KR102507347B1 - Method of heat treatment for improving strength and ductility of additive manufactured superalloy - Google Patents

Method of heat treatment for improving strength and ductility of additive manufactured superalloy Download PDF

Info

Publication number
KR102507347B1
KR102507347B1 KR1020210019422A KR20210019422A KR102507347B1 KR 102507347 B1 KR102507347 B1 KR 102507347B1 KR 1020210019422 A KR1020210019422 A KR 1020210019422A KR 20210019422 A KR20210019422 A KR 20210019422A KR 102507347 B1 KR102507347 B1 KR 102507347B1
Authority
KR
South Korea
Prior art keywords
heat treatment
alloy
nickel
superalloy
ductility
Prior art date
Application number
KR1020210019422A
Other languages
Korean (ko)
Other versions
KR20220115420A (en
Inventor
홍현욱
김태영
김치원
이지원
Original Assignee
창원대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 창원대학교 산학협력단 filed Critical 창원대학교 산학협력단
Priority to KR1020210019422A priority Critical patent/KR102507347B1/en
Priority to PCT/KR2021/012726 priority patent/WO2022173082A1/en
Publication of KR20220115420A publication Critical patent/KR20220115420A/en
Application granted granted Critical
Publication of KR102507347B1 publication Critical patent/KR102507347B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

본 발명은 적층 가공법(additive manufacturing, AM)으로 제조된 니오븀(Nb) 함유 니켈기 초내열합금을 1010 ~ 1050℃에서 5분 이상 용체화 처리하는 단계, (b) 상기 니오븀(Nb) 함유 니켈기 초내열합금을 700℃까지 20℃/분 이상으로 냉각한 후, 700℃에서 4 ~ 12시간 동안 유지해 시효처리 하는 단계, 및 (c) 상기 니오븀(Nb) 함유 니켈기 초내열합금을 공냉하는 단계를 포함하는, 적층 가공법으로 제조된 니켈기 초내열합금의 강도 및 연성 향상을 위한 열처리 방법 및 이에 의해 열처리된 니켈기 초내열합금에 관한 것이다.The present invention includes the steps of solution heat treating a niobium (Nb)-containing nickel-based heat-resistant superalloy manufactured by additive manufacturing (AM) at 1010 to 1050 ° C. for 5 minutes or more, (b) the niobium (Nb)-containing nickel group After cooling the superheat-resistant alloy to 700°C at 20°C/min or more, aging the superalloy by holding it at 700°C for 4 to 12 hours, and (c) air-cooling the niobium (Nb)-containing nickel-based superheat-resistant alloy. It relates to a heat treatment method for improving the strength and ductility of a nickel-base superalloy manufactured by additive manufacturing, and a nickel-base superalloy heat-treated thereby.

Description

적층제조된 초내열합금의 강도 및 연성 향상을 위한 열처리 방법{METHOD OF HEAT TREATMENT FOR IMPROVING STRENGTH AND DUCTILITY OF ADDITIVE MANUFACTURED SUPERALLOY}Heat treatment method for improving strength and ductility of additively manufactured superalloys

본 발명은 적층 가공(additive manufacturing, AM)을 통해 제조된 니켈기 초내열합금의 강도와 연성을 향상시키기 위한 열처리 방법 및 이에 의해 열처리된 니켈기 초내열합금에 대한 것이다.The present invention relates to a heat treatment method for improving strength and ductility of a nickel-based heat-resistant superalloy manufactured through additive manufacturing (AM) and a nickel-based heat-resistant superalloy heat-treated thereby.

항공/방산 분야 등에서 고온용 부품의 소재로 사용되는 니켈기 초내열합금인 Alloy 625 (Ni-21.5Cr-2.5Fe-9Mo-3.5Nb-0.2Ti-0.2Al-0.06C)의 경우 4차 산업 혁명에 발맞추어 3D 프린팅을 이용한 적층제조가 활발히 적용되고 있다. In the case of Alloy 625 (Ni-21.5Cr-2.5Fe-9Mo-3.5Nb-0.2Ti-0.2Al-0.06C), a nickel-base superalloy used as a material for high-temperature parts in the aerospace/defense field, the fourth industrial revolution In line with this, additive manufacturing using 3D printing is being actively applied.

