KR20100041717A - 실리콘 결정화 방법 - Google Patents

실리콘 결정화 방법 Download PDF

Info

Publication number
KR20100041717A
KR20100041717A KR1020100014345A KR20100014345A KR20100041717A KR 20100041717 A KR20100041717 A KR 20100041717A KR 1020100014345 A KR1020100014345 A KR 1020100014345A KR 20100014345 A KR20100014345 A KR 20100014345A KR 20100041717 A KR20100041717 A KR 20100041717A
Authority
KR
South Korea
Prior art keywords
heat treatment
silicon
temperature
treatment temperature
crystallization method
Prior art date
Application number
KR1020100014345A
Other languages
English (en)
Inventor
장택용
이병일
장석필
Original Assignee
주식회사 테라세미콘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 테라세미콘 filed Critical 주식회사 테라세미콘
Priority to KR1020100014345A priority Critical patent/KR20100041717A/ko
Publication of KR20100041717A publication Critical patent/KR20100041717A/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

결정 특성이 우수한 다결정 실리콘을 제조하기 위한 실리콘 결정화 방법이 개시된다. 본 발명에 따른 실리콘 결정화 방법은 (a) 비정질 실리콘 상에 금속 촉매를 배치하는 단계; (b) 제1 열처리 온도로 열처리 하는 단계; 및 (c) 제2 열처리 온도로 열처리 하는 단계를 포함하며, 제1 열처리 온도는 제2 열처리 온도보다 낮은 것을 특징으로 한다.

