
RU2012102801/07A 2009-09-08 2010-09-06 Система передачи и распределения электроэнергии RU2543516C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09011456.2 2009-09-08
EP20090011456 EP2293407A1 (en) 2009-09-08 2009-09-08 Power transmission and distribution systems
PCT/EP2010/005465 WO2011029566A1 (en) 2009-09-08 2010-09-06 Power transmission and distribution systems

Publications (2)

Publication Number Publication Date
RU2012102801A RU2012102801A (ru) 2013-10-20
RU2543516C2 true RU2543516C2 (ru) 2015-03-10

Family

ID=41809133

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012102801/07A RU2543516C2 (ru) 2009-09-08 2010-09-06 Система передачи и распределения электроэнергии

Country Status (6)

Country Link
US (1) US9030042B2 (ru)
EP (2) EP2293407A1 (ru)
BR (1) BR112012005207A2 (ru)
CA (1) CA2771920A1 (ru)
RU (1) RU2543516C2 (ru)
WO (1) WO2011029566A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2749864C1 (ru) * 2020-09-23 2021-06-17 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Распределённая энергетическая сеть

Families Citing this family (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2718168A1 (en) * 2008-03-10 2009-09-17 Techtium Ltd. Environmentally friendly power supply
GB0916387D0 (en) * 2009-09-18 2009-10-28 New And Renewable Energy Ct Ltd A power collection and distribution system
US10094219B2 (en) 2010-03-04 2018-10-09 X Development Llc Adiabatic salt energy storage
WO2012000545A1 (en) * 2010-06-30 2012-01-05 Abb Technology Ag An hvdc transmission system, an hvdc station and a method of operating an hvdc station
US20150036256A1 (en) * 2010-07-30 2015-02-05 Exxon Mobil Upstream Research Company Method for Design of Subsea Electrical Substation and Power Distribution System
WO2012038100A1 (en) * 2010-09-24 2012-03-29 Siemens Aktiengesellschaft Subsea dc transmission system
US8995151B2 (en) * 2011-02-03 2015-03-31 Alstom Technology Ltd Power electronic converter
GB2508991B (en) * 2011-06-01 2016-06-29 Total Sa Subsea electrical architectures
US8624530B2 (en) * 2011-06-14 2014-01-07 Baker Hughes Incorporated Systems and methods for transmission of electric power to downhole equipment
WO2013004282A1 (en) 2011-07-04 2013-01-10 Abb Technology Ag High voltage dc/dc converter
WO2013013858A1 (en) 2011-07-22 2013-01-31 Abb Technology Ltd An apparatus for controlling the electric power transmission in a hvdc power transmission system
US20130175958A1 (en) * 2011-08-04 2013-07-11 Samuel T. McJunkin Systems and methods for transmitting and/or utilizing hvdc power in a submarine environment
CN103907279A (zh) * 2011-08-12 2014-07-02 凯文·斯蒂芬·戴维斯 功率转换系统
NO334248B1 (no) * 2011-09-12 2014-01-20 Aker Subsea As Undervannsinnretning for likestrømslaster
NO334144B1 (no) 2011-09-12 2013-12-16 Aker Subsea As Roterende undervannsinnretning
NO333443B1 (no) * 2011-10-26 2013-06-03 Aker Subsea As Utstyr for drift av fjerntliggende undervannslaster eller laster som krever lang AC undervannskryssing
NO336604B1 (no) * 2011-11-22 2015-10-05 Aker Subsea As System og fremgangsmåte for operasjon av undervannslaster med elektrisk kraft forsynt gjennom en undervanns HVDC utleggskabel
US9048694B2 (en) * 2012-02-01 2015-06-02 Abb Research Ltd DC connection scheme for windfarm with internal MVDC collection grid
US9300132B2 (en) 2012-02-02 2016-03-29 Abb Research Ltd Medium voltage DC collection system
ES2552857T3 (es) * 2012-02-29 2015-12-02 Abb Technology Ltd Un sistema de alimentación de corriente continua con capacidades de protección del sistema
WO2013139375A1 (en) 2012-03-20 2013-09-26 Abb Technology Ltd An apparatus for controlling the electric power transmission in an hvdc power transmission system
US20130286546A1 (en) 2012-04-28 2013-10-31 Schneider Electric Industries Sas Subsea Electrical Distribution System Having a Modular Subsea Circuit Breaker and Method for Assembling Same
US9379544B2 (en) 2012-04-28 2016-06-28 Schneider Electric Industries Sas Subsea electrical distribution system operable to supply power to subsea load from plurality of sources
FR2990309B1 (fr) * 2012-05-04 2015-05-15 Alstom Technology Ltd Dispositif de controle non-lineaire d'un convertisseur dc/dc pour application au transport de courant hvdc.