이때, 적층제조된 니켈기 초내열합금의 경우 열변형에 의해 잔류응력이 과다하게 축적되며 특정 결정학적 방향으로 배향되는 미세조직이 나타나므로 기계적 특성에 있어 취약한 경향을 보인다. 아울러, 높은 밀도의 전위와 편석들도 잔존하기 때문에 후속 열처리를 통해 미세조직 안정화를 통한 기계적 특성의 건전성 확보가 요구된다. At this time, in the case of the laminated nickel-base superalloy, residual stress is excessively accumulated due to thermal deformation and a microstructure oriented in a specific crystallographic direction appears, showing a tendency to be weak in mechanical properties. In addition, since high-density dislocations and segregation also remain, it is required to secure the soundness of mechanical properties through microstructure stabilization through subsequent heat treatment.

하지만, 적층제조를 통해 제작된 초내열합금의 경우 적정 미세조직 및 물성치 달성을 위한 열처리 조건이 확립되어 있지 않아 통상의 제조방법(주조 후 압연 혹은 단조)에 의해 제조된 초내열합금에 사용되는 표준 열처리 조건들을 사실상 그대로 적용하고 있는 실정이다. However, in the case of superalloys manufactured through additive manufacturing, heat treatment conditions for achieving proper microstructure and physical properties have not been established, so the standard used for superalloys manufactured by conventional manufacturing methods (rolling or forging after casting) Heat treatment conditions are practically applied as they are.

따라서, 적층제조된 초내열합금에 대해 경제적이면서 강도와 연성을 함께 향상시킬 수 있는 최적 열처리 방법의 개발이 요구되고 있다.Therefore, there is a demand for development of an optimal heat treatment method capable of improving both strength and ductility while being economical for the laminated heat-resistant superalloy.

미국 공개특허 제2016-0138400호 (공개일: 2016. 05. 19.)US Patent Publication No. 2016-0138400 (published date: 2016. 05. 19.) 한국 공개특허 제10-2015-0116632호 (공개일: 2015. 10. 16.)Korean Patent Publication No. 10-2015-0116632 (published date: 2015. 10. 16.)

본 발명이 해결하고자 하는 기술적 과제는, 초내열합금의 적층제조 품질 안정화에 기여하기 위해, 적층제조된 니켈기 초내열합금에 안정한 미세조직 및 우수한 강도와 연성을 부여할 수 있는 맞춤형 후속 열처리 방법 및 이에 의해 열처리된 니켈기 초내열합금을 제공하는 것이다.The technical problem to be solved by the present invention is to contribute to the stabilization of the additive manufacturing quality of the superalloy, a customized post-heat treatment method capable of imparting a stable microstructure and excellent strength and ductility to an additively manufactured nickel-base superalloy, and Accordingly, a heat-treated nickel-base superalloy is provided.

상기 기술적 과제를 달성하기 위해, 본 발명은 (a) 적층 가공법(additive manufacturing, AM)으로 제조된 니오븀(Nb) 함유 니켈기 초내열합금을 1010 ~ 1050℃에서 5분 이상 용체화 처리하는 단계, (b) 상기 니오븀(Nb) 함유 니켈기 초내열합금을 700℃까지 20℃/분 이상으로 냉각한 후, 700℃에서 4 ~ 12시간 동안 유지해 시효처리 하는 단계, 및 (c) 상기 니오븀(Nb) 함유 니켈기 초내열합금을 공냉하는 단계를 포함하는, 적층 가공법으로 제조된 니켈기 초내열합금의 강도 및 연성 향상을 위한 열처리 방법을 제안한다.In order to achieve the above technical problem, the present invention provides (a) solution heat treatment of a niobium (Nb)-containing nickel-based superalloy manufactured by additive manufacturing (AM) at 1010 to 1050 ° C. for 5 minutes or more; (b) aging the niobium (Nb)-containing nickel-based superalloy by cooling it to 700°C at a rate of 20°C/min or more, and then holding it at 700°C for 4 to 12 hours, and (c) the niobium (Nb) ) A heat treatment method for improving the strength and ductility of a nickel-based superalloy manufactured by additive manufacturing, including air-cooling the containing nickel-base superalloy, is proposed.

또한, 상기 적층 가공법으로 제조된 니오븀(Nb) 함유 니켈기 초내열합금은 분말 적층 용융 방식(Powder Bed Fusion, PBF)을 이용해 제조하는 것을 특징으로 하는 적층 가공법으로 제조된 니켈기 초내열합금의 열처리 방법을 제안한다.In addition, the niobium (Nb)-containing nickel-based heat-resistant superalloy manufactured by the additive manufacturing method is prepared using a powder bed fusion (PBF) heat treatment of the nickel-based superalloy manufactured by the additive manufacturing method, characterized in that suggest a way