Description

실리콘 결정화 방법{Method For Silicon Crystallization}
본 발명은 다결정(crystalline) 실리콘 박막을 제조하기 위한 실리콘 결정화 방법에 관한 것이다. 보다 상세하게는 액정 디스플레이(Liquid Crystal Display; LCD), 유기발광 디스플레이(Organic Light Emitting Display; OLED) 등에 사용되는 박막 트랜지스터(Thin Film Transistor; TFT)에 적용될 수 있도록 막질이 우수한 다결정 실리콘 박막을 제조하기 위한 실리콘 결정화 방법에 관한 것이다.
TFT는 크게 비정질(amorphous) 실리콘 TFT와 다결정(poly) 실리콘 TFT로 구분된다. TFT의 특성은 전자 이동도의 값으로 평가하는데, 비정질 실리콘 TFT의 전자 이동도는 대략 1cm2/Vs이고 다결정 실리콘 TFT의 전자 이동도는 대략 100cm2/Vs 정도가 되므로, 고성능의 LCD에는 다결정 실리콘 TFT를 채용하는 것이 바람직하다.
다결정 실리콘 TFT는 유리 또는 석영 등의 투명 기판에 비정질 실리콘을 증착하고 다결정화시킨 뒤, 게이트 산화막 및 게이트 전극을 형성하고 소스 및 드레인에 도펀트를 주입한 후 절연층을 형성하여 구성된다.
다결정 실리콘 TFT 제조시 주요 관건은 비정질 실리콘 박막을 결정화시키는 공정이다. 실리콘 결정화 방법으로 가장 널리 알려진 것은 고상 결정화(Solid Phase Crystallization)법으로서, 600℃ 이상의 고온에서 수십 시간 열처리함으로써 비정질 실리콘을 결정화시키는 방법이다.
그러나, 고상 결정화법은 기본적으로 열처리 온도가 높기 때문에 TFT 제조시 용융점이 낮은 유리 기판을 사용할 수가 없어서 TFT 제조 단가가 너무 상승하는 문제점이 있다. 따라서, 최근에는 저온에서 빠른 시간 내에 실리콘을 결정화시키는 방법이 주목을 받고 있으며 다음과 같은 다양한 공정들이 제안되어 왔다.
엑시머 레이저 결정화(Excimer Laser Crystallization)법은 순간 레이저 조사를 이용하여 비정질 실리콘을 용융하여 재결정화시키는 방법으로서 급속 가열에 의한 유리 기판의 손상을 방지할 수 있고 다결정 실리콘의 결정성이 우수하다는 장점이 있으나, 재현성이 떨어지고 장비 구성이 복잡하다는 단점이 있다.
급속 열처리법은 IR 램프를 이용하여 비정질 실리콘을 급속 열처리시키는 방법으로서 생산 속도가 빠르고 생산 단가가 저렴하다는 장점이 있으나, 급속 가열에 의한 열 충격 및 유리 기판의 변형 발생 등의 단점이 있다.
금속유도 결정화(Metal Induced Crystallization; MIC)법은 비정질 실리콘에 Ni, Cu, Al 등의 금속 촉매를 도입하여 결정화를 유도하는 방법으로서 낮은 온도에서 결정화가 가능하다는 장점이 있으나, 금속유도 결정화법을 TFT 제조 과정에 적용하는 경우 금속 촉매가 오염 물질로 작용하여 반도체나 디스플레이의 특성을 저하시키는 단점도 있다.
한편, 다결정 실리콘 TFT의 제반 특성을 고려할 때 막질이 우수한, 즉 실리콘 결정립(grain)의 특성이 우수한 다결정 실리콘 박막을 형성하는 것도 매우 중요하다. 여기서, 실리콘 결정립의 특성이란 실리콘 결정립의 결정도(grain crystallinity), 크기(grain size) 및 결함 농도 등을 말하는 것이다. 일반적으로, 실리콘 결정립의 평균 결정도 및 평균 크기가 증가할수록 실리콘 결정립의 결함 농도가 낮을수록 다결정 실리콘의 막질이 우수하다고 할 수 있다. 특히, 실리콘 결정립의 결함 농도를 줄이기 위해서는 기본적으로 열처리 온도가 높아야 한다.
그러나, 상술한 바와 같은 실리콘 결정화법은 유리 기판 상에서 제조될 수 있을 정도로 저온에서 결정화가 이루어지는 장점이 있지만, 기본적으로 열처리 온도가 낮기 때문에 제조되는 다결정 실리콘 박막의 막질이 떨어진다는 문제점이 있었다.
