KR20100036853A - 웨이퍼 레벨 패키징을 이용한 ndir 방식의 가스 센서용적외선 감지소자 및 그의 제조방법 - Google Patents

웨이퍼 레벨 패키징을 이용한 ndir 방식의 가스 센서용적외선 감지소자 및 그의 제조방법 Download PDF

Info

Publication number
KR20100036853A
KR20100036853A KR1020080096256A KR20080096256A KR20100036853A KR 20100036853 A KR20100036853 A KR 20100036853A KR 1020080096256 A KR1020080096256 A KR 1020080096256A KR 20080096256 A KR20080096256 A KR 20080096256A KR 20100036853 A KR20100036853 A KR 20100036853A
Authority
KR
South Korea
Prior art keywords
layer
wafer
infrared
ndir
gas sensor
Prior art date
Application number
KR1020080096256A
Other languages
English (en)
Other versions
KR101034647B1 (ko
Inventor
한용희
김근태
김형원
김희성
Original Assignee
(주)유우일렉트로닉스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)유우일렉트로닉스 filed Critical (주)유우일렉트로닉스
Priority to KR1020080096256A priority Critical patent/KR101034647B1/ko
Publication of KR20100036853A publication Critical patent/KR20100036853A/ko
Application granted granted Critical
Publication of KR101034647B1 publication Critical patent/KR101034647B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • G01N21/61Non-dispersive gas analysers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

본 발명은 웨이퍼 레벨 패키징을 이용한 NDIR 방식의 가스 센서용 적외선 감지소자 및 그의 제조방법에 관한 것이다.
본 발명은, 지지층이 형성된 상부기판, 지지층의 일면 상에 형성된 절연층, 절연층 상에 형성된 전극층, 전극층 상에 형성된 보호층, 내면에 제1캐비티가 형성되고 내면 또는 외면에 적외선 필터가 형성되어 하부기판의 상부에 접합된 상부기판, 상부기판의 내면상에 형성된 게터, 하부기판 및 상부기판을 접합시키기 위한 금속솔더층을 포함하며,
여기서, 하부기판은 상면에 적어도 하나의 제2캐비티가 형성되고 각 제2캐비티의 상부 공간상에 적외선을 감지하는 감지부와, 감지부의 양측으로 그 감지부를 지지하는 지지부가 형성되며, 이때, 감지부는 절연층 내 지지층 상에 형성된 반사층과, 보호층 내 절연층 상에 형성되어 전극층과 연결되도록 구성된 감지층을 포함하고,
하부기판 및 상부기판은 내부가 진공상태로 접합된 것을 특징으로 한다.
NDIR, 웨이퍼 레벨 패키징(WLP), 이산화탄소, 적외선, 감지센서, 볼로메터, 캐비티, 기판

Description

웨이퍼 레벨 패키징을 이용한 NDIR 방식의 가스 센서용 적외선 감지소자 및 그의 제조방법{HIGH SENSITIVE INFRARED DETECTOR FOR NDIR TYPE GAS SENSOR USING WAFER LEVEL PACKAGING AND ITS MANUFACTURING METHOD}
본 발명은 비분산 적외선(Non-Dispersive infrared, 이하, NDIR이라 함) 방식의 가스 검출용 적외선 센서에 관한 것으로서, 보다 상세하게는 웨이퍼 레벨 패키징(WLP:Wafer Level Packaging)된 볼로메터(bolometer) 형태의 멤스(MEMS)구조를 이용한 NDIR 방식의 가스 센서용 적외선 감지소자 및 그 제조방법에 관한 것이다.
공기 중 이산화탄소(CO2)의 농도 증가는 산소결핍증으로 인한 생명체에 미치는 피해뿐만 아니라, 온실효과에 의해 대기의 온도를 증가시키는 지구 전체적인 문제로 대두되고 있다. 따라서 국지적인 이산화탄소의 농도를 연속적으로 측정하고, 그 발생원의 통제와 대처 방안을 강구함으로써 대기 및 작업환경의 보호와 개선책을 마련하는 일이 시급한 실정이다. 이에 따라 이산화탄소의 농도를 측정할 수 있 는 장치의 개발이 매우 필요한 실정이다.
종래기술에서 이산화탄소의 농도를 측정하는 센서 중 현재 각광받고 있는 센서는 NDIR 방식의 센서이다. 이러한 NDIR 센서는 이산화탄소가 특정 파장의 적외선을 흡수하는 성질을 이용한다. 즉, 이산화탄소 양의 변화에 따라 적외선 감지소자에서 감지되는 적외선 양의 변화를 측정함으로써 이산화탄소의 농도를 측정하는 방식이다.
도 1은 종래의 NDIR 방식의 이산화탄소 가스 검출용 센서의 개략도이다.
도 1을 참조하면, 종래의 NDIR 방식의 이산화탄소 검출용 센서는 적외선을 발광하는 적외선 발광부(1)와, 발생된 적외선을 안내하고 이산화탄소의 유입 및 유출을 위한 개구부(3a,3b)가 각각 마련된 하우징(3)과, 적외선을 흡수하는 적외선 감지소자(5)로 구성되며, 적외선 감지소자(5)의 전단에는 적외선 파장을 필터링하는 적외선 필터(7)가 형성된다. 적외선 감지소자(5)는 이산화탄소의 양에 따라 흡수하는 적외선의 양이 달라지며, 이러한 원리를 이용하여 이산화탄소의 양을 측정하게 된다. 이때, 이산화탄소의 농도를 정확히 측정하기 위해서는 적외선을 흡수하는 적외선 감지소자(5)의 성능이 매우 중요하다.
종래에 NDIR 방식의 가스 검출용 센서에 사용되는 적외선 감지소자로는 파이로일렉트릭(pyroelectric), 써모파일(thermopile), 볼로메터(bolometer) 등의 열 흡수형 감지소자가 사용되고 있다. 이러한 적외선 감지소자들 가운데서 가장 성능이 뛰어나고 제작이 쉬우며 부피가 작은 것이 볼로메터이다. 다른 적외선 감지소자들은 107~108 정도의 낮은 적외선 감지도를 나타내는 반면, 볼로메터형 적외선 감지소자의 적외선 감지도는 108~109 정도이다.
그러나, 이러한 볼로메터형 적외선 감지소자의 경우 필수적인 요소가 적외선 감지부가 위치한 패키지 내부의 진공도이다. 적외선 감지소자의 패키지 내부로 입사된 열에너지(적외선)는 복사, 전도, 대류 등 여러 가지 형태로 적외선 감지소자의 패키지 내부에서 전달된다. 이와 같은 여러 형태의 열전달은 적외선 감지소자에게는 열손실로 나타난다. 이러한 열손실은 패키지 내부에 위치한 적외선 감지소자의 성능 저하의 원인이 된다. 그러므로 패키지 내부의 열손실을 최소화하여 패키지 내부에 위치한 적외선 감지소자의 성능을 향상시키는 방법은 패키지 내부를 진공상태로 유지시켜주는 것이다.
도 2는 종래의 볼로메터형 적외선 감지소자의 진공 패키징 과정을 보이는 개략도이다.
도 2를 참조하면, 종래의 볼로메터를 이용한 적외선 감지소자는 감지부가 집적된 소자 웨이퍼(11)를 칩(chip)(12)별로 다이싱한다. 다이싱된 각각의 칩(12)은 기판(11)과, 기판(11) 상에 형성된 적외선 감지부(12a) 및 신호전극(미도시)를 포 함한다. 이러한 칩(12)을 지지다리(13)가 형성된 지지부(14)에 탑재한 후에 와이어 본딩한다(15). 이후에 내부가 진공상태인 진공챔버(16) 내에서 상부면에 적외선 필터(18)가 형성된 캡(17)을 지지부(14)에 접합(welding)함으로써 적외선 감지소자의 진공 패키징을 수행한다. 이와 같이 적외선 감지소자의 패키지 내부를 진공처리함으로써 패키지 내부의 열손실을 최소화하여 적외선 감지소자의 성능 저하를 방지하도록 한다. 이로써 외부로부터 적외선이 적외선 필터(18)를 통해 입사되면 칩(12)에 형성된 볼로메타형 적외선 감지부에서 이를 흡수하고, 적외선 흡수에 따른 저항변화를 통해 적외선 양을 감지하게 된다.
그러나, 이러한 종래의 적외선 감지소자는 진공챔버(16) 내에서 캡(17)의 접합시 열에 의한 가스 발생이 불가피하고 이로 인해 패키지 내부의 진공도가 높아지는 문제점이 있다. 이와 같이 발생된 가스를 제거하기 위해 진공펌프를 사용할 수 있지만, 이러한 진공펌프는 고가이므로 제조비용이 증가하는 문제점을 안고 있다. 또한, 패키지 내부의 진공분위기가 가능한 캡 형태의 패키지를 제작하기 위해서는 상용화된 금형을 사용하지 못하고 별도의 금형을 제작해야 하는 번거로움이 있다.
나아가, 이러한 캡 패키지의 경우 지지부(14)와 캡(17)이 차지하는 크기로 인해 적외선 감지소자의 소형화에 한계가 있으며, 설령 적외선 감지소자를 소형으로 구현하다고 하더라도 캡 패키지 구현시 각 소자의 핸들링이 어렵다는 문제점이 있다. 더하여 캡 패키지 형태의 볼로메타형 적외선 감지소자는 캡 패키징에 부수적 인 장치가 필요하고 제조비용이 증가하고 일괄제작이 불가능하다는 단점이 있다.
따라서, 해당 기술분야에서는 NDIR 방식의 가스 센서용 적외선 감지소자를 저비용으로 간단하게 제조할 수 있으며, 특히 전체 크기를 초소형으로 제조할 있는 기술의 개발이 요구되고 있다.
본 발명은 상기한 종래의 문제점을 해결하기 위해 제안된 것으로서, 웨이퍼 레벨 패키징(WLP)을 이용하여 적외선 감지소자의 칩 패키지를 제조함으로써 초소형화된 적외선 감지소자를 구현할 수 있는 웨이퍼 레벨 패키징을 이용한 NDIR 가스 센서용 적외선 감지소자 및 그 제조방법을 제공하는데 목적이 있다.
또한, 본 발명은 적외선 감지소자의 칩 패키지 내부를 신뢰성 있는 고진공도로 구현하여 고감도의 성능을 갖는 웨이퍼 레벨 패키징을 이용한 NDIR 가스 센서용 적외선 감지소자 및 그의 제조방법을 제공하는데 다른 목적이 있다.
또한, 본 발명은 적외선 감지소자의 칩 패키징 공정 중 소자의 깨짐이 없어 수율이 높고 일괄 제작이 가능하여 제작 단가가 낮은 웨이퍼 레벨 패키징을 이용한 NDIR 가스 센서용 적외선 감지소자 및 그의 제조방법을 제공하는데 또 다른 목적이 있다.
상기한 목적을 달성하기 위한 본 발명은,
적어도 일면에 형성된 지지층이 형성된 상부기판;
상기 지지층의 일면 상에 형성된 절연층;
상기 절연층 상에 형성된 전극층;
상기 전극층 상에 형성된 보호층;
일면에 제1캐비티가 형성되고 적어도 일면에 적외선 필터가 형성되어 상기 하부기판의 상부에 웨이퍼 레벨에서 접합된 상부기판;
상기 상부기판의 내면에 형성된 게터; 및
상기 하부기판 및 상부기판을 접합시키기 위한 금속솔더층; 을 포함하고,
상기 하부기판은 상면에 적어도 하나의 제2캐비티가 형성되고 상기 각 제2캐비티의 상부 공간에 적외선을 감지하는 감지부와, 상기 감지부의 양측으로 상기 감지부를 지지하는 지지부가 형성되며,
상기 감지부는 상기 절연층 내 지지층 상에 형성된 반사층과, 상기 보호층 내 절연층 상에 형성되어 상기 전극층과 연결되도록 구성된 감지층을 포함하고,
상기 접합된 상부기판 및 하부기판의 내부는 진공상태인 것을 특징으로 하는 웨이퍼 레벨 패키징을 이용한 NDIR 방식의 가스 센서용 적외선 감지소자에 관한 것이다.
또한, 상기 목적을 달성하기 위한 본 발명은,
소자 웨이퍼 및 캡 웨이퍼를 각각 마련하는 공정;
상기 소자 웨이퍼 및 캡 웨이퍼를 진공 분위기에서 서로 접합하여 패키지를 형성하는 공정; 및
상기 패키지를 개별 칩별로 다이싱하는 공정; 을 포함하고,
상기 소자 웨이퍼를 마련하는 공정은,
하부기판의 적어도 일면에 지지층을 형성하는 공정;
상기 지지층 상부의 적어도 하나 이상의 위치에 반사층을 형성하는 공정;
상기 반사층을 포함하도록 상기 지지층 상에 절연층을 형성하는 공정;
상기 반사층이 형성된 위치의 상기 절연층 상에 감지층을 형성하는 공정;
상기 절연층 상에 소정의 패턴으로 전극층을 형성한 후 열처리하는 공정;
상기 감지층 및 전극층이 형성된 절연층 상에 보호층을 형성한 후 상기 감지층 및 전극층이 형성된 부분을 제외한 나머지 부분을 제거하여 상기 하부기판의 일부를 개방하는 공정;
상기 하부기판의 소정 위치에 금속솔더층을 형성하는 공정; 및
상기 감지층이 공간 상에 위치되도록 상기 감지층 하부의 상기 하부기판을 에칭함으로써 상기 하부기판의 상부에 제1캐비티를 형성하는 공정; 을 포함하고,
상기 캡 웨이퍼를 마련하는 공정은,
상부기판을 마련하고 그 일면을 에칭하여 제2캐비티를 형성하는 공정;
상기 상부기판의 내면 또는 외면에 적외선 필터를 형성하는 공정;
상기 상부기판의 내면에 게터를 형성하는 공정; 및
상기 하부기판의 소정 위치에 금속솔더층을 형성하는 공정; 를 포함하는 것을 특징으로 하는 웨이퍼 레벨 패키징을 이용한 NDIR 방식의 가스 센서용 적외선 감지소자의 제조방법에 관한 것이다.
본 발명에 따른 웨이퍼 레벨 패키징을 이용한 NDIR 가스 센서용 적외선 감지소자 및 그 제조방법에 따르면 다음과 같은 효과가 있다.
첫째, 웨이퍼 레벨 패키징(WLP)을 이용함으로써 적외선 감지소자의 패키징 내부에 신뢰성 있는 진공 분위기의 형성이 가능하다.
둘째, 일반적인 반도체 공정장비를 사용하므로 부가적인 장비의 수정이나 장치의 제작이 요구되지 않는다.
셋째, 웨이퍼의 접합을 이용함으로써 패키징된 적외선 감지소자의 제작이 간단하다.
넷째, 별도의 금형이 필요하지 않으므로 초소형의 적외선 감지소자 제작이 가능하다.
다섯째, 적외선 감지소자의 일괄 생산이 가능하여 패키징된 적외선 감지소자의 제작시간이 단축되고 제작 단가를 낮출 수 있다.
여섯째, 칩 레벨의 핸들링이 별도로 요구되지 않으므로 소자의 깨짐이 없게 되어 적외선 감지소자의 제작 수율을 높이는 것이 가능하다.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예를 구체적으로 설명한다.
도 3은 본 발명의 실시 예에 따른 웨이퍼 레벨 패키징을 이용한 NDIR 가스 센서용 적외선 감지소자의 개략적인 사시도이다.
도 3에 도시된 바와 같이, 본 발명의 실시 예에 따른 NDIR 방식의 가스 센서용 적외선 감지소자(100)는 소자 웨이퍼(110)와 캡 웨이퍼(120)를 포함하여 구성된다. 이러한 소자 웨이퍼(110)와 캡 웨이퍼(120)가 웨이퍼 레벨에서 진공 분위기에서 서로 접합되어 하나의 적외선 감지소자(100) 패키지를 구성하게 된다. 소자 웨이퍼(110)는 하부기판(111) 상에 적어도 하나의 감지부(113) 및 지지부(115)를 포함하며, 이러한 지지부(115)는 감지부(113)에서 감지한 적외선 감지신호를 소자 웨이퍼(110)의 상부 측단부에 위치한 전극(117)에 전달하는 역할을 하도록 구성되어 있다. 감지부(113)들이 M×N으로 배열되어 하나의 적외선 감지소자(110)를 구성할 수도 있다. 또한, 상부의 캡 웨이퍼(120)는 양면에 적외선 필터(123)가 형성된 상부기판(121)을 포함한다. 도면에서 전극(117)은 일례로서 외부의 전극과 와이어 본딩을 통해 연결될 수 있도록 외부로 개방되어 있으나, 다른 예에서는 전극(117)이 하부기판(111)에 형성된 관통홀을 통해 그 하부로 연결될 수도 있다.
도 4는 이러한 본 발명에 따른 NDIR 방식의 가스 센서용 적외선 감지소자의 단면도이다.
도 4에 도시된 바와 같이, 본 발명에 따른 적외선 감지소자(200)는 크게 소자 웨이퍼(210)와 캡 웨이퍼(220)로 구성된다. 도면에 도시된 바와 같이 하부의 소자 웨이퍼(210)와 상부의 캡 웨이퍼(220)를 웨이퍼 레벨에서 접합(bonding)하여 패키징함으로써 적외선 감지소자(200)를 구현하게 된다. 이때, 적외선 감지소자의 웨 이퍼 레벨 패키징은 진공 분위기에서 이루어진다. 따라서, 적외선 감지소자 패키지의 내부는 진공 상태이다.
본 발명에 따른 소자 웨이퍼(210)는 적어도 일면에 지지층(212)이 형성된 하부기판(211), 그 일면의 지지층(212) 상에 형성된 절연층(213), 절연층(213) 상에 형성된 전극층(214), 전극층(214) 상에 형성된 보호층(215)을 포함하여 구성된다. 하부기판(211)은 실리콘 기판을 이용할 수 있으나, 본 발명은 이에 제한되는 것은 아니다. 또한, 지지층(212)은 열적 고립구조 형상을 위한 것으로, 대략 4000Å 두께의 저응력의 실리콘 질화막임이 바람직하다.
또한, 하부기판(211)은 상면에 적어도 하나의 제1캐비티(cavity)(218)를 형성되고, 이러한 제1캐비티(218)의 상부 공간에 적외선을 감지하는 감지부(A)와, 이러한 감지부(A)의 양측방으로 그 감지부(A)를 지지하는 지지부(B)가 각각 형성되어 있다. 감지부(A)는 예컨대, 이산화탄소와 같은 가스의 양에 따라 변화하는 적외선 양을 감지하는 역할을 하며, 지지부(B)는 감지부(A)에서 감지된 신호를 도시되지 않은 외부 신호전극에 전달하는 역할을 함과 동시에 제1캐비티(218)의 상부 공간에서 감지부(A)를 지지하는 역할을 한다.
본 발명의 적외선 감지소자(200)를 이루는 감지부(A)는 절연층(213) 내 지지층(212) 상에 형성된 반사층(216)과, 보호층(215) 내 절연층(213) 상에 형성되어 전극층(214)과 연결되도록 구성된 감지층(217)을 포함한다. 이러한 전극층(214)은 금속박막의 형태로서 감지부(A)의 감지층(217)에 연결되어, 감지층(217)에서 감지된 적외선 흡수에 관한 신호를 외부 신호전극(미도시)에 전달하는 역할을 한다. 또한, 감지층(217)은 적외선을 감지하는 기능을 하며, 이를 위해 감지층(217)의 감지물질로서 VOx, a-Si, V-W-O 등의 물질을 이용함이 바람직하다. 또한, 반사층(216)은 지지층(212) 상에서 적외선 반사에 의한 공진 효과를 도모하기 위해 형성된 것으로, 금속 박막으로 형성될 수 있다. 예컨대, 대략 1000Å 두께로 증착된 알루미늄 또는 크롬/금으로 형성됨이 바람직하다. 절연층(213)은 반사층(216)과 감지층(217) 사이의 절연과 적외선 공진 작용을 위해 형성하는 것이며, 대략 두께 2000Å의 실리콘 질화막으로 형성됨이 바람직하다.
한편, 보호층(215)은 하부의 소자 웨이퍼(210)를 전체적으로 보호하기 위한 것으로서, 대략 두께가 4000Å의 실리콘 질화막으로 형성됨이 바람직하다. 또한 보호층(215) 상에는 웨이퍼 접합을 위한 금속솔더층(224)이 형성된다. 이러한 금속솔더층(224)은 0.1~4㎛의 범위로 함이 바람직하다. 또한 선택적으로 하부기판(211)의 양단부에는 관통전극(219)이 형성된다. 다른 예에서는 도 3에 도시된 바와 같이 전극층(214)이 외부로 개방될 수도 있다. 이 경우 와이어 본딩을 통해 외부 전극과 연결될 수 있다.
또한, 본 발명에 따른 캡 웨이퍼(220)는 상술한 하부기판(211)과 접합된 상부기판(221)과, 상부기판(221)의 내면 및 외면에 형성된 적외선 필터(222), 내면의 적외선 필터(222) 상에 형성된 게터(getter)(223) 및 두 기판(211,221)을 접합하기 위한 금속솔더층(224)을 포함한다. 즉, 금속솔더층(224)을 이용하여 상부 및 하부 기판(211,221)을 접합(bonding)함으로써 웨이퍼 레벨에서 적외선 감지소자(200)가 패키지 형태로 완성된다. 이러한 상부기판(221)은 하부기판(211)과 접합되는 내부에 제2캐비티(225)가 형성되어 있다. 제2캐비티(225)는 하부기판(211) 상에 형성된 다수의 감지부(A) 및 지지부(B)를 비롯하여 보호층(215) 등 다른 구성요소들을 포함할 수 있도록 형성됨이 바람직하다.
이때, 제2캐비티(225)가 형성된 상부기판(221)의 내면 또는 외면에는 적외선 필터(222)가 각각 형성되어 있다. 이러한 적외선 필터(222)는 4.25~4.35㎛ 적외선 파장의 광을 필터링하여 투과시키는 역할을 한다. 더 바람직하게는 4.26㎛ 적외선 파장의 광을 투과시킨다. 그리고, 제2캐비티(225)가 형성된 내면에는 하나 이상의 게터(getter)(223)가 형성되어 있다. 이러한 게터(223)는 하부기판(211)과 상부기판(221)을 웨이퍼 레벨에서 패키징하는 과정에서 발생되는 가스를 흡수함으로써 패키지 내부의 진공도를 높이는 기능을 한다.
이때, 하부기판(211)과 상부기판(221)은 대략 10-4torr의 진공 분위기에서 다양한 금속 접합법(metallic bonding)을 이용하여 접합된다. 이러한 금속 접합법으로는 열압착 본딩(thermocompression bonding), 유테틱 본딩(eutectic bonding) 등을 이용할 수 있다. 이와 같이, 진공 분위기에서 두 기판(211,221)을 접합함으로 써 감지부(A)가 진공상태의 패키지 내부에 위치할 수 있고, 다수의 감지부(A)를 구성하는 경우 상부기판(221)으로 보호된 개별 감지부(A)들이 후속 공정인 다이싱 공정에서 소자의 깨짐 없이 진행될 수 있다.
상술한 바와 같이, 본 발명의 적외선 감지소자(200)는 소자 웨이퍼(210)와 캡 웨이퍼(220)를 웨이퍼 레벨에서 패키지로 구현될 수 있으며, 그 패키지 내부는 진공상태이다. 나아가, 소자 웨이퍼(210)는 상부에 제1캐비티가 형성된 하부기판에서 그 제1캐비티의 상부 공간에 감지부(A)와 그 감지부(A)를 공간상에서 지지하는 지지부(B)를 포함하며, 더 나아가 상부기판에서 적외선 필터 및 게터를 포함하여 구성된다. 바람직하게는 지지부(B)는 지그재그 형상으로 구현된다.
도 5는 이러한 적외선 감지소자의 웨이퍼 레벨 패키징 과정을 보이는 개략도이다.
도 5에 도시된 바와 같이, 본 발명에 따른 적외선 감지소자(200)를 웨이퍼 레벨 패키징하기 위하여, 각각 웨이퍼 레벨에서 별도의 공정을 통해 필요한 소자들을 탑재하여 소자 웨이퍼(210) 및 캡 웨이퍼(220)를 제작한다. 이어서, 웨이퍼 본딩을 통해 두 웨이퍼(210,220)를 서로 접합하여 패키징 처리한다. 이때, 이러한 두 웨이퍼(210,220)의 접합(bonding)처리는 진공 분위기에서 실행된다. 예컨대, 진공챔버 내에서 접합됨이 바람직하다. 이로써 접합된 두 웨이퍼(210,220) 내부에는 진공상태를 유지하게 된다. 이와 같이 본딩된 두 웨이퍼(210,220)를 웨이퍼 레벨 상 태에서 다이싱함으로써 적외선 감지소자(200)가 완성된다.
이와 같이, 본 발명에서는 소정의 반도체 공정을 통해 웨이퍼 레벨에서 웨이퍼의 제작, 본딩, 다이싱 등을 수행함으로써 적외선 감지소자(200)를 완성할 수 있게 된다.
이하, 도 6 내지 도 9를 참조하여, 본 발명에 따른 웨이퍼 레벨 패키징을 이용한 NDIR 방식의 가스 센서용 적외선 감지소자의 제조방법을 설명한다.
도 6은 본 발명의 실시 예에 따른 웨이퍼 레벨 패키징을 이용한 NDIR 방식의 가스 센서용 적외선 감지소자의 소자 웨이퍼의 제조방법을 나타낸 개략도이다.
도 6(a)에 도시된 바와 같이, 본 발명에 따른 적외선 감지소자(300)의 소자 웨이퍼(310)를 제조하기 위해, 먼저 상면 및 하면 중 적어도 일면에 열적 고립구조를 위한 지지층(312)이 형성된 하부기판(311)을 마련한다. 이러한 하부기판(311)으로는 실리콘 기판을 이용할 수 있으나 본 발명이 이에 제한되는 것은 아니다. 지지층(312)은 하부기판(311)의 상,하부에 열적고립구조를 위해 마련되며, 예컨대, 저압화학증기증착(LPCVD:Low Pressure Chemical Vapor Deposition)법, 플라즈마 화학증기증착(PECVD:Plasma Enhenced Chemical Vapor Deposition)법 등을 이용하여 저응력의 실리콘 질화막을 형성함으로써 구현될 수 있다.
다음으로, 본 발명에서는 도 6(b)와 같이, 지지층(312) 상부의 소정 위치에 통상의 사진식각 공정을 통해 반사층(313)을 패터닝하여 형성한다. 반사층(313)은 지지층(312) 상에서 적외선 반사에 의한 공진효과를 위해 형성시킨다. 그리고 반사층(313)은 통상의 사진식각 공정을 이용하여 금속박막을 증착한 후 패터닝함으로써 형성시킬 수 있다.
이어, 본 발명에서는 도 6(c)와 같이, 반사층(313)이 형성된 하부기판(311) 상에 반사층(313)을 포함하도록 절연층(314)을 형성한다. 절연층(314)은 이산화탄소 가스 센서용 적외선 감지소자가 제작되는 공정온도 등을 고려하여 LPCVD, PECVD 등으로 증착형성됨이 바람직하며, 실리콘 나이트라이트(SiNx)물질로 증착 형성되는 것이 바람직하다. 이러한 절연층(314)은 반사층(313)과 후술하는 감지층(315) 간의 절연 및 적외선 공진 작용을 위해 형성된다.
계속하여, 본 발명에서는 도 6(d)와 같이, 절연층(314) 상의 소정 위치, 바람직하게는 절연층(314) 상에 반사층(313)이 형성된 위치에 감지층(315)을 증착 및 패터닝한다. 감지층(315)은 감지물질로서 VOx. a-Si, V-W-O 등의 물질을 사용함이 바람직하다. 그리고, 이러한 감지층(315)은 절연층(314) 상에 감광성 필름을 도포한 후 노광, 현상함으로써 소정의 패턴을 형성하고, 이후에 상기한 감지물질을 증착한 후 그 감광성 필름을 제거하는 통상의 사진식각 공정을 통해 제조될 수 있다.
다음으로, 본 발명에서는 도 6(e)와 같이, 절연층(314) 상에 전극층(316)을 형성한다. 전극층(316)은 금속박막 형태로서 절연층(314) 상에 형성된다. 이때, 감지층(315)과 연결되는 전극층(316)의 경우 공중에 부양된 감지층(315)을 안정적으로 지지할 수 있도록 그 감지층(315)의 양측방으로 지그재그 모양의 지지부(B) 형상에 따라 형성된다. 이러한 전극층(316)은 감지층(315)과 같이 전극층(316)이 형성되지 않는 부분에 감광성 필름 패턴을 형성하고 이후에 금속박막을 증착한 후 그 감광성 필름을 제거함으로써 필요한 부분(예:지그재그)에만 전극층(316)을 형성할 수 있으며, 본 발명은 금속의 종류, 조성, 증착 방법 등에 제한되지 않는다. 이때 다수의 감지층(315)이 M×N로 연결되는 경우 전극층(316)은 서로 이웃한 지지부(B)에서의 전극층(316)과 서로 연결되며, 최끝단의 전극층(316)은 하부기판(311)의 양단부에 형성된 외부 신호전극과 연결되도록 한다. 이로써 전극층(316)은 각각의 지지부(B)를 통해 각각 해당 감지부(A)의 감지층(315)과 외부 신호전극을 연결하는 기능을 하게 된다.
만약, 본 발명에 따른 적외선 감지소자(300)가 하나의 감지층(315)을 포함하여 구성되는 경우 전극층(316)은 감지층(315)에서 검출된 신호를 양단부에 형성된 외부 신호전극에 연결된다. 이 경우 양단부의 전극층(316)을 외부 신호전극으로 이용할 수도 있다.
이어, 본 발명에서는 전극층(316)이 형성된 하부기판(311)을 열처리하는데, 이러한 열처리를 통해 감지층(315)의 상부가 산화처리된다. 이러한 산화처리에 의해 감지층(315)을 이루는 물질이 비정질화되어 보다 우수한 적외선 감지능을 나타 낼 수 있다. 본 발명은 열처리 온도에 제한되지 않으며, 예컨대 대략 280~320℃ 정도로 열처리함이 바람직하다.
계속하여, 본 발명에서는 도 6(f)와 같이, 감지층(315) 및 전극층(316)이 형성된 하부기판(311) 상부에 보호층(317)을 형성한다. 보호층(317)은 절연층(314), 감지층(315), 전극층(316)을 포함하도록 형성되며, 이는 후속하는 실리콘 벌크 에칭공정에서 이와 같이 제조된 적외선 감지소자 전체를 보호하기 위한 층이다. 이러한 보호층(317)은 LPCVD, PECVD 법을 이용하여 실리콘 질화막을 증착하여 패터닝하여 형성함이 바람직하다. 도면에는 도시되지 않았으나 하부기판(311)의 최끝단에 신호전극층을 형성하는 경우 신호전극층 상의 보호층은 먼저 개방(opening)할 수도 있다.
다음으로, 본 발명에서는 도 6(g)에서와 같이, 상기한 공정을 통해 제조된 하부기판(311)을 건식 에칭 장비를 이용하여 전극층(316) 패턴이 형성되지 않은 부분에 개방(opening)(H)한다. 이러한 개방(opening)은 전극층(316)이 형성된 부분에만 감광성 필름 패턴을 형성하고, 이후에 건식 에칭 공정을 통해 지지층(312), 절연층(314) 및 보호층(317)을 식각하여 개방한 후, 그 광감성 필름을 제거함으로써 이루어진다. 이러한 감광성 필름 패턴은 바람직하게는 지그재그 패턴으로 형성함으로써 지지부(B)의 형태를 결정하게 된다.
상기와 같은 보호층(317)의 형성으로 감지부(A)와 그 감지부(A)를 양측방으로 지지하는 지지부(B)가 형성됨을 알 수 있으며, 이러한 지지부(B)는 지그재그 패턴의 지지다리로 형성되어 외부의 신호전극 또는 이웃한 지지부(B)의 전극층(310)과 연결되도록 구성될 수 있다.
다음으로, 본 발명에서는 도 6(h)와 같이 하부기판(311)을 후술하는 상부기판과 접합(bonding)하기 위한 금속솔더층(318)을 형성 및 패터닝한다. 이러한 금속솔더층(318)은 접합 금속으로서 Au, AuSn, Sn, Cu, Ag 중 어느 하나 또는 이들의 혼합물을 사용할 수 있다. 본 발명의 실시 예에서는 Au 80wt% + Sn 20wt%를 사용할 수도 있다. 하지만, 본 발명은 이에 제한되는 것은 아니다.
이어, 본 발명에서는 도 6(i)와 같이, 상기와 같이 제조된 소자 웨이퍼(310)에서 하부기판(311) 상의 감지부(A) 및 지지부(B)에 대응되는 부분을 습식 벌크 에칭하여 제1캐비티(cavity)(319)를 형성함으로써 열적 고립구조를 형성한다. 벌크 습식 에칭제로는 KOH가 바람직하나 이에 제한되는 것은 아니다. 이러한 제1캐비티(319)의 상부 공간 상에는 감지부(A)가 위치되도록 함으로써 그 감지부(A)가 열적 고립구조를 형상하도록 한다. 이로써 보다 고감도의 적외선 감지소자를 구현할 수 있게 된다.
도 7은 본 발명의 실시 예에 따른 웨이퍼 레벨 패키징을 이용한 NDIR 방식의 가스 센서용 적외선 감지소자의 캡 웨이퍼의 제조방법을 나타낸 개략도이다.
도 7(a)에 도시된 바와 같이, 본 발명에 따른 적외선 감지소자(300)의 캡 웨이퍼(320)를 제조하기 위해, 먼저 양면 폴리싱된 상부기판(321)을 마련한다. 상부기판(321)으로는 실리콘 기판을 이용하는 것이 바람직하나, 본 발명은 이에 한정되지 않는다. 이러한 상부기판(321)의 일면을 벌크 에칭하여 제2캐비티(cavity)(322)를 형성한다. 제2캐비티(322)는 상기한 소자 웨이퍼(310) 상에 형성된 각종 구성요소를 포함할 수 있도록 형성하는 것이 바람직하다.
이어, 본 발명에서는 도 7(b)와 같이, 제2캐비티(322)가 형성된 상부기판(321)의 적어도 일면에 특정 적외선의 필터링 및 투과를 위한 적외선 필터(323)를 형성한다. 적외선 필터(323)는 Ge, ZnS 등의 물질을 사용함이 바람직하다.
다음으로, 본 발명에서는 도 7(c)와 같이, 상부기판(321)의 제2캐비티(322)에 형성된 적외선 필터(323) 상에 게터(getter)(324)를 형성 및 패터닝한다. 이러한 게터(324)는 적외선 감지소자를 패키지로 형성하기 위해 상,하부기판(311,321)을 서로 접합(bonding)시 발생하는 가스를 흡착하기 위해 형성하는 것으로서, Ti 등의 금속물질을 얇은 박막형태로 형성하는 것이 바람직하다.
계속하여, 본 발명에서는 도 7(d)와 같이, 상술한 하부기판(311)과의 접합을 위한 금속솔더층(325)을 형성 및 패터닝한다. 이러한 금속솔더층(325)은 도 6의 공 정에서 제조된 하부기판(311)과 상부기판(321)을 웨이퍼 레벨에서 접합하여 적외선 감지소자로 패키징하기 위해 패턴으로 형성된다. 금속솔더층(321)은 접합 금속으로서 Au, AuSn, Sn, Cu, Ag 등의 물질을 사용함이 바람직하다.
상술한 바와 같이, 상부기판(321)의 일면에 제2캐비티(322)를 형성한 후 그 양면에 적외선 필터(323)를 형성하고, 제2캐비티(322)에 형성된 적외선 필터(323) 상에 하나 이상의 게터(324) 및 금속솔더층(325)을 형성함으로써 본 발명에 따른 웨이퍼 레벨에서 캡 웨이퍼(320)가 제작된다.
도 8은 본 발명의 실시 예에 따른 웨이퍼 레벨에서 NDIR 방식의 가스 센서용 적외선 감지소자의 소자 웨이퍼 및 캡 웨이퍼의 접합공정을 나타낸 개략도이다.
도 8을 참조하면, 본 발명에 따른 적외선 감지소자는 도 6 및 도 7과 같이 제조된 소자 웨이퍼(310)와 캡 웨이퍼(320)를 진공 챔버(81) 내에서 다양한 금속 접합법을 이용하여 접합시킨다. 이러한 금속 접합법으로는 열압착 본딩, 유테틱 본딩 등을 이용할 수 있다. 이때, 접합 공정은 이산화탄소 가스 센서용 적외선 감지 소자가 제작되는 공정 온도 등을 적절히 고려하여 진행하는 것이 바람직하다.
도면에는 본 발명의 실시 예로서, 소자 웨이퍼(310)를 핫 플레이트(82) 상에 적치하고 그 상부에 캡 웨이퍼(320)를 배치시킨 후 프레스(83)를 이용하여 캡 웨이퍼(320)를 상부에서부터 일정한 압력으로 가압함으로써 소자 웨이퍼(310)와 캡 웨이퍼(320)를 접합시켜 패지징한다. 여기서, 패키징된 두 웨이퍼(310,320)는 금속솔 더층(318,321)에 의해 접합된다.
이와 같이 접합된 패키지를 개별 칩별로 다이싱함으로써 물체 감지용 적외선 센서가 제조되는 것이다.
도 9는 본 발명의 실시 예에 따른 웨이퍼 레벨 패키징을 이용한 NDIR 방식의 가스 센서용 적외선 감지소자의 신호전극 형성방법을 나타낸 개략도이다.
도 9에 도시된 바와 같이, 본 발명에 따른 적외선 감지소자의 신호전극 형성방법은 두 가지 방법이 있다. 첫 번째 방법은 도 9(a)에 나타난 바와 같이, 소자 웨이퍼(310)와 캡 웨이퍼(320)의 웨이퍼 접합 공정 후 하부의 소자 웨이퍼(310)의 뒷면부터 신호전극까지 관통홀(via hole)(91)을 형성한다. 관통홀(91)은 감광액을 이용하여 패터닝한 후 DRIE(Deep Reactive Ion Etching)를 이용하여 형성할 수 있다. 이러한 관통홀(91)의 내부에는 전기 도금, 무전해 도금 등의 도금방법을 이용하여 관통전극(92)이 형성된다. 관통전극(92)은 관통홀(91)의 내면에 금속물질로 도금되어 형성되거나 또는 금속물질을 관통홀(91)에 채움으로써 형성될 수 있다. 이러한 관통전극(92)은 상부에는 전극층(316)과 연결되고 하부에는 솔더범프(93)가 형성된 것이 바람직하다. 이러한 관통전극(92)는 Au, Cu, Ni, NiCr 등의 물질을 사용할 수 있지만, 본 발명이 이에 제한되는 것은 아니다.
두 번째 방법은 도 9(b)에 도시된 바와 같이, 소자 웨이퍼(310)와 캡 웨이퍼(320)의 웨이퍼 접합 공정 후 하부의 소자 웨이퍼(310)를 다이싱한 후 끝단부에 형성된 전극층(316) 상부에 형성된 보호층(317)만을 제거하여 그 전극층(316)을 개방(opening)한다. 이어 전극층(316)에 와이어 본딩(94)을 통해 외부와 연결한다.
상술한 제조공정으로 제조된 본 발명의 적외선 감지소자는 MEMS 공정을 이용함으로써 그 제조가 간단하며 일괄 생산이 가능하고 재연성이 높고 대량생산이 가능하다. 또한, 고수율로 적외선 감지소자를 대량으로 생산이 가능하므로 제조 원가가 저렴해지는 효과가 있다.
한편, 상술한 바와 같이 본 발명은 실시 예를 근거하여 설명하였지만, 본 발명은 이에 제한되는 것은 아니다. 첨부된 특허청구범위에 속하는 기술적 범위 내에서 당업자에게 다양한 개조 및 변형이 가능하며, 이러한 개조 등이 특허청구범위의 기술적 범위 내라면 모두 본 발명의 권리범위에 속함은 이해되어야 할 것이다.
대기중이나 작업환경에서 이산화탄소의 발생으로 생명체에 피해가 있을 뿐만 아니라, 이산화탄소로 인한 온실효과는 지구상의 인류의 문제로 대두되고 있다. 따라서, 이산화탄소의 농도를 정확하게 측정하고 그에 따른 대처방안을 강구하는 것이 매우 중요하다.
현재 이산화탄소의 농도를 측정할 수 있는 센서가 개발되어 있는데 그 중 각광받고 있는 센서가 NDIR 방식의 가스 센서이다. 이러한 NDIR 방식의 가스 센서에 는 적외선 감지소자가 사용된다. 즉 이산화탄소의 양에 따라 변화하는 적외선의 양을 적외선 감지소자에서 측정함으로써 이산화탄소의 농도를 측정한다. 이때, 이산화탄소의 농도를 정확히 측정하기 위해서는 이러한 적외선 감지소자가 고성능이어야 한다.
이러한 측면에서 볼 때, 본 발명에 따른 적외선 감지소자는 적외선 감지부의 하부에 열적 고립구조를 형성하기 위해 적외선 감지부를 공중에 부양하고 지지부를 이용하여 기판에 연결함으로써 적외선 감지부의 열손실을 최소화함으로써 고성능을 발휘할 수 있도록 한다. 또한, 본 발명의 적외선 감지소자는 웨이퍼 레벨로 공정되어 초소형화가 가능하고 저렴한 비용으로 간편하게 대량으로 생산될 수 있는 장점이 있으므로, 향후 이산화탄소를 감지하는 기술분야에서 매우 유용하게 적용될 수 있을 것이다.
도 1은 종래의 NDIR 방식의 이산화탄소 가스 검출용 센서의 개략도이다.
도 2는 종래의 볼로메터형 적외선 감지소자의 진공 패키징 과정을 보이는 개략도이다.
도 3은 본 발명의 실시 예에 따른 웨이퍼 레벨 패키징을 이용한 NDIR 가스 센서용 적외선 감지소자의 개략적인 사시도이다.
도 4는 이러한 본 발명에 따른 NDIR 방식의 가스 센서용 적외선 감지소자의 단면도이다.
도 5는 이러한 적외선 감지소자의 웨이퍼 레벨 패키징 과정을 보이는 개략도이다.
도 6은 본 발명의 실시 예에 따른 웨이퍼 레벨 패키징을 이용한 NDIR 방식의 가스 센서용 적외선 감지소자의 소자 웨이퍼의 제조방법을 나타낸 개략도이다.
도 7은 본 발명의 실시 예에 따른 웨이퍼 레벨 패키징을 이용한 NDIR 방식의 가스 센서용 적외선 감지소자의 캡 웨이퍼의 제조방법을 나타낸 개략도이다.
도 8은 본 발명의 실시 예에 따른 웨이퍼 레벨에서 NDIR 방식의 가스 센서용 적외선 감지소자의 소자 웨이퍼 및 캡 웨이퍼의 접합공정을 나타낸 개략도이다.
도 9는 본 발명의 실시 예에 따른 웨이퍼 레벨 패키징을 이용한 NDIR 방식의 가스 센서용 적외선 감지소자의의 신호전극 형성방법을 나타낸 개략도이다.
* 도면의 주요 부분에 대한 부호의 설명 *
110,210,310 : 소자 웨이퍼 120,220,320 : 캡 웨이퍼
211,311 : 하부기판 221,321 : 상부기판
312 : 지지층 313 : 반사층
314 : 절연층 315 : 감지층
316 : 전극층 317 : 보호층

Claims (30)

  1. 적어도 일면에 형성된 지지층이 형성된 상부기판;
    상기 지지층의 일면 상에 형성된 절연층;
    상기 절연층 상에 형성된 전극층;
    상기 전극층 상에 형성된 보호층;
    일면에 제1캐비티가 형성되고 적어도 일면에 적외선 필터가 형성되어 상기 하부기판의 상부에 웨이퍼 레벨에서 접합된 상부기판;
    상기 상부기판의 내면에 형성된 게터; 및
    상기 하부기판 및 상부기판을 접합시키기 위한 금속솔더층; 을 포함하고,
    상기 하부기판은 상면에 적어도 하나의 제2캐비티가 형성되고 상기 각 제2캐비티의 상부 공간에 적외선을 감지하는 감지부와, 상기 감지부의 양측으로 상기 감지부를 지지하는 지지부가 형성되며,
    상기 감지부는 상기 절연층 내 지지층 상에 형성된 반사층과, 상기 보호층 내 절연층 상에 형성되어 상기 전극층과 연결되도록 구성된 감지층을 포함하고,
    상기 접합된 상부기판 및 하부기판의 내부는 진공상태인 것을 특징으로 하는 웨이퍼 레벨 패키징을 이용한 NDIR 방식의 가스 센서용 적외선 감지소자.
  2. 제1항에 있어서,
    상기 하부기판은 내부에 관통전극이 형성된 적어도 하나의 관통홀이 구비되 고, 상기 관통전극은 상부에 전극층과 연결되고 하부에 솔더 범프가 형성된 것을 특징으로 하는 웨이퍼 레벨 패키징을 이용한 NDIR 방식의 가스 센서용 적외선 감지소자.
  3. 제2항에 있어서,
    상기 관통전극은 Au, Cu, Ni, NiCr 중 선택된 어느 하나의 물질로 증착되어 형성됨을 특징으로 하는 웨이퍼 레벨 패키징을 이용한 NDIR 방식의 가스 센서용 적외선 감지소자.
  4. 제1항에 있어서,
    상기 하부기판은 상기 전극층 상에 형성된 보호층이 제거되어 상기 전극층이 개방되어 있고, 상기 개방된 전극층은 외부 신호전극과 와이어 본딩으로 연결된 것을 특징으로 하는 웨이퍼 레벨 패키징을 이용한 NDIR 방식의 가스 센서용 적외선 감지소자.
  5. 제1항에 있어서,
    상기 하부기판의 상부 양단에 신호전극이 형성되어 있으며, 상기 지지부의 전극층이 서로 이웃한 지지부의 전극층과 연결되며, 최외각의 지지부의 전극층은 상기 신호전극에 연결되어 있는 것을 특징으로 하는 웨이퍼 레벨 패키징을 이용한 NDIR 방식의 가스 센서용 적외선 감지소자.
  6. 제1항에 있어서,
    상기 지지부는 지그재그 형상으로 이루어진 것을 특징으로 하는 웨이퍼 레벨 패키징을 이용한 NDIR 방식의 가스 센서용 적외선 감지소자.
  7. 제1항에 있어서,
    상기 지지층, 절연층, 보호층 각각 실리콘 질화막으로 이루어짐을 특징으로 하는 웨이퍼 레벨 패키징을 이용한 NDIR 방식의 가스 센서용 적외선 감지소자.
  8. 제1항에 있어서,
    상기 반사층은 알루미늄 또는 크롬/금 중 선택된 하나로 이루어짐을 특징으로 하는 웨이퍼 레벨 패키징을 이용한 NDIR 방식의 가스 센서용 적외선 감지소자.
  9. 제1항에 있어서,
    상기 감지층은 VOx, a-Si, V-W-O 중 선택된 하나의 물질의 적외선 감지막으로 이루어짐을 특징으로 하는 웨이퍼 레벨 패키징을 이용한 NDIR 방식의 가스 센서용 적외선 감지소자.
  10. 제1항에 있어서,
    상기 절연층은 SiNx 물질로 증착된 것임을 특징으로 하는 웨이퍼 레벨 패키 징을 이용한 NDIR 방식의 가스 센서용 적외선 감지소자.
  11. 제1항에 있어서,
    상기 적외선 필터는 Ge, ZnS 중 선택된 어느 하나의 물질로 박막형태로 형성됨을 특징으로 하는 웨이퍼 레벨 패키징을 이용한 NDIR 방식의 가스 센서용 적외선 감지소자.
  12. 제11항에 있어서,
    상기 적외선 필터는 4.20~4.30㎛ 파장의 광을 투과시키는 것을 특징으로 하는 웨이퍼 레벨 패키징을 이용한 NDIR 방식의 가스 센서용 적외선 감지소자.
  13. 제1항에 있어서,
    상기 게터는 Ti 물질로 박막형태로 증착되어 이루어짐을 특징으로 하는 웨이퍼 레벨 패키징을 이용한 NDIR 방식의 가스 센서용 적외선 감지소자.
  14. 제1항에 있어서,
    상기 금속솔더층은 Au, Sn, AuSn, Cu, Si 중 선택된 적어도 하나의 물질을 포함하는 것을 특징으로 하는 웨이퍼 레벨 패키징을 이용한 NDIR 방식의 가스 센서용 적외선 감지소자.
  15. 제14항에 있어서,
    상기 금속솔더층은 Au 80wt% + Sn 20wt%를 포함하는 것을 특징으로 하는 웨이퍼 레벨 패키징을 이용한 NDIR 방식의 가스 센서용 적외선 감지소자.
  16. 제14항에 있어서,
    상기 금속솔더층은 두께가 0.1~4㎛ 범위를 가짐을 특징으로 하는 웨이퍼 레벨 패키징을 이용한 NDIR 방식의 가스 센서용 적외선 감지소자.
  17. 소자 웨이퍼 및 캡 웨이퍼를 각각 마련하는 공정;
    상기 소자 웨이퍼 및 캡 웨이퍼를 진공 분위기에서 서로 접합하여 패키지를 형성하는 공정; 및
    상기 패키지를 개별 칩별로 다이싱하는 공정; 을 포함하고,
    상기 소자 웨이퍼를 마련하는 공정은,
    하부기판의 적어도 일면에 지지층을 형성하는 공정;
    상기 지지층 상부의 적어도 하나 이상의 위치에 반사층을 형성하는 공정;
    상기 반사층을 포함하도록 상기 지지층 상에 절연층을 형성하는 공정;
    상기 반사층이 형성된 위치의 상기 절연층 상에 감지층을 형성하는 공정;
    상기 절연층 상에 소정의 패턴으로 전극층을 형성한 후 열처리하는 공정;
    상기 감지층 및 전극층이 형성된 절연층 상에 보호층을 형성한 후 상기 감지 층 및 전극층이 형성된 부분을 제외한 나머지 부분을 제거하여 상기 하부기판의 일부를 개방하는 공정;
    상기 하부기판의 소정 위치에 금속솔더층을 형성하는 공정; 및
    상기 감지층이 공간 상에 위치되도록 상기 감지층 하부의 상기 하부기판을 에칭함으로써 상기 하부기판의 상부에 제1캐비티(cavity)를 형성하는 공정; 을 포함하고,
    상기 캡 웨이퍼를 마련하는 공정은,
    상부기판을 마련하고 그 일면을 에칭하여 제2캐비티를 형성하는 공정;
    상기 상부기판의 적어도 일면에 적외선 필터를 형성하는 공정;
    상기 상부기판의 내면에 게터를 형성하는 공정; 및
    상기 하부기판의 소정 위치에 금속솔더층을 형성하는 공정; 를 포함하는 것을 특징으로 하는 웨이퍼 레벨 패키징을 이용한 NDIR 방식의 가스 센서용 적외선 감지소자의 제조방법.
  18. 제17항에 있어서,
    상기 소자 웨이퍼 및 캡 웨이퍼를 접합하여 패키지를 형성하는 공정은,
    상기 소자 웨이퍼 및 캡 웨이퍼를 진공챔버 내에 마련하는 공정; 및
    상기 두 웨이퍼의 금속솔더층이 서로 접합되도록 배치한 후, 통상의 금속 금합법을 이용하여 두 웨이퍼를 접합시키는 공정; 을 포함하는 것을 특징으로 하는 웨이퍼 레벨 패키징을 이용한 NDIR 방식의 가스 센서용 적외선 감지소자의 제조방 법.
  19. 제18항에 있어서,
    상기 금속 접합법은 열압착 본딩, 유테틱 본딩 중 선택된 하나의 방법을 이용함을 특징으로 하는 웨이퍼 레벨 패키징을 이용한 NDIR 방식의 가스 센서용 적외선 감지소자의 제조방법.
  20. 제17항에 있어서,
    상기 상부 및 하부기판의 에칭은 KOH 용액을 사용함을 특징으로 하는 웨이퍼 레벨 패키징을 이용한 NDIR 방식의 가스 센서용 적외선 감지소자의 제조방법.
  21. 제17항에 있어서,
    상기 지지층, 절연층, 보호층 각각은 LPCVD 또는 PECVD 중 선택된 하나의 방법을 이용하여 증착 형성됨을 특징으로 하는 웨이퍼 레벨 패키징을 이용한 NDIR 방식의 가스 센서용 적외선 감지소자의 제조방법.
  22. 제17항에 있어서,
    상기 감지층을 형성하는 공정은,
    상기 절연층 상에 감광성 필름을 도포하는 공정;
    상기 반사층이 형성된 위치의 절연층 상에 감지물질을 증착하는 공정; 및
    상기 감광성 필름을 통상의 사진식각공정으로 제거하는 공정; 을 포함하는 것을 특징으로 하는 웨이퍼 레벨 패키징을 이용한 NDIR 방식의 가스 센서용 적외선 감지소자의 제조방법.
  23. 제17항에 있어서,
    상기 감지층과 전극층은 서로 연결되고, 상기 감지층에 연결된 전극층은 상기 감지층의 양측방으로 지그재그 형상으로 형성됨을 특징으로 하는 웨이퍼 레벨 패키징을 이용한 NDIR 방식의 가스 센서용 적외선 감지소자의 제조방법.
  24. 제16항에 있어서,
    상기 하부기판의 상부 양단에 신호전극이 형성하는 공정을 더 포함하고,
    상기 전극층은 서로 이웃한 전극층과 연결되며, 최외각의 전극층은 상기 신호전극에 연결됨을 특징으로 하는 웨이퍼 레벨 패키징을 이용한 NDIR 방식의 가스 센서용 적외선 감지소자의 제조방법.
  25. 제17항에 있어서,
    상기 열처리는 280~320℃ 범위 내에서 이루어짐을 특징으로 하는 웨이퍼 레벨 패키징을 이용한 NDIR 방식의 가스 센서용 적외선 감지소자의 제조방법.
  26. 제17항에 있어서,
    상기 게터는 스퍼터링 증착법과 이온빔 증착법 중 선택된 하나의 방법으로 증착함을 특징으로 하는 웨이퍼 레벨 패키징을 이용한 NDIR 방식의 가스 센서용 적외선 감지소자의 제조방법.
  27. 제26항에 있어서,
    상기 게터는 Ti 금속물질을 박막형태로 증착하여 형성함을 특징으로 하는 웨이퍼 레벨 패키징을 이용한 NDIR 방식의 가스 센서용 적외선 감지소자의 제조방법.
  28. 제17항에 있어서,
    상기 소자 웨이퍼 및 캡 웨이퍼를 접합하는 공정 이후에,
    상기 소자 웨이퍼의 하부기판의 양단부에 관통홀을 형성하는 공정;
    상기 관통홀의 내면에 관통전극을 증착하여 형성하는 공정; 및
    상기 관통전극의 상부는 상기 전극층과 연결하고 상기 관통전극의 하부에는 솔더범프를 형성하는 공정; 을 추가로 포함하는 것을 특징으로 하는 웨이퍼 레벨 패키징을 이용한 NDIR 방식의 가스 센서용 적외선 감지소자의 제조방법.
  29. 제28항에 있어서,
    상기 관통홀은 DRIE 방법을 이용함을 특징으로 하는 웨이퍼 레벨 패키징을 이용한 NDIR 방식의 가스 센서용 적외선 감지소자의 제조방법.
  30. 제17항에 있어서,
    상기 소자 웨이퍼 및 캡 웨이퍼를 접합하는 공정 이후에,
    상기 소자 웨이퍼에서 상기 전극층 상에 형성된 보호층을 제거하여 상기 전극층을 개방하는 공정; 및
    상기 개방된 전극층을 외부 신호전극과 와이어 본딩으로 연결하는 공정; 을 추가로 포함하는 것을 특징으로 하는 웨이퍼 레벨 패키징을 이용한 NDIR 방식의 가스 센서용 적외선 감지소자의 제조방법.
KR1020080096256A 2008-09-30 2008-09-30 웨이퍼 레벨 패키징을 이용한 ndir 방식의 가스 센서용적외선 감지소자 및 그의 제조방법 KR101034647B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080096256A KR101034647B1 (ko) 2008-09-30 2008-09-30 웨이퍼 레벨 패키징을 이용한 ndir 방식의 가스 센서용적외선 감지소자 및 그의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080096256A KR101034647B1 (ko) 2008-09-30 2008-09-30 웨이퍼 레벨 패키징을 이용한 ndir 방식의 가스 센서용적외선 감지소자 및 그의 제조방법

Publications (2)

Publication Number Publication Date
KR20100036853A true KR20100036853A (ko) 2010-04-08
KR101034647B1 KR101034647B1 (ko) 2011-05-16

Family

ID=42214300

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080096256A KR101034647B1 (ko) 2008-09-30 2008-09-30 웨이퍼 레벨 패키징을 이용한 ndir 방식의 가스 센서용적외선 감지소자 및 그의 제조방법

Country Status (1)

Country Link
KR (1) KR101034647B1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104600155A (zh) * 2015-01-09 2015-05-06 贵州大学 一种红外探测器及其制备方法
KR20150129962A (ko) * 2014-05-12 2015-11-23 (주)유우일렉트로닉스 웨이퍼레벨 패키징 소자의 제조방법
US9543245B2 (en) 2012-11-07 2017-01-10 Ams Ag Semiconductor sensor device and method of producing a semiconductor sensor device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444249A (en) 1994-02-14 1995-08-22 Telaire Systems, Inc. NDIR gas sensor
JP2005292009A (ja) 2004-04-01 2005-10-20 Denso Corp 赤外線式ガス検出器及び検出方法
JP2007057456A (ja) 2005-08-26 2007-03-08 Matsushita Electric Works Ltd 赤外線放射素子、ガスセンサ、及び赤外線放射素子の製造方法
KR100864504B1 (ko) * 2007-03-30 2008-10-20 (주)유우일렉트로닉스 Ndir 가스 센서용 고감도 적외선 감지 소자 및 그제조방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9543245B2 (en) 2012-11-07 2017-01-10 Ams Ag Semiconductor sensor device and method of producing a semiconductor sensor device
KR20150129962A (ko) * 2014-05-12 2015-11-23 (주)유우일렉트로닉스 웨이퍼레벨 패키징 소자의 제조방법
CN104600155A (zh) * 2015-01-09 2015-05-06 贵州大学 一种红外探测器及其制备方法

Also Published As

Publication number Publication date
KR101034647B1 (ko) 2011-05-16

Similar Documents

Publication Publication Date Title
CN100552393C (zh) 红外线传感器及其制造方法
US20080164413A1 (en) Infrared Sensor
US20060081983A1 (en) Wafer level microelectronic packaging with double isolation
JP2012530257A (ja) 赤外線放射マイクロデバイス用のハウジング及び該ハウジングの製造方法
JP2019504298A (ja) ウェハレベルパッケージ内の熱赤外線センサアレイ
CN110836855A (zh) 用于光声气体传感器的检测器模块
WO2016086716A1 (zh) 封装方法和半导体器件
CN101691200A (zh) 非致冷红外探测器的低温真空封装结构及制作方法
KR101068042B1 (ko) 초소형 인체 감지용 적외선 센서 및 그의 제조방법
US10883804B2 (en) Infra-red device
JPH04158583A (ja) 赤外線検出素子
KR101034647B1 (ko) 웨이퍼 레벨 패키징을 이용한 ndir 방식의 가스 센서용적외선 감지소자 및 그의 제조방법
KR20200099148A (ko) 적외선 장치
US6507021B1 (en) Reference bolometer and associated fabrication methods
KR100769587B1 (ko) 비접촉식 적외선 온도 센서
EP2172753B1 (en) A method for manufacturing infrared sensor on a wafer basis
US11209353B2 (en) Infrared device
KR20190118837A (ko) 적외선 감지 센서 모듈
JP5558189B2 (ja) 赤外線センサ及びその製造方法
KR100759013B1 (ko) 비접촉식 적외선 온도 센서 및 이의 제조 방법
TWI471897B (zh) 晶圓層級封裝聚焦平面陣列
CN109216534B (zh) 一种晶圆级封装的单片集成红外温度传感器及其制造方法
JPH04158586A (ja) 赤外線検出素子
KR100864504B1 (ko) Ndir 가스 센서용 고감도 적외선 감지 소자 및 그제조방법
JPH04158584A (ja) 赤外線検出素子

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140326

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160426

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170425

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180508

Year of fee payment: 8