또한, 상기 적층 가공법으로 제조된 니오븀(Nb) 함유 니켈기 초내열합금은 고에너지 직접 조사 방식(Direct Energy Deposition, DED)으로 제조된 것을 특징으로 하는 적층 가공법으로 제조된 니켈기 초내열합금의 열처리 방법을 제안한다.In addition, the niobium (Nb)-containing nickel-based heat-resistant superalloy produced by the additive manufacturing method is produced by a high-energy direct irradiation method (Direct Energy Deposition, DED), characterized in that the heat treatment of the nickel-based heat-resistant superalloy produced by the additive manufacturing method suggest a way

또한, 본 발명에 따른 니켈기 초내열합금의 열처리 방법의 바람직한 일례로서, (a) 레이저 용융법(Selective Laser Meling, SLM)으로 제조된 Alloy 625 (Ni-21.5Cr-2.5Fe-9Mo-3.5Nb-0.2Ti-0.2Al-0.06C) 합금을 1038℃에서 1시간 동안 용체화 처리하는 단계, (b) 상기 용체화 처리한 Alloy 625 합금을 700℃까지 25℃/분으로 냉각한 후, 700℃에서 6시간 동안 유지해 시효처리 하는 단계, 및 (c) 상기 니오븀(Nb) 함유 니켈기 초내열합금을 공냉하는 단계를 포함하는, 적층 가공법으로 제조된 니켈기 초내열합금의 강도 및 연성 향상을 위한 열처리 방법을 제안한다. In addition, as a preferred example of a heat treatment method for a nickel-based superalloy according to the present invention, (a) Alloy 625 (Ni-21.5Cr-2.5Fe-9Mo-3.5Nb) manufactured by a laser melting method (Selective Laser Meling, SLM) -0.2Ti-0.2Al-0.06C) solution heat treatment of the alloy at 1038 ° C for 1 hour, (b) cooling the solution heat treated Alloy 625 alloy to 700 ° C at 25 ° C / min, then 700 ° C Aging by holding for 6 hours, and (c) air-cooling the niobium (Nb)-containing nickel-base superalloy for improving strength and ductility of a nickel-base superalloy manufactured by additive manufacturing Heat treatment method is proposed.

그리고, 본 발명은 발명의 다른 측면에서 상기 방법에 따라 열처리된 니켈기 초내열합금을 제안한다. In addition, the present invention proposes a nickel-base heat-resistant superalloy heat-treated according to the above method in another aspect of the invention.

본 발명에 따른 적층제조된 니켈기 초내열합금을 대상으로 하는 후속 열처리 방법은, 적층제조된 Alloy 625 합금의 강도와 연성을 동시에 향상시킬 수 있을 뿐만 아니라, 용체화 처리 직후 일정 값 이상의 냉각 속도로 특정 온도까지 냉각한 후 해당 온도에서 시효처리를 실시함으로써 열처리 공정의 경제성도 확보할 수 있다. The post-heat treatment method for the nickel-base superalloy manufactured according to the present invention can simultaneously improve the strength and ductility of the laminated Alloy 625 alloy, as well as increase the cooling rate above a certain value immediately after the solution heat treatment. After cooling to a specific temperature, by performing aging treatment at that temperature, the economic feasibility of the heat treatment process can also be secured.

도 1은 본 발명에 따른 열처리 방법의 각 단계를 순차적으로 도시한 공정 흐름도이다.
도 2는 본 발명에 따른 열처리 방법의 경로를 보여주는 모식도이다.
도 3a는 본원 실시예에서 용체화 처리한 Alloy 625 합금의 주사전자현미경(SEM) 이미지이다.
도 3b는 본원 실시예에서 용체화 처리한 Alloy 625 합금의 전자후방산란회절(EBSD) 이미지이다.
1 is a process flow diagram sequentially showing each step of a heat treatment method according to the present invention.
2 is a schematic diagram showing a path of a heat treatment method according to the present invention.
Figure 3a is a scanning electron microscope (SEM) image of the Alloy 625 alloy subjected to solution heat treatment in the present example.
Figure 3b is an electron backscatter diffraction (EBSD) image of the alloy 625 alloy subjected to solution heat treatment in the present example.

본 발명을 설명함에 있어서 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다.In describing the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description will be omitted.

본 발명의 개념에 따른 실시 예는 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있으므로 특정 실시 예들을 도면에 예시하고 본 명세서 또는 출원에 상세하게 설명하고자 한다. 그러나 이는 본 발명의 개념에 따른 실시 예를 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Embodiments according to the concept of the present invention may be applied with various changes and may have various forms, so specific embodiments are illustrated in the drawings and described in detail in the present specification or application. However, this is not intended to limit the embodiments according to the concept of the present invention to a specific disclosed form, and should be understood to include all changes, equivalents, or substitutes included in the spirit and technical scope of the present invention.