이에 본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위한 것으로서, TFT 특성을 향상시킬 수 있는 결정 특성이 우수한 다결정 실리콘 박막을 제조할 수 있는 실리콘 결정화 방법을 제공함에 그 목적이 있다.
상기와 같은 목적을 달성하기 위하여, 본 발명에 따른 실리콘 결정화 방법은 (a) 비정질 실리콘 상에 금속 촉매를 배치하는 단계; (b) 제1 열처리 온도로 열처리 하는 단계; 및 (c) 제2 열처리 온도로 열처리 하는 단계를 포함하며, 상기 제1 열처리 온도는 상기 제2 열처리 온도보다 낮은 것을 특징으로 한다.
상기 제1 열처리 온도는 금속유도 결정화 방식에 의해 실리콘이 결정화되는 온도로서, 고상 결정화 방식에 의해 실리콘이 결정화되는 온도 미만일 수 있다.
상기 제1 열처리 온도는 600℃ 이하일 수 있다.
상기 제2 열처리 온도는 고상 결정화 방식에 의해 실리콘이 결정화되는 온도 이상일 수 있다.
상기 제2 열처리 온도는 650℃ 이상일 수 있다.
그리고, 상기와 같은 목적을 달성하기 위하여, 본 발명에 따른 실리콘 결정화 방법은 (a) 비정질 실리콘 상에 금속 촉매를 배치하는 단계; (b) 소정의 승온 속도로 도달된 제1 열처리 온도로 열처리 하는 단계; 및 (c) 제2 열처리 온도로 열처리 하는 단계를 포함하며, 상기 제1 열처리 온도는 상기 제2 열처리 온도보다 낮은 것을 특징으로 한다.
상기 승온 속도는 상기 비정질 실리콘 상에 배치된 금속 촉매 농도에 따라 조절될 수 있다.
상기 승온 속도는 100℃/min 이상일 수 있다.
상기 제1 열처리 온도는 금속유도 결정화 방식에 의해 실리콘이 결정화되는 온도로서, 고상 결정화 방식에 의해 실리콘이 결정화되는 온도 미만일 수 있다.
상기 제1 열처리 온도는 700℃ 이하일 수 있다.
상기 제2 열처리 온도는 고상 결정화 방식에 의해 실리콘이 결정화되는 온도 이상일 수 있다.
상기 제2 열처리 온도는 700℃ 이상일 수 있다.
그리고, 상기와 같은 목적을 달성하기 위하여, 본 발명에 따른 실리콘 결정화 방법은 (a) 비정질 실리콘 상에 금속 촉매를 배치하는 단계; 및 (b) 소정의 승온 속도로 도달된 열처리 온도에서 열처리 하는 단계를 포함하며, 상기 승온 속도는 상기 비정질 실리콘 상에 배치된 금속 촉매 농도에 따라 조절될 수 있는 것을 특징으로 한다.
상기 승온 속도는 10℃/min 이하일 수 있다.
상기 열처리 온도는 고상 결정화 방식에 의해 실리콘이 결정화되는 온도 이상일 수 있다.
상기 열처리 온도는 650℃ 이상일 수 있다.
본 발명에 따른 실리콘 결정화 방법은 제조되는 다결정 실리콘 박막의 막질이 향상되는 효과가 있다.
또한, 본 발명에 따른 실리콘 결정화 방법은 TFT 제조 과정에 적용시 반도체나 디스플레이의 제반 특성이 향상되는 효과가 있다.
본 발명의 발명자는 상술한 바와 같은 종래의 저온 결정화법에 따른 실리콘 결정화 방법에서의 문제점을 인식한 후, 이러한 문제점을 해결하기 위해 노력한 결과 금속유도 결정화 방식을 이용하여 제1 열처리 온도에서 실리콘 결정립의 핵을 생성시키고(nucleation) 성장시켜서(growth) 결정화를 완료한 후 제1 열처리 온도보다 더 높은 온도(제2 열처리 온도)에서 추가로 열처리하여 성장된 실리콘 결정립 내에 존재하는 결함을 제거하는 것이 우수한 막질의 다결정 실리콘을 제조하는 데에 유리하다는 점에 착안하여 본 발명에 이르게 되었다. 따라서, 본 발명은 비정질 실리콘 상에 금속 촉매를 도입한 후 2 단계의 열처리 공정을 통하여 실리콘을 결정화시키는 것을 특징적 구성으로 한다.
이하 본 발명의 제1 실시예에 따른 실리콘 결정화 방법의 구성을 상세하게 설명하도록 한다.
우선, 비정질 실리콘 박막이 형성된 유리 기판이 준비되어 금속 촉매의 도입 과정이 진행될 챔버 내에 배치된다. 여기서, 유리 기판은 예를 들어, LCD 등의 경우에는 TFT가 형성되는 TFT 기판에 해당된다.