WO2014032697A1 (en) 2012-08-28 2014-03-06 Abb Technology Ltd Switching device and system for operating an electric load
WO2014044561A1 (en) * 2012-09-24 2014-03-27 Abb Technology Ltd Direct current power transmission networks operating at different voltages
WO2014052927A1 (en) 2012-09-27 2014-04-03 Gigawatt Day Storage Systems, Inc. Systems and methods for energy storage and retrieval
WO2014055333A2 (en) 2012-10-01 2014-04-10 Abb Research Ltd Medium voltage dc collection system with power electronics
EP2717407A3 (en) * 2012-10-05 2014-07-09 Siemens Aktiengesellschaft Energizing system and method
US9853562B2 (en) * 2013-02-28 2017-12-26 Siemens Aktiengesellschaft Converter station with diode rectifier
US9362838B1 (en) * 2013-03-08 2016-06-07 Brunswick Corporation Electrical system for connecting mobile unit to base unit
NO337300B1 (no) 2013-04-17 2016-03-07 Fmc Kongsberg Subsea As Subsea-høyspenningsdistribusjonssystem
US9270119B2 (en) * 2013-05-24 2016-02-23 Eaton Corporation High voltage direct current transmission and distribution system
US9997918B1 (en) * 2013-06-28 2018-06-12 Atlantic Grid Holdings Llc Systems and method for HVDC transmission
EP2824822B1 (en) * 2013-07-09 2017-05-03 ABB Schweiz AG A power transmission and distribution system supplying a plurality of subsea loads
EP2833591A1 (en) * 2013-07-31 2015-02-04 Siemens Aktiengesellschaft Subsea data communication interface unit
US20150070939A1 (en) * 2013-09-06 2015-03-12 General Electric Company Electric power conversion system and method of operating the same
US9627862B2 (en) * 2013-12-26 2017-04-18 General Electric Company Methods and systems for subsea direct current power distribution
CN103762591B (zh) * 2014-01-16 2016-04-20 国家电网公司 一种配电网拓扑布图方法
US9419536B2 (en) 2014-02-28 2016-08-16 General Electric Company DC power transmission systems and method of assembling the same
CN104953609A (zh) 2014-03-27 2015-09-30 通用电气公司 直流电能传输系统和方法
US9439316B2 (en) 2014-04-03 2016-09-06 General Electric Company Submersible power distribution system and methods of assembly thereof
NO337678B1 (no) 2014-05-26 2016-06-06 Fmc Kongsberg Subsea As Undersjøisk effektdistribusjonsinnretning og - system.
EP3170251B1 (en) 2014-07-17 2022-10-26 ABB Schweiz AG Power converter system for renewable energy sources
US9837921B2 (en) 2014-09-08 2017-12-05 Infineon Technologies Austria Ag Multi-cell power conversion method and multi-cell power converter
US20160072395A1 (en) * 2014-09-08 2016-03-10 Infineon Technologies Austria Ag Multi-cell power conversion method and multi-cell power converter
US9929662B2 (en) 2014-09-08 2018-03-27 Infineon Technologies Austria Ag Alternating average power in a multi-cell power converter
US9762134B2 (en) 2014-09-08 2017-09-12 Infineon Technologies Austria Ag Multi-cell power conversion method and multi-cell power converter
EP3202007A1 (en) 2014-10-02 2017-08-09 First Solar, Inc System for operation of photovoltaic power plant and dc power collection within
CN105680706A (zh) * 2014-11-18 2016-06-15 台达电子工业股份有限公司 直流供电装置
US9611836B2 (en) * 2014-11-26 2017-04-04 Siemens Aktiengesellschaft Wind turbine power conversion system
US9912151B2 (en) * 2015-01-23 2018-03-06 General Electric Company Direct current power system
US10298140B2 (en) * 2015-04-16 2019-05-21 Vestas Wind Systems A/S Wind turbine converter control
WO2017017317A1 (fr) 2015-07-28 2017-02-02 Total Sa Équipement électrique, destiné à être immergé, et système électrique comprenant un tel équipement
US9945359B2 (en) * 2015-08-13 2018-04-17 Abb Schweiz Ag DC output wind turbine with power dissipation
GB2541465A (en) * 2015-08-21 2017-02-22 General Electric Technology Gmbh Electrical assembly
CN106487221B (zh) * 2015-08-27 2019-05-07 台达电子企业管理(上海)有限公司 输出装置
US9831668B2 (en) * 2015-09-16 2017-11-28 Abb Schweiz Ag Power distribution system for off-shore natural resource platforms
US10468889B2 (en) 2015-11-04 2019-11-05 Eaton Intelligent Power Limited Shared power for power distribution modules
WO2017094428A1 (ja) * 2015-11-30 2017-06-08 三菱電機株式会社 直流分電盤およびマイグレーション装置