본 명세서에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Terms used in this specification are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this specification, terms such as "comprise" or "having" are intended to designate that the described feature, number, step, operation, component, part, or combination thereof exists, but one or more other features or numbers However, it should be understood that it does not preclude the presence or addition of steps, operations, components, parts, or combinations thereof.

이하, 본 발명을 상세히 설명하도록 한다.Hereinafter, the present invention will be described in detail.

도 1은 본 발명에 따른 적층제조된 초내열합금의 강도 및 연성 향상을 위한 열처리 방법의 각 단계를 순차적으로 도시한 공정 흐름도이고, 도 2는 본 발명에 따른 적층제조된 초내열합금의 강도 및 연성 향상을 위한 열처리 방법을 보여주는 열처리 프로파일의 모식도이다.1 is a process flow chart sequentially showing each step of a heat treatment method for improving the strength and ductility of a superheat-resistant superalloy manufactured according to the present invention, and FIG. 2 shows the strength and It is a schematic diagram of a heat treatment profile showing a heat treatment method for improving ductility.

도 1 및 도 2에 도시한 바와 같이, 본 발명에 따른 적층제조된 초내열합금의 강도 및 연성 향상을 위한 열처리 방법은 먼저 적층 가공법으로 제조된 Alloy 625 등의 니오븀(Nb) 함유 니켈기 초내열합금의 용체화 처리를 위하여 1010 ∼ 1050℃에서 5분 이상 유지한다(S100). As shown in FIGS. 1 and 2, the heat treatment method for improving the strength and ductility of the laminated superheat-resistant alloy according to the present invention is first made of alloy 625, etc. It is maintained at 1010 to 1050 ° C. for 5 minutes or more for solution treatment of the alloy (S100).

이때, 상기 적층 가공법으로 제조된 니오븀(Nb) 함유 니켈기 초내열합금은 ASTM(American Society for Testing and Materials) F42 및 ISO TC261(Additive Manufacturing)에 정의된 고에너지 직접 조사 방식(Direct Energy Deposition, DED) 또는 분말 적층 용융 방식(Powder Bed Fusion, PBF) 등에 의해 제조된 것일 수 있다.At this time, the niobium (Nb)-containing nickel-based heat-resistant superalloy manufactured by the additive manufacturing method is a high energy direct irradiation method (Direct Energy Deposition, DED) defined in ASTM (American Society for Testing and Materials) F42 and ISO TC261 (Additive Manufacturing) ) or powder bed fusion (PBF).

상기 DED 공법은 금속표면에 레이저를 조사하여 국부적으로 용해된 Pool을 구성함과 동시에 금속 분말을 공급하여 형상을 제조하는 공법(DMD, MMAAM, AFS, LENS, EBF 등)이며, 상기 PBF 공법은 파우더 챔버 내에서 높은 열에너지원(레이저 혹은 전자빔)을 이용하여 선택적으로 용해시켜 형상을 제조하는 공법(SLM, EBM 등)이다. The DED method is a method (DMD, MMAAM, AFS, LENS, EBF, etc.) that forms a locally dissolved pool by irradiating a metal surface with a laser and at the same time supplies metal powder to produce a shape, and the PBF method is a powder It is a method (SLM, EBM, etc.) that produces shapes by selectively melting them using a high heat energy source (laser or electron beam) in a chamber.

SLM 등의 적층 가공법을 통하여 제작된 Alloy 625 합금 등의 니켈기 초내열 합금은 적층 가공 공정 중 발생하는 반복되는 급열 급냉에 의한 과도한 잔류응력과 편석, 높은 전위밀도와 더불어 특정 방향으로 배향된 columnar 결정립 조직들로 인하여 단련재(wrought product)와 대비해 상당히 낮은 연신율을 나타낸다.Nickel-based superheat-resistant alloys such as Alloy 625 alloy manufactured through additive manufacturing methods such as SLM have excessive residual stress and segregation due to repeated rapid heating and quenching during the additive manufacturing process, high dislocation density, and columnar crystal grains oriented in a specific direction. Due to the structures, it exhibits a considerably lower elongation compared to the wrought product.

이에, 본 단계 (a)에서는 1010 ∼ 1050℃에서 5분 이상 용체화 열처리를 실시해 합금에 재결정을 발생시킴으로써, 적층 가공 중에 합금에 발생한 편석을 없애고 균일한 미세구조 유도한다. Therefore, in this step (a), solution heat treatment is performed at 1010 to 1050 ° C. for 5 minutes or more to cause recrystallization in the alloy, thereby eliminating segregation generated in the alloy during additive manufacturing and inducing a uniform microstructure.

본 단계 (a)에서 상기 용체화 처리 온도를 1010~1050℃로 한정한 이유는, 용체화 처리 온도가 1050℃를 초과할 경우에는 열처리 온도 상승에 따른 추가 실익이 없고 오히려 결정립 조대화가 심해져 열처리된 합금의 기계적 특성을 저하시킬 우려가 있으며, 용체화 처리 온도가 1010℃ 미만일 경우에는 재결정이 발생하지 않고, 방향성이 매우 강한(textured) columnar 결정립 조직이 적층 제조 이후 그대로 유지되어 기계적 특성이 크게 저하되고, 이방성(anisotropy)이 존재할 우려가 있기 때문이다. The reason why the solution heat treatment temperature is limited to 1010 to 1050 ° C. in this step (a) is that when the solution heat treatment temperature exceeds 1050 ° C., there is no additional benefit due to the increase in the heat treatment temperature, and rather, the grain coarsening is severe, so the heat treatment Recrystallization does not occur when the solution heat treatment temperature is less than 1010°C, and the textured columnar grain structure is maintained as it is after additive manufacturing, greatly degrading the mechanical properties. This is because there is a possibility that anisotropy may exist.

한편, 본 단계 (a)에서 용체화 처리시간은 적층 가공법에 의해 제조된 합금 중에서 탄화물을 충분히 용해하고 편석대를 제거하며, 아울러 결정립 성장이 적절히 발생하여 취약한 결정립계 면적을 줄일 수 있을 정도를 요구하며, 바람직하게는 5분 이상일 수 있다. On the other hand, in this step (a), the solution treatment time requires sufficient dissolution of carbides in the alloy produced by the additive manufacturing method, removal of segregation zones, and adequate grain growth to reduce the area of fragile grain boundaries. , preferably 5 minutes or longer.

다음으로, 본 발명에 따른 열처리 방법의 상기 단계 (b)에서는 이전 단계에서 용체화 처리한 니켈기 초내열합금을 시효처리하기 위해 용체화 처리 온도로부터 700℃까지 20℃/분 이상의 냉각속도로 냉각한 후, 700℃에서 4 ~ 12시간 동안 유지해 시효처리를 수행한다(S200). Next, in the step (b) of the heat treatment method according to the present invention, in order to age the nickel-base superalloy treated in the previous step, the temperature is cooled from the solution heat treatment temperature to 700 °C at a cooling rate of 20 °C/min or more. After that, aging treatment is performed by maintaining at 700 ° C. for 4 to 12 hours (S200).

이때, 상기 단계(a)에서 용체화 처리 완료 후에 상온으로 냉각하지 않고 용체화 처리 온도로부터 곧바로 700℃로 냉각한 후 시효 처리를 실시함으로써 공정의 경제성을 도모할 수 있다. At this time, after the completion of the solution heat treatment in the step (a), it is possible to promote the economic efficiency of the process by cooling to 700 ° C. immediately from the solution heat treatment temperature without cooling to room temperature and then performing the aging treatment.

본 단계 (b)에서는 700℃에서 4 ~ 12시간 동안 시효처리를 실시함으로써 니켈기 초내열합금에 강화상 γ″(Ni3Nb) 및 미세 탄화물을 석출시켜 합금의 강도 향상을 꾀할 수 있으며, 시효처리 온도인 700℃까지 20℃/min 이상의 냉각속도로 냉각시킴으로써 냉각 중 발생할 수 있는 결정립 및 γ″ 강화상의 조대화 방지할 수 있다. In this step (b), by performing aging treatment at 700 ° C for 4 to 12 hours, the strength of the alloy can be improved by precipitating the strengthening phase γ″ (Ni 3 Nb) and fine carbides in the nickel-based superheat-resistant alloy. By cooling at a cooling rate of 20°C/min or more to the processing temperature of 700°C, coarsening of crystal grains and γ″ reinforced phase that may occur during cooling can be prevented.

마지막으로, 본 발명에 따른 열처리 방법의 상기 단계 (c)에서는 상기 시효처리된 니오븀(Nb) 함유 니켈기 초내열합금을 공냉(약 100℃/분)하여 열처리를 종결한다(S300).Finally, in the step (c) of the heat treatment method according to the present invention, the aged niobium (Nb)-containing nickel-base heat-resistant superalloy is air-cooled (about 100° C./min) to terminate the heat treatment (S300).

시효처리 후 공냉을 해야 하는 이유는 적층 가공 중 발생한 잔류응력이 열처리 후에도 다 해소되지 못하였기 때문에 수냉을 하게 될 경우, 샘플의 변형이 발생하며, 로냉을 하게 될 경우 계속해서 진행되는 열처리 효과에 의하여 탄화물의 조대화가 발생하기 때문이다. The reason why air cooling is required after aging treatment is that the residual stress generated during additive manufacturing is not completely resolved even after heat treatment. When water cooling is performed, deformation of the sample occurs. This is because coarsening of carbides occurs.

전술한 본 발명에 따른 적층제조된 니켈기 초내열합금을 대상으로 하는 후속 열처리 방법은, 적층제조된 Alloy 625 합금의 강도와 연성을 동시에 향상시킬 수 있을 뿐만 아니라, 용체화 처리 직후 일정 값 이상의 냉각 속도로 특정 온도까지 냉각한 후 해당 온도에서 시효처리를 실시함으로써 열처리 공정의 경제성도 확보할 수 있다. The above-described post-heat treatment method for the nickel-based superheat-resistant alloy produced by the laminate according to the present invention can simultaneously improve the strength and ductility of the laminated Alloy 625 alloy, as well as cool to a certain value or more immediately after the solution heat treatment. After cooling to a specific temperature at a rate, by performing aging treatment at that temperature, the economic feasibility of the heat treatment process can also be secured.

이하, 실시예를 들어 본 발명에 대해 보다 상세하게 설명하기로 한다. Hereinafter, the present invention will be described in more detail by way of examples.

본 명세서에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 명세서의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.Embodiments according to the present specification may be modified in many different forms, and the scope of the present specification is not construed as being limited to the embodiments detailed below. The embodiments herein are provided to more completely explain the present specification to those skilled in the art.

<실시예><Example>

레이저 용융법(Selective Laser Meling, SLM)으로 제조한 Alloy 625 시편에 대해 아래 표 1에 기재된 열처리 조건에 따라 용체화 처리만을 실시하거나(비교예) 용체화 처리 및 시효처리를 실시했다(실시예).For Alloy 625 specimens prepared by the laser melting method (Selective Laser Meling, SLM), only solution heat treatment was performed (Comparative Example) or solution heat treatment and aging treatment were performed according to the heat treatment conditions shown in Table 1 below (Examples) .

< 표 1 >< Table 1 >

Figure 112021017382615-pat00001
Figure 112021017382615-pat00001

참고로, 본 실시예에서 최적의 용체화 처리 조건을 확립하기에 앞서 후보 조건은 870~1207℃ 수준의 온도 범위로 설정하였다. 상기 온도 범위에서 온도별 열처리를 실시한 결과, 1000℃ 이상의 온도에서 재결정이 발생하는 것으로 확인되며, 그 이상의 온도에서는 모두 동일한 경향으로 나타나는 것으로 확인되었다. 따라서, 효율성을 고려했을 때 1038℃/1hr 열처리 시 잔류응력 해소와 균질화 및 재결정 효과를 동시에 확보할 수 있을 것으로 기대되어 1038℃/1hr를 용체화 처리에 대한 최종 조건으로 선택하였다. For reference, prior to establishing the optimal solution heat treatment conditions in this embodiment, the candidate conditions were set to a temperature range of 870 to 1207 ° C. As a result of heat treatment by temperature in the above temperature range, it was confirmed that recrystallization occurred at a temperature of 1000 ° C. or higher, and it was confirmed that the same tendency appeared at all temperatures above that. Therefore, considering the efficiency, it is expected that residual stress relief, homogenization and recrystallization effects can be secured at the same time during heat treatment at 1038 ° C / 1 hr, and 1038 ° C / 1 hr was selected as the final condition for solution heat treatment.

도 3a는 용체화 처리한 Alloy 625 시편의 주사전자현미경(SEM) 이미지로서, 이를 참조하면 용체화 처리를 통해 합금 내에 전체적으로 균일하게 재결정이 발생한 것을 확인할 수 있다. 3a is a scanning electron microscope (SEM) image of a solution heat treated Alloy 625 specimen. Referring to this, it can be seen that recrystallization occurred uniformly throughout the alloy through the solution heat treatment.

또한, 도 3b는 용체화 처리한 Alloy 625 시편의 전자후방산란회절(electron backscatter diffraction, EBSD) 이미지로서, 도 3b를 통해서도 합금 시편 내에 재결정이 고르게 잘 발생한 것을 확인할 수 있으며, 재결정된 결정립의 평균 크기(average grain size, AGS)는 27 ㎛임을 확인할 수 있다. In addition, Figure 3b is an electron backscatter diffraction (EBSD) image of the alloy 625 specimen subjected to solution heat treatment, and it can be confirmed that recrystallization occurs evenly and well in the alloy specimen through Figure 3b, and the average size of the recrystallized crystal grains (average grain size, AGS) was confirmed to be 27 μm.

상기 표 1에 기재된 바와 같이, 1038℃/1hr 조건에서 용체화 처리만 실시한 시편(비교예)의 경우 인장 강도가 목표 기준 조건인 890MPa에 크게 못 미치는 849MPa인 것으로 확인되었는데, 이는 고온 열처리에 의한 강화상 γ″ 및 미세 탄화물의 용해로 인한 결과이다. As shown in Table 1 above, in the case of the specimen (comparative example) subjected to only solution heat treatment at 1038 ° C / 1 hr, it was confirmed that the tensile strength was 849 MPa, which was significantly less than the target reference condition of 890 MPa, which was strengthened by high-temperature heat treatment It is the result of phase γ″ and the dissolution of fine carbides.

반면, 주강화상 γ″ 및 미세 탄화물의 석출 유도를 위해 용체화 처리 후 추가적으로 700℃에서 6시간 동안 시효 열처리를 실시한 시편(실시예)은 표 1에 기재된 바와 같이 914MPa로 크게 향상된 인장 강도를 나타냈으며, 연신율 또한 두드러지게 향상된 것으로 확인되었다. On the other hand, as shown in Table 1, the specimen (Example) subjected to aging heat treatment at 700 ° C. for 6 hours after solution heat treatment in order to induce precipitation of γ″ cast image and fine carbides showed a significantly improved tensile strength of 914 MPa, as shown in Table 1. , it was confirmed that the elongation rate was also remarkably improved.

Claims (5)

(a) 레이저 용융법(Selective Laser Meling, SLM)으로 제조된 Alloy 625 (Ni-21.5Cr-2.5Fe-9Mo-3.5Nb-0.2Ti-0.2A1-0.06C) 합금을 1038℃에서 1시간 동안 용체화 처리하는 단계;
(b) 상기 용체화 처리한 Alloy 625 합금을 용체화 처리 온도로부터 곧바로 700℃까지 25℃/분으로 냉각한 후, 700℃에서 6시간 동안 유지해 시효처리 하는 단계; 및
(c) 상기 시효처리한 니오븀(Nb) 함유 니켈기 초내열합금을 공냉하는 단계;를 포함하는,
적층 가공법으로 제조된 니켈기 초내열합금의 강도 및 연성 향상을 위한 열처리 방법.
(a) Alloy 625 (Ni-21.5Cr-2.5Fe-9Mo-3.5Nb-0.2Ti-0.2A1-0.06C) alloy prepared by Selective Laser Meling (SLM) was melted at 1038℃ for 1 hour. embodied processing;
(b) cooling the solution heat-treated Alloy 625 alloy from the solution heat treatment temperature to 700 ° C. at a rate of 25 ° C./min, and then aging it by maintaining it at 700 ° C. for 6 hours; and
(c) air-cooling the aged niobium (Nb)-containing nickel-based superalloy;
A heat treatment method for improving strength and ductility of nickel-based heat-resistant superalloys manufactured by additive manufacturing.
삭제delete 삭제delete 삭제delete 제1항에 기재된 방법에 따라 열처리된 니켈기 초내열합금.A nickel-base superalloy heat-treated according to the method according to claim 1.
KR1020210019422A 2021-02-10 2021-02-10 Method of heat treatment for improving strength and ductility of additive manufactured superalloy KR102507347B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020210019422A KR102507347B1 (en) 2021-02-10 2021-02-10 Method of heat treatment for improving strength and ductility of additive manufactured superalloy
PCT/KR2021/012726 WO2022173082A1 (en) 2021-02-10 2021-09-16 Heat treatment method for improving strength and ductility of superalloy manufactured by additive manufacturing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210019422A KR102507347B1 (en) 2021-02-10 2021-02-10 Method of heat treatment for improving strength and ductility of additive manufactured superalloy

Publications (2)

Publication Number Publication Date
KR20220115420A KR20220115420A (en) 2022-08-17
KR102507347B1 true KR102507347B1 (en) 2023-03-07

Family

ID=82838350

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210019422A KR102507347B1 (en) 2021-02-10 2021-02-10 Method of heat treatment for improving strength and ductility of additive manufactured superalloy

Country Status (2)

Country Link
KR (1) KR102507347B1 (en)
WO (1) WO2022173082A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007510055A (en) * 2003-10-06 2007-04-19 エイティーアイ・プロパティーズ・インコーポレーテッド Nickel base alloy and heat treatment method of nickel base alloy