비정질 실리콘 상에 도입되는 금속 촉매는 Ni, Al, Ti, Ag, Au, Co, Sb, Pd, Cu 중 어느 하나 또는 둘 이상의 조합을 포함할 수 있다. 금속 촉매의 도입 방법으로는 열 증착법(thermal evaporation), 전자빔 증착법(E-beam evaporation) 및 스퍼터링법(sputtering) 등과 같은 물리 기상 증착법(physical vapor deposition; PVD)이나 저압 화학 기상 증착법(low pressure chemical vapor deposition; LPCVD), 플라즈마 화학 기상 증착법(plasma enhanced chemical vapor deposition; PECVD) 및 원자 단위층 증착법(atomic layer deposition; ALD) 등과 같은 화학 기상 증착법(chemical vapor deposition; CVD) 등을 포함할 수 있다.
한편, 결정화된 실리콘을 TFT 등에 적용할 때 금속 오염에 따른 반도체나 디스플레이의 특성 저하를 방지하기 위하여 도입되는 금속 촉매의 농도를 조절할 필요가 있다. 금속 촉매의 농도를 조절하는 방법으로는 비정질 실리콘 상에 증착되는 금속 촉매층의 두께를 조절하는 방법을 예로 들 수 있으나 반드시 이에 한정되는 것은 아니다.
도입되는 금속 촉매의 농도를 적게 하기 위해서는 금속 촉매가 한 원자층(one atomic layer)만으로 증착되도록 두께를 조절할 필요가 있다. 여기서 한 원자층이란 비정질 실리콘의 전체 면적을 금속 촉매의 한 원자층으로 완전히 커버하는 경우를 말한다(커버율=1). 더 나아가서 도입되는 금속 촉매의 농도를 더욱 적게 하기 위해서는 금속 촉매가 한 원자층 미만으로 증착되도록 두께를 조절할 필요가 있다. 여기서 한 원자층 미만이란 비정질 실리콘의 전체 면적을 금속 촉매의 한 원자층으로 완전히 커버하지 않는 경우, 즉 비정질 실리콘 상에 금속 촉매층이 연속적으로 형성되지 않고 드문드문 형성되는 경우를 말한다(커버율<1).
이어서 제1 열처리 공정을 수행한다. 제1 열처리 공정이란 제1 열처리 온도로 열처리하는 공정으로서 이전 단계에서 도입된 금속 촉매에 의하여 상대적으로 저온에서 실리콘의 결정화, 즉 실리콘 결정립의 핵 생성 및 성장이 이루어지는 단계이다. 제1 열처리 공정은 통상적인 열처리 노(furnace)를 이용하여 진행되면 된다.
본 발명에서 주목해야 할 점은 제1 열처리 온도가 비정질 실리콘의 고상 결정화 온도 미만이 되도록 제어되어야 한다는 것이다. 이는 제1 열처리 공정을 통하여 진행되는 실리콘 결정화(실리콘 결정립의 핵 생성 및 성장)는 반드시 금속유도 결정화 방식에 의해 생성되도록 하기 위함이다. 다시 말해 제1 열처리 온도가 잘못 제어되어, 예를 들어 제1 열처리 온도가 일반적인 금속유도 결정화 온도보다 높게 설정되면 비정질 실리콘 상에 금속유도 결정화 방식에 의해 생성된 실리콘 결정립의 핵과 고상 결정화 방식에 의해 생성된 실리콘 결정립의 핵이 혼재하게 되는데, 이는 다결정 실리콘의 막질을 떨어뜨리는 원인이 된다. 따라서, 제1 열처리 온도는 금속유도 결정화 방식에 의해 실리콘이 결정화되는 온도로서, 고상 결정화 방식에 의해 실리콘이 결정화되는 온도 미만으로 제어되는 것이 바람직하며, 600℃ 이하의 범위에서 제어되는 것이 더 바람직하다.
제1 열처리 시간은 도입된 금속 촉매의 농도에 따라 조절될 수 있다. 예를 들어, 도입된 금속 촉매의 농도가 낮으면 제1 열처리 시간은 증가하고 도입된 금속 촉매의 농도가 높으면 상대적으로 제1 열처리 시간은 감소할 수 있다. 다만, TFT 생산성 등을 고려할 때 제1 열처리 시간은 1 내지 10 시간의 범위 내에서 설정하는 것이 바람직하다.
다음으로 제2 열처리 공정을 수행한다. 제2 열처리 공정이란 제2 열처리 온도로 열처리하는 공정으로서 제1 열처리 공정에서 금속유도 결정화 방식에 의해 생성된 실리콘 결정립 내에 존재하는 결함을 제거하는 단계이다. 제2 열처리 공정 역시 통상적인 열처리 노(furnace)를 이용하여 진행되면 된다.
본 발명에서 주목해야 할 점은 제2 열처리 온도가 제1 열처리 온도보다 높게 제어되어야 한다는 것이다. 이는 제1 열처리 공정을 통하여 생성된 실리콘 결정립 내에 존재하는 결함은 열처리 온도가 높을수록 효과적으로 제거될 수 있기 때문이다. 따라서, 제2 열처리 온도는 고상 결정화 방식에 의해 실리콘이 결정화되는 온도 이상으로 제어되는 것이 바람직하며, 650℃ 이상의 범위에서 제어되는 것이 더 바람직하다.
제2 열처리 시간은 TFT 생산성 등을 고려하여 제1 열처리 시간과 마찬가지로 1 내지 10 시간의 범위 내에서 설정하는 것이 바람직하다.
한편, 본 발명의 제2 실시예로서, 제1 열처리 온도는 제1 열처리 온도까지 도달하는 데에 걸리는 시간, 즉 승온 속도에 따라 변경될 수 있다. 예를 들어, 승온 속도가 100℃/min 이상이 되면 제1 열처리 온도를 상술한 바와 같은 600℃ 이하의 범위에서 700℃ 이하의 범위로 조절할 수 있다. 이는 승온 속도를 높게 하면 제1 열처리 온도가 조금 높아져도 고상 결정화 방식에 의한 실리콘 결정립의 핵 생성을 효과적으로 억제할 수 있기 때문이다. 이때, 승온 속도는 도입된 금속 촉매의 농도에 따라 조절될 수 있다. 예를 들어, 도입된 금속 촉매의 농도가 낮으면 승온 속도를 높일 수 있고 도입된 금속 촉매의 농도가 높으면 상대적으로 승온 속도를 낮출 수 있다.
제2 열처리 온도는 고상 결정화 방식에 의해 실리콘이 결정화되는 온도 이상으로 제어되는 것이 바람직하며, 700℃ 이상의 범위에서 제어되는 것이 더 바람직하다. 제1 및 제2 열처리 시간은 상기 제1 실시예의 경우와 동일한 범위 내에서 제어되는 것이 바람직하다.
이와 같이, 본 발명에 따른 실리콘 결정화 방법은 금속유도 결정화 방식을 이용하여 제1 열처리 온도에서 실리콘의 결정화를 완료한 후 제1 열처리 온도보다 더 높은 온도(제2 열처리 온도)에서 추가로 열처리하여 생성된 실리콘 결정립 내에 존재하는 결함을 제거하는 2 단계 열처리 공정을 채택함으로써 우수한 막질의 다결정 실리콘을 제조하는 데에 유리하며, 그 결과 TFT 제조 과정에 적용시 반도체나 디스플레이의 제반 특성을 향상시키는 이점이 있다.
한편, 본 발명의 제3 실시예로서, 상술한 바와 같은 본 발명의 제2 실시예에서보다 낮은 승온 속도 하에서는 보다 간편한 방식으로 실리콘을 결정화시킬 수 있다. 다시 말해, 승온 속도를 낮게 하면 승온 과정에서 금속유도 결정화 방식에 의한 실리콘의 결정화가 완료될 수 있기 때문에, 승온 과정이 종료되면 도달된 온도에서 바로 실리콘 결정립 내에 존재하는 결함을 제거하는 열처리 단계를 수행하는 것이다. 이와 같이, 승온 속도를 조절함으로써 1 단계의 열처리 공정만으로도 상술한 바와 같은 2 단계의 열처리 공정을 거친 경우와 동일한 효과를 얻을 수 있다.
이때, 승온 속도는 비정질 실리콘 상에 도입된 금속 촉매의 농도에 따라 조절될 수 있으며 10℃/min 이하의 범위로 조절되는 것이 바람직하다. 열처리 온도는 고상 결정화 방식에 의해 실리콘이 결정화되는 온도 이상으로 제어되는 것이 바람직하며, 650℃ 이상의 범위에서 제어되는 것이 더 바람직하다. 열처리 시간은 상기 제1 및 제2 실시예의 경우와 동일한 범위 내에서 제어되는 것이 바람직하다.
본 발명은 상술한 바와 같이 바람직한 실시예를 들어 도시하고 설명하였으나, 상기 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형과 변경이 가능하다. 그러한 변형예 및 변경예는 본 발명과 첨부된 특허청구범위의 범위 내에 속하는 것으로 보아야 한다.

Claims (16)

  1. (a) 비정질 실리콘 상에 금속 촉매를 배치하는 단계;
    (b) 제1 열처리 온도로 열처리 하는 단계; 및
    (c) 제2 열처리 온도로 열처리 하는 단계
    를 포함하며,
    상기 제1 열처리 온도는 상기 제2 열처리 온도보다 낮은 것을 특징으로 하는 실리콘 결정화 방법.
  2. 제1항에 있어서,
    상기 제1 열처리 온도는 금속유도 결정화 방식에 의해 실리콘이 결정화되는 온도로서, 고상 결정화 방식에 의해 실리콘이 결정화되는 온도 미만인 것을 특징으로 하는 실리콘 결정화 방법.
  3. 제2항에 있어서,
    상기 제1 열처리 온도는 600℃ 이하인 것을 특징으로 하는 실리콘 결정화 방법.
  4. 제1항에 있어서,
    상기 제2 열처리 온도는 고상 결정화 방식에 의해 실리콘이 결정화되는 온도 이상인 것을 특징으로 하는 실리콘 결정화 방법.
  5. 제4항에 있어서,
    상기 제2 열처리 온도는 650℃ 이상인 것을 특징으로 하는 실리콘 결정화 방법.
  6. (a) 비정질 실리콘 상에 금속 촉매를 배치하는 단계;
    (b) 소정의 승온 속도로 도달된 제1 열처리 온도로 열처리 하는 단계; 및
    (c) 제2 열처리 온도로 열처리 하는 단계
    를 포함하며,
    상기 제1 열처리 온도는 상기 제2 열처리 온도보다 낮은 것을 특징으로 하는 실리콘 결정화 방법.
  7. 제6항에 있어서,
    상기 승온 속도는 상기 비정질 실리콘 상에 배치된 금속 촉매 농도에 따라 조절되는 것을 특징으로 하는 실리콘 결정화 방법.
  8. 제7항에 있어서,
    상기 승온 속도는 100℃/min 이상인 것을 특징으로 하는 것을 특징으로 하는 실리콘 결정화 방법.
  9. 제6항에 있어서,
    상기 제1 열처리 온도는 금속유도 결정화 방식에 의해 실리콘이 결정화되는 온도로서, 고상 결정화 방식에 의해 실리콘이 결정화되는 온도 미만인 것을 특징으로 하는 실리콘 결정화 방법.
  10. 제9항에 있어서,
    상기 제1 열처리 온도는 700℃ 이하인 것을 특징으로 하는 실리콘 결정화 방법.
  11. 제6항에 있어서,
    상기 제2 열처리 온도는 고상 결정화 방식에 의해 실리콘이 결정화되는 온도 이상인 것을 특징으로 하는 실리콘 결정화 방법.
  12. 제11항에 있어서,
    상기 제2 열처리 온도는 700℃ 이상인 것을 특징으로 하는 실리콘 결정화 방법
  13. (a) 비정질 실리콘 상에 금속 촉매를 배치하는 단계; 및
    (b) 소정의 승온 속도로 도달된 열처리 온도에서 열처리 하는 단계
    를 포함하며,
    상기 승온 속도는 상기 비정질 실리콘 상에 배치된 금속 촉매 농도에 따라 조절되는 것을 특징으로 하는 실리콘 결정화 방법.
  14. 제13항에 있어서,
    상기 승온 속도는 10℃/min 이하인 것을 특징으로 하는 실리콘 결정화 방법.
  15. 제13항에 있어서,
    상기 열처리 온도는 고상 결정화 방식에 의해 실리콘이 결정화되는 온도 이상인 것을 특징으로 하는 실리콘 결정화 방법.
  16. 제15항에 있어서,
    상기 열처리 온도는 650℃ 이상인 것을 특징으로 하는 실리콘 결정화 방법.
KR1020100014345A 2010-02-17 2010-02-17 실리콘 결정화 방법 KR20100041717A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100014345A KR20100041717A (ko) 2010-02-17 2010-02-17 실리콘 결정화 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100014345A KR20100041717A (ko) 2010-02-17 2010-02-17 실리콘 결정화 방법

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020070123746A Division KR100960862B1 (ko) 2007-11-30 2007-11-30 실리콘 결정화 방법

Publications (1)

Publication Number Publication Date
KR20100041717A true KR20100041717A (ko) 2010-04-22

Family

ID=42217363

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100014345A KR20100041717A (ko) 2010-02-17 2010-02-17 실리콘 결정화 방법

Country Status (1)

Country Link
KR (1) KR20100041717A (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220310643A1 (en) * 2021-03-29 2022-09-29 Yangtze Memory Technologies Co., Ltd. Ladder annealing process for increasing polysilicon grain size in semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220310643A1 (en) * 2021-03-29 2022-09-29 Yangtze Memory Technologies Co., Ltd. Ladder annealing process for increasing polysilicon grain size in semiconductor device

Similar Documents

Publication Publication Date Title
JP2006066860A (ja) 薄膜トランジスタ製造方法
US20090042342A1 (en) Method for crystallization of amorphous silicon by joule heating
US7465614B2 (en) Method of fabricating semiconductor device and semiconductor fabricated by the same method
KR100960862B1 (ko) 실리콘 결정화 방법
CN100365778C (zh) 制造多晶硅薄膜的方法和使用该多晶硅的薄膜晶体管
KR100611761B1 (ko) 박막트랜지스터 제조 방법
JP2011109075A (ja) 多結晶シリコン層の製造方法、薄膜トランジスタ、それを含む有機電界発光表示装置及びその製造方法
TWI377174B (en) Apparatus for adsorbing metal and method for the same
KR20100041717A (ko) 실리콘 결정화 방법
KR20130060002A (ko) 저온 다결정 박막의 제조방법
KR101044415B1 (ko) 다결정 실리콘 박막의 제조방법
KR101064325B1 (ko) 다결정 실리콘 박막의 제조방법
KR101118275B1 (ko) 다결정 실리콘 박막의 제조방법
TWI377173B (en) Method for manufacturing crystalline silicon
KR101281132B1 (ko) 저온 다결정 박막의 제조방법
KR101057147B1 (ko) 다결정 실리콘 박막의 제조방법
JP2000232066A (ja) 半導体基板の製造方法
KR101131216B1 (ko) 다결정 실리콘 박막의 제조방법
KR101079302B1 (ko) 다결정 실리콘 박막의 제조방법
KR101193226B1 (ko) 다결정 실리콘 박막의 제조방법
KR20090107382A (ko) 폴리 실리콘 박막 트랜지스터용 폴리 실리콘층의 제조방법
KR101131217B1 (ko) 다결정 실리콘 박막의 제조방법
KR101123373B1 (ko) 다결정 실리콘 박막의 제조방법
WO2019144451A1 (zh) 固相结晶方法与低温多晶硅tft基板的制作方法
KR101117291B1 (ko) 다결정 실리콘 박막의 제조방법

Legal Events

Date Code Title Description
A107 Divisional application of patent
WITN Withdrawal due to no request for examination