JP2009299187A - Heat treatment method for forming wavy grain boundary in nickel-based alloy, and alloy treated with the same - Google Patents

Heat treatment method for forming wavy grain boundary in nickel-based alloy, and alloy treated with the same Download PDF

Info

Publication number
JP2009299187A
JP2009299187A JP2009140142A JP2009140142A JP2009299187A JP 2009299187 A JP2009299187 A JP 2009299187A JP 2009140142 A JP2009140142 A JP 2009140142A JP 2009140142 A JP2009140142 A JP 2009140142A JP 2009299187 A JP2009299187 A JP 2009299187A
Authority
JP
Japan
Prior art keywords
grain boundary
corrugated
nickel
heat treatment
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009140142A
Other languages
Japanese (ja)
Inventor
Hyun Uk Hong
ウク ホン、ヒョン
In Soo Kim
ス キム、イン
Baig Gyu Choi
ギュ チョイ、バク
Chang Yong Jo
ヨン チョ、チャン
Young Soo Yoo
ス ユ、ヨン
Hi Won Jeong
ウォン ジョン、ヒ
Seong Moon Seo
ムン ソ、ソン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Institute of Machinery and Materials KIMM
Original Assignee
Korea Institute of Machinery and Materials KIMM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Institute of Machinery and Materials KIMM filed Critical Korea Institute of Machinery and Materials KIMM
Publication of JP2009299187A publication Critical patent/JP2009299187A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat treatment method which enhances resistance to creep, fatigue and stress corrosion cracking. <P>SOLUTION: This heat treatment method includes: subjecting this nickel-based alloy to solution treatment in a high temperature region; immediately and slowly cooling the alloy to a moderate temperature region for aging treatment with a rate of 1 to 15°C/minute; then immediately subjecting the alloy to the aging treatment of keeping the alloy in the moderate temperature region for the aging treatment for a predetermined period of time; and subsequently air-cooling the alloy. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ニッケル基合金の熱処理方法及び合金に関するものである。特にクループ、疲労、応力腐蝕亀裂など、粒界亀裂による破損に対する抵抗性を高めるニッケル基合金の熱処理方法、および波形粒界を有するニッケル基合金に関するものである。   The present invention relates to a nickel base alloy heat treatment method and alloy. More particularly, the present invention relates to a nickel-base alloy heat treatment method that increases resistance to breakage due to grain boundary cracks such as croup, fatigue, and stress corrosion cracking, and a nickel-base alloy having corrugated grain boundaries.

ニッケル基合金は、加工性、溶接性、耐蝕性および高温機械的特性などが優れて、航空機および発電用ガスタービンのパワー・アセンブリ(power assembly)のような高温用部品の素材に使用されている。
このような素材は、運用中、熱と応力に持続的あるいは複雑な変形サイクルおよび高温腐蝕などの厳しい環境に露出されて、主にクリープ、疲労、応力腐蝕亀裂などにより損傷を受けて破損される。従って、このような素材の主要な損傷の原因であるクリープ、疲労、応力腐蝕損傷などの抵抗性を向上させることは製造業者、部品加工業者および運営業者などに重要な課題の一つになって来た。
Nickel-based alloys have excellent workability, weldability, corrosion resistance, and high-temperature mechanical properties, and are used as materials for high-temperature components such as aircraft and power gas turbine power assemblies. .
During operation, such materials are exposed to severe environments such as heat and stress sustained or complex deformation cycles and high temperature corrosion, and are damaged and damaged mainly by creep, fatigue, stress corrosion cracking, etc. . Therefore, improving the resistance of creep, fatigue, stress corrosion damage, etc., which is the main cause of such material damage, is one of the important issues for manufacturers, parts processors and operators. I came.

図1は、発電用ガスタービンの燃焼器ライナ、遷移ダクトなどに広く使用されているニッケル基合金NIMONIC263の製造および加工に適用される従来の熱処理工程を示す。その方法は、通常的に高温領域で溶体化処理(1000〜1200℃/5分以上)した後に、水冷(50℃/秒以上)をする。続いて、所定の時間が経過した後、また、中間温度領域で時効処理(700〜900℃/5時間以上)を行った後、空冷する2段階熱処理工程を行っている。   FIG. 1 shows a conventional heat treatment process applied to the manufacture and processing of a nickel-base alloy NIMONIC 263 widely used in a combustor liner, a transition duct, etc. of a gas turbine for power generation. In the method, solution treatment (1000 to 1200 ° C./5 minutes or more) is usually performed in a high temperature region, and then water cooling (50 ° C./second or more) is performed. Subsequently, after a lapse of a predetermined time, and after performing an aging treatment (700 to 900 ° C./5 hours or more) in an intermediate temperature range, a two-stage heat treatment step of air cooling is performed.

前記した熱処理工程は、冷間加工後、溶体化処理工程で γ基地(matrix)内の粗大炭化物および γ′析出相を、単純に溶解および固溶させて、その後の時効処理工程で炭化物を結晶粒界に予め析出させると同時に、γ′析出相を基地内に均一に分布させる。
これにより、素材の高温安定性を高め、粒界敏感化程度を減少させて素材の強度を向上させることがその目的である。
しかしながら、このような熱処理方法は、クリープ、疲労、応力腐蝕亀裂に対する抵抗性が十分に満足されないうえに、水準位、改善されていない。
従って、前記した抵抗性をより向上させて経済的であり、手軽で便利な熱処理方法が切望されている。
In the heat treatment step described above, after cold working, the coarse carbide and γ ′ precipitate phase in the γ matrix are simply dissolved and dissolved in the solution treatment step, and the carbide is crystallized in the subsequent aging treatment step. At the same time as pre-precipitation at the grain boundaries, the γ ′ precipitation phase is uniformly distributed in the matrix.
The purpose of this is to increase the high-temperature stability of the material and to reduce the degree of grain boundary sensitization to improve the strength of the material.
However, such a heat treatment method is not sufficiently satisfactory in resistance to creep, fatigue, and stress corrosion cracking, and has not been improved to a standard level.
Therefore, there is an urgent need for a heat treatment method that is economical, easy, and convenient by improving the above-described resistance.

特許文献1には、耐蝕性向上のためのニッケル基合金の熱処理方法が開示されている。
上記の特許文献1によれば、高温の溶体化処理後、室温までの温度領域の全範囲または一部範囲で、冷却速度を0.1ないし5℃/分で徐冷し、また時効処理を行う方法により、素材内の結晶粒界形状をのこぎり歯状(serration)に変化させて、粒界破損抵抗性を向上させる熱処理方法が提案されている。
しかしながら、この方法は、広い温度範囲で相対的に遅い冷却速度で徐冷するから、熱処理時間が長く掛かり過ぎて不経済であるだけでなく、高温で長時間露出されるから結晶粒の大きさが大きくなる。
また、析出強化相であるγ′が粗大化され、各種有害な相が析出されることから、応力腐蝕亀裂に対する抵抗性を向上できるが、引張特性および高温機械的であるクリープ、疲労などには、むしろ悪影響を及ぼす。これにより、上記の方法を実際の産業現場に適用することは困難である。
Patent Document 1 discloses a nickel base alloy heat treatment method for improving corrosion resistance.
According to the above-mentioned Patent Document 1, after the solution treatment at a high temperature, the cooling rate is gradually cooled at 0.1 to 5 ° C./min in the whole temperature range or a partial range up to room temperature, and the aging treatment is performed. Depending on the method used, a heat treatment method has been proposed in which the grain boundary shape in the material is changed to a serration to improve the grain boundary damage resistance.
However, this method gradually cools at a relatively slow cooling rate in a wide temperature range, which is not only uneconomical due to the long heat treatment time, but also because it is exposed for a long time at high temperature. Becomes larger.
In addition, the precipitation strengthening phase γ 'is coarsened and various harmful phases are precipitated, which can improve the resistance to stress corrosion cracking, but for tensile properties and high temperature mechanical creep, fatigue, etc. Rather, it has an adverse effect. Thus, it is difficult to apply the above method to an actual industrial site.