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101007582B1 (en) * 2008-06-16 2011-01-12 한국기계연구원 Method of heat treatment of Ni based superalloy for wave type grain-boundary and Ni based superalloy the same
KR20110105156A (en) * 2010-03-18 2011-09-26 한국기계연구원 Apparatus of surface treatment of ni-based superalloy and ni-based superalloy thereby
JP6223743B2 (en) * 2013-08-07 2017-11-01 株式会社東芝 Method for producing Ni-based alloy
KR101593299B1 (en) 2014-04-08 2016-02-15 창원대학교 산학협력단 Method of heat treatment of fusion welds for excellent toughness in nickel-based superalloys containing niobium and superalloys with welds thereby
KR101894344B1 (en) * 2014-07-23 2018-09-03 가부시키가이샤 아이에이치아이 Method of manufacturing ni alloy part
CN107429332A (en) 2014-11-17 2017-12-01 奥科宁克公司 Aluminium alloy containing iron, silicon, vanadium and copper
KR20200036082A (en) * 2018-09-19 2020-04-07 창원대학교 산학협력단 Method of heat treatment of additive manufactured ni-base superalloy containing niobium for enhancing interfacial properties of grain boundaries and ni-base superalloy heat-treated thereby

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007510055A (en) * 2003-10-06 2007-04-19 エイティーアイ・プロパティーズ・インコーポレーテッド Nickel base alloy and heat treatment method of nickel base alloy

Also Published As

Publication number Publication date
KR20220115420A (en) 2022-08-17
WO2022173082A1 (en) 2022-08-18

Similar Documents

Publication Publication Date Title
Godec et al. Hybrid additive manufacturing of Inconel 718 for future space applications
JP6931545B2 (en) Heat treatment method for Ni-based alloy laminated model, manufacturing method for Ni-based alloy laminated model, Ni-based alloy powder for laminated model, and Ni-based alloy laminated model
Bi et al. Microstructure and tensile properties of superalloy IN100 fabricated by micro-laser aided additive manufacturing
Qi et al. Studies of standard heat treatment effects on microstructure and mechanical properties of laser net shape manufactured Inconel 718
US7653995B2 (en) Weld repair of superalloy materials
RU2684989C2 (en) Method of following production thermal treatment of additively made articles from super-hardened gamma-type super fell charts
JP6312157B2 (en) Pre-weld heat treatment for nickel-base superalloys
KR101007582B1 (en) Method of heat treatment of Ni based superalloy for wave type grain-boundary and Ni based superalloy the same
EP2815841B1 (en) Method for post-weld heat treatment of welded components made of gamma prime strengthened superalloys
JP2012517524A (en) Method for manufacturing parts made from nickel-based superalloys and corresponding parts
KR101593299B1 (en) Method of heat treatment of fusion welds for excellent toughness in nickel-based superalloys containing niobium and superalloys with welds thereby
KR20200036082A (en) Method of heat treatment of additive manufactured ni-base superalloy containing niobium for enhancing interfacial properties of grain boundaries and ni-base superalloy heat-treated thereby
Javidrad et al. Effect of the volume energy density and heat treatment on the defect, microstructure, and hardness of L-PBF Inconel 625
CN116287871B (en) Nickel-based superalloy for 650 ℃ and additive manufacturing method thereof
CN110846600B (en) Multi-step reversion heat treatment method for additive manufacturing of single crystal nickel-based high-temperature alloy
KR102388622B1 (en) Method of 3D Printing - Manufacturing Superalloy IN718 for Improving Microstructure and Tensil Strength and Superalloy IN718 manufactured thereby
KR102507347B1 (en) Method of heat treatment for improving strength and ductility of additive manufactured superalloy
JP7375489B2 (en) Manufacturing method of Ni-based heat-resistant alloy material
Almotari et al. Influence of Modified Heat Treatments and Build Orientations on the Microstructure of Additively Manufactured IN718
CN108067618B (en) Method for manufacturing mechanical parts
Nezhadfar et al. Effect of Heat Treatment on the Tensile Behavior of 17-4 PH Stainless Steel Additively Manufactured by Metal Binder Jetting
JP7255963B1 (en) Method for manufacturing Ni alloy member
US20240026497A1 (en) Aluminum Alloy Compositions, Articles Therefrom, and Methods of Producing Articles Therefrom
Qiu et al. A review of challenges and optimization processing during additive manufacturing of trademarked Ni-Cr-based alloys
Nilan et al. The Effects of Varying Composition and Build Direction on Direct Metal Deposition Fabricated Inconel 718

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant