KR20090130663A - Method of heat treatment of ni based superalloy for wave type grain-boundary and ni based superalloy the same - Google Patents

Method of heat treatment of ni based superalloy for wave type grain-boundary and ni based superalloy the same Download PDF

Info

Publication number
KR20090130663A
KR20090130663A KR1020080056386A KR20080056386A KR20090130663A KR 20090130663 A KR20090130663 A KR 20090130663A KR 1020080056386 A KR1020080056386 A KR 1020080056386A KR 20080056386 A KR20080056386 A KR 20080056386A KR 20090130663 A KR20090130663 A KR 20090130663A
Authority
KR
South Korea
Prior art keywords
heat treatment
grain boundary
treatment
present
nickel
Prior art date
Application number
KR1020080056386A
Other languages
Korean (ko)
Other versions
KR101007582B1 (en
Inventor
홍현욱
김인수
최백규
조창용
유영수
정희원
서성문
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to KR1020080056386A priority Critical patent/KR101007582B1/en
Priority to EP09007693A priority patent/EP2138601A1/en
Priority to JP2009140142A priority patent/JP2009299187A/en
Priority to US12/484,597 priority patent/US20090308508A1/en
Publication of KR20090130663A publication Critical patent/KR20090130663A/en
Application granted granted Critical
Publication of KR101007582B1 publication Critical patent/KR101007582B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE: Ni based alloy for wave type grain-boundary and a heat treatment method thereof are provided to induce precipitation of low density carbide with low interfacial energy by performing solid solution treatment and aging treatment. CONSTITUTION: A heat treatment method for Ni based alloy comprises a step of performing solid solution treatment in a high temperature range of 1000~1200°C, a step of cooling the treated material at 1~15°C/min to a middle temperature range of 700~900°C for aging treatment immediately after the solid solution treatment, a step of performing aging treatment to keep in the middle temperature range for a certain time period, and step of performing air cooling.

Description

파형 입계를 위한 니켈기 합금의 열처리 방법 및 그에 의한 합금{Method of heat treatment of Ni based superalloy for wave type grain-boundary and Ni based superalloy the same}Heat treatment method of nickel-based alloy for corrugated grain boundary and alloy by the same {Method of heat treatment of Ni based superalloy for wave type grain-boundary and Ni based superalloy the same}

본 발명은 니켈기 합금의 열처리 방법 및 합금에 관한 것으로, 특히 크리프, 피로, 응력부식균열 등 입계균열에 의한 파손에 대한 저항성을 높이는 니켈기 합금의 열처리 방법 및 파형 입계를 가진 니켈기 합금에 관한 것이다.The present invention relates to a heat treatment method and an alloy of a nickel-based alloy, and more particularly, to a heat treatment method and nickel-based alloy having a waveform grain boundary of nickel-based alloys to increase the resistance to breakage due to grain boundary cracks such as creep, fatigue, stress corrosion cracking will be.

니켈기 합금은 가공성, 용접성, 내식성 및 고온 기계적 특성 등이 우수하여 항공기 및 발전용 가스터빈 파워 어셈블리(assembly)와 같은 고온용 부품의 소재로 사용되고 있다. 이러한 소재는 운용 중에 열과 응력에 지속적 혹은 복잡한 변형 싸이클(cycle) 및 고온부식 등의 가혹한 환경에 노출되어, 주로 크리프, 피로, 응력부식균열 등에 의해 손상을 받아 파손된다. 따라서 이러한 소재의 주요한 손상의 원인인 크리프, 피로, 응력부식손상 등의 저항성을 향상시키는 것은 제조업체, 부품가공업체 및 운영업체 모두에게 중요한 과제의 하나가 되어 왔다. Nickel-based alloys are excellent in workability, weldability, corrosion resistance and high temperature mechanical properties, and are used as materials for high temperature components such as aircraft and power generation gas turbine power assemblies. These materials are exposed to harsh environments such as continuous or complex deformation cycles and high temperature corrosion during operation, and are mainly damaged by creep, fatigue, stress corrosion cracking, and the like. Thus, improving the resistance to creep, fatigue and stress corrosion damage, which are the major causes of damage to these materials, has become an important challenge for manufacturers, component manufacturers and operators alike.

도 1을 참조하여 발전용 가스터빈의 연소기 라이너, 천이 덕트(transition duct)등에 널리 사용되고 있는 니켈기 합금 NIMONIC 263의 제조 및 가공에 적용되 는 종래의 열처리 공정을 살펴보기로 한다. 그 방법은 통상적으로 고온영역에서 용체화 처리(1000~1200℃/5분 이상) 후에 수냉(50℃/초 이상)을 한다. 이어서, 소정의 시간이 경과된 후에 다시 중간온도 영역에서 시효처리(700~900℃/5시간 이상)한 다음 공냉하는 2단계 열처리 공정을 적용한다.  With reference to FIG. 1, a conventional heat treatment process applied to the manufacture and processing of nickel-based alloy NIMONIC 263 widely used in a combustor liner and a transition duct of a power generation gas turbine will be described. The method usually performs water cooling (50 degree-C / sec or more) after a solution treatment (1000-1200 degreeC / 5 minutes or more) in a high temperature range. Subsequently, after a predetermined time has elapsed, a two-step heat treatment step of aging (700 to 900 ° C./5 hours or more) in an intermediate temperature range and then air-cooling is applied.

위 열처리 공정은 냉간 가공 후 용체화 처리공정에서 소재 내의 탄화물 및 γ′석출상을 단순히 용해, 고용시키고 그 이후의 시효처리 공정에서 탄화물들을 결정립계에 미리 석출시켜 줌과 동시에 γ′석출상을 기지 내에 균일하게 분포시킨다. 이에 따라 소재의 고온 안정성을 높이고 입계 예민화 정도를 감소시키고 소재의 강도향상을 꾀하고자 하는 것이 그 목적이다. 하지만 이러한 열처리법은 크리프, 피로, 응력부식균열에 대한 저항성이 만족하지 못한 수준만큼 개선되지 못하고 있다. 따라서 상기 저항성을 더 향상시키고 경제적이며 간편한 열처리 방법이 요구되고 있다.The above heat treatment process simply dissolves and dissolves carbide and γ 'precipitated phase in the material in the solution treatment process after cold working, and precipitates the carbides into grain boundary in the aging process afterwards. Evenly distributed. Accordingly, the purpose is to increase the high temperature stability of the material, reduce the degree of grain boundary sensitization and improve the strength of the material. However, the heat treatment method is not improved by the level of unsatisfactory resistance to creep, fatigue and stress corrosion cracking. Therefore, there is a need for a method of further improving the resistance and economical and simple heat treatment.