大韓民国特許公開10−1999−024668号公報Korean Patent Publication No. 10-1999-024668

本発明が解決しようとする第1の技術的課題は、クリープ、疲労、応力腐蝕亀裂に対する抵抗性を向上させて経済的であり、手軽で便利なニッケル基合金の熱処理方法を提供することである。
また、本発明が解決しようとする第2の技術的課題は、前記方法により製造されたニッケル基合金を提供することである。
The first technical problem to be solved by the present invention is to provide an economical, easy and convenient heat treatment method for a nickel base alloy by improving resistance to creep, fatigue and stress corrosion cracking. .
The second technical problem to be solved by the present invention is to provide a nickel-base alloy produced by the above method.

前記第1の技術的課題を達成するための本発明のニッケル基合金の熱処理方法は、ニッケル基合金の製造、加工後の熱処理工程において、高温領域で溶体化処理を行う。続いて、前記溶体化処理後、すぐに時効処理のための中温領域まで1〜15℃/分で徐冷する。前記徐冷する段階後、すぐに前記時効処理のための中温領域で所定時間維持して時効処理を行う。最後に、前記時効処理後に空冷する。   The nickel-base alloy heat treatment method of the present invention for achieving the first technical problem performs a solution treatment in a high-temperature region in a heat-treatment step after manufacturing and processing of the nickel-base alloy. Subsequently, immediately after the solution treatment, the solution is gradually cooled to an intermediate temperature range for aging treatment at 1 to 15 ° C./min. Immediately after the step of slow cooling, an aging treatment is performed while maintaining for a predetermined time in an intermediate temperature region for the aging treatment. Finally, air cooling is performed after the aging treatment.

本発明の熱処理方法であって、前記徐冷する段階は、前記溶体化処理段階で形成された平坦な粒界の一部に波形粒界が形成され始める段階と、前記生成された波形粒界が安定な振幅と周期で一部成長する同時に、前記平坦な粒界に波形粒界形成がだんだん増加する段階と、前記一部波形粒界に板状の炭化物が析出され始める段階からなることができる。また、前記時効処理段階であって、前記生成された波形粒界は、安定な振幅と周期を有する波形粒界に大部分成長しており、前記析出された炭化物は、前記波形粒界の上に界面エネルギーが小さな板状で安定して成長できる。   In the heat treatment method of the present invention, the step of gradually cooling includes the step of starting to form a corrugated grain boundary in a part of the flat grain boundary formed in the solution treatment stage, and the generated corrugated grain boundary. At the same time with a stable amplitude and period, and at the same time, the formation of corrugated grain boundaries gradually increases at the flat grain boundaries, and the stage where plate-like carbide starts to precipitate at the partial corrugated grain boundaries. it can. Further, in the aging treatment stage, the generated corrugated grain boundary is mostly grown on the corrugated grain boundary having a stable amplitude and period, and the precipitated carbide is above the corrugated grain boundary. In addition, it can grow stably in a plate shape with low interface energy.

本発明の好ましい方法であって、前記溶体化処理は1000〜1200℃で溶体化処理時間の間に進行して、前記時効処理は700〜900℃で時効処理時間の間に進行することができる。   In a preferred method of the present invention, the solution treatment can proceed at 1000 to 1200 ° C. during the solution treatment time, and the aging treatment can proceed at 700 to 900 ° C. during the aging treatment time. .

前記第2の技術的課題を達成するための本発明の合金は、波形の結晶粒界を含めて、前記結晶粒界に板状の炭化物が互いに離れて配置される波形を有する。この際、前記炭化物は、前記結晶粒界を構成する二つの結晶粒の中のいずれかと整合された界面になり、残部は不整合板状界面を有するが、前記炭化物は、前記結晶粒界を構成する二つの結晶粒に対して、不整合をつくる界面が互いに異なる結晶粒の方向に交代でジグザグ形態に配置される。   The alloy of the present invention for achieving the second technical problem has a corrugated structure in which plate-like carbides are arranged apart from each other in the crystal grain boundary, including the corrugated crystal grain boundary. At this time, the carbide becomes an interface aligned with one of the two crystal grains constituting the crystal grain boundary, and the remainder has a mismatched plate-like interface, but the carbide has the crystal grain boundary. For the two crystal grains constituting the interface, the interface creating the mismatch is arranged in a zigzag pattern alternately in the direction of the different crystal grains.

本発明によるニッケル基合金の熱処理方法およびそれによる合金によれば、ニッケル基合金の基本的な特性はそのままに維持したまま、結晶粒界の形状を波形に変化させ、界面エネルギーが低い低密度の炭化物の析出を誘導して、結晶粒界と基地との結合力を高めることで、クリープ、疲労、応力腐蝕亀裂など、粒界亀裂破損に対する抵抗性を向上させることと同時に、時間と費用を節約できる熱処理を行うことができる。   According to the nickel base alloy heat treatment method and the alloy according to the present invention, the shape of the crystal grain boundary is changed to a waveform while maintaining the basic characteristics of the nickel base alloy, and the low density of the interface energy is low. Inducing carbide precipitation and increasing the bond between the grain boundaries and the matrix, improving resistance to intergranular crack failure such as creep, fatigue, and stress corrosion cracking, while saving time and money A heat treatment that can be performed can be performed.

従来の熱処理工程を示す図表である。It is a chart which shows the conventional heat treatment process. 本発明による熱処理工程を示す図表である。It is a chart which shows the heat treatment process by this invention. 図2Aの工程による微細組織の変化を概念的に説明するための図面である。It is drawing for demonstrating conceptually the change of the micro structure by the process of FIG. 2A. 従来の熱処理方法により得られたNIMONIC263合金の微細組織を示す写真である。It is a photograph which shows the fine structure of NIMONIC263 alloy obtained by the conventional heat processing method. 本発明の熱処理方法により得られたNIMONIC263合金の微細組織を示す写真である。It is a photograph which shows the fine structure of NIMONIC263 alloy obtained by the heat processing method of this invention. 従来の熱処理方法により得られたNIMONIC263合金の常温引張試験後、波面を示す写真である。It is a photograph which shows a wave front after the normal temperature tension test of the NIMONIC263 alloy obtained by the conventional heat processing method. 本発明の熱処理方法により得られたNIMONIC263合金の常温引張試験後、波面を示す写真である。It is a photograph which shows a wave front after the normal temperature tension test of the NIMONIC263 alloy obtained by the heat treatment method of the present invention. 従来の熱処理方法および本発明の熱処理方法により得られたNIMONIC263合金を760℃/295MPA条件でクリープ試験を行った結果を示すグラフである。It is a graph which shows the result of having performed the creep test on 760 degreeC / 295MPA conditions for the NIMONIC263 alloy obtained by the conventional heat processing method and the heat processing method of this invention. 従来の熱処理方法および本発明の熱処理方法により得られたNIMONIC263合金を815℃/180 MPaの条件でクリープ試験を行った結果を示すグラフである。It is a graph which shows the result of having performed the creep test on the conditions of 815 degreeC / 180 MPa for the NIMONIC263 alloy obtained by the conventional heat treatment method and the heat treatment method of the present invention.

以下添付する図面を参照しながら、本発明の好ましい実施例を詳細に説明する。以下に説明する実施例は、多様な形態に変形できるし、本発明の範囲が下記に説明する実施例に限定されない。本発明の実施例は、当分野で通常の知識を有する者に、本発明をより完全に説明するために提供するものである。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The embodiments described below can be modified in various forms, and the scope of the present invention is not limited to the embodiments described below. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of the invention to those skilled in the art.

本発明は、まず、ニッケル基合金の主要損傷原因と、これを克服する方法を詳細に説明し、続いて、前記方法を実現する熱処理方法を説明する。
この際、説明の便宜のため、ニッケル基合金の主要損傷原因であるクリープ、疲労、応力腐蝕亀裂などを、「粒界損傷」であると定義して説明する。
In the present invention, first, the cause of major damage of a nickel-base alloy and a method for overcoming this will be described in detail, and then a heat treatment method for realizing the method will be described.
At this time, for convenience of explanation, creep, fatigue, stress corrosion cracking, etc., which are the main damage causes of the nickel-base alloy, will be defined as “grain boundary damage”.

ニッケル基合金の主要損傷原因である粒界損傷は、すべてが脆弱な結晶粒界に沿って亀裂が生じて伝播する。
これにより、結晶粒界そのものエネルギーを低くし、亀裂伝播路程(道のり)を増やして結晶粒界に析出される析出相、例えば、炭化物の形状と特性を変化させれば、粒界損傷の抵抗性を高めることができる。
本発明は、前述した粒界エネルギーを低くし、亀裂伝播路程を増やして炭化物の形状と特性を変化させるために、波形の結晶粒界を形成することを提示するものである。
Grain boundary damage, which is the main cause of damage in nickel-base alloys, propagates through cracks along all weak grain boundaries.
This reduces the grain boundary energy itself, increases the crack propagation path (distance), and changes the precipitation phase that precipitates at the grain boundary, for example, the shape and characteristics of carbides, thereby reducing the resistance to grain boundary damage. Can be increased.
The present invention suggests forming corrugated grain boundaries in order to lower the grain boundary energy and increase the crack propagation path to change the shape and properties of the carbide.

波形の結晶粒界は、下記のような理由により、粒界損傷に対する抵抗性を増大させる。
まず、結晶粒間のずれ程度を下げて、基地との結合力が増加する同時に、粒界構成を変更して粒界に沿う亀裂伝播路程を長くする。
また、結晶粒界に析出される炭化物は、密度が低く、安定な界面エネルギーを有する板状を有する。
さらに、前記炭化物は、同一な結晶粒界に生成されたとしても、それぞれの炭化物は、互いに異なる結晶粒と整合を共有し、界面を形成して、結局、炭化物の不整合界面が交差されてジグザグ形態に配列される。
A corrugated grain boundary increases resistance to grain boundary damage for the following reasons.
First, the degree of misalignment between crystal grains is lowered to increase the bonding force with the base, and at the same time, the grain boundary configuration is changed to lengthen the crack propagation path along the grain boundary.
Further, the carbide precipitated at the crystal grain boundary has a plate shape having a low density and stable interface energy.
Furthermore, even if the carbides are generated at the same grain boundary, the respective carbides share alignment with different crystal grains to form an interface, and eventually the mismatched interface of the carbide is crossed. Arranged in zigzag form.

前記のように、波形形成により炭化物特性も、やはり粒界損傷抵抗性に有利なように変化する。
つまり、粒界空洞(cavity)あるいは亀裂に主要生成位置を提供する炭化物と基地との不整合界面密度が低くなって安定されて、粒界割れが生じる速度が遅くなる。亀裂が生じたとしても交差する不整合界面により、亀裂合体を通した伝播速度が遅延される。
As described above, the corrugation also changes the carbide characteristics so as to favor the grain boundary damage resistance.
That is, the mismatch interface density between the carbide and the matrix providing the main generation position for the grain boundary cavities or cracks is lowered and stabilized, and the speed at which the grain boundary cracks occur is reduced. Even if a crack occurs, the crossing misalignment interface delays the propagation velocity through the crack coalescence.

本発明は、波形の結晶粒界を形成して板状の析出物を誘導する方法を提示するのである。   The present invention presents a method for inducing plate-like precipitates by forming corrugated grain boundaries.

波形粒界の発生に対するメカニズムはいろいろあるが、最近、本発明者は、結晶粒界そのものが、温度により総エネルギーを低くするために形状を変化させて、波形粒界が発生するという事実を確認した。
つまり、高温領域では、結晶粒間のずれより表面エネルギーの影響が大きくて、表面積をできるだけ小さくするため、直線形の結晶粒界(これを平坦な粒界という)が発達する。
中間温度領域以下では、相対的に結晶粒間のずれが重要なので、結晶粒界が結晶学的に有利に配列されるように、いくつかのセグメントに分離される波形粒界が発生する。
このような波形粒界の発生メカニズムを考えて、本発明のニッケル基合金から波形粒界を得るためには、下記のような条件を必ず満たさなければならない。
There are various mechanisms for the generation of corrugated grain boundaries. Recently, the present inventor has confirmed the fact that the grain boundaries themselves are generated by changing the shape to lower the total energy with temperature. did.
That is, in the high temperature region, the influence of surface energy is larger than the deviation between crystal grains, and a linear crystal grain boundary (this is called a flat grain boundary) develops in order to make the surface area as small as possible.
Below the intermediate temperature range, the shift between the crystal grains is relatively important, so that a wavy grain boundary is generated that is separated into several segments so that the crystal grain boundaries are advantageously arranged crystallographically.
Considering such a generation mechanism of corrugated grain boundaries, in order to obtain corrugated grain boundaries from the nickel-based alloy of the present invention, the following conditions must be satisfied.

第一に、粒界からの炭化物析出は、最大限遅延されなければならない。その理由は、炭化物は、結晶粒界の固定効果(pinning effect)により結晶粒界の動きに邪魔されており、析出された炭化物は、その特性(密度、様子など)を改善することが困難であるからである。従って、炭素の過飽和は、最小化されなければならない。
第二に、結晶粒界が自ら動いて平衡状態に近接することができるように、十分な時間と温度を付与しなければならない。
First, carbide precipitation from grain boundaries must be delayed to the maximum. The reason for this is that carbide is hindered by the movement of grain boundaries due to the pinning effect of the grain boundaries, and it is difficult to improve the characteristics (density, appearance, etc.) of the precipitated carbides. Because there is. Thus, carbon supersaturation must be minimized.
Second, sufficient time and temperature must be provided so that the grain boundaries can move by themselves and come close to equilibrium.

本発明では、前記した条件をすべて充足するために、ニッケル基合金を炭化物が溶解、固溶される高温領域で所定時間維持した後、結晶粒界間のずれが重要になる中間温度以下まで徐冷した後、すぐにその温度で時効処理を行う方法を提示する。
また、前記方法は波形粒界の生成と同時に、ニッケル基合金に求められる基本的な特性はそのままに維持した。これにより、既存の方法と比べて熱処理方法が簡単であり、本発明の目的に一致する新しい熱処理方法を提案することができる。
In the present invention, in order to satisfy all the above-mentioned conditions, the nickel-base alloy is maintained for a predetermined time in a high-temperature region where carbides are dissolved and solid-dissolved, and then gradually lowered to an intermediate temperature or less where deviation between crystal grain boundaries becomes important. A method of aging treatment at that temperature immediately after cooling is presented.
In addition, the method maintained the basic characteristics required for the nickel-base alloy at the same time as the generation of the corrugated grain boundary. As a result, the heat treatment method is simpler than that of the existing method, and a new heat treatment method that meets the object of the present invention can be proposed.

本発明は、いろいろな条件の熱処理試験を通して、結晶粒の大きさと析出相 γ′分率が一定水準に維持されながら、波形粒界を誘導する最適の熱処理条件を提示する。
具体的にその条件を見ると、溶体化処理のために高温領域で所定時間維持した後、時効処理のための中温領域まで徐冷した後、すぐに中温領域で時効処理を実施した後、まもなく空冷する。この際、中温領域までの徐冷は1〜15℃/分で遂行する。
The present invention presents optimum heat treatment conditions for inducing corrugated grain boundaries while maintaining the crystal grain size and the precipitation phase γ ′ fraction at a constant level through heat treatment tests under various conditions.
Looking specifically at the conditions, after maintaining for a predetermined time in the high temperature region for solution treatment, after slowly cooling to the medium temperature region for aging treatment, immediately after performing the aging treatment in the medium temperature region, soon Air-cool. At this time, the slow cooling to the middle temperature region is performed at 1 to 15 ° C./min.

本発明の熱処理工程を従来の方法と比べれば、下記の通りである。
従来は、高温領域(1000〜1200℃)で溶体化処理を行った後、室温まで水冷(50℃/秒以上)し、また中温領域(700〜900℃)で時効処理を行う2段階熱処理方法を適用する。
これに対して本発明は、溶体化処理を行った後、すぐに中温領域まで徐冷した後、時効処理温度でそのままに維持させた後、熱処理を終了する1段階の熱処理方法である。
A comparison of the heat treatment process of the present invention with the conventional method is as follows.
Conventionally, a two-step heat treatment method in which solution treatment is performed in a high temperature region (1000 to 1200 ° C.), then water cooling is performed to room temperature (50 ° C./second or more), and aging treatment is performed in a medium temperature region (700 to 900 ° C.). Apply.
On the other hand, the present invention is a one-stage heat treatment method in which, after solution treatment, immediately cooled to an intermediate temperature range, maintained at the aging treatment temperature, and then the heat treatment is terminated.

図2Aは、本発明による熱処理工程を示す図表であり、図2bは、図2aの工程による微細組織の変化を概念的に説明するための図面である。
ここで、熱処理温度領域および熱処理時間は、熱処理が遂行される代表的な条件を例示しただけであって、本発明の範囲を限定するものではない。この際、対象素材にはニッケル基合金NIMONIC263圧延材を使用した。
FIG. 2A is a chart showing a heat treatment process according to the present invention, and FIG. 2b is a diagram for conceptually explaining a change in microstructure by the process of FIG. 2a.
Here, the heat treatment temperature region and the heat treatment time merely exemplify typical conditions for performing the heat treatment, and do not limit the scope of the present invention. At this time, a nickel base alloy NIMONIC 263 rolled material was used as the target material.

図2Aおよび図2Bを参照して説明すると、本発明の熱処理方法は、溶体化処理段階(a段階)、徐冷段階(b〜c段階)、時効処理段階(d段階)および空冷段階に区分される。
つまり、まず、溶体化処理を行うために、高温領域である1000〜1200℃で溶体化処理時間、例えば、5分以上維持する。
その後、時効処理温度(700〜900℃)である中温領域まで1〜15℃/分の速度で徐冷する。
続いて、時効処理温度である700〜900℃で時効処理時間、例えば、5時間以上維持した後、空冷して熱処理を終結する。
Referring to FIGS. 2A and 2B, the heat treatment method of the present invention is divided into a solution treatment stage (a stage), a slow cooling stage (bc stage), an aging treatment stage (d stage), and an air cooling stage. Is done.
That is, first, in order to perform the solution treatment, the solution treatment time is maintained at 1000 to 1200 ° C. which is a high temperature region, for example, 5 minutes or more.
Then, it is gradually cooled at a rate of 1 to 15 ° C./min to an intermediate temperature range that is an aging treatment temperature (700 to 900 ° C.).
Subsequently, after maintaining the aging treatment temperature at 700 to 900 ° C. which is an aging treatment temperature, for example, 5 hours or more, the heat treatment is terminated by air cooling.

溶体化段階は、本発明の目的に一致して、前記合金で溶体化処理が十分に起きる、つまり、素材内の炭化物および γ′析出相を十分に溶解、固溶させるが、結晶粒成長は発生しない程度の溶体化処理時間の間に進行される。
この際、a段階のように溶体化処理により、素材の粒界は平坦な形状を有する平坦な粒界(20)である。
In the solution treatment step, in accordance with the object of the present invention, the solution treatment sufficiently occurs in the alloy, that is, the carbide and γ ′ precipitation phase in the material are sufficiently dissolved and dissolved, but the grain growth is It proceeds during the solution treatment time to the extent that it does not occur.
At this time, the grain boundary of the material is a flat grain boundary (20) having a flat shape by the solution treatment as in step a.

波形粒界は、中温領域まで1〜15℃/分で徐冷する過程で形成され始める。波形粒界は、b段階のように部分的に波形の形態を見える波形粒界(22)が現れる。これを徐冷の初期段階という。
この際、徐冷の初期段階の波形粒界(22)は振幅と周期が完全に発達していない状態である(これを便宜上、不完全な波形粒界という)。
The corrugated grain boundary starts to be formed in the process of slow cooling at 1 to 15 ° C./min to the intermediate temperature region. As for the wavy grain boundary, a wavy grain boundary (22) in which the shape of the waveform is partially visible as in the b stage appears. This is called the initial stage of slow cooling.
At this time, the corrugated grain boundary (22) in the initial stage of slow cooling is in a state where the amplitude and period are not fully developed (this is referred to as an incomplete corrugated grain boundary for convenience).

一方、c段階では、不完全な波形粒界(22)は続いて形成されており、一部は成長して安定な波形の形態を現わす完全な波形粒界(24)に変移される。これを徐冷の末期段階という。
つまり、徐冷の末期段階では、まだ完全に発達していない不完全な波形粒界(22)と、成長して完全に発達した完全な波形粒界(24)、そして、まだ波形の形態が現れない一部平坦な粒界(20)が共存する。
この際、不完全な波形粒界(22)と完全な波形粒界(24)に板状の炭化物(30)が析出され始め、結晶粒には析出硬化相 γ′が生成され始める。板状の炭化物(30)が波形粒界(22、24)に接する部分は、一つの結晶粒に整合され、残部は不整合される。
On the other hand, in the c stage, an incomplete corrugated grain boundary (22) is subsequently formed, and a part of the grain boundary is grown to a complete corrugated grain boundary (24) showing a stable corrugated form. This is called the final stage of slow cooling.
In other words, in the final stage of slow cooling, an incomplete corrugated grain boundary (22) that has not yet fully developed, a complete corrugated grain boundary (24) that has grown and fully developed, and the form of the corrugation is still A partially flat grain boundary (20) that does not appear coexists.
At this time, the plate-like carbide (30) begins to precipitate at the incomplete corrugated grain boundary (22) and the complete corrugated grain boundary (24), and the precipitation hardening phase γ 'begins to be generated in the crystal grain. The portion where the plate-like carbide (30) is in contact with the corrugated grain boundary (22, 24) is aligned with one crystal grain, and the remainder is not aligned.

徐冷段階を経て、すぐに時効処理段階が進行されから一定時間が経過すると、d段階のように波形粒界は、成長して完全な波形粒界(24)に大部分が変移して、このような完全な波形粒界(24)には、析出された炭化物(30)が成長して板状の炭化物(32)が形成される。
ここで成長された炭化物(32)は、炭化物が波形粒界(24)を構成する一つの結晶粒と完全な整合に取りながら、整合界面の反対側の結晶粒側へは不整合界面になりながら成長する。
この際、波形粒界そのものの結晶学的変体(variant)の変化により、界面エネルギーが相対的に高い炭化物と基地との不整合界面になる配列は、ジグザグ形態に交差される。
After a gradual cooling stage, when the aging process stage is started, a certain time has passed and the corrugated grain boundary grows as shown in the d stage, and largely changes to a complete corrugated grain boundary (24). At such a perfect corrugated grain boundary (24), the precipitated carbide (30) grows to form a plate-like carbide (32).
The carbide (32) grown here becomes a mismatch interface to the crystal grain side opposite to the matching interface while the carbide is perfectly aligned with one crystal grain constituting the corrugated grain boundary (24). Growing while.
At this time, due to the change in crystallographic variation of the corrugated grain boundary itself, the array that forms a mismatched interface between the carbide and the base having a relatively high interface energy is crossed in a zigzag form.

時効処理段階は、本発明の目的に一致して、前記合金の γ′析出相を基地内に均一に分布させ、炭化物を結晶粒界に成長させて、同一の時効処理温度区間で(700〜900℃)露出しても、組織上の変化がない程度で時効処理が十分に起こる時効処理時間の間に進行する。
この際、板状の炭化物(32)は完全な波形粒界(24)に安定して成長する。
In accordance with the object of the present invention, the aging treatment step is performed in such a manner that the γ ′ precipitation phase of the alloy is uniformly distributed in the matrix and the carbides are grown on the grain boundaries, and (700 to (900 ° C.) Even when exposed, the aging treatment proceeds sufficiently during the aging treatment time such that there is no change in the structure.
At this time, the plate-like carbide (32) grows stably at the complete corrugated grain boundary (24).

時効処理を完了した炭化物(32)は、板状の炭化物で、波形粒界(24)により互いに離れて配置される。
前記炭化物(32)は、同一な波形粒界(24)に生成されたとしても、それぞれの炭化物(32)は、互いに異なる結晶粒と整合を共有し、界面を形成して、結局、炭化物(32)の不整合界面が交差されてジグザグ形態に配列される。
The carbides (32) that have been subjected to the aging treatment are plate-like carbides and are arranged apart from each other by the corrugated grain boundaries (24).
Even if the carbides (32) are generated at the same corrugated grain boundary (24), the respective carbides (32) share alignment with different crystal grains to form an interface. 32) mismatched interfaces are crossed and arranged in a zigzag form.

要するに、平坦な粒界(20)から完全な波形粒界(24)へ変異するから、粒界そのものの界面エネルギーは非常に低くできるし、界面エネルギーが低い波形粒界の上に析出される炭化物(32)も、やはり密度が低くなり、安定した板状に成長して炭化物(32)の不整合界面エネルギーも顕著に低くなる。
これと共に、波形粒界そのものの結晶学的変体変化により、それぞれの炭化物の不整合な界面はジグザグ形態に交差して配列される。
In short, since it changes from a flat grain boundary (20) to a complete corrugated grain boundary (24), the interfacial energy of the grain boundary itself can be made very low, and carbides deposited on the corrugated grain boundary with low interfacial energy. (32) also has a low density, grows in a stable plate shape, and significantly reduces the mismatch interface energy of the carbide (32).
At the same time, due to the crystallographic transformation change of the corrugated grain boundary itself, the inconsistent interfaces of the respective carbides are arranged so as to intersect in a zigzag form.

本発明において、溶体化処理後、すぐに時効処理温度まで徐冷することにおいて、1〜15℃/分と限定した理由は、冷却速度が1℃/分未満である場合、高温で露出時間が長くなるから、結晶粒と析出硬化相γ′が粗大化され、基本的な機械特性が低下されるおそれがある。また、冷却速度が15℃/分を超過した場合は、結晶粒界が波形になるために十分な時間的余裕がなくなって、炭化物が析出されるから波形粒界を得ることができない。   In the present invention, the reason for limiting to 1 to 15 ° C./min in the slow cooling to the aging treatment temperature immediately after the solution treatment is that when the cooling rate is less than 1 ° C./min, the exposure time is high. Since the length becomes longer, the crystal grains and the precipitation hardening phase γ ′ are coarsened, and the basic mechanical properties may be deteriorated. Further, when the cooling rate exceeds 15 ° C./min, the crystal grain boundaries become corrugated, so there is no sufficient time margin, and carbide is precipitated, so that the corrugated grain boundaries cannot be obtained.

一方、溶体化処理後、その温度から室温までの温度領域の全範囲で、1〜15℃/分で徐冷する場合、γ′析出と高温安定性が十分ではなくて、そのままに素材を使用することができないし、別度の時効処理を行わなければならないから、時間および費用の負担が大きい。
万一、溶体化処理後、その温度から本発明の時効処理温度ではなく他の温度区間で、1〜15℃/分で徐冷する場合、波形粒界が発生しないことだけではなく、時効処理を再び行わなければならないといった問題が発生する。
On the other hand, after solution treatment, when slowly cooling at 1 to 15 ° C / min in the whole temperature range from that temperature to room temperature, γ 'precipitation and high temperature stability are not sufficient, and the raw material is used as it is It is not possible to do this, and another aging treatment must be performed, which is a heavy burden of time and money.
In the unlikely event that the solution is annealed at a temperature other than the aging treatment temperature of the present invention from 1 to 15 ° C./min from the temperature, not only does the grain boundary not occur, but also the aging treatment. The problem arises that must be done again.

なお、本発明で提示する徐冷段階を経た後に急冷処理を行って、また時効処理を行ったら、微細組織は上述したc段階で見える。
つまり、この段階では、不完全な波形粒界(22)と、完全な波形粒界(24)と、平坦な粒界(20)が共存する。
また、炭化物(30)が急冷されることにより過飽和されて、これを時効処理を行ったら、不完全な波形粒界(22)、完全な波形粒界(24)、それではなく平坦な粒界(20)にも炭化物が塊状形態に析出される。この場合は、本発明と比べて高い界面エネルギーを有する。
In addition, if a rapid cooling process is performed after passing through the slow cooling stage shown by this invention, and an aging process is performed, a fine structure will be visible at the above-mentioned c stage.
That is, at this stage, an imperfect corrugated grain boundary (22), a perfect corrugated grain boundary (24), and a flat grain boundary (20) coexist.
Further, when the carbide (30) is supersaturated by being rapidly cooled and subjected to an aging treatment, an incomplete corrugated grain boundary (22), a complete corrugated grain boundary (24), and a flat grain boundary (rather than that) Also in 20), carbides are precipitated in a massive form. In this case, the interfacial energy is higher than that of the present invention.

図3は、従来の熱処理方法により得られたNIMONIC263合金の微細組織を示す写真である。
ここで、下記の写真は、結晶粒界付近を拡大したものである。
熱処理は、1150℃/30分程度で溶体化処理を行って室温まで水冷(50℃/秒以上)した後、また800℃/8時間程度で時効処理を行い、空冷した。
図示されているように、従来の合金の微細組織は、直線形態の平坦な粒界と結晶粒界に顆粒状の小さな炭化物が高い密度に析出させることが分かる。この際、結晶粒大きいさは60〜70μmであることを確認した。
FIG. 3 is a photograph showing the microstructure of the NIMONIC 263 alloy obtained by a conventional heat treatment method.
Here, the following photograph is an enlargement of the vicinity of the crystal grain boundary.
In the heat treatment, solution treatment was performed at about 1150 ° C./30 minutes, water cooling to room temperature (50 ° C./second or more), aging treatment was performed at about 800 ° C./8 hours, and air cooling was performed.
As shown in the figure, it can be seen that in the microstructure of the conventional alloy, small granular carbides are precipitated at a high density at flat grain boundaries and crystal grain boundaries in a linear form. At this time, it was confirmed that the crystal grain size was 60 to 70 μm.

図4は、本発明の実施例による熱処理方法により得られたNIMONIC263合金の微細組織を示す写真である。
ここで、下記の写真は、結晶粒界付近を拡大したものである。
この際、つまり、熱処理は、1150℃/30分程度で溶体化処理を行い、すぐに時効処理温度である800℃まで10℃/分で徐冷した後、800℃温度で8時間維持した後、空冷した。
FIG. 4 is a photograph showing the microstructure of the NIMONIC 263 alloy obtained by the heat treatment method according to the embodiment of the present invention.
Here, the following photograph is an enlargement of the vicinity of the crystal grain boundary.
In this case, that is, after heat treatment is performed at about 1150 ° C./30 minutes, immediately cooled to 10 ° C./min to 800 ° C., which is an aging treatment temperature, and then maintained at 800 ° C. for 8 hours. Air-cooled.

図4によれば、本発明の実施例による微細組織は、波形粒界が良く発達されており、結晶粒界に、界面エネルギーが低い板状の炭化物が低い密度に析出されることが分かる。この際、結晶粒の大きさは、通常の熱処理により得られた組織と類似した70〜80μmであった。   According to FIG. 4, it can be seen that the microstructure according to the embodiment of the present invention has well-developed corrugated grain boundaries, and plate-like carbides having low interface energy are precipitated at a low density at the crystal grain boundaries. At this time, the size of the crystal grains was 70 to 80 μm similar to the structure obtained by ordinary heat treatment.

つぎに図3に示した従来の熱処理方法で製造された合金と、図4に示した本発明の製造方法で製造された合金の特性について検証する。
表1はそれぞれの合金を常温で引張試験を実施した試験結果である。
Next, the characteristics of the alloy manufactured by the conventional heat treatment method shown in FIG. 3 and the alloy manufactured by the manufacturing method of the present invention shown in FIG. 4 will be verified.
Table 1 shows test results obtained by performing a tensile test on each alloy at room temperature.

表1を見て分かるように、本発明の合金は、従来の合金に比べて降伏および引張強度は、類似な水準を示している。
しかしながら、延性は従来の合金の延伸率23.3%から38.1%程に、非常な水準に増加されることが分かる。
As can be seen from Table 1, the alloys of the present invention show similar levels of yield and tensile strength compared to conventional alloys.
However, it can be seen that the ductility is increased to a very high level, from 23.3% to 38.1% in the conventional alloy.

図5および図6は、ぞれぞれ従来の熱処理方法および本発明の熱処理方法により得られたNIMONIC263合金の常温引張試験後、波面を示す写真である。
この際、熱処理は、前記で説明した通りである。
図示されているように、従来の合金は、図5のように粒界面が特別な塑性変形がなしに脆弱に分離されて破断されたことを確認することができる。
FIG. 5 and FIG. 6 are photographs showing wave fronts after a normal temperature tensile test of a NIMONIC 263 alloy obtained by the conventional heat treatment method and the heat treatment method of the present invention, respectively.
At this time, the heat treatment is as described above.
As shown in FIG. 5, the conventional alloy can confirm that the grain interface is fragilely separated and fractured without any special plastic deformation as shown in FIG.

本発明の合金は、図6のように波形粒界面にディンプル(dimple)および剪断跡などが観察された。
これは、本発明の合金は、破断直前まで十分な塑性変形を経て破断されることが分かる。
即ち、本発明の合金は、結晶粒界と基地との結合力が従来の合金に比べて、相対的に高いということを意味する。
このような結果は、表1での延性の増加をもたらす要因中の一つで判断することができる。
In the alloy of the present invention, dimples and shear marks were observed at the corrugated grain interface as shown in FIG.
This shows that the alloy of the present invention is ruptured through sufficient plastic deformation until just before the rupture.
That is, the alloy of the present invention means that the bonding force between the crystal grain boundary and the base is relatively higher than that of the conventional alloy.
Such a result can be judged by one of the factors causing the increase in ductility in Table 1.

具体的には、本発明の合金で時効処理を完了した炭化物(32)は、板状の炭化物で、安定な波形粒界の(24)上に、互いに離れて配置される。
炭化物(32)は、波形粒界(24)を構成する二つの結晶粒中、一つの結晶粒の方向のみに成長して、一つの方向のみに配置される不整合界面配列ではなく、二つの結晶粒方向にそれぞれ交代でジグザグ形態に形成される(4a、4b)。
これにより、前記のように波形粒界(24)形成により炭化物(32)特性も、やはり粒界損傷抵抗性に有利に変化される。
Specifically, the carbide (32) that has been subjected to the aging treatment with the alloy of the present invention is a plate-like carbide, and is disposed apart from each other on the stable corrugated grain boundary (24).
The carbide (32) grows only in the direction of one crystal grain in the two crystal grains constituting the corrugated grain boundary (24), and is not an inconsistent interface array arranged only in one direction. Zigzags are formed alternately in the crystal grain direction (4a, 4b).
Thereby, as described above, the formation of the corrugated grain boundary (24) also advantageously changes the carbide (32) characteristics to the grain boundary damage resistance.

つまり、粒界空洞(cavity)或いは亀裂に主要生成位置を提供する炭化物(32)と基地との不整合された界面の密度が低くなり、エネルギーが安定されて粒界割れ生成速度が遅くなる。亀裂が生じたとしても交差して配列された不整合界面により、亀裂合体を通す伝播速度が遅延されて、破断直前まで十分な塑性変形が現れる。   That is, the density of the mismatched interface between the carbide (32) providing the main generation position for the grain boundary cavities or cracks and the matrix is lowered, the energy is stabilized, and the grain boundary crack generation rate is reduced. Even if a crack occurs, the misalignment interface arranged in a crossing manner delays the propagation speed through the crack coalescence, and sufficient plastic deformation appears until just before the fracture.

図7Aおよび図7Bは、従来の熱処理方法および本発明の熱処理方法により得られたNIMONIC263合金を、それぞれ760℃/295MPAおよび815℃/180MPAの条件でクリープ試験を行った結果を示すグラフである。   FIG. 7A and FIG. 7B are graphs showing the results of performing a creep test on the NIMONIC 263 alloy obtained by the conventional heat treatment method and the heat treatment method of the present invention under the conditions of 760 ° C./295 MPA and 815 ° C./180 MPA, respectively.

図7Aおよび図7Bを参照すれば、試験条件と関係なく、本発明の熱処理がはるかに優れたクリープ特性を見せていることを確認した。
具体的には、760℃/295MPaの条件で試験を行った場合に、クリープ時間が約129時間から約178時間に増加し、クリープひずみも約6%から約11%に増加した。
また、815℃/180MPaの条件で試験を行った場合には、クリープ時間が約181時間から約252時間に増加し、クリープひずみも約17%から約20%に増加した。
Referring to FIGS. 7A and 7B, it was confirmed that the heat treatment of the present invention exhibited much superior creep characteristics regardless of the test conditions.
Specifically, when the test was conducted at 760 ° C./295 MPa, the creep time increased from about 129 hours to about 178 hours, and the creep strain also increased from about 6% to about 11%.
Further, when the test was conducted under the condition of 815 ° C./180 MPa, the creep time increased from about 181 hours to about 252 hours, and the creep strain also increased from about 17% to about 20%.

以上、本発明は、好ましい実施例を挙げて詳細に説明したが、本発明は前記実施例に限定されなく、本発明の技術思想の範囲内に、当分野で通常の知識を有する者により、多様な変形が可能である。   The present invention has been described in detail with reference to the preferred embodiments. However, the present invention is not limited to the above-described embodiments, and within the scope of the technical idea of the present invention, those skilled in the art can Various modifications are possible.

Claims (7)

ニッケル基合金の製造、加工後の熱処理工程において、
高温領域で溶体化処理を行う段階と、
前記溶体化処理を行った後、すぐに時効処理のための中温領域まで1〜15℃/分で徐冷する段階と、
前記徐冷する段階後、すぐに前記時効処理のための中温領域で所定時間維持して時効処理を行う段階、および
前記時効処理後に空冷する段階を含む波形粒界のためのニッケル基合金の熱処理方法。
In the heat treatment process after manufacturing and processing nickel-base alloys,
Performing a solution treatment in a high temperature region;
Immediately after performing the solution treatment, gradually cooling at 1 to 15 ° C./min to an intermediate temperature region for aging treatment;
A heat treatment of a nickel-based alloy for corrugated grain boundaries, comprising a step of performing an aging treatment by maintaining for a predetermined time in a medium temperature region for the aging treatment immediately after the step of gradual cooling, and a step of air cooling after the aging treatment Method.
前記徐冷する段階は、
前記溶体化処理段階で形成された平坦な粒界の一部に不完全な波形粒界を形成する段階、および
前記不完全な波形粒界が安定な波形に成長し、前記平坦な粒界では不完全な波形が形成されており、前記波形粒界に板状の炭化物が析出され始める段階からなることを特徴とする請求項1に記載のニッケル基合金の熱処理方法。
The step of slow cooling comprises:
Forming an incomplete corrugated grain boundary in a part of the flat grain boundary formed in the solution treatment step; and the imperfect corrugated grain boundary grows in a stable waveform, 2. The heat treatment method for a nickel-base alloy according to claim 1, further comprising a step in which an incomplete corrugation is formed and a plate-like carbide starts to precipitate at the corrugated grain boundary.
前記時効処理段階であって、前記不完全な波形粒界は安定な波形に大部分転移されており、前記析出された炭化物は、前記波形粒界を構成するいずれかの結晶粒と整合に取りながら、反対側の結晶粒側へは板状に離れて成長して不整合界面になることを特徴とする請求項2に記載のニッケル基合金の熱処理方法。   In the aging treatment stage, the imperfect corrugated grain boundary is mostly transferred to a stable corrugated shape, and the precipitated carbide is aligned with any crystal grain constituting the corrugated grain boundary. However, the nickel-base alloy heat treatment method according to claim 2, wherein the crystal grain side on the opposite side grows away in a plate shape to form a mismatch interface. 前記溶体化処理は、1000〜1200℃で溶体化処理時間の間に進行して、前記時効処理は、700〜900℃で時効処理時間の間に進行することを特徴とする請求項1に記載の波形粒界のためのニッケル基合金の熱処理方法。   2. The solution treatment according to claim 1, wherein the solution treatment proceeds at a solution treatment time of 1000 to 1200 ° C., and the aging treatment proceeds at a temperature of 700 to 900 ° C. during the aging treatment time. Heat treatment method of nickel base alloy for corrugated grain boundaries. 波形の結晶粒界を含めて、前記結晶粒界に板状の炭化物が互いに離れて配置される波形粒界を有するニッケル基合金。   A nickel-based alloy having a corrugated grain boundary including a corrugated crystal grain boundary in which plate-like carbides are arranged apart from each other at the crystal grain boundary. 前記炭化物は、前記結晶粒界を構成するいずれかの結晶粒と整合界面になり、反対側の結晶粒へ成長して不整合界面になることを特徴とする請求項5に記載のニッケル基合金。   6. The nickel-base alloy according to claim 5, wherein the carbide becomes a matching interface with any one of the crystal grains constituting the crystal grain boundary, and grows to a crystal grain on the opposite side to become a mismatch interface. . 前記炭化物は、前記結晶粒界を構成する二つの結晶粒に対して、互いに異なる結晶粒の方向に交代で、不整合界面がジグザグ形態に配置されることを特徴とする請求項5に記載の波形粒界のためのニッケル基合金。   6. The carbide according to claim 5, wherein the carbides are alternately arranged in different crystal grain directions with respect to two crystal grains constituting the crystal grain boundary, and misaligned interfaces are arranged in a zigzag form. Nickel-based alloy for corrugated grain boundaries.
JP2009140142A 2008-06-16 2009-06-11 Heat treatment method for forming wavy grain boundary in nickel-based alloy, and alloy treated with the same Pending JP2009299187A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080056386A KR101007582B1 (en) 2008-06-16 2008-06-16 Method of heat treatment of Ni based superalloy for wave type grain-boundary and Ni based superalloy the same

Publications (1)

Publication Number Publication Date
JP2009299187A true JP2009299187A (en) 2009-12-24

Family

ID=41161336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009140142A Pending JP2009299187A (en) 2008-06-16 2009-06-11 Heat treatment method for forming wavy grain boundary in nickel-based alloy, and alloy treated with the same

Country Status (4)

Country Link
US (1) US20090308508A1 (en)
EP (1) EP2138601A1 (en)
JP (1) JP2009299187A (en)
KR (1) KR101007582B1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120324902A1 (en) * 2011-06-27 2012-12-27 General Electric Company Method of maintaining surface-related properties of gas turbine combustor components
CN102776455B (en) * 2012-08-17 2014-04-02 北京科技大学 Method for preparing high-stretching plasticity Ni (Bi) alloy by using isothermal heat treatment
CN102776415B (en) * 2012-08-17 2014-04-02 北京科技大学 Method for preparing high-tensile-ductility Ni (Bi) alloy
CN103422038B (en) * 2013-09-04 2015-04-08 上海康晟特种合金有限公司 Method for heat treatment of lining die sleeve of high-temperature copper alloy extruding machine
CN103556093B (en) * 2013-10-30 2015-08-12 西安航空动力股份有限公司 A kind of method improving GH4090 cold-strip cold forming capability
KR101593309B1 (en) 2014-06-16 2016-02-18 창원대학교 산학협력단 Method of heat treatment of heat resistant alloy containing tungsten for excellent creep property and heat resistant alloy the same
CN104152827B (en) * 2014-08-06 2016-03-23 华能国际电力股份有限公司 The thermal treatment process of a kind of cold rolling state ferronickel based high-temperature alloy grain-boundary strengthening
KR101626913B1 (en) 2014-12-03 2016-06-02 창원대학교 산학협력단 Method of thermo-mechanical treatment of heat-resistant alloy containing tungsten for enhancement of creep resistance and heat-resistant alloy the same
CN106756683B (en) * 2016-12-02 2018-08-14 西北工业大学 Heating means before a kind of deformation of GH4169 alloys
US10718042B2 (en) 2017-06-28 2020-07-21 United Technologies Corporation Method for heat treating components
KR102047326B1 (en) * 2018-02-05 2019-11-21 창원대학교 산학협력단 Method of heat treatment of ni-base superalloy containing niobium for excellent interfacial properties of grain boundaries and ni-base superalloy heat-treated thereby
GB2571280A (en) * 2018-02-22 2019-08-28 Rolls Royce Plc Method of manufacture
CN112522544B (en) * 2020-11-19 2022-02-01 中国科学院金属研究所 Grain boundary regulation and control method for improving weldability of cast high-temperature alloy and welding process
KR102507347B1 (en) * 2021-02-10 2023-03-07 창원대학교 산학협력단 Method of heat treatment for improving strength and ductility of additive manufactured superalloy
CN114875346B (en) * 2021-12-10 2023-05-30 中国科学院金属研究所 Heat treatment method for inhibiting precipitation of coarse grain boundary carbide of austenitic alloy
CN115927987A (en) * 2022-12-29 2023-04-07 北京钢研高纳科技股份有限公司 Heat treatment method of high-temperature alloy disc shaft type forge piece and disc shaft type forge piece manufactured by same
CN116065109B (en) * 2023-03-03 2023-06-20 北京钢研高纳科技股份有限公司 Heat treatment process of nickel-based superalloy difficult to deform and forge piece

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5039620A (en) * 1973-08-13 1975-04-11
JPS63162846A (en) * 1986-12-19 1988-07-06 ベー・ベー・ツエー・ブラウン・ボヴエリ・アクチエンゲゼルシヤフト Method for enhancing ductility of work composed of oxide dispersed and hardened nickel base superalloy
JPH04210457A (en) * 1990-12-11 1992-07-31 Japan Steel Works Ltd:The Manufacture of fe-ni base precipitation hardened superalloy
JPH0711404A (en) * 1993-06-29 1995-01-13 Sumitomo Metal Ind Ltd Production of ni-base alloy having intergranular fracture resistance
JPH07216520A (en) * 1993-11-10 1995-08-15 United Technol Corp <Utc> Production of cracking-resistant high-strength superalloy article
JPH09170016A (en) * 1995-11-17 1997-06-30 Abb Manag Ag Production of high-temperature-stable object made of in706 type iron/nickel super alloy
JPH10237609A (en) * 1997-02-24 1998-09-08 Japan Steel Works Ltd:The Production of precipitation strengthening nickel-iron-base superalloy
JP2005314728A (en) * 2004-04-27 2005-11-10 Daido Steel Co Ltd METHOD FOR PRODUCING LOW THERMAL EXPANSION Ni BASED SUPERALLOY
JP2007510055A (en) * 2003-10-06 2007-04-19 エイティーアイ・プロパティーズ・インコーポレーテッド Nickel base alloy and heat treatment method of nickel base alloy

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3390023A (en) * 1965-02-04 1968-06-25 North American Rockwell Method of heat treating age-hardenable alloys
US4708750A (en) * 1985-12-23 1987-11-24 United Technologies Corporation Thermal treatment of wrought, nickel base superalloys in conjunction with high energy hole drilling
DE3813157A1 (en) * 1987-05-27 1988-12-15 Bbc Brown Boveri & Cie Method for bonding and/or repairing component parts made of an oxide dispersion-hardened nickel-based superalloy in the zone-annealed state of coarse-grained, longitudinally oriented column crystals
JP3281685B2 (en) * 1993-08-26 2002-05-13 三菱重工業株式会社 Hot bolt material for steam turbine
DE19645186A1 (en) * 1996-11-02 1998-05-07 Asea Brown Boveri Heat treatment process for material bodies made of a highly heat-resistant iron-nickel superalloy as well as heat-treated material bodies
JP3246377B2 (en) 1997-01-23 2002-01-15 三菱マテリアル株式会社 Manufacturing method of columnar crystal Ni-base heat-resistant alloy large casting or turbine blade
KR100250810B1 (en) 1997-09-05 2000-04-01 이종훈 Annealing process of ni-base alloy for corrosion resistance improvement
JP4780431B2 (en) 2001-04-05 2011-09-28 大同特殊鋼株式会社 High hardness and high corrosion resistance Ni-base alloy
KR100526690B1 (en) * 2003-07-01 2005-11-08 한국기계연구원 Method for Manufacturing Parts Consisted of Two Types of Ni-Based Superalloys
JP4830466B2 (en) 2005-01-19 2011-12-07 大同特殊鋼株式会社 Heat-resistant alloy for exhaust valves that can withstand use at 900 ° C and exhaust valves using the alloys

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5039620A (en) * 1973-08-13 1975-04-11
JPS63162846A (en) * 1986-12-19 1988-07-06 ベー・ベー・ツエー・ブラウン・ボヴエリ・アクチエンゲゼルシヤフト Method for enhancing ductility of work composed of oxide dispersed and hardened nickel base superalloy
JPH04210457A (en) * 1990-12-11 1992-07-31 Japan Steel Works Ltd:The Manufacture of fe-ni base precipitation hardened superalloy
JPH0711404A (en) * 1993-06-29 1995-01-13 Sumitomo Metal Ind Ltd Production of ni-base alloy having intergranular fracture resistance
JPH07216520A (en) * 1993-11-10 1995-08-15 United Technol Corp <Utc> Production of cracking-resistant high-strength superalloy article
JPH09170016A (en) * 1995-11-17 1997-06-30 Abb Manag Ag Production of high-temperature-stable object made of in706 type iron/nickel super alloy
JPH10237609A (en) * 1997-02-24 1998-09-08 Japan Steel Works Ltd:The Production of precipitation strengthening nickel-iron-base superalloy
JP2007510055A (en) * 2003-10-06 2007-04-19 エイティーアイ・プロパティーズ・インコーポレーテッド Nickel base alloy and heat treatment method of nickel base alloy
JP2005314728A (en) * 2004-04-27 2005-11-10 Daido Steel Co Ltd METHOD FOR PRODUCING LOW THERMAL EXPANSION Ni BASED SUPERALLOY

Also Published As

Publication number Publication date
EP2138601A1 (en) 2009-12-30
US20090308508A1 (en) 2009-12-17
KR101007582B1 (en) 2011-01-12
KR20090130663A (en) 2009-12-24

Similar Documents

Publication Publication Date Title
JP2009299187A (en) Heat treatment method for forming wavy grain boundary in nickel-based alloy, and alloy treated with the same
CN105642890B (en) Method for manufacturing a component using an additive manufacturing process
JP5985754B2 (en) Ni-base alloy product and manufacturing method thereof
JP2007197830A (en) Local heat treatment for improved fatigue resistance in turbine component
JPH0457417B2 (en)
JP2007510055A (en) Nickel base alloy and heat treatment method of nickel base alloy
EP2530181B1 (en) Components and processes of producing components with regions having different grain structures
CN104975248B (en) Solution treatment method of third generation nickel-base single crystal high temperature alloy
JP5393011B2 (en) Method for heat treating a nickel-base superalloy
JP2009114501A (en) Nickel-based single-crystal alloy
KR20200036082A (en) Method of heat treatment of additive manufactured ni-base superalloy containing niobium for enhancing interfacial properties of grain boundaries and ni-base superalloy heat-treated thereby
RU2567968C2 (en) Production of nickel superalloys of inconel 718-type
KR20150017090A (en) Method of thermo-mechanical treatment of heat-resistant alloy and heat-resistant alloy the same
US8906174B2 (en) Ni-base alloy and method of producing the same
KR20150017089A (en) Method of heat treatment of heat-resistant alloy for excellent mechanical properties at very high temperature and heat-resistant alloy the same
JP2013133505A (en) Heat treatment method of nickel base single crystal superalloy and nickel base single crystal superalloy
KR102047326B1 (en) Method of heat treatment of ni-base superalloy containing niobium for excellent interfacial properties of grain boundaries and ni-base superalloy heat-treated thereby
JP2008069379A (en) Ni SINGLE CRYSTAL SUPERALLOY, ITS MANUFACTURING METHOD AND HEAT-RESISTANT TURBINE PART USING THE SAME
US20190381559A1 (en) PROCESS FOR PRODUCING A FORGED COMPONENT FROM A TiAl ALLOY AND COMPONENT PRODUCED THEREBY
KR101593309B1 (en) Method of heat treatment of heat resistant alloy containing tungsten for excellent creep property and heat resistant alloy the same
KR20150081375A (en) Method of heat treatment of heat-resistant alloy for excellent resistance to intergranular crack and heat-resistant alloy the same
JP7255963B1 (en) Method for manufacturing Ni alloy member
Yu et al. Alloy Design and Development of a Novel Ni-Co-Based Superalloy GH4251 Check for updates
JPH0633701A (en) Single crystal moving blade for gas turbine and production thereof
JP2004197223A (en) Iridium based superalloy and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120806

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120911