JP6941185B2 - 電力変換システム - Google Patents

電力変換システム Download PDF

Info

Publication number
JP6941185B2
JP6941185B2 JP2019556018A JP2019556018A JP6941185B2 JP 6941185 B2 JP6941185 B2 JP 6941185B2 JP 2019556018 A JP2019556018 A JP 2019556018A JP 2019556018 A JP2019556018 A JP 2019556018A JP 6941185 B2 JP6941185 B2 JP 6941185B2
Authority
JP
Japan
Prior art keywords
power
circuit
storage unit
power storage
terminals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019556018A
Other languages
English (en)
Other versions
JPWO2019102547A1 (ja
Inventor
俊一朗 保科
俊一朗 保科
文夫 青山
文夫 青山
信彦 佐竹
信彦 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Publication of JPWO2019102547A1 publication Critical patent/JPWO2019102547A1/ja
Application granted granted Critical
Publication of JP6941185B2 publication Critical patent/JP6941185B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0096Means for increasing hold-up time, i.e. the duration of time that a converter's output will remain within regulated limits following a loss of input power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Description

本発明の実施形態は、電力変換システムに関する。
直流回路と交流回路と蓄電部との間の電力潮流を制御する電力変換システムがある(例えば、特許文献1、2参照)。電力変換システムは、例えば、電気鉄道用の電力システムや太陽光発電システムなどに用いられている。
例えば、電気鉄道用の電力システムにおいては、交流電力系統の交流電力を直流電力に変換し、直流電力を直流き電系統に供給する。そして、車両の回生時に回生電力を蓄電部に蓄電し、車両の力行時に蓄電部に蓄積された直流電力を直流き電系統に供給する。これにより、回生電力の有効活用を図り、交流電力系統への逆潮流を防止して電圧変動などを抑制することができる。
例えば、太陽光発電システムにおいては、太陽電池で発電された直流電力を交流電力に変換し、交流電力を交流電力系統や交流負荷に供給する。そして、余剰の直流電力を蓄電部に蓄積し、交流負荷における需要の増加時などに蓄電部に蓄積された直流電力を交流電力に変換して交流負荷などに供給する。これにより、発電電力量の最大化を図りつつ、発電電力と需要電力とのアンバランスを抑制することができる。
従来の電力変換システムは、直流回路と交流回路との間の電力潮流を制御する電力変換器と、直流回路と蓄電部との間の電力潮流を制御する電力変換器または交流回路と蓄電部との間の電力潮流を制御する電力変換器と、の複数の電力変換器を備える。例えば、特許文献1、2に係る電力変換システムでは、直流回路と交流回路との間の電力潮流を制御する電力変換器と、直流回路と蓄電部との間の電力潮流を制御する電力変換器と、の複数の電力変換器を備え、交流回路と蓄電部との間の電力潮流を制御するには、複数の電力変換器を介する必要がある。このように、直流回路と交流回路と蓄電部の間の電力潮流を三方向に制御するためには、複数の電力変換器を備える必要があり、装置の大型化、コスト増加を招く。このため、電力変換システムでは、より簡易な構成とし、装置の大型化、コスト増加を抑制することが望まれる。
特許第5398433号 特許第3934518号
本発明の実施形態は、簡易な構成の電力変換システムを提供する。
本発明の実施形態によれば、主回路と、制御回路と、を備えた電力変換システムが提供される。前記主回路は、電力変換器と、蓄電部と、を有する。前記電力変換器は、直流回路に接続される一対の直流端子と、交流回路に接続される複数の交流端子と、フルブリッジ接続された複数のスイッチング素子と、前記複数のスイッチング素子のそれぞれに逆並列に接続された複数の整流素子と、を有する。前記蓄電部は、複数のリアクトルを介して前記複数の交流端子のそれぞれに接続されるとともに、前記一対の直流端子の一方に接続される。前記制御回路は、前記複数のスイッチング素子のオン・オフにより、前記直流回路と前記交流回路と前記蓄電部との間の三方向の電力潮流を制御する。
本発明の実施形態によれば、簡易な構成の電力変換システムが提供される。
第1の実施形態に係る電力変換システムを模式的に表すブロック図である。 第1の実施形態に係る制御回路の一例を模式的に表すブロック図である。 図3(a)〜図3(d)は、第1の実施形態に係る電力変換システムのシミュレーション結果の一例を模式的に表すグラフ図である。 図4(a)〜図4(e)は、第1の実施形態に係る電力変換システムのシミュレーション結果の一例を模式的に表すグラフ図である。 第1の実施形態に係る電力変換システムの変形例を模式的に表すブロック図である。 第1の実施形態に係る電力変換システムの変形例を模式的に表すブロック図である。 第1の実施形態に係る電力変換システムの変形例を模式的に表すブロック図である。 第1の実施形態に係る電力変換システムの変形例を模式的に表すブロック図である。 第2の実施形態に係る電力変換システムを模式的に表すブロック図である。 第3の実施形態に係る電力変換システムを模式的に表すブロック図である。
以下に、各実施の形態について図面を参照しつつ説明する。
なお、本願明細書と各図において、既出の図に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
(第1の実施形態)
図1は、第1の実施形態に係る電力変換システムを模式的に表すブロック図である。
図1に表したように、電力変換システム10は、主回路12と、制御回路14と、を備える。主回路12は、電力変換器20と、蓄電部22と、を有する。
電力変換器20は、一対の直流端子20a、20bと、複数の交流端子20r、20s、20tと、を有する。電力変換器20は、直流端子20a、20bを介して直流回路2に接続される。また、電力変換器20は、交流端子20r、20s、20tを介して交流回路4に接続される。この例において、電力変換器20は、変圧器24を介して交流回路4に接続される。変圧器24は、電力変換器20と交流回路4との間に設けられる。ここでは、簡単化のため、その変圧比を1とする。変圧器24は、必要に応じて設けられるが、変圧器24を交流リアクトルに置き換えてもよい。
直流回路2は、例えば、電気鉄道などに用いられる直流き電系統などの直流の電力系統や、太陽電池システムなどの直流の発電要素などである。直流端子20aは、直流回路2の高電位側に接続される。直流端子20bは、直流回路2の低電位側に接続される。直流端子20aは、換言すれば、高電位直流端子であり、直流端子20bは、換言すれば、低電位直流端子である。
交流回路4は、例えば、交流電力系統である。交流回路4は、例えば、誘導電動機などの交流負荷でもよい。この例において、交流回路4の交流電力は、三相交流電力である。従って、電力変換器20は、3つの交流端子20r、20s、20tを有する。交流回路4の交流電力は、単相交流電力でもよい。この場合、電力変換器20に設けられる交流端子は、2つでよい。
蓄電部22は、正極22aと、負極22bと、を有する。蓄電部22の正極22aは、リアクトル26r、26s、26tを介して各交流端子20r、20s、20tに接続される。蓄電部22の負極22bは、電力変換器20の低電位側の直流端子20bに接続される。蓄電部22には、例えば、二次電池やコンデンサなどが用いられる。
電力変換器20は、フルブリッジ接続された複数のスイッチング素子30u、30v、30w、30x、30y、30zと、各スイッチング素子30u、30v、30w、30x、30y、30zのそれぞれに逆並列に接続された複数の整流素子32u、32v、32w、32x、32y、32zと、を有する。
この例において、電力変換器20は、三相ブリッジ接続された6つのスイッチング素子30u、30v、30w、30x、30y、30zと、6つの整流素子32u、32v、32w、32x、32y、32zと、を有する。この例において、電力変換器20は、いわゆる三相インバータである。
各スイッチング素子30u、30v、30w、30x、30y、30zのそれぞれは、一対の主端子と、制御端子と、を有する。各スイッチング素子30u、30v、30w、30x、30y、30zは、制御端子に入力される信号(電圧)により、各主端子間に流れる電流を制御する。すなわち、各主端子間に電流が流れるオン状態と、各主端子間に実質的に電流が流れないオフ状態と、を切り替える。制御端子は、いわゆるゲート端子である。
各スイッチング素子30u、30v、30w、30x、30y、30zには、例えば、自己消弧型のスイッチング素子が用いられる。各スイッチング素子30u、30v、30w、30x、30y、30zは、例えば、IGBT(Insulated Gate Bipolar Transistor)である。各スイッチング素子30u、30v、30w、30x、30y、30zは、他の自己消弧型のスイッチング素子でもよい。
各整流素子32u、32v、32w、32x、32y、32zには、例えば、ダイオードが用いられる。各整流素子32u、32v、32w、32x、32y、32zは、いわゆる還流ダイオードである。
電力変換器20は、例えば、三相平衡交流電圧を発生させ、交流回路4と電力を授受する。また、電力変換器20は、各交流端子20r、20s、20tのそれぞれに大きさが実質的に等しい直流電圧を発生させ、蓄電部22と直流電力を授受する。この直流電力は、三相交流系統(交流回路4)から見ると、零相電力である。また、電力変換器20が発生させる直流電圧は、零相成分であり、変圧器24が介在する場合には、交流回路4に影響しない。
このように構成された主回路12では、各スイッチング素子30u、30v、30w、30x、30y、30zのオン・オフによって、正相電力と直流電力とを独立して制御することにより、直流回路2と交流回路4との間の電力潮流、及び直流回路2と蓄電部22との間の電力潮流を独立して双方向に制御することができる。従って、各電力潮流の配分を適宜調整することにより、1組の電力変換器20によって、直流回路2と交流回路4と蓄電部22との間の電力潮流を三方向に制御することができる。
主回路12は、電圧検出器40と、電流検出器41と、電圧検出器42r、42s、42tと、電流検出器43r、43s、43tと、電圧検出器44と、電流検出器45と、をさらに有する。
電圧検出器40は、直流回路2の直流電圧Vdを検出し、検出結果を制御回路14に入力する。換言すれば、電圧検出器40は、各直流端子20a、20b間の直流電圧を検出する。
電流検出器41は、直流回路2の直流電流Idを検出し、検出結果を制御回路14に入力する。換言すれば、電流検出器41は、各直流端子20a、20b間に流れる直流電流を検出する。
電圧検出器42r、42s、42tは、交流回路4の交流電圧Vaを検出し、検出結果を制御回路14に入力する。より詳しくは、交流回路4の各相の相電圧を検出する。換言すれば、電圧検出器42r、42s、42tは、各交流端子20r、20s、20tの電圧を間接的に検出する。
電流検出器43r、43s、43tは、交流回路4の交流電流Iaを検出し、検出結果を制御回路14に入力する。より詳しくは、交流回路4の各相の相電流を検出する。換言すれば、電流検出器43r、43s、43tは、各交流端子20r、20s、20tに流れる電流を間接的に検出する。
この例では、電圧検出器42r、42s、42t、及び電流検出器43r、43s、43tが、変圧器24の交流回路4側に設けられている。電流検出器43r、43s、43tは、変圧器24の電力変換器20側に設けてもよい。
電圧検出器44は、蓄電部22の直流電圧Vbを検出し、検出結果を制御回路14に入力する。電流検出器45は、蓄電部22に流れる直流電流Ibを検出し、検出結果を制御回路14に入力する。
制御回路14は、図示を省略した信号線を介して各スイッチング素子30u、30v、30w、30x、30y、30zのそれぞれの制御端子に接続されている。制御回路14は、各電圧検出器40、42r、42s、42t、44、及び各電流検出器41、43r、43s、43t、45の各検出結果を基に、各スイッチング素子30u、30v、30w、30x、30y、30zのオン・オフを制御する。これにより、制御回路14は、上述のように、直流回路2と交流回路4と蓄電部22との間の三方向の電力潮流を任意に制御する。
図2は、第1の実施形態に係る制御回路の一例を模式的に表すブロック図である。
図2に表したように、制御回路14は、蓄電部電力検出回路50、電力制御回路(APR)51、加算器52、交流正相電力検出回路53、電力制御回路(APR)54、dq逆変換回路(dq−1)55、加算器56、57、及び、三相PWM制御器58を有する。
蓄電部電力検出回路50には、電圧検出器44で検出された蓄電部22の直流電圧Vbの検出値と、電流検出器45で検出された蓄電部22の直流電流Ibの検出値と、が入力される。蓄電部電力検出回路50は、入力された各検出値を基に、蓄電部22の直流電力Pbを算出し、算出結果を電力制御回路51に入力する。
なお、各リアクトル26r、26s、26tに流れる電流Irの瞬時値の三相和は、直流電流Ibと実質的に等しい。従って、直流電力Pbは、直流電圧Vbと各リアクトル26r、26s、26tの電流Irの瞬時値の三相和とから算出してもよい。また、電力変換器20の交流出力電流Icの瞬時値の三相和は、直流電流Ibと実質的に等しい。従って、直流電力Pbは、直流電圧Vbと電力変換器20の交流出力電流Icの瞬時値の三相和とから算出してもよい。さらには、直流電力Pbは、直流電圧Vdと直流電流Idとから直流回路電力を演算し、直流回路電力から交流正相有効電力検出値を減算することによって算出してもよい。
電力制御回路51には、蓄電部22の直流電力Pbの算出結果が入力されるとともに、蓄電部直流電力目標値Pbrefが入力される。電力制御回路51は、入力された直流電力Pb及び蓄電部直流電力目標値Pbrefを基に、直流電力Pbを蓄電部直流電力目標値Pbrefに近付けるための電力変換器20の交流端子電圧の直流分補正値を算出し、算出結果を加算器52に入力する。
加算器52には、電力変換器20の交流端子電圧の直流分補正値が入力されるとともに、直流電圧Vbの検出値が入力される。加算器52は、直流電圧Vbの検出値に補正値を加算することにより、直流電圧制御信号を生成し、生成した直流電圧制御信号を加算器57に入力する。
交流正相電力検出回路53には、各電圧検出器42r、42s、42tで検出された各相の交流電圧Vaの検出値と、各電流検出器43r、43s、43tで検出された各相の交流電流Iaの検出値と、が入力される。交流正相電力検出回路53は、入力された各相の交流電圧Vaの検出値及び各相の交流電流Iaの検出値を基に、交流回路4の正相電力の有効電力Pa及び無効電力Qaを算出し、算出結果を電力制御回路54に入力する。
交流電流Iaは、変圧器の交流巻線電流でもよいし、直流巻線電流でもよい。また、交流回路4の正相電力の有効電力Pa及び無効電力Qaは、例えば、各相の交流電圧Vaと電力変換器20の交流出力電流Icとを基に算出してもよい。交流出力電流Icには、直流電流が重畳するが、直流電流は、交流正相電力検出回路53によって除去可能である。
電力制御回路54には、算出された有効電力Pa及び無効電力Qaが入力されるとともに、交流回路4の交流正相電力の有効電力目標値Paref及び無効電力目標値Qarefが入力される。
電力制御回路54は、入力された有効電力Pa及び有効電力目標値Parefを基に、有効電力Paを有効電力目標値Parefに近付けるためのq軸電圧成分補正値を算出し、算出した補正値をdq逆変換回路55に入力する。
同様に、電力制御回路54は、入力された無効電力Qa及び無効電力目標値Qarefを基に、無効電力Qaを無効電力目標値Qarefに近付けるためのd軸電圧成分補正値を算出し、算出した補正値をdq逆変換回路55に入力する。
dq逆変換回路55には、各補正値が入力されるとともに、交流電圧Vaの各相の位相の情報が入力される。dq逆変換回路55は、入力された各補正値と位相情報とを基に、有効電力及び無効電力を目標値に近付けるための電力変換器20の交流端子電圧の交流分補正値を算出し、算出した補正値を加算器56に入力する。
加算器56には、電力変換器20の交流端子電圧の交流分補正値が入力されるとともに、各電圧検出器42r、42s、42tで検出された各相の交流電圧Vaの検出値が入力される。加算器56は、各相の交流電圧Vaの検出値のそれぞれに、対応する各相の補正値を加算することにより、三相交流電圧制御信号を生成し、生成した三相交流電圧制御信号を加算器57に入力する。
加算器57は、三相交流電圧制御信号に直流電圧制御信号を加算し、加算後の各相の電圧制御信号を三相PWM制御器58に入力する。
三相PWM制御器58は、入力された電圧制御信号から電力変換器20の各スイッチング素子30u、30v、30w、30x、30y、30zのそれぞれの制御信号を生成し、生成した各制御信号を各スイッチング素子30u、30v、30w、30x、30y、30zの制御端子に入力する。これにより、制御回路14は、各スイッチング素子30u、30v、30w、30x、30y、30zのオン・オフを制御する。
このように、制御回路14は、蓄電部22の直流電力Pbと交流回路4の正相電力とが、各々の目標値に独立して追従するように電力変換器20の交流端子電圧を制御する。ここで、電力変換器20の交流側直流電力は交流回路4に対して零相分であり、交流回路4に実質的に影響せず、蓄電部22との間の電力潮流となる。一方、電力変換器20の交流側正相電力は零相回路としての蓄電部22に実質的に影響せず、交流回路4との間の電力潮流となる。従って、1組の電力変換器20によって、交流回路4との間の電力潮流と、蓄電部22との間の電力潮流と、を独立して制御することが可能である。蓄電部22の直流電力Pbと交流回路4の正相電力との和は、直流回路2の直流電力と実質的に等しくなる。従って、蓄電部22の直流電力Pbと交流回路4の正相電力との配分を適宜調整することにより、直流回路2と交流回路4と蓄電部22との間の電力潮流を三方向に任意に制御することができる。制御回路14の構成は、上記に限ることなく、主回路12の構成などに応じて適宜選択すればよい。
図3(a)〜図3(d)及び図4(a)〜図4(e)は、第1の実施形態に係る電力変換システムのシミュレーション結果の一例を模式的に表すグラフ図である。
図3(a)の縦軸は、交流回路4の各相の交流電圧Vaである。
図3(b)の縦軸は、交流回路4の各相の交流電流Iaである。
図3(c)の縦軸は、各リアクトル26r、26s、26tの電流Irである。
図3(d)の縦軸は、電力変換器20の交流出力電流Icである。
図4(a)の縦軸は、蓄電部22の直流電流Ib及び直流回路2の直流電流Idである。
図4(b)の縦軸は、蓄電部22の直流電圧Vb及び直流回路2の直流電圧Vdである。
図4(c)の縦軸は、交流正相電力である。
図4(d)の縦軸は、蓄電部22の直流電力である。
図4(e)の縦軸は、直流回路2の直流電力である。
図3(a)〜図3(d)及び図4(a)〜図4(e)のそれぞれの横軸は、時間である。
また、シミュレーションにおいて、電流及び電圧の極性は、図1に従う。
シミュレーションでは、1.2秒〜1.3秒の期間において、蓄電部22から250kW放電し、交流回路4側に250kW出力している。この間、直流回路2の電力は、実質的に零である。
また、1.4秒〜1.5秒の期間において、直流回路2から500kW入力し、蓄電部22に250kW充電、交流回路4に250kW出力している。
また、1.6秒〜1.7秒の期間において、交流回路4から250kW入力し、蓄電部22に250kW充電している。この間、直流回路2の電力は、実質的に零である。
そして、1.8秒〜1.9秒の期間において、交流回路4から250kW入力し、蓄電部22から250kW放電し、直流回路2に500kW出力している。
図3(a)〜図3(d)及び図4(a)〜図4(e)に表したように、シミュレーションでは、交流正相電力と蓄電部22の直流電力とが、各々の目標値に独立して追従しており、直流回路2と交流回路4と蓄電部22との間の電力潮流が三方向に制御できていることが分かる。
このように、本実施形態に係る電力変換システム10では、1組の電力変換器20によって、直流回路2と交流回路4と蓄電部22との間の電力潮流を三方向に制御することができる。従って、電力変換システム10では、例えば、2組の変換器を用いる場合に比べて、変換器1組を省略でき、構成を簡易にすることができる。電力変換システム10では、例えば、2組の変換器を用いる場合に比べて、装置を小型化することができる。電力変換システム10では、例えば、製造コストを抑えることができる。
図5は、第1の実施形態に係る電力変換システムの変形例を模式的に表すブロック図である。
図5に表したように、電力変換システム10aでは、電力変換器20が、2つの交流端子20c、20dと、4つのスイッチング素子30a〜30dと、4つの整流素子32a〜32dと、を有する。なお、図5では、主回路12のみを便宜的に図示している。また、上記実施形態と機能・構成上実質的に同じものには、同符号を付し、詳細な説明を省略する。
各スイッチング素子30a〜30dは、フルブリッジ接続されている。各整流素子32a〜32dは、各スイッチング素子30a〜30dに逆並列に接続されている。そして、電力変換器20では、直列に接続されたスイッチング素子30a、30cの接続点が一方の交流端子20cとなり、直列に接続されたスイッチング素子30b、30dの接続点が他方の交流端子20dとなる。すなわち、この例において、電力変換器20は、いわゆる単相インバータである。この例において、交流回路4の交流電力は、単相交流電力である。このように、交流回路4、電力変換器20の交流電力は、単相交流電力でもよい。
図6は、第1の実施形態に係る電力変換システムの変形例を模式的に表すブロック図である。
図6に表したように、電力変換システム10bでは、主回路12が、複数の電力変換器20と複数の蓄電部22とを有する。各蓄電部22のそれぞれは、各リアクトル26r、26s、26tを介して各電力変換器20のそれぞれの各交流端子20r、20s、20tに接続される。そして、電力変換システム10bでは、変圧器24が、各電力変換器20を交流回路4に対して並列多重接続する。
このように、複数の電力変換器20と複数の蓄電部22とを設け、各電力変換器20を交流回路4に並列多重接続してもよい。これにより、例えば、各スイッチング素子の定格電圧又は定格電流を抑えつつ、電力変換システム10bの出力を大きくすることができる。また、等価的なスイッチンク゛周波数を向上することで、交流回路4に流出する高調波を低減することができる。
この例では、変圧器24を三相三巻線変圧器とすることにより、各電力変換器20を交流回路4に並列多重接続している。これに限ることなく、例えば、三相三巻線変圧器を2組の三相二巻線変圧器とすることにより、各電力変換器20を交流回路4に並列多重接続してもよい。変圧器24の構成は、各電力変換器20を交流回路4に対して並列多重接続可能な任意の構成でよい。
図7は、第1の実施形態に係る電力変換システムの変形例を模式的に表すブロック図である。
図7に表したように、電力変換システム10cでは、変圧器24が、各電力変換器20を交流回路4に対して直列多重接続する。このように、複数の電力変換器20と複数の蓄電部22とを設ける場合、各電力変換器20は、交流回路4に対して直列多重接続してもよい。この際、変圧器24の構成は、各電力変換器20を交流回路4に対して直列多重接続可能な任意の構成でよい。
電力変換システム10b及び電力変換システム10cでは、2組の電力変換器20を交流回路4に多重接続している。交流回路4に多重接続する電力変換器20の数は、2つに限ることなく、3つ以上でもよい。
電力変換システム10b及び電力変換システム10cでは、各電力変換器20を1つの直流回路2に接続している。換言すれば、各電力変換器20のそれぞれの直流端子20a、20bを並列に接続している。これに限ることなく、例えば、複数の電力変換器20のそれぞれに複数の直流回路2を接続してもよい。電力変換システム10b及び電力変換システム10cにおいては、複数の直流回路2と交流回路4と複数の蓄電部22との間の電力潮流を任意に制御できるようにしてもよい。
図8は、第1の実施形態に係る電力変換システムの変形例を模式的に表すブロック図である。
図8に表したように、電力変換システム10dでは、蓄電部22の負極22bが、リアクトル26r、26s、26tを介して各交流端子20r、20s、20tに接続される。そして、蓄電部22の正極22aが、電力変換器20の高電位側の直流端子20aに接続される。
このように、蓄電部22は、電力変換器20の高電位側の直流端子20aと各交流端子20r、20s、20tとの間に接続してもよいし、電力変換器20の低電位側の直流端子20bと各交流端子20r、20s、20tとの間に接続してもよい。
(第2の実施形態)
図9は、第2の実施形態に係る電力変換システムを模式的に表すブロック図である。
図9に表したように、電力変換システム100では、変圧器24が、交流回路4の各相に対応した3つの一次巻線24r、24s、24tと、各一次巻線24r、24s、24tのそれぞれと磁気的に結合した3つの二次巻線24u、24v、24wと、を有する。この例において、変圧器24は、いわゆる三相変圧器である。なお、図9では、制御回路14などの図示を便宜的に省略している。
電力変換器20は、交流回路4の各相に対応した3つの交流端子20r、20s、20tを有する。変圧器24は、電力変換器20と交流回路4との間に設けられる。各一次巻線24r、24s、24tのそれぞれの一端は、交流端子20r、20s、20tのそれぞれに接続されている。各一次巻線24r、24s、24tのそれぞれの他端は、蓄電部22の正極22aに接続されている。すなわち、この例の変圧器24では、各一次巻線24r、24s、24tが、Y結線され、各交流端子20r、20s、20tのそれぞれに接続されるとともに、各一次巻線24r、24s、24tの中性点が、蓄電部22の正極22aに接続されている。
各二次巻線24u、24v、24wは、Δ結線され、交流回路4に接続されている。Δ結線された各二次巻線24u、24v、24wのそれぞれの接続点が、交流回路4の各相に接続されている。
このように、本実施形態に係る電力変換システム100では、変圧器24のY結線した各一次巻線24r、24s、24tをリアクトルとして用いている。これにより、電力変換システム100では、各リアクトル26r、26s、26tを省略することができ、上記第1の実施形態の電力変換システム10に比べて、構成をより簡易にすることができる。例えば、装置をより小型にでき、製造コストをより抑制することができる。
複数の電力変換器20及び複数の蓄電部22の並列多重化又は直列多重化は、電力変換システム100の構成においても可能である。
(第3の実施形態)
図10は、第3の実施形態に係る電力変換システムを模式的に表すブロック図である。
図10に表したように、電力変換システム110では、主回路12が、コア28をさらに有する。なお、図10では、制御回路14などの図示を便宜的に省略している。
コア28は、各リアクトル26r、26s、26tに共通に用いられる。各リアクトル26r、26s、26tのそれぞれは、コア28に巻き回される。コア28には、例えば、鉄などの磁性材料が用いられる。コア28は、いわゆる鉄心である。この例において、各リアクトル26r、26s、26tは、換言すれば、鉄心付きの三相リアクトルである。
このように、本実施形態に係る電力変換システム110では、3つのリアクトル26r、26s、26tのコアを共通化して三相構成とする。これにより、各リアクトル26r、26s、26tにおける正相インピーダンスを零相インピーダンスよりも大きくすることができる。各リアクトル26r、26s、26tの正相インピーダンスは、例えば、零相インピーダンスの10倍(5倍以上20倍以下)程度であることが好ましい。
電力変換器20は、三相交流電圧を出力するため、各リアクトル26r、26s、26tには三相交流電流(無効電力成分)が流れる。一方、蓄電部22の電流は、零相成分である。例えば、三相構成化した各リアクトル26r、26s、26tの零相インピーダンスを第1の実施形態の電力変換システム10と同じ値とし、正相インピーダンスを零相インピーダンスの10倍とすれば、蓄電部22の直流電流を第1の実施形態の場合と実質的に同じ値に維持しつつ、各リアクトル26r、26s、26tの交流電流を第1の実施形態の場合と比較して10分の1に減少させることができる。これにより、電力変換器20の無効電力出力を抑制し、装置容量を低減させることができる。
複数の電力変換器20及び複数の蓄電部22の並列多重化又は直列多重化は、電力変換システム110の構成においても可能である。また、電力変換システム110の構成において、交流回路4の交流電力は、単相交流電力でもよい。電力変換器20は、単相インバータでもよい。
実施形態によれば、簡易な構成の電力変換システムが提供される。
以上、具体例を参照しつつ、本発明の実施の形態について説明した。しかし、本発明の実施形態は、これらの具体例に限定されるものではない。例えば、電力変換システムに含まれる、主回路、制御回路、電力変換器、蓄電部、直流端子、交流端子、スイッチング素子、整流素子、リアクトル、正極、負極、変圧器、一次巻線、二次巻線、及びコアなどの各要素の具体的な構成に関しては、当業者が公知の範囲から適宜選択することにより本発明を同様に実施し、同様の効果を得ることができる限り、本発明の範囲に包含される。
また、各具体例のいずれか2つ以上の要素を技術的に可能な範囲で組み合わせたものも、本発明の要旨を包含する限り本発明の範囲に含まれる。
その他、本発明の実施の形態として上述した電力変換システムを基にして、当業者が適宜設計変更して実施し得る全ての電力変換システムも、本発明の要旨を包含する限り、本発明の範囲に属する。
その他、本発明の思想の範疇において、当業者であれば、各種の変更例及び修正例に想到し得るものであり、それら変更例及び修正例についても本発明の範囲に属するものと了解される。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (8)

  1. 直流回路に接続される一対の直流端子と、交流回路に接続される複数の交流端子と、フルブリッジ接続された複数のスイッチング素子と、前記複数のスイッチング素子のそれぞれに逆並列に接続された複数の整流素子と、を有する電力変換器と、
    複数のリアクトルを介して前記複数の交流端子のそれぞれに接続されるとともに、前記一対の直流端子の一方に接続される蓄電部と、
    を有する主回路と、
    前記複数のスイッチング素子のオン・オフにより、前記直流回路と前記交流回路と前記蓄電部との間の三方向の電力潮流を制御する制御回路と、
    を備え
    前記制御回路は、前記蓄電部の直流電力と前記交流回路の正相電力とが、各々の目標値に独立して追従するように前記電力変換器の交流端子電圧を制御することにより、前記直流回路と前記交流回路と前記蓄電部との間の三方向の電力潮流を制御する電力変換システム。
  2. 前記主回路部は、
    前記交流回路の交流電圧を検出する交流回路用電圧検出器と、
    前記交流回路の交流電流を検出する交流回路用電流検出器と、
    前記蓄電部の直流電圧を検出する蓄電部用電圧検出器と、
    前記蓄電部に流れる直流電流を検出する蓄電部用電流検出器と、
    を有し、
    前記制御回路は、前記蓄電部用電圧検出器で検出された前記直流電圧の検出値と、前記蓄電部用電流検出器で検出された前記直流電流の検出値と、を基に、前記蓄電部の直流電力を算出するとともに、前記交流回路用電圧検出器で検出された前記交流電圧の検出値と、前記交流回路用電流検出器で検出された前記交流電流の検出値と、を基に、前記交流回路の正相電力の有効電力及び無効電力を算出することにより、前記蓄電部の直流電力と前記交流回路の正相電力とが、各々の目標値に独立して追従するように前記電力変換器の交流端子電圧を制御する請求項1記載の電力変換システム。
  3. 前記主回路は、
    複数の前記電力変換器と、
    前記複数のリアクトルを介して前記複数の電力変換器のそれぞれの前記複数の交流端子に接続された複数の前記蓄電部と、
    前記複数の電力変換器を前記交流回路に対して並列多重接続する変圧器と、
    を有する請求項1記載の電力変換システム。
  4. 前記主回路は、
    複数の前記電力変換器と、
    リアクトルを介して前記複数の電力変換器のそれぞれの前記複数の交流端子に接続された複数の前記蓄電部と、
    前記複数の電力変換器を前記交流回路に対して直列多重接続する変圧器と、
    を有する請求項1記載の電力変換システム。
  5. 前記交流回路の交流電力は、三相交流電力であり、
    前記電力変換器は、各相に対応した3つの前記交流端子を有し、
    前記主回路は、前記電力変換器と前記交流回路との間に設けられた変圧器を有し、
    前記変圧器は、
    各相に対応して設けられ、前記3つの交流端子のそれぞれに接続された3つの一次巻線と、
    前記3つの一次巻線のそれぞれと磁気的に結合し、前記交流回路に接続された3つの二次巻線と、
    を有し、
    前記3つの一次巻線は、Y結線され、
    前記蓄電部は、Y結線された前記3つの一次巻線の中性点に接続され、前記3つの一次巻線を前記複数のリアクトルとして用いる請求項1記載の電力変換システム。
  6. 前記主回路は、前記複数のリアクトルのそれぞれが巻き回されたコアをさらに有する請求項1記載の電力変換システム。
  7. 前記蓄電部は、前記複数のリアクトルを介して前記複数の交流端子のそれぞれに接続される正極と、前記一対の直流端子のうちの低電位側の前記直流端子に接続される負極と、を有する請求項1記載の電力変換システム。
  8. 前記蓄電部は、前記複数のリアクトルを介して前記複数の交流端子のそれぞれに接続される負極と、前記一対の直流端子のうちの高電位側の前記直流端子に接続される正極と、を有する請求項1記載の電力変換システム。
JP2019556018A 2017-11-22 2017-11-22 電力変換システム Active JP6941185B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/042021 WO2019102547A1 (ja) 2017-11-22 2017-11-22 電力変換システム

Publications (2)

Publication Number Publication Date
JPWO2019102547A1 JPWO2019102547A1 (ja) 2020-11-19
JP6941185B2 true JP6941185B2 (ja) 2021-09-29

Family

ID=66630919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019556018A Active JP6941185B2 (ja) 2017-11-22 2017-11-22 電力変換システム

Country Status (5)

Country Link
EP (1) EP3716462A4 (ja)
JP (1) JP6941185B2 (ja)
CN (1) CN111492569B (ja)
SG (1) SG11202004809VA (ja)
WO (1) WO2019102547A1 (ja)

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19823917A1 (de) * 1997-06-03 1998-12-10 Fuji Electric Co Ltd Stromrichtervorrichtung
JP3374957B2 (ja) * 1997-06-13 2003-02-10 富士電機株式会社 直流−交流電力変換装置
JP2000324857A (ja) * 1999-03-11 2000-11-24 Toyota Motor Corp 多種電源装置、この電源装置を備えた機器およびモータ駆動装置並びにハイブリッド車両
JP4142241B2 (ja) * 2000-10-11 2008-09-03 株式会社豊田中央研究所 オンサイト発電システム
JP3934518B2 (ja) 2002-09-25 2007-06-20 東芝三菱電機産業システム株式会社 電力需給システム
JP5067617B2 (ja) * 2007-09-19 2012-11-07 富士電機株式会社 電力変換システム及び電気駆動車
JP5211953B2 (ja) * 2008-09-08 2013-06-12 富士電機株式会社 電力変換装置
EP2290799A1 (en) * 2009-08-25 2011-03-02 Converteam Technology Ltd Bi-directional multilevel AC-DC converter arrangements
JP5398433B2 (ja) 2009-09-07 2014-01-29 株式会社東芝 電気鉄道用電力システム
EP2293407A1 (en) * 2009-09-08 2011-03-09 Converteam Technology Ltd Power transmission and distribution systems
US8749090B2 (en) * 2010-02-03 2014-06-10 GM Global Technology Operations LLC Dual source automotive propulsion system and method of operation
JP5744307B2 (ja) * 2012-02-13 2015-07-08 三菱電機株式会社 電力変換装置
CN103825474B (zh) * 2012-11-16 2016-08-31 台达电子工业股份有限公司 低共模噪声的电源变换装置及其应用系统
CN102957335B (zh) * 2012-11-23 2015-03-18 广东易事特电源股份有限公司 用于并网发电系统的双向储能逆变器
JP6099951B2 (ja) * 2012-11-29 2017-03-22 株式会社東芝 電力変換装置
CN103956955B (zh) * 2014-04-11 2016-08-17 浙江大学 一种单边可控的共母线开绕组永磁电机系统及其零序电流的抑制方法
KR101699174B1 (ko) * 2015-09-09 2017-01-23 한국전력공사 마이크로그리드용 인버터 장치 및 이를 제어하는 방법
CN107064698B (zh) * 2017-06-09 2019-10-18 广州供电局有限公司 电压暂降模拟方法

Also Published As

Publication number Publication date
WO2019102547A1 (ja) 2019-05-31
SG11202004809VA (en) 2020-06-29
JPWO2019102547A1 (ja) 2020-11-19
CN111492569B (zh) 2023-08-11
CN111492569A (zh) 2020-08-04
EP3716462A4 (en) 2021-06-23
EP3716462A1 (en) 2020-09-30

Similar Documents

Publication Publication Date Title
JP6227041B2 (ja) マルチレベルインバータ
EP3148067B1 (en) Direct-current power transmission power conversion device and direct-current power transmission power conversion method
JP6181132B2 (ja) 電力変換装置
US9853574B2 (en) Voltage source converter
US8259480B2 (en) Arrangement for exchanging power
JP6227192B2 (ja) 電力変換装置
US9369065B2 (en) Power conversion device
Cui et al. A modular multilevel converter with a zigzag transformer for bipolar MVDC distribution systems
US9966777B2 (en) Modular multilevel converter for hybrid energy storage
JP6725758B2 (ja) 電力変換装置および三相電力変換装置
US10243370B2 (en) System and method for integrating energy storage into modular power converter
US10998824B2 (en) Electric power conversion device
EP2944021A2 (en) Hybrid modular converter
JP6572150B2 (ja) 電力変換装置
JP2018078733A (ja) ハイブリッド型電力変換システム,ハイブリッド型直流送電システム及びハイブリッド型電力変換システムの制御方法
Isobe et al. Control of three-phase solid-state transformer with phase-separated configuration for minimized energy storage capacitors
KR101297080B1 (ko) 직렬보상 하프 브릿지 다중 모듈 컨버터
JP6941185B2 (ja) 電力変換システム
JP7307583B2 (ja) 電源装置
Behrouzian et al. Individual capacitor voltage balancing in H-bridge cascaded multilevel STATCOM at zero current operating mode
Drabek et al. Traction drive with MFT-novel control strategy based on zero vectors insertion
Annakkage Hybrid LCC and multi-terminal full-bridge modular multilevel converters for HVDC transmission
Chakraborty et al. Transformer Isolated Fault Tolerant Three Phase Active Front End Converter for EV Charging
Patel et al. Power-loss ride-through in a cascaded H-bridge inverter fed vector controlled induction motor drive
Husev et al. Experimental Results of Parallel Active Filter Implementation in Nonideal Power Grid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210903

R150 Certificate of patent or registration of utility model

Ref document number: 6941185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150