WO2018004765A2 (en) 2016-04-01 2018-01-04 Raytheon Company Hybrid energy storage modules for pulsed power effectors with medium voltage direct current (mvdc) power distribution
US10120402B2 (en) 2016-06-14 2018-11-06 Raytheon Company Large scale sub-sea high voltage distributed DC power infrastructure using series adaptive clamping
JP6049960B1 (ja) * 2016-08-01 2016-12-21 三菱電機株式会社 電力制御システム、および制御装置
CN106385021A (zh) * 2016-10-22 2017-02-08 西安科技大学 一种大型煤矿直流供电方案
CN106329560B (zh) * 2016-11-09 2019-07-23 北京四方继保自动化股份有限公司 一种混合直流整流侧交流故障期间功率提升方法
US10153640B2 (en) * 2016-11-30 2018-12-11 State Grid Jiangsu Electric Power Research Institute Unified power flow controller and control method thereof
US10233833B2 (en) 2016-12-28 2019-03-19 Malta Inc. Pump control of closed cycle power generation system
US10233787B2 (en) 2016-12-28 2019-03-19 Malta Inc. Storage of excess heat in cold side of heat engine
US11053847B2 (en) 2016-12-28 2021-07-06 Malta Inc. Baffled thermoclines in thermodynamic cycle systems
US10458284B2 (en) 2016-12-28 2019-10-29 Malta Inc. Variable pressure inventory control of closed cycle system with a high pressure tank and an intermediate pressure tank
US10082045B2 (en) 2016-12-28 2018-09-25 X Development Llc Use of regenerator in thermodynamic cycle system
US10280804B2 (en) 2016-12-29 2019-05-07 Malta Inc. Thermocline arrays
US10221775B2 (en) 2016-12-29 2019-03-05 Malta Inc. Use of external air for closed cycle inventory control
US10801404B2 (en) 2016-12-30 2020-10-13 Malta Inc. Variable pressure turbine
US10082104B2 (en) 2016-12-30 2018-09-25 X Development Llc Atmospheric storage and transfer of thermal energy
US10436109B2 (en) * 2016-12-31 2019-10-08 Malta Inc. Modular thermal storage
US10439533B2 (en) * 2017-01-05 2019-10-08 General Electric Company Power converter for doubly fed induction generator wind turbine systems
DE102017106436A1 (de) * 2017-03-24 2018-09-27 Wobben Properties Gmbh Windpark mit mehreren Windenergieanlagen
JP6941185B2 (ja) * 2017-11-22 2021-09-29 東芝三菱電機産業システム株式会社 電力変換システム
CN108233402B (zh) * 2018-01-11 2021-03-09 上海交通大学 适用于煤矿的远距离中压直流输电系统
EP3738014A4 (en) 2018-01-11 2022-01-12 Lancium Llc METHOD AND SYSTEM FOR DYNAMIC POWER DELIVERY TO A FLEXIBLE DATA CENTER USING UNUSED POWER SOURCES
CN108233380B (zh) * 2018-01-30 2021-01-29 中国电子科技集团公司第三十八研究所 一种用于系留气球的球上供配电装置
WO2019169041A1 (en) * 2018-02-27 2019-09-06 Ideal Power Inc. Hvdc/mvdc systems and methods with low-loss fully-bidirectional bjt circuit breakers
US20190368315A1 (en) * 2018-06-05 2019-12-05 Saudi Arabian Oil Company Power supply for offshore equipment and operations
WO2019242843A1 (de) * 2018-06-19 2019-12-26 Siemens Aktiengesellschaft Potentialausgleichsystem für einen modularen multilevel-stromrichter
DE102018210907A1 (de) * 2018-07-03 2019-06-13 Thyssenkrupp Ag Wasserfahrzeug mit zwei parallel angeordneten Gleichspannungswandlern und Verfahren zum Betreiben eines solchen Wasserfahrzeugs
US11005390B2 (en) 2018-11-26 2021-05-11 Northrop Grumman Systems Corporation AC power transfer over self-passivating connectors
EP3696963B1 (en) * 2019-02-12 2022-03-30 General Electric Technology GmbH Electrical assembly
RU2715420C1 (ru) * 2019-08-21 2020-02-28 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Способ непрерывной высотной телекоммутационной связи
CN110798390B (zh) * 2019-11-13 2023-11-07 深圳欧特海洋科技有限公司 一种用于海底观测网供配电系统的通讯系统及通讯方法
CN116575992A (zh) 2019-11-16 2023-08-11 马耳他股份有限公司 双动力系统泵送热电储存状态转换
BR112023002561A2 (pt) 2020-08-12 2023-04-18 Malta Inc Sistema de armazenamento de energia térmica bombeada com integração de planta térmica
US11480067B2 (en) 2020-08-12 2022-10-25 Malta Inc. Pumped heat energy storage system with generation cycle thermal integration
US11396826B2 (en) 2020-08-12 2022-07-26 Malta Inc. Pumped heat energy storage system with electric heating integration
US11486305B2 (en) 2020-08-12 2022-11-01 Malta Inc. Pumped heat energy storage system with load following
US11454167B1 (en) 2020-08-12 2022-09-27 Malta Inc. Pumped heat energy storage system with hot-side thermal integration
US11286804B2 (en) 2020-08-12 2022-03-29 Malta Inc. Pumped heat energy storage system with charge cycle thermal integration

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2089986C1 (ru) * 1989-06-19 1997-09-10 Асеа Браун Бовери АБ Система для отбора электроэнергии от высоковольтной линии передачи постоянного тока

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO312080B1 (no) * 2000-04-28 2002-03-11 Aker Eng As Distribusjonssystem for elektrisk kraft
US7615893B2 (en) * 2000-05-11 2009-11-10 Cameron International Corporation Electric control and supply system
DE10131226A1 (de) * 2001-06-28 2003-01-16 Abb Research Ltd Verteilsystem zur Versorgung von Verbrauchern mit einer Wechselspannungs-Niederspannung
GB2382600B (en) * 2001-12-03 2005-05-11 Abb Offshore Systems Ltd Transmitting power to an underwater hydrocarbon production system
DE10205261A1 (de) * 2002-02-08 2003-08-21 Abb Research Ltd Verteiltransformator für elektrische Energie
JP2006025591A (ja) * 2004-06-08 2006-01-26 Toshiba Corp 車両用電源装置
EP2071694B1 (en) * 2007-12-11 2019-02-20 General Electric Company MVDC power transmission system for sub-sea loads
US8692408B2 (en) * 2008-12-03 2014-04-08 General Electric Company Modular stacked subsea power system architectures

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2089986C1 (ru) * 1989-06-19 1997-09-10 Асеа Браун Бовери АБ Система для отбора электроэнергии от высоковольтной линии передачи постоянного тока

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2749864C1 (ru) * 2020-09-23 2021-06-17 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Распределённая энергетическая сеть

Also Published As

Publication number Publication date
BR112012005207A2 (pt) 2016-03-08
US20120267955A1 (en) 2012-10-25
EP2476177A1 (en) 2012-07-18
US9030042B2 (en) 2015-05-12
WO2011029566A1 (en) 2011-03-17
EP2293407A1 (en) 2011-03-09
RU2012102801A (ru) 2013-10-20
CA2771920A1 (en) 2011-03-17

Similar Documents

Publication Publication Date Title
RU2543516C2 (ru) Система передачи и распределения электроэнергии
JP5627879B2 (ja) 海面下パワーシステムのモジュール積重ね型アーキテクチャ
EP3123586B1 (en) System and method for direct current power transmission
Giannakis et al. MVDC distribution grids and potential applications: Future trends and protection challenges
US9685878B2 (en) AC line connector with intermediate DC link
Bahrman Overview of HVDC transmission
EP2341594A1 (en) Power collection and transmission systems
KR20200003809A (ko) 전기 충전 시스템 및 방법
US10505467B2 (en) Converter station with diode rectifier
US9325251B2 (en) Power delivery systems and methods for offshore applications
US20200266629A1 (en) Group of electrical ac generators with rectifiers connected in series
Callavik et al. Technology developments and plans to solve operational challenges facilitating the HVDC offshore grid
CN110710078B (zh) 供电系统和方法
CA3009103A1 (en) Array of electrical generator units
Haeusler et al. HVDC Solutions for Integration of the Renewable Energy Resources
Oñederra et al. Overview of DC technology-Energy conversion
Escobar-Mejia et al. New power electronic interface combining DC transmission, a medium-frequency bus and an AC-AC converter to integrate deep-sea facilities with the AC grid
Muzzammel et al. Analytical behaviour of thyrister based HVDC transmission lines under normal and faulty conditions
Adeuyi et al. Integration of power from offshore wind turbines into onshore grids
CN113783217A (zh) 一种柔性直流输电系统
Gaudreau et al. Undersea medium voltage DC power distribution
Huang et al. AC Ring distribution: architecture for subsea power distribution
Evans et al. Powering the way-a paper on ac link TM technology for 21st century HVDC transmission
Sonnathi et al. Alternative configurations and utilisation of HVDC converters
Balda et al. AC line connector with intermediate DC link

Legal Events

Date Code Title Description
HZ9A Changing address for correspondence with an applicant
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160907