한국 특허공개번호 1999-024668에서 내식성 향상을 위한 니켈기 합금의 열처리 방법이 개시되어 있다. 위 특허에 의하면, 고온의 용체화 처리 후 실온까지의 온도영역의 전 범위 또는 일부 범위에서 냉각속도를 0.1 내지 5℃/분으로 서냉하고 다시 시효처리하는 방법에 의하여 소재내의 결정립계 형상을 톱날모양으로 변화시켜 입계파손 저항성을 향상시키는 열처리 방법을 제안하였다. 그러나 이 방법은 넓은 온도범위에서 상대적으로 작은 냉각속도로 서냉하므로 열처리 시간이 너무 오래 걸려 경제성이 없을 뿐 더러, 고온에서 장시간 노출되므로 결정립 크기가 커진다. 게다가, 석출강화상인 γ′이 조대화되고 각종 해로운 상들이 석출될 수 있으므로 응력부식균열에 대한 저항성은 향상될 수 있으나, 인장 특성 및 고온 기계적 성질인 크리프, 피로 등에는 오히려 악영향을 미칠 수 있다. 이에 따라 위의 방법은 실제 산업현장에 적용하기에는 어려울 것으로 보인다. Korean Patent Publication No. 1999-024668 discloses a heat treatment method of a nickel-based alloy for improving corrosion resistance. According to the above patent, in the whole range or a part of the temperature range up to room temperature after high temperature solution treatment, the crystal grain boundary shape in the material is saw-shaped by slow cooling and reaging at 0.1 to 5 ° C / min. A heat treatment method for changing the grain boundary fracture resistance is proposed. However, this method slows down the cooling rate at a relatively small cooling rate over a wide temperature range, so that the heat treatment time is too long to be economical, and the grain size increases due to long exposure at high temperature. In addition, since the precipitation strengthening image γ 'is coarsened and various harmful phases may be precipitated, resistance to stress corrosion cracking may be improved, but it may adversely affect tensile properties and high temperature mechanical properties such as creep and fatigue. Therefore, the above method seems to be difficult to apply to actual industrial sites.

따라서 본 발명이 이루고자 하는 기술적 과제는 크리프, 피로, 응력부식균열에 대한 저항성을 향상시키고 경제적이며 간편한 니켈기 합금의 열처리 방법을 제공하는 데 있다. 또한 본 발명이 이루고자 하는 다른 기술적 과제는 상기 방법에 의해 제조된 니켈기 합금을 제공하는 데 있다. Therefore, the technical problem to be achieved by the present invention is to improve the resistance to creep, fatigue, stress corrosion cracking and to provide an economical and simple heat treatment method of nickel-based alloys. In addition, another technical problem to be achieved by the present invention is to provide a nickel-based alloy produced by the above method.

상기 기술적 과제를 달성하기 위한 본 발명의 니켈기 합금의 열처리 방법은 니켈기 합금의 제조, 가공 후 열처리 공정에 있어서, 먼저 고온영역에서 용체화 처리를 한다. 그 후, 상기 용체화 처리를 한 후, 곧바로 시효처리를 위한 중온영역까지 1~15℃/분으로 서냉한다. 상기 서냉하는 단계 후에 상기 시효처리를 위한 중온영역에서 소정의 시간동안 유지하여 시효처리를 한다. 상기 시효처리후에 공냉한다.In the heat treatment method of the nickel-based alloy of the present invention for achieving the above technical problem, in the heat treatment process after the production, processing of the nickel-based alloy, first the solution treatment in a high temperature region. Thereafter, after the solution treatment, the solution is slowly cooled to 1 to 15 ° C./min to the middle temperature region for aging treatment. After the slow cooling step, the aging treatment is performed by maintaining the medium temperature region for the predetermined time for the aging treatment. It is air cooled after the aging treatment.

본 발명의 바람직한 실시예에 있어서, 상기 용체화 처리는 1000~1200℃에서 용체화 처리시간 동안 진행하고, 상기 시효처리는 700~900℃에서 시효처리 시간 동안 진행할 수 있다. In a preferred embodiment of the present invention, the solution treatment is performed during the solution treatment time at 1000 ~ 1200 ℃, the aging treatment may be performed during the aging treatment time at 700 ~ 900 ℃.

상기 다른 기술적 과제를 달성하기 위한 본 발명의 니켈기 합금은 파형의 결 정립계를 포함하고, 상기 결정립계에 판상의 탄화물이 서로 떨어져 배치되는 파형 입계를 가진다.The nickel-based alloy of the present invention for achieving the above another technical problem includes a waveform grain boundary, and has a grain boundary in which plate-shaped carbides are disposed apart from each other.

본 발명에 의한 니켈기 합금의 열처리 방법 및 그에 의한 합금에 의하면, 니켈기 합금의 기본적인 특성은 그대로 유지한 채 결정립계의 형상을 파형모양으로 변화시켜서 계면에너지가 낮은 저밀도의 탄화물의 석출을 유도하고 결정립계와 기지와의 결합력을 높임으로써, 크리프, 피로, 응력부식균열 등 입계균열 파손에 대하여 저항성을 향상시킴과 동시에 시간과 비용을 절약할 수 있는 열처리를 할 수 있다. According to the heat treatment method and alloy thereof of the nickel-based alloy according to the present invention, the shape of the grain boundary is changed into a wave shape while maintaining the basic characteristics of the nickel-based alloy, thereby inducing precipitation of low density carbides having low interfacial energy and By increasing the bonding force between the base and the base, it is possible to improve the resistance against creep, fatigue, stress corrosion cracking and grain boundary cracking, and to perform heat treatment to save time and cost.

이하 첨부된 도면을 참조하면서 본 발명의 바람직한 실시예를 상세히 설명한다. 다음에서 설명되는 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술되는 실시예에 한정되는 것은 아니다. 본 발명의 실시예들은 당 분야에서 통상의 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위하여 제공되는 것이다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. The embodiments described below may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below. Embodiments of the present invention are provided to more fully explain the present invention to those skilled in the art.

이하 본 발명의 실시예는 먼저 니켈기 합금의 주요 손상원인과 이를 극복하는 방법을 상세하게 제시하고, 이어서 상기 방법을 구현하는 열처리 방법을 설명할 것이다. 이때, 설명의 편의를 위하여 니켈기 합금의 주요 손상원인인 크리프, 피로, 응력부식균열 등은 입계손상이라고 정의한다. Hereinafter, an embodiment of the present invention will first describe in detail the main causes of damage of nickel-based alloys and methods of overcoming them, and then explain a heat treatment method for implementing the method. In this case, for convenience of explanation, the main causes of creep, fatigue, stress corrosion cracking, etc. of nickel-based alloys are defined as grain boundary damage.

니켈기 합금의 주요 손상원인인 입계손상은 모두 취약한 결정립계를 따라 균 열이 주로 생성되고 전파한다. 이에 따라, 입계 자체의 에너지를 낮추고, 균열진정 노정을 늘리며, 입계에 석출되는 석출상, 예컨대 탄화물의 형상과 특성을 변화시킨다면, 입계손상의 저항성을 높일 수 있다. 본 발명의 실시예는, 위에서 언급한 입계 에너지를 낮추고, 균열진정 노정을 늘리며 탄화물의 형상과 특성을 변화시키기 위해서, 파형(wave type)의 결정립계를 형성하는 것을 제시한다. 파형의 결정립계는 다음과 같은 이유에 의해 입계손상에 대한 저항성을 증대시킨다. 먼저 결정립간의 어긋남(misorientation) 정도를 낮추어 기지와의 결합력이 증가하고 동시에 입계를 따르는 균열의 진정 노정을 길게 한다. 또한 결정립계에 석출되는 탄화물은 밀도가 낮고 안정된 계면에너지를 갖는 판상모양을 갖는다. 이에 따라 본 발명의 실시예는 파형의 결정립계를 형성하여 판상의 석출물을 유도하는 방법을 제시한다. All the major damage causes of nickel-based alloys are grain formation and propagation along the weak grain boundaries. Accordingly, if the energy of the grain boundary itself is lowered, the crack calming path is increased, and the shape and characteristics of the precipitated phases precipitated at the grain boundary, for example, carbides, are changed, the resistance of grain boundary damage can be increased. Embodiments of the present invention propose to form a wave type grain boundary in order to lower the above-mentioned grain boundary energy, increase the crack calming peak, and change the shape and characteristics of the carbide. The grain boundary of the waveform increases the resistance to grain boundary damage for the following reasons. Firstly, the degree of misorientation between grains is lowered to increase the bond strength with the base and at the same time, to lengthen the calming path of the crack along the grain boundary. In addition, carbides deposited at grain boundaries have a plate shape with low density and stable interfacial energy. Accordingly, an embodiment of the present invention provides a method of inducing plate-like precipitates by forming a grain boundary of a waveform.

파형 입계를 발생에 대한 기구는 여러 가지가 있으나, 입계 스스로가 온도에 따라 총 에너지를 낮추기 위해 형상을 변화시킨 다는 것이 일반적으로 알려지고 있다. 즉, 고온 영역에서는 결정립간 어긋남보다는 표면에너지의 영향이 커서 표면적을 가능한 작게 하기 위해 직선형의 입계가 발달한다. 중간온도 영역이하에서는 상대적으로 결정립간 어긋남이 중요하므로 입계가 결정학적으로 유리하게 배열되도록 여러 개의 세그먼트(segment)로 분리되는 파형입계가 발생한다고 보고되고 있다. 이러한 파형 입계의 발생 기구를 고려하여, 본 발명의 니켈기 합금에서 파형입계를 얻기 위해서는 다음과 같은 조건들을 필수적으로 갖추어야 한다.There are many mechanisms for generating waveform boundaries, but it is generally known that the boundaries themselves change shape to lower the total energy with temperature. That is, in the high temperature region, the linear grain boundary develops in order to make the surface area as small as possible due to the influence of the surface energy rather than the deviation between grains. It is reported that a waveform grain boundary is divided into several segments so that the grain boundary is arranged advantageously crystallographically, since the grain shift is relatively important below the intermediate temperature range. In consideration of the generation mechanism of the waveform grain boundary, in order to obtain the waveform grain boundary in the nickel-based alloy of the present invention, the following conditions are essential.

첫째로, 입계에서의 탄화물 석출은 최대한 지연되어야 한다. 왜냐하면, 탄화물은 결정립계 고정효과(pinning effect)로 입계의 움직임에 방해되고, 이미 석출 된 탄화물들은 그 특성(밀도, 모양 등)을 개선하기 어렵기 때문이다. 따라서 탄소의 과포화는 최소화되어야 한다. 둘째로, 입계가 스스로 움직여서 평형상태에 근접할 수 있도록 충분한 시간과 온도를 부여해야 한다. First, carbide precipitation at the grain boundary should be delayed as much as possible. This is because carbides interfere with the movement of grain boundaries due to a graining pinning effect, and carbides that are already precipitated are difficult to improve their properties (density, shape, etc.). Therefore, supersaturation of carbon should be minimized. Second, sufficient time and temperature should be given for the grain boundary to move by itself and approach equilibrium.

본 발명의 실시예는 위의 조건들을 충족하기 위하여, 니켈기 합금을 탄화물이 용해, 고용되는 고온영역에서 일정한 시간 동안 유지한 후, 결정립간 어긋남이 중요하게 되는 중간온도 이하까지 서냉하는 방법을 제시한다. 더불어, 상기 방법은 파형 입계의 생성하는 것과 동시에 니켈기 합금에서 요구되는 기본적인 특성은 그대로 유지하였다. 이에 따라 기존에 비해 열처리 방법이 간단하고 본 발명의 목적에 부합하는 새로운 열처리 방법을 제안한다.In order to satisfy the above conditions, an embodiment of the present invention proposes a method of maintaining a nickel-based alloy for a predetermined time in a high temperature region where carbides are dissolved and dissolved, and then slowly cooling to a temperature below an intermediate temperature at which the deviation between grains becomes important. do. In addition, the method maintains the basic characteristics required of the nickel-based alloy while generating the waveform grain boundaries. Accordingly, a new heat treatment method is proposed which is simpler than the conventional method and which satisfies the purpose of the present invention.

본 발명은 여러 가지 조건의 열처리 시험을 통해 결정립 크기와 석출상 γ′ 분율을 일정수준으로 유지되면서 파형 입계를 유도하는 최적의 열처리 조건을 찾아내었다. 구체적으로 그 조건을 살펴보면, 용체화 처리를 위하여 고온영역에서 소정의 시간동안 유지한 후, 시효처리를 위한 중온영역까지 서냉한 다음, 중온온도에서 시효처리를 실시한 후 그대로 공냉한다. 이때 중온영역까지의 서냉은 1~15℃/분으로 수행한다. The present invention has found the optimum heat treatment conditions for inducing the waveform grain boundary while maintaining the crystal grain size and the precipitated phase γ 'fraction at a constant level through various heat treatment tests. In detail, the conditions are maintained for a predetermined time in the high temperature region for the solution treatment, and then slowly cooled to the middle temperature region for the aging treatment, and then subjected to the aging treatment at the middle temperature, followed by air cooling. At this time, the slow cooling to the middle temperature region is performed at 1 ~ 15 ℃ / min.

본 발명의 열처리 공정을 종래와 방법과 비교하면 다음과 같다. 종래에는 고온영역(1000~1200℃)에서 용체화 처리를 한 후, 실온까지 수냉(50℃/초 이상)하고 다시 중온영역(700~900℃)에서 시효처리하는 2단계 열처리 방법을 적용한다. 하지만, 본 발명은 용체화 처리를 한 후 곧바로 중온영역까지 서냉한 후 시효처리온도에서 그대로 유지시킨 후 열처리를 종료하는 1단계 열처리 방법이다. The heat treatment process of the present invention is as follows when compared with the conventional method. Conventionally, after the solution treatment in the high temperature region (1000 ~ 1200 ℃), the water-cooled (50 ℃ / sec or more) to room temperature, and then applies a two-stage heat treatment method of aging treatment in the medium temperature region (700 ~ 900 ℃). However, the present invention is a one-step heat treatment method in which the solution is cooled to the middle temperature region immediately after the solution treatment and then maintained at the aging treatment temperature and then the heat treatment is completed.

도 2는 본 발명의 실시예에 따른 열처리 공정을 나타내는 도표이다. 여기서, 열처리 온도영역 및 열처리 시간은 열처리를 수행되는 대표적인 조건을 예시한 것일 뿐이며, 본 발명의 범위를 한정하는 것은 아니다. 이때 대상소재는 니켈기 합금 NIMONIC 263 압연재를 사용하였다. 2 is a diagram illustrating a heat treatment process according to an embodiment of the present invention. Herein, the heat treatment temperature range and the heat treatment time are merely illustrative of representative conditions under which the heat treatment is performed, and do not limit the scope of the present invention. At this time, the target material was a nickel-based alloy NIMONIC 263 rolled material.

도 2를 참조하면, 본 발명의 열처리 방법은 먼저 용체화 처리를 위하여 고온영역인 1000~1200℃에서 용체화 처리시간, 예컨대 5분 이상 유지한다. 그 후, 시효처리온도(700~900℃)인 중온영역까지 1~15℃/분의 속도로 서냉한다. 이어서, 시효처리온도인 700~900℃에서 시효처리시간, 예컨대 5시간 이상 유지한 후, 공냉하여 열처리를 종결한다. 여기서, 파형의 입계는 중온영역까지 1~15℃/분으로 서냉하는 과정에 형성된다. 여기서, 용체화 처리시간은 본 발명의 목적에 부합하여 상기 합금에서 균질화 처리가 충분하게 일어나는 즉, 소재 내의 탄화물 및 γ′석출상을 충분히 용해, 고용시키지만 결정립 성장은 발생하지 않을 정도의 시간을 말하며, 시효처리시간은 본 발명의 목적에 부합하여 상기 합금의 γ′석출상을 기지 내에 균일하게 포화 분포시키고, 탄화물들을 결정립계에 석출시켜 동일 시효처리 온도구간에서(700~900℃) 노출을 해도 조직상의 변화가 없을 정도로 시효처리가 충분하게 일어나는 시간을 말한다.Referring to Figure 2, the heat treatment method of the present invention is first maintained for a solution treatment time, such as 5 minutes or more in the high temperature region 1000 ~ 1200 ℃ for the solution treatment. Thereafter, slow cooling is performed at a rate of 1 to 15 ° C./min to an intermediate temperature region that is an aging treatment temperature (700 to 900 ° C.). Subsequently, the aging treatment time is maintained at 700 to 900 DEG C, which is an aging treatment temperature, for example, 5 hours or more, followed by air cooling to terminate the heat treatment. Here, the grain boundary of the waveform is formed in the process of slowly cooling to 1 to 15 ° C./min to the middle temperature region. Here, the solution treatment time refers to the time that sufficient homogenization treatment occurs in the alloy in accordance with the object of the present invention, that is, sufficient dissolution and solid solution of carbide and γ ′ precipitated phase in the material, but grain growth does not occur. In accordance with the object of the present invention, the aging treatment time is uniformly saturated distribution of the γ 'precipitated phase of the alloy within the matrix, precipitated carbides in the grain boundary, even if exposed to the same aging treatment temperature range (700 ~ 900 ℃) It is the time when the aging treatment takes place sufficiently so that there is no change of phase.

본 발명에 있어서, 용체화 처리 후 곧바로 시효처리 온도까지 서냉함에 있어 1~15℃/분으로 한정한 이유는 냉각속도가 1℃/분 미만일 경우 고온에서 노출시간이 길어지므로 결정립과 석출경화상 γ′이 조대화되어 기본적인 기계적 특성이 저하될 우려가 있다. 또한 냉각속도가 15℃/분 초과할 경우 결정립계가 파형으로 될 수 있는 충분한 시간적 여유가 없어 탄화물이 먼저 석출되기 때문에 파형입계를 얻을 수가 없다.  In the present invention, the reason for limiting to 1 to 15 ° C./min in the slow cooling to the aging treatment temperature immediately after the solution treatment is that the exposure time becomes longer at high temperatures when the cooling rate is less than 1 ° C./min. ′ Becomes coarse and there is a possibility that the basic mechanical properties are degraded. In addition, when the cooling rate exceeds 15 ℃ / min, the grain boundary can not be obtained because there is not enough time for the grain boundary to become a waveform, the carbide is precipitated first.

한편, 용체화 처리 후 그 온도에서 실온까지의 온도영역의 전 범위에서 1~15℃/분으로 서냉할 경우, γ′석출과 고온 안정성이 미흡하여 그대로 소재를 사용할 수 없고 별도의 시효처리를 해야 하므로 시간 및 비용의 부담이 크다. 만일 용체화 처리 후 그 온도에서 본 발명의 시효처리온도가 아닌 다른 온도구간에서 1~15℃/분으로 서냉할 경우 파형 입계가 발생하지 않을 뿐더러, 시효처리를 다시 해야 하는 문제점이 발생하다. On the other hand, in the case of slow cooling at 1 to 15 ° C / min in the entire temperature range from the temperature to room temperature after the solution treatment, γ 'precipitation and high temperature stability are insufficient, and thus the material cannot be used as it is and must be subjected to a separate aging treatment. Therefore, the burden of time and money is great. If the solution is subjected to slow cooling at a temperature other than the aging treatment temperature of the present invention at a temperature range of 1 to 15 ° C./min after the solution treatment, a waveform boundary does not occur and a aging treatment needs to be performed again.

<실험 예>Experimental Example

도 3은 종래의 열처리 방법에 의해 얻어진 NIMONIC263 합금의 미세조직을 나타내는 사진이다. 여기서, 오른 쪽 사진은 입계부근을 확대한 것이다. 열처리는 1150℃/30분 정도로 용체화 처리하고 실온까지 수냉(50℃/초 이상)한 후, 다시 800℃/8시간 정도로 시효처리하여 공냉하였다. 도시된 바와 같이, 종래의 합금의 미세조직은 직선 형태의 결정립계와 결정립계에 과립모양 작은 탄화물이 높은 밀도로 석출됨을 알 수 있다. 이때의 결정립 크기는 60~70㎛임을 확인하였다. 3 is a photograph showing the microstructure of the NIMONIC263 alloy obtained by a conventional heat treatment method. Here, the picture on the right is an enlargement of the boundary area. The heat treatment was solution-treated at about 1150 ° C / 30 minutes, water cooled to room temperature (50 ° C / sec or more), and then aged at 800 ° C / 8 hours for air cooling. As shown, it can be seen that the microstructure of the conventional alloy is a granular small carbide precipitated at a high density at the grain boundary and the grain boundary of the linear form. At this time, it was confirmed that the grain size is 60 ~ 70㎛.

도 4는 본 발명의 실시예에 의한 열처리 방법^^에 의해 얻어진 NIMONIC263 합금의 미세조직을 나타내는 사진이다. 여기서, 오른 쪽 사진은 입계부근을 확대한 것이다. 이때, 즉, 열처리는 1150℃/30분 정도로 용체화 처리하고 곧바로 시효처리 온도인 800℃까지 10℃/분으로 서냉한 후 800℃ 온도에서 8시간 유지 후 공냉하였다. Figure 4 is a photograph showing the microstructure of the NIMONIC263 alloy obtained by the heat treatment method ^^ according to an embodiment of the present invention. Here, the picture on the right is an enlargement of the boundary area. In other words, the heat treatment was a solution treatment for about 1150 ℃ / 30 minutes, immediately cooled to 10 ℃ / min to 800 ℃, the aging treatment temperature, and then air-cooled after holding for 8 hours at 800 ℃ temperature.

도 4에 의하면, 본 발명의 실시예에 의한 미세조직은 파형입계가 잘 발달되어 있으며, 결정립계에 계면에너지가 낮은 판상의 탄화물이 낮은 밀도로 석출됨을 알 수 있었다. 이때의 결정립 크기는 통상의 열처리에 의해 얻어진 조직과 유사한 70~80㎛이였다. According to FIG. 4, it can be seen that the microstructure according to the embodiment of the present invention has a well-developed waveform grain boundary, and plate carbide having low interfacial energy precipitates at a low density at grain boundaries. Grain size at this time was 70-80 micrometers similar to the structure obtained by normal heat processing.

이하에서, 도 3과 같이 종래의 열처리 방법에 제조된 합금과 도 4와 같이 본 발명에 의해 제조된 합금의 특성을 살펴보기로 한다. Hereinafter, the characteristics of the alloy prepared by the conventional heat treatment method as shown in FIG. 3 and the alloy prepared by the present invention as shown in FIG. 4 will be described.

표 1은 각각의 합금을 상온에서 인장시험을 실시한 결과이다. Table 1 shows the results of tensile tests of the respective alloys at room temperature.

시험편 Test piece 결정립 크기 (μm)Grain size (μm) 항복강도 (MPa)Yield strength (MPa) 인장강도 (MPa)Tensile Strength (MPa) 연신율 (%)Elongation (%) 종래의 합금Conventional alloys 6262 640640 10831083 23.323.3 본 발명의 합금Alloy of the present invention 7575 622622 10791079 38.138.1

표에서 알 수 있듯이 본 발명의 합금은 종래의 합금에 비해 항복 및 인장강도는 유사한 수준을 나타내었다. 하지만 연성은 종래의 합금의 연신율 23.3%에서 38.1% 만큼 상당한 수준으로 증가됨을 알 수 있었다. As can be seen from the table of the alloy of the present invention showed a similar level of yield and tensile strength compared to the conventional alloy. However, it was found that the ductility was increased to a considerable level by 28.1% to 38.1% of the conventional alloy.

도 5 및 도 6은 각각 종래의 열처리 방법 및 본 발명의 열처리 방법에 의해 얻어진 NIMONIC263 합금의 상온 인장시험 후 파면을 나타내는 사진이다. 이때, 열처리는 앞에서 설명한 바와 같다. 도시된 바와 같이, 종래의 합금은 도 5와 같이 입계면이 별다른 소성변형이 없이 취약하게 분리되어 파단 되었음을 확인할 수 있었다. 5 and 6 are photographs showing the wavefront after the room temperature tensile test of the NIMONIC263 alloy obtained by the conventional heat treatment method and the heat treatment method of the present invention, respectively. At this time, the heat treatment is as described above. As shown, the conventional alloy was confirmed that the grain boundary is broken apart fragilely without any plastic deformation as shown in FIG.

하지만, 본 발명의 합금은 도 6에서와 같이 파형 입계면에 딤플(dimple) 및 전단(shearing) 흔적 등이 관찰되었다. 이는 본 발명의 합금은 파단 직전까지 충분한 소성변형을 거쳐 파단됨을 알 수 있었다. 다시 말해, 본 발명의 합금은 결정립계와 기지와의 결합력이 종래의 합금에 비해 상대적으로 높다는 것을 의미한다. 이러한 결과는 표 1에서의 연성의 증가를 가져오는 요인 중에 하나로 판단할 수 있다.However, the alloy of the present invention was observed dimple (simple) and shearing (shearing) traces, etc. in the waveform grain boundary as shown in FIG. It can be seen that the alloy of the present invention is broken through sufficient plastic deformation until immediately before fracture. In other words, the alloy of the present invention means that the bonding force between the grain boundary and the matrix is relatively higher than that of the conventional alloy. This result can be judged as one of the factors that increase the ductility in Table 1.

도 7a 및 도 7b는 종래의 열처리 방법 및 본 발명의 열처리 방법에 의해 얻어진 NIMONIC263 합금을 각각 760℃/295MPa 및 815℃/180MPa의 조건에서 크리프(creep) 시험을 한 결과를 나타내는 그래프이다. 7A and 7B are graphs showing the results of creep testing of the NIMONIC263 alloy obtained by the conventional heat treatment method and the heat treatment method of the present invention under conditions of 760 ° C / 295MPa and 815 ° C / 180MPa, respectively.

도 7a 및 도 7b를 참조하면, 시험조건에 관계없이 본 발명의 열처리재가 월등히 우수한 크리프 특성을 보이고 있음을 확인하였다. 구체적으로, 760℃/295MPa의 조건에서 시험한 경우에 크리프 시간이 약 129시간에서 약 178시간으로 증가하였으며, 크리프 스트레인도 약 6%에서 약 11%로 증가하였다. 또한 815℃/180MPa의 조건에서 시험한 경우에는 크리프 시간이 약 181시간에서 약 252시간으로 증가하였으며, 크리프 스트레인도 약 17%에서 약 20%로 증가하였다.7A and 7B, it was confirmed that the heat treatment material of the present invention showed excellent creep characteristics regardless of the test conditions. Specifically, the creep time increased from about 129 hours to about 178 hours when tested at 760 ° C./295 MPa, and the creep strain also increased from about 6% to about 11%. In addition, the creep time increased from about 181 hours to about 252 hours when tested at 815 ° C./180 MPa, and the creep strain increased from about 17% to about 20%.

이상, 본 발명은 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되지 않으며, 본 발명의 기술적 사상의 범위 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 변형이 가능하다.    As mentioned above, although the present invention has been described in detail with reference to preferred embodiments, the present invention is not limited to the above embodiments, and various modifications may be made by those skilled in the art within the scope of the technical idea of the present invention. It is possible.

도 1은 종래의 열처리 공정을 나타내는 도표이다.1 is a diagram showing a conventional heat treatment process.

도 2는 본 발명에 따른 열처리 공정을 나타내는 도표이다.2 is a diagram illustrating a heat treatment process according to the present invention.

도 3 및 도 4는 각각 종래의 열처리 방법 및 본 발명의 열처리 방법에 의해 얻어진 NIMONIC263 합금의 미세조직을 나타내는 사진이다.3 and 4 are photographs showing the microstructure of the NIMONIC263 alloy obtained by the conventional heat treatment method and the heat treatment method of the present invention, respectively.

도 5 및 도 6은 각각 종래의 열처리 방법 및 본 발명의 열처리 방법에 의해 얻어진 NIMONIC263 합금의 상온 인장시험 후 파면을 나타내는 사진이다. 5 and 6 are photographs showing the wavefront after the room temperature tensile test of the NIMONIC263 alloy obtained by the conventional heat treatment method and the heat treatment method of the present invention, respectively.

도 7a 및 도 7b는 종래의 열처리 방법 및 본 발명의 열처리 방법에 의해 얻어진 NIMONIC263 합금을 각각 760℃/295MPa 및 815℃/180MPa의 조건에서 크리프(creep) 시험을 한 결과를 나타내는 그래프이다. 7A and 7B are graphs showing the results of creep testing of the NIMONIC263 alloy obtained by the conventional heat treatment method and the heat treatment method of the present invention under conditions of 760 ° C / 295MPa and 815 ° C / 180MPa, respectively.

Claims (3)

니켈기 합금의 제조, 가공 후 열처리 공정에 있어서, In the heat treatment process after the production and processing of the nickel-based alloy, 고온영역에서 용체화 처리를 하는 단계;Performing a solution treatment in the high temperature region; 상기 용체화 처리를 한 후, 곧바로 시효처리를 위한 중온영역까지 1~15℃/분으로 서냉하는 단계;After the solution treatment, immediately cooling to 1 to 15 ° C./min to a medium temperature region for aging treatment; 상기 서냉하는 단계 후에 상기 시효처리를 위한 중온영역에서 소정의 시간동안 유지하여 시효처리를 하는 단계; 및Performing the aging treatment after the slow cooling step by maintaining in the middle temperature region for the aging treatment for a predetermined time; And 상기 시효처리후에 공냉하는 단계를 포함하는 파형 입계를 위한 니켈기 합금의 열처리 방법.Method of heat treatment of nickel-based alloy for the waveform grain boundary comprising the step of air cooling after the aging treatment. 제1항에 있어서, 상기 용체화 처리는 1000~1200℃에서 용체화 처리시간 동안 진행하고, 상기 시효처리는 700~900℃에서 시효처리 시간 동안 진행하는 것을 특징으로 하는 파형 입계를 위한 니켈기 합금의 열처리 방법.According to claim 1, wherein the solution treatment is carried out during the solution treatment time at 1000 ~ 1200 ℃, the aging treatment is nickel-based alloy for the grain boundary, characterized in that for the aging treatment time at 700 ~ 900 ℃ Method of heat treatment. 파형의 결정립계를 포함하고, 상기 결정립계에 판상의 탄화물이 서로 떨어져 배치되는 파형 입계를 가진 니켈기 합금.A nickel-based alloy having a waveform grain boundary, wherein the grain boundaries are plate-like carbides disposed apart from each other.
KR1020080056386A 2008-06-16 2008-06-16 Method of heat treatment of Ni based superalloy for wave type grain-boundary and Ni based superalloy the same KR101007582B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020080056386A KR101007582B1 (en) 2008-06-16 2008-06-16 Method of heat treatment of Ni based superalloy for wave type grain-boundary and Ni based superalloy the same
EP09007693A EP2138601A1 (en) 2008-06-16 2009-06-10 A heat treatment method of a ni-based superalloy for wave-type grain boundary and a ni-based superalloy produced accordingly
JP2009140142A JP2009299187A (en) 2008-06-16 2009-06-11 Heat treatment method for forming wavy grain boundary in nickel-based alloy, and alloy treated with the same
US12/484,597 US20090308508A1 (en) 2008-06-16 2009-06-15 Heat Treatment Method of a Ni-Based Superalloy for Wave-Type Grain Boundary and a Ni-Based Superalloy Produced Accordingly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080056386A KR101007582B1 (en) 2008-06-16 2008-06-16 Method of heat treatment of Ni based superalloy for wave type grain-boundary and Ni based superalloy the same

Publications (2)

Publication Number Publication Date
KR20090130663A true KR20090130663A (en) 2009-12-24
KR101007582B1 KR101007582B1 (en) 2011-01-12

Family

ID=41161336

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080056386A KR101007582B1 (en) 2008-06-16 2008-06-16 Method of heat treatment of Ni based superalloy for wave type grain-boundary and Ni based superalloy the same

Country Status (4)

Country Link
US (1) US20090308508A1 (en)
EP (1) EP2138601A1 (en)
JP (1) JP2009299187A (en)
KR (1) KR101007582B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190094624A (en) * 2018-02-05 2019-08-14 창원대학교 산학협력단 Method of heat treatment of ni-base superalloy containing niobium for excellent interfacial properties of grain boundaries and ni-base superalloy heat-treated thereby
WO2022173082A1 (en) * 2021-02-10 2022-08-18 창원대학교 산학협력단 Heat treatment method for improving strength and ductility of superalloy manufactured by additive manufacturing

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120324902A1 (en) * 2011-06-27 2012-12-27 General Electric Company Method of maintaining surface-related properties of gas turbine combustor components
CN102776415B (en) * 2012-08-17 2014-04-02 北京科技大学 Method for preparing high-tensile-ductility Ni (Bi) alloy
CN102776455B (en) * 2012-08-17 2014-04-02 北京科技大学 Method for preparing high-stretching plasticity Ni (Bi) alloy by using isothermal heat treatment
CN103422038B (en) * 2013-09-04 2015-04-08 上海康晟特种合金有限公司 Method for heat treatment of lining die sleeve of high-temperature copper alloy extruding machine
CN103556093B (en) * 2013-10-30 2015-08-12 西安航空动力股份有限公司 A kind of method improving GH4090 cold-strip cold forming capability
KR101593309B1 (en) 2014-06-16 2016-02-18 창원대학교 산학협력단 Method of heat treatment of heat resistant alloy containing tungsten for excellent creep property and heat resistant alloy the same
CN104152827B (en) * 2014-08-06 2016-03-23 华能国际电力股份有限公司 The thermal treatment process of a kind of cold rolling state ferronickel based high-temperature alloy grain-boundary strengthening
KR101626913B1 (en) 2014-12-03 2016-06-02 창원대학교 산학협력단 Method of thermo-mechanical treatment of heat-resistant alloy containing tungsten for enhancement of creep resistance and heat-resistant alloy the same
CN106756683B (en) * 2016-12-02 2018-08-14 西北工业大学 Heating means before a kind of deformation of GH4169 alloys
US10718042B2 (en) 2017-06-28 2020-07-21 United Technologies Corporation Method for heat treating components
GB2571280A (en) * 2018-02-22 2019-08-28 Rolls Royce Plc Method of manufacture
CN112522544B (en) * 2020-11-19 2022-02-01 中国科学院金属研究所 Grain boundary regulation and control method for improving weldability of cast high-temperature alloy and welding process
CN114875346B (en) * 2021-12-10 2023-05-30 中国科学院金属研究所 Heat treatment method for inhibiting precipitation of coarse grain boundary carbide of austenitic alloy
CN115927987A (en) * 2022-12-29 2023-04-07 北京钢研高纳科技股份有限公司 Heat treatment method of high-temperature alloy disc shaft type forge piece and disc shaft type forge piece manufactured by same
CN116065109B (en) * 2023-03-03 2023-06-20 北京钢研高纳科技股份有限公司 Heat treatment process of nickel-based superalloy difficult to deform and forge piece

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3390023A (en) * 1965-02-04 1968-06-25 North American Rockwell Method of heat treating age-hardenable alloys
US3871928A (en) * 1973-08-13 1975-03-18 Int Nickel Co Heat treatment of nickel alloys
US4708750A (en) * 1985-12-23 1987-11-24 United Technologies Corporation Thermal treatment of wrought, nickel base superalloys in conjunction with high energy hole drilling
CH671583A5 (en) * 1986-12-19 1989-09-15 Bbc Brown Boveri & Cie
DE3813157A1 (en) * 1987-05-27 1988-12-15 Bbc Brown Boveri & Cie Method for bonding and/or repairing component parts made of an oxide dispersion-hardened nickel-based superalloy in the zone-annealed state of coarse-grained, longitudinally oriented column crystals
JPH04210457A (en) * 1990-12-11 1992-07-31 Japan Steel Works Ltd:The Manufacture of fe-ni base precipitation hardened superalloy
JPH0711404A (en) * 1993-06-29 1995-01-13 Sumitomo Metal Ind Ltd Production of ni-base alloy having intergranular fracture resistance
JP3281685B2 (en) * 1993-08-26 2002-05-13 三菱重工業株式会社 Hot bolt material for steam turbine
FR2712307B1 (en) * 1993-11-10 1996-09-27 United Technologies Corp Articles made of super-alloy with high mechanical and cracking resistance and their manufacturing process.
DE19542919A1 (en) * 1995-11-17 1997-05-22 Asea Brown Boveri Process for the production of a high temperature resistant material body made of an iron-nickel superalloy of type IN 706
DE19645186A1 (en) * 1996-11-02 1998-05-07 Asea Brown Boveri Heat treatment process for material bodies made of a highly heat-resistant iron-nickel superalloy as well as heat-treated material bodies
JP3246377B2 (en) 1997-01-23 2002-01-15 三菱マテリアル株式会社 Manufacturing method of columnar crystal Ni-base heat-resistant alloy large casting or turbine blade
JPH10237609A (en) * 1997-02-24 1998-09-08 Japan Steel Works Ltd:The Production of precipitation strengthening nickel-iron-base superalloy
KR100250810B1 (en) 1997-09-05 2000-04-01 이종훈 Annealing process of ni-base alloy for corrosion resistance improvement
JP4780431B2 (en) 2001-04-05 2011-09-28 大同特殊鋼株式会社 High hardness and high corrosion resistance Ni-base alloy
KR100526690B1 (en) * 2003-07-01 2005-11-08 한국기계연구원 Method for Manufacturing Parts Consisted of Two Types of Ni-Based Superalloys
US7156932B2 (en) * 2003-10-06 2007-01-02 Ati Properties, Inc. Nickel-base alloys and methods of heat treating nickel-base alloys
JP4430974B2 (en) * 2004-04-27 2010-03-10 大同特殊鋼株式会社 Method for producing low thermal expansion Ni-base superalloy
JP4830466B2 (en) 2005-01-19 2011-12-07 大同特殊鋼株式会社 Heat-resistant alloy for exhaust valves that can withstand use at 900 ° C and exhaust valves using the alloys

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190094624A (en) * 2018-02-05 2019-08-14 창원대학교 산학협력단 Method of heat treatment of ni-base superalloy containing niobium for excellent interfacial properties of grain boundaries and ni-base superalloy heat-treated thereby
WO2022173082A1 (en) * 2021-02-10 2022-08-18 창원대학교 산학협력단 Heat treatment method for improving strength and ductility of superalloy manufactured by additive manufacturing

Also Published As

Publication number Publication date
US20090308508A1 (en) 2009-12-17
EP2138601A1 (en) 2009-12-30
KR101007582B1 (en) 2011-01-12
JP2009299187A (en) 2009-12-24

Similar Documents

Publication Publication Date Title
KR101007582B1 (en) Method of heat treatment of Ni based superalloy for wave type grain-boundary and Ni based superalloy the same
JP5867991B2 (en) Heat treatment method and product for Ni-base superalloy article
EP3412785A1 (en) Manufacturing process of ni based superalloy and member of ni based superalloy, ni based superalloy, member of ni based superalloy, forged billet of ni based superalloy, component of ni based superalloy, structure of ni based superalloy, boiler tube, combustor liner, gas turbine blade, and gas turbine disk
US7892370B2 (en) Heat treatment method for monocrystalline or directionally solidified structural components
KR20150129616A (en) Method for post-built heat treatment of additively manufactured components made of gamma-prime strengthened superalloys
JP2007197830A (en) Local heat treatment for improved fatigue resistance in turbine component
KR101593299B1 (en) Method of heat treatment of fusion welds for excellent toughness in nickel-based superalloys containing niobium and superalloys with welds thereby
JP7134606B2 (en) Grain refinement in IN706 by Laves phase precipitation
JP5393011B2 (en) Method for heat treating a nickel-base superalloy
JP2021172852A (en) Ni-BASED ALLOY REPAIRING MEMBER AND MANUFACTURING METHOD OF THE REPAIRING MEMBER
KR20200036082A (en) Method of heat treatment of additive manufactured ni-base superalloy containing niobium for enhancing interfacial properties of grain boundaries and ni-base superalloy heat-treated thereby
JP5951499B2 (en) Method of manufacturing Inconel 718 type nickel superalloy
KR20150017090A (en) Method of thermo-mechanical treatment of heat-resistant alloy and heat-resistant alloy the same
EP2205771B1 (en) Method, nickel base alloy and component
CN109385590A (en) A kind of control method of single crystal super alloy recrystallization
EP3351651B1 (en) Turbine rotor blade manufacturing method
US8906174B2 (en) Ni-base alloy and method of producing the same
KR102047326B1 (en) Method of heat treatment of ni-base superalloy containing niobium for excellent interfacial properties of grain boundaries and ni-base superalloy heat-treated thereby
KR20150017089A (en) Method of heat treatment of heat-resistant alloy for excellent mechanical properties at very high temperature and heat-resistant alloy the same
KR101626913B1 (en) Method of thermo-mechanical treatment of heat-resistant alloy containing tungsten for enhancement of creep resistance and heat-resistant alloy the same
JP2013133505A (en) Heat treatment method of nickel base single crystal superalloy and nickel base single crystal superalloy
KR101189440B1 (en) Gas turbine combustor for an easy repair welding and method of manufacturing the same
KR101593309B1 (en) Method of heat treatment of heat resistant alloy containing tungsten for excellent creep property and heat resistant alloy the same
KR20150081375A (en) Method of heat treatment of heat-resistant alloy for excellent resistance to intergranular crack and heat-resistant alloy the same
CN111001812A (en) Heat treatment method for additive manufacturing high-temperature alloy working in high-temperature gas environment

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20131218

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20141230

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20151209

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20161207

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee