KR20090124116A - 대향 타겟 방식 스퍼터링 장치 - Google Patents

대향 타겟 방식 스퍼터링 장치 Download PDF

Info

Publication number
KR20090124116A
KR20090124116A KR1020080050123A KR20080050123A KR20090124116A KR 20090124116 A KR20090124116 A KR 20090124116A KR 1020080050123 A KR1020080050123 A KR 1020080050123A KR 20080050123 A KR20080050123 A KR 20080050123A KR 20090124116 A KR20090124116 A KR 20090124116A
Authority
KR
South Korea
Prior art keywords
sputtering
targets
magnetic field
target
field generating
Prior art date
Application number
KR1020080050123A
Other languages
English (en)
Inventor
김옥희
이강주
김민기
윤종근
김한기
Original Assignee
엘지디스플레이 주식회사
금오공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지디스플레이 주식회사, 금오공과대학교 산학협력단 filed Critical 엘지디스플레이 주식회사
Priority to KR1020080050123A priority Critical patent/KR20090124116A/ko
Publication of KR20090124116A publication Critical patent/KR20090124116A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

본 발명은 유기전계발광소자(OLED)의 제조방법에 관한 것으로, 특히, 유기전계발광소자의 전극막 형성을 위한 대향 타겟 방식 스퍼터링 장치에 관한 것이다.
본 발명의 특징은 스퍼터링 장치 내에 서로 대향하는 제 1 및 제 2 타겟으로 이루어진 스퍼터링 타겟부를 다수개 나란하게 위치하는 것을 특징으로 한다.
이를 통해, OLED의 제 2 전극을 형성할 때, 높은 에너지를 갖는 입자에 의한 OLED의 발광층의 손상을 방지할 수 있으며, 보다 빠른 스퍼터링 증착속도를 가질 수 있다.
이를 통해, 공정의 효율성을 향상시킬 수 있다.
특히, 본 발명은 서로 이웃하는 스퍼터링 타겟부가 자계 발생수단을 공용으로 사용하도록 함으로써, 한정된 공간 내에 보다 많은 스퍼터링 타겟부를 형성할 수 있다.
유기전계발광소자, 대향 타겟 방식 스퍼터링

Description

대향 타겟 방식 스퍼터링 장치{Facing target type sputtering equipment}
본 발명은 유기전계발광소자의 제조방법에 관한 것으로, 특히, 유기전계발광소자의 전극막 형성을 위한 대향 타겟 방식 스퍼터링 장치에 관한 것이다.
최근까지, CRT(cathode ray tube)가 표시장치로서 주로 사용되었다. 그러나, 최근에 CRT를 대신할 수 있는 플라즈마표시장치(plasma display panel : PDP), 액정표시장치(liquid crystal display device : LCD), 유기전계발광소자(organic electro-luminescence device : OLED)와 같은 평판표시장치가 널리 연구되며 사용되고 있는 추세이다.
위와 같은 평판표시장치 중에서, 유기전계발광소자(이하, OLED라 함)는 자발광소자로서, 비발광소자인 액정표시장치에 사용되는 백라이트가 필요하지 않기 때문에 경량 박형이 가능하다.
그리고, 액정표시장치에 비해 시야각 및 대비비가 우수하며, 소비전력 측면에서도 유리하며, 직류 저전압 구동이 가능하고, 응답속도가 빠르며, 내부 구성요 소가 고체이기 때문에 외부충격에 강하고, 사용 온도범위도 넓은 장점을 가지고 있다.
이러한 OLED는 전자(electron)와 정공(hole)의 결합에 의한 엑시톤(exciton)이 여기 상태로부터 기저 상태로 떨어질 때 발광하는 발광 표시장치이다.
참고로 도 1은 OLED의 밴드다이어그램으로서, 서로 마주보는 내면에 정공수송층(hole transport layer : 54)과 전자수송층(electron transport layer : 64)이 각각 형성된 애노드전극층(anode electrode layer : 52)과 캐소드전극층(cathode electrode layer : 62) 그리고 정공수송층(54)과 전자수송층(64) 사이로 개재된 유기발광층(orginic emission layer : 70)을 포함한다.
그리고 애노드전극층(52)과 캐소드전극층(62)에 각각 양과 음의 전압이 인가되면 정공수송층(54)을 통해 정공과 전자수송층(64)을 통한 전자가 유기발광층(70)으로 수송되어 엑시톤을 이루고, 이러한 엑시톤이 여기상태에서 기저상태로 천이될 때 빛이 발생되어 가시광선의 형태로 방출된다.
한편, OLED의 애노드 및 캐소드전극층은 금속막 또는 투명도전막 등을 스퍼터링(sputtering) 방법을 통하여 증착하여 형성하는데, 스퍼터링 방법은 진공챔버 내에 아르곤(Ar) 가스와 같은 비활성가스를 도입하고, 기판과 대면하는 타겟을 포함하여, 캐소드 직류(DC) 전력 또는 고주파(RF) 전력을 150V 이상의 고압으로 공급하여 글로우(glow) 방전을 통해 기판 상에 금속막 또는 투명도전막을 증착한다.
이때, 스퍼터링에 인가되는 전압은 플라즈마 형성 시 타겟으로부터 튀어나가는 입자가 갖는 에너지와 밀접한 관계를 갖게 되는데, 스퍼터링 공정시 150V 이상 으로 전원을 공급함으로써 입자는 100eV 이상의 높은 에너지를 갖게 된다.
이로 인하여, OLED의 유기발광층 상에 캐소트전극층을 형성할 때, 스퍼터링 공정에서 발생하는 100eV 이상의 높은 에너지를 갖는 입자가 유기발광층과 충돌하여 유기발광층에 손상을 입히게 되는 문제점이 발생한다.
그리고 도 2의 유기막 상에 Al과 ITO 전극을 각각 증착한 후 측정한 전류-전압 관계 그래프를 참조하면, OLED의 음전압 영역에서 갑자기 누선전류가 크게 증가하는 것을 확인할 수 있다.
이러한 누설전류는 앞서 언급한 바와 같이 스퍼터링 공정 중 플라즈마 내에서 발생한 높은 에너지를 갖는 입자의 충돌에 의해 발생하게 된다. 즉, 충돌 시 전달된 에너지에 의해 부분적으로 유기발광층이 금속성을 띠게 되고 음전압 인가 시에 전압크기에 비례하는 누설전류를 발생시키는 것이다.
이는, OLED의 발광효율, 신뢰성, 수명에 영향을 주게 된다.
이에 최근 스퍼터링 장치에서 타겟과 기판을 직접 대면시키지 않는 구조의 대향 타겟 방식 스퍼터링(facing target sputter)이 제안되고 있다.
이로 인하여, 비교적 낮은 에너지를 갖는 입자를 통해 기판 상에 증착 할 수 있어, 기판 상의 유기발광층을 손상시키지 않게 되는 이점이 있다.
그러나, 이러한 대향 타겟 방식 스퍼터링은 증착속도가 낮아 공정의 효율성이 저하되는 문제점을 갖는다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 대향 타겟 방식의 스퍼터링에 있어서 증착속도를 향상시킴으로써 공정의 효율성을 향상시키고자 하는 것을 제 1 목적으로 한다.
또한, 기판 상의 유기발광층의 손상을 방지하고, 누설전류를 저감시키고자 하는 것을 제 2 목적으로 한다.
전술한 바와 같은 목적을 달성하기 위해, 본 발명은 반응영역이 정의된 챔버와; 상기 반응영역 내로 기판을 이송 및 고정하는 기판 장착부와; 상기 기판과 수직하게 위치하는 한쌍의 제 1 및 제 2 타겟으로 각각 이루어지는 제 1 및 2 스퍼터링 타겟과; 상기 제 1 스퍼터링 타겟의 상기 제 1 및 제 2 타겟의 각 배면에 위치하는 제 1 및 제 2 자계 발생수단과; 상기 제 2 스퍼터링 타겟의 상기 제 1 및 제 2 타겟의 각 배면에 위치하는 제 2 및 제 3 자계 발생수단을 포함하며, 상기 제 1 및 제 2 스퍼터링 타겟은 상기 제 2 자계 발생수단을 공용(共用)으로 사용하는 것을 특징으로 하는 대향 타겟 방식 스퍼터링 장치를 제공한다.
상기 제 1 내지 제 3 자계 발생수단은 영구자석으로, 상기 제 1 및 제 2 자계 발생수단은 서로 극성이 다르게 배치되며, 상기 제 2 및 제 3 자계 발생수단은 서로 극성이 다르게 배치되는 것을 특징으로 하며, 상기 제 2 자계 발생수단은 상기 제 1 스퍼터링 타겟과 상기 제 2 스퍼터링 타겟으로 각각 서로 다른 극성이 향 하도록을 하는 것을 특징으로 한다.
또한, 상기 제 1 및 제 2 스퍼터링 타겟에는 각각 스퍼터링 가스를 공급하는 스퍼터링 가스공급수단을 더욱 구비하는 것을 특징으로 하며, 상기 제 1 및 제 2 스퍼터링 타겟에는 각각 상기 제 1 내지 제 3 자계 발생수단을 냉각시키기 위한 냉각수단을 더욱 구비하는 것을 특징으로 한다.
또한, 상기 기판 장착부는 인력 또는 척력을 통해 상기 기판을 비접촉 방식으로 고정한 후, 인라인(in-line) 방식을 통해 이송하는 것을 특징으로 한다.
본 발명에 따라 본 발명은 서로 대향하는 제 1 및 제 2 타겟으로 이루어진 스퍼터링 타겟부가 다수개 나란하게 위치하는 대향 타겟 방식 스퍼터링 장치를 통해 OLED의 유기층 상부에 전극을 형성함으로써, 높은 에너지를 갖는 입자에 의한 OLED의 발광층의 손상을 방지할 수 있으며, 보다 빠른 스퍼터링 증착속도를 가질 수 있는 효과가 있다.
특히, 본 발명은 서로 이웃하는 스퍼터링 타겟부가 자계 발생수단을 공용으로 사용하도록 함으로써, 한정된 공간 내에 보다 많은 스퍼터링 타겟부를 형성할 수 있는 효과가 있다.
이하, 도면을 참조하여 본 발명에 따른 실시예를 상세히 설명한다.
도 3은 본 발명의 실시예에 따른 OLED의 단면을 개략적으로 도시한 도면이다.
도시한 바와 같이, OLED(100)는 제 1 기판(103)과, 제 1 기판(103)과 마주하는 제 2 기판(105)으로 구성되며, 제 1 및 제 2 기판(103, 105)은 서로 이격되어 이의 가장자리를 실패턴(120)을 통해 봉지되어 합착된다.
이때 OLED(100)가 액티브 매트릭스 OLED인 경우, 제 1 기판(103) 상부에는 각 화소영역 별로 게이트전극(131)과 게이트절연층(133), 반도체층(135) 그리고 소스 및 드레인전극(137, 139)을 포함하는 구동 박막트랜지스터(DTr)를 형성한다.
또한, 구동 박막트랜지스터(DTr) 상부에는 구동 박막트랜지스터(DTr)의 드레인전극(139)을 노출시키는 콘택홀을 갖는 보호층(141)을 형성한다.
그리고 보호층(141) 상부에는 각 화소영역 별로 콘택홀을 통해 드레인전극(139)과 접촉하는 제 1 전극(107)을 형성하며, 제 1 전극(107)의 상부에는 각 화소영역 별로 적, 녹, 청색을 발광하는 발광패턴(109a, 109b, 109c)을 포함하는 발광층(109)을 형성하며, 발광층(109) 상부의 전면에는 제 2 전극(111)을 구성한다.
이때, 발광층(109)은 그 기능에 따라 여러층으로 구성될 수 있는데, 정공수송층(hole transport layer)과 전자수송층(electron transport layer)으로 이루어진다.
이때, 제 1 전극(107)은 OLED의 애노드전극층(anode electrode layer)이 되고, 제 2 전극(111)은 캐소드전극층(cathode electrode layer)이 된다.
따라서, 제 1 및 제 2 전극(107, 111) 그리고 이들 사이로 정공수송층과 전 자수송층으로 이루어진 발광층(109)이 개재되어, 발광다이오드를 이루게 된다.
여기서, 발광층(109)은 유기물질로 이루어진다.
이들 제 1 전극(107)과 제 2 전극(111) 간의 전자와 정공이 이동하면서 서로 재결합하여, 이때 발생하는 에너지 차로 인해 빛을 방출하게 된다.
또한, 제 2 기판(105)의 내부면에는 발광층(109)이 산소 및 수분에 노출되지 않도록, 제 1 및 제 2 기판(103, 105)의 내부로 유입되는 수분 및 산소를 흡습하기 위해 흡습제(113)가 형성된다.
한편, 제 1 및 제 2 전극(107, 111)은 OLED(100)의 발광 형태에 따라 다양한 구조로 이루어질 수 있다.
즉, OLED(100)가 배면 발광형인 경우에는 일반적으로 제 1 전극(107)은 ITO(indium tin oxide), IZO(indium zinc oxide), ITZO(indium tin zinc oxide), IO(indium oxide), ZnO, TZO(tin znic oxide), AZO, GZO 등의 투명도전막으로 이루어지며, 제 2 전극(111)은 알루미늄(Al), 알루미늄 합금(Al alloy) 등의 반사도가 우수한 금속막으로 이루어질 수 있다.
또한, OLED(100)가 전면 발광형인 경우에는 제 1 전극(107)은 반사도가 우수한 금속막을 구비하는 구조 예를 들면, 금속막과 투명도전막으로 이루어지는 이중막 구조로 이루어지며, 제 2 전극(111)은 반투명 금속막과 투명도전막의 이중막 구조로 이루어질 수 있다.
또한, OLED(100)가 양면 발광형인 경우에는 제 1 및 제 2 전극(107, 111) 모두 발광층(109)에서 발광하는 광이 투과할 수 있는 구조 예를 들면, 제 1 전 극(107)은 투명도전막으로 이루어지며 제 2 전극(111)은 반투명 금속막과 투명도전막의 이중막 구조로 이루어질 수 있다.
이때, 제 1 및 제 2 전극(107, 111)의 금속막 또는 투명도전막은 스퍼터링(sputtering) 방법을 통하여 증착하여 형성하는데, 진공챔버 내에 아르곤(Ar) 가스와 같은 비활성가스를 도입하고, 타겟을 포함하는 스퍼터링 타겟부에 캐소드 직류(DC) 전력 또는 고주파(RF) 전력을 공급하여 글로우(glow) 방전을 통해 기판 상에 금속막 또는 투명도전막을 증착한다.
이때, 발광층(109) 상부에 구성하는 제 2 전극(111)을 대향 타겟 방식 스퍼터링 장치를 이용하여 형성하는 것을 특징으로 한다.
이로 인하여, 플라즈마에서 발생하는 높은 에너지를 갖는 입자에 의한 발광층(109)의 손상을 방지할 수 있다. 이에 대하여 아래 도 4를 참조하여 좀더 자세히 살펴보도록 하겠다.
도 4는 본 발명의 실시예에 따른 대향 타겟 방식 스퍼터링 장치의 구조를 개략적으로 도시한 도면이며, 도 5a ~ 5b는 도 4의 스퍼터링 타겟부를 개략적으로 도시한 도면이다.
도 4에 도시한 바와 같이, 대향 타겟 방식 스퍼터링 장치(200)는 대향 타겟 방식 스퍼터링 장치(200)의 몸체를 이루는 챔버부(210)와 챔버부(210) 내에 설치되는 스퍼터링 타겟(300) 그리고 전원공급장치(미도시)로 이뤄진다.
이들에 대해 좀더 자세히 살펴보면, 먼저 챔버부(210)는 대향 타겟 방식 스퍼터링 장치(200)의 몸체를 이루는 챔버(211)와, 기판(S)을 장착하는 기판장착 부(213)로 구성되는데, 여기서 챔버(211)는 밀폐공간을 제공하는 진공챔버이다.
이때, 기판(S) 상에 스퍼터링 공정을 진행할 시, 챔버(211) 내부는 0.1mTorr ~ 100mTorr 사이의 진공을 유지하는 것이 바람직하다.
이는, 챔버(211) 내부의 압력이 100mTorr 보다 높을 경우 기판(S) 상에 형성되는 박막 내에 아르곤(Ar)과 같은 스퍼터링 가스의 성분 함량이 증가하여 박막의 열화특성을 초래하기 때문이다.
또한, 챔버(211) 내부의 압력이 0.1mTorr 보다 낮을 경우 스퍼터링 타겟(300)의 플라즈마 형성이 어려워 스퍼터링 효율이 떨어질 수 있다.
그리고 기판장착부(213)는 기판(S)을 장착하고, 기판(S)이 스퍼터링 타겟(300)과 대향하도록 지지하는 역할을 수행한다.
이때, 기판장착부(213)는 기판(S)을 장착한 상태로 이동되는 인라인형(in-line type) 기판이송시스템일 수 있다.
즉, 보이는 것처럼 챔버(211) 내부 일측에는 스퍼터링 타겟(300)이 구비되고, 스퍼터링 타겟(300)에 대향해서 기판(S)이 기판장착부(213)에 장착된 상태로 챔버(211) 내부로 이송된다.
이를 위한 기판장착부(213)는 기판(S)의 상하부 가장자리에 구비된 마그넷(미도시)에 의해 인력(또는 척력)을 통한 비접촉 방식으로 고정된 상태에서 이송한다.
더불어 챔버부(210)에는 챔버(211) 내부가 스퍼터링 공정 중에 스퍼터링 물질에 의하여 오염되는 것을 방지하기 위하여 챔버(211) 내벽을 따라 방착판(215)을 더욱 구비할 수 있다.
그리고 스퍼터링 타겟(300)은 서로 대향하는 한쌍의 타겟(301a, 301b)으로 이루어진다.
여기서, 스퍼터링 타겟(300)에 대해 도 5a를 참조하여 좀더 자세히 살펴보면, 스퍼터링 타겟(300)은 각각 서로 대향하는 제 1 및 제 2 타겟(301a, 301b), 제 1 및 제 2 타겟(301a, 301b)을 각각 지지하는 한쌍의 제 1 및 제 2 타겟 플레이트(303a, 303b) 그리고 제 1 및 제 2 타겟(301a, 301b)의 배면 즉 제 1 및 제 2 타겟 플레이트(303a, 303b)의 배면에 각각 배치되는 제 1 및 제 2 자계 발생수단(310a, 310b)으로 구성된다.
제 1 및 제 2 타겟(301a, 301b)은 기판(S) 상에 형성하고자 하는 물질로 이루어지며, 기판(S) 상에 형성하고자 하는 물질의 종류에 따라 서로 동일한 물질로 이루어지거나 서로 다른 물질로 이루어질 수 있다.
일예로, 제 1 및 제 2 타겟(301a, 301b)은 알루미늄(Al), 알루미늄 합금(Al alloy)으로 이루어질 수 있으며, 또는 ITO(indium tin oxide), IZO(indium zinc oxide), IO(indium oxide), ZnO, TZO(tin znic oxide), AZO, GZO 등으로 이루어질 수 있다.
또한 제 1 및 제 2 타겟(301a, 301b)이 서로 다른 물질로 이루어지도록 하여 기판(S) 상에 두 가지 물질 이상으로 이뤄지는 화합물로 구성된 박막을 형성할 수 있다. 일예로 제 1 및 제 2 타겟(301a, 301b) 중 어느 하나를 ITO로 구성하며 다른 하나를 IZO로 구성하여, 기판(S) 상에 ITZO로 이루어지는 박막을 형성할 수 있다.
즉, 제 1 및 제 2 타겟(301a, 301b)에 서로 다른 물질을 이용함으로써 기판 (S) 상에 형성되는 물질을 다양하게 조절 할 수 있는 것이다.
그리고 제 1 및 제 2 자계 발생수단(310a, 310b)은 영구자석으로 서로 대향하는 제 1 및 제 2 타겟(301a, 301b) 사이의 공간에 자계(320a)를 발생시키기 위한 수단이다.
제 1 및 제 2 타겟(301a, 301b)의 배면에 각각 위치하는 제 1 및 제 2 자계 발생수단(310a, 310b)은 서로 극성을 달리하여 배치한다.
특히, 본 발명은 이러한 스퍼터링 타겟(300)은 일정간격 이격하여 다수개가 나란하게 위치하는 것을 특징으로 한다.
즉, 서로 대향하는 한쌍의 타겟(301a, 301b)을 제 1 스퍼터링 타겟(300)라 하면, 제 1 스퍼터링 타겟(300)에서부터 제 n 스퍼터링 타겟(300)가 나란하게 위치하는 것이다.
이때, 스퍼터링 타겟(300)는 적어도 2개 이상인 것이 바람직하다.
이로 인하여, 빠른 스퍼터링 증착속도를 가질 수 있어 공정의 효율성을 향상시킬 수 있다. 또한, 보다 큰 대형 기판(S)에 스퍼터링 공정을 진행할 수 있다.
한편, 서로 이웃하여 위치하는 스퍼터링 타겟(300)은 스퍼터링 타겟(300) 사이에 위치하는 자계 발생수단(310b)을 공용(共用)으로 사용하는 것을 특징으로 한다.
즉, 도 5b에 도시한 바와 같이 제 1 스퍼터링 타겟(300)의 서로 대향하는 제 1 및 제 2 타겟(301a, 301b)의 배면에는 서로 다른 극성을 띠는 제 1 및 제 2 자계 발생수단(310a, 310b)이 위치하여, 제 1 및 제 2 타겟(301a, 301b) 사이의 공간에 제 1 자계(320a)를 발생시킨다.
이때, 제 1 스퍼터링 타겟(300)의 제 1 타겟 플레이트(303a)의 배면에 위치하는 제 1 자계 발생수단(310a)을 제 1 타겟 플레이트(303a)를 향하는 방향으로 N극성이 위치하도록 하면, 제 2 자계 발생수단(310b)은 제 1 스퍼터링 타겟(300)의 제 2 타겟 플레이트(303b)를 향하는 방향으로 S극성이 위치하도록 함으로써 제 1 자계(320)를 발생시킨다.
그리고, 제 1 스퍼터링 타겟(300)에 이웃하여 제 2 스퍼터링 타겟(400)가 위치한다.
제 2 스퍼터링 타겟(400) 역시 제 1 스퍼터링 타겟(300)와 마찬가지로 제 1 및 제 2 타겟(401a, 401b)이 서로 대향하여 위치하고, 제 1 및 제 2 타겟(401a, 401b)을 각각 지지하는 한쌍의 제 1 및 제 2 타겟 플레이트(403a, 403b) 그리고 제 1 및 제 2 타겟(401a, 401b)의 배면에 각각 배치되는 제 2 및 제 3 자계 발생수단(310b, 310c)으로 구성된다.
이에, 제 2 스퍼터링 타겟(400) 또한 제 1 및 제 2 타겟(401a, 401b) 사이의 공간에 제 2 자계(320b)를 발생시킨다.
이때, 제 2 자계 발생수단(310b)은 제 1 스퍼터링 타겟(300)의 제 2 타겟 플레이트(303b)를 향하는 방향으로 S극성이 위치하도록 하였으므로, 제 2 스퍼터링 타겟(400)의 제 1 타겟 플레이트(403a)를 향하는 방향으로 N극성이 위치하게 된다.
따라서, 제 3 자계 발생수단(310c)을 제 2 스퍼터링 타겟(400)의 제 2 타겟 플레이트(403b)를 향하는 방향으로 S극성이 위치하도록 함으로써, 제 2 스퍼터링 타겟(400)의 제 1 및 제 2 타겟(401a, 401b) 사이의 공간에 제 2 자계(320b)가 발생되도록 한다.
이는 제 2 스퍼터링 타겟(400)에 이웃하여 위치하는 제 3 스퍼터링 타겟(500) 또한 제 4 자계 발생수단(310d)을 제 3 스퍼터링 타겟(500)의 제 2 타겟 플레이트(503b)를 향하는 방향으로 S극성이 위치하도록 하여, 제 3 스퍼터링 타겟(500)의 제 1 및 제 2 타겟(501a, 501b) 사이의 공간에 제 3 자계(320c)가 발생되도록 할 수 있다.
이렇게 제 1 스퍼터링 타겟(300)와 제 2 스퍼터링 타겟(400) 그리고, 제 2 스퍼터링 타겟(400)와 제 3 스퍼터링 타겟(500) 이들 사이에 위치하는 제 2 및 제 3 자계 발생수단(310b, 310c)을 공용으로 사용함으로써, 챔버(211) 내부에 보다 많은 스퍼터링 타겟(300, 400, 500)를 배치할 수 있다.
이는 보다 높은 스퍼터링 증착속도를 가질 수 있도록 한다.
그리고, 이러한 스퍼터링 타겟(300, 400, 500)에는 각 제 1 및 제 2 타겟(301a, 301b, 401a, 401b, 501a, 501b)과 평행한 방향으로 냉각장치(600)를 더욱 마련하여, 냉각수의 흐름을 통해 각 제 1 및 제 2 타겟(301a, 301b, 401a, 401b, 501a, 501b)의 자계 발생수단(310a, 310b, 310c, 310d)을 열 전도 방식으로 냉각되도록 한다.
그리고 전원 공급 장치(미도시)는 한쌍의 제 1 및 제 2 타겟(301a, 301b, 401a, 401b, 501a, 501b)이 캐소드 전극으로 작동하도록 (-) 전원을 공급하며, 챔 버(211)가 애노드 전극으로 작동하도록 하는 역할을 수행한다.
또한, 도면상에는 도시하지는 않았으나, 챔버(211)에는 스퍼터링 가스를 공급하는 가스 공급 수단(미도시)을 더욱 구비할 수도 있다. 가스 공급 수단(미도시)은 제 1 및 제 2 타겟(301a, 301b, 401a, 401b, 501a, 501b) 각각의 하부에 배치하여 스퍼터링 공정시의 플라즈마가 안정적으로 효율적으로 발생하도록 하는 역할을 수행한다.
또한, 챔버(211) 내부를 고 진공으로 만들기 위해 진공펌프(미도시)와 연결된 공기배출구(미도시)가 구비된다.
이때, 공기배출구(미도시)를 통해 스퍼터링 공정시 발생하는 이물질을 외부로 배출되도록 할 수 있어, 스퍼터링 공정 시 이물질이 챔버(211) 바닥면에 쌓이거나 기판(S) 상으로 유입되는 것을 방지할 수 있다.
도 6a ~ 도 6b는 본 발명의 실시예에 따른 대향 타겟 방식 스퍼터링 장치의 동작을 설명하기 위한 도면이다.
도시한 바와 같이, 대향 타겟 방식 스퍼터링 장치(200)는 챔버부(210)의 기판장착부(213)에 기판(S)을 장착하고, 챔버(211) 내부에 아르곤(Ar) 가스 등의 스퍼터링 가스를 가스공급수단(미도시)을 통하여 스퍼터링 타겟부(300)로 공급한다.
이때, 기판(S)은 액티브 매트릭스 OLED인 경우, 구동 박막트랜지스터(DTr)가 미리 형성되어 있다. 또한 챔버(211) 내부는 0.1mTorr ~ 100mTorr 사이의 진공을 유지하는 것이 바람직하다.
그리고, 다수개의 스퍼터링 타겟부(300)의 각 제 1 및 제 2 타겟(301a, 301b)에 전원공급장치를 통하여 (-) 전원을 인가하면, 제 1 및 제 2 타겟(301a, 301b) 각각의 배면에 위치하는 제 1 및 제 2 자계 발생수단(310a, 310b)에 의하여 제 1 및 제 2 타겟(301a, 301b) 사이의 공간에서 초기 국부 방전이 일어나게 된다.
이를 통해, 챔버(211) 내부에 주입된 스퍼터링 가스의 이온화가 제 1 및 제 2 타겟(301a, 301b) 사이에서 촉진되어 제 1 및 제 2 타겟(301a, 301b) 사이에는 방전 형태의 플라즈마가 생성된다.
이때, 플라즈마는 감마(γ) (-) 전자, 음이온, 양이온 등으로 이루어진다.
이러한 플라즈마 내의 전자는 서로 대향하는 제 1 및 제 2 타겟(301a, 301b)을 연결한 자기력선을 따라 회전운동을 하면서 고밀도 플라즈마를 형성시키고 동시에 제 1 및 제 2 타겟(301a, 301b)에 인가된 (-) 전원에 의하여 왕복 운동을 하면서 고밀도 플라즈마를 유지시킨다.
즉, 플라즈마 내에서 형성되거나 인가된 전원에 의하여 형성된 모든 전자나 이온은 제 1 및 제 2 타겟(301a, 301b)에 걸린 (-) 전원에 의한 자기력선을 따라 왕복 운동을 하면서 고밀도 플라즈마를 형성 및 유지시키게 된다.
여기서, 제 1 및 제 2 타겟(301a, 301b)에 인가되는 (-) 전원은 150V 이상의 고압으로, 플라즈마 내의 모든 전자나 이온은 100eV 이상의 높은 에너지를 갖게 된다.
이때, 100eV 이상의 높은 에너지를 갖는 전자나 이온은 반대편 타겟으로 가속되면서, 제 1 및 제 2 타겟(301a, 301b) 사이의 공간 내에 형성된 플라즈마 내에 구속된다.
따라서, 100eV 이상의 높은 에너지를 가진 입자는 제 1 및 제 2 타겟(301a, 301b) 사이에 구속되어 이에 수직으로 높여 있는 기판(S) 상에 아무런 영향을 주지 않게 된다.
그리고, 비교적 낮은 에너지를 갖는 중성입자가 확산되는데, 이러한 낮은 에너지를 갖는 중성입자를 통해 기판(S) 상에 박막을 형성하게 된다.
따라서, OLED(도 3의 100)의 발광층(도 3의 109) 상에 제 2 전극(도 3의 111)을 형성할 때, 높은 에너지를 갖는 입자가 기판(S) 상의 발광층(도 3의 109)과 충돌하지 않음으로써, 기판(S) 상의 발광층(도 3의 109)의 손상을 방지할 수 있으며, 이로 인하여, OLED(도 3의 100)의 음전압 영역에서 OLED(도 3의 100)의 발광효율, 신뢰성, 수명에 영향을 주는 누설전류를 저감할 수 있다.
특히, 본 발명은 이러한 스퍼터링 타겟부(300)가 서로 이웃하여 나란하게 다수개가 배치됨으로써, 빠른 스퍼터링 증착속도를 가질 수 있어 공정의 효율성을 향상시킬 수 있다. 또한, 보다 큰 대형 기판(S)에 스퍼터링 공정을 진행할 수 있다.
전술한 바와 같이, 본 발명은 서로 대향하는 제 1 및 제 2 타겟(301a, 301b)으로 이루어진 스퍼터링 타겟부(300)가 다수개 나란하게 위치하는 대향 타겟 방식 스퍼터링 장치를 통해 OLED(도 3의 100)의 제 2 전극(도 3의 111)을 형성함으로써, 높은 에너지를 갖는 입자에 의한 OLED(도 3의 100)의 발광층(도 3의 109)의 손상을 방지할 수 있으며, 보다 빠른 스퍼터링 증착속도를 가질 수 있다.
이를 통해, 공정의 효율성을 향상시킬 수 있다.
특히, 본 발명은 서로 이웃하는 스퍼터링 타겟부(300)가 자계 발생수 단(310b)을 공용으로 사용하도록 함으로써, 한정된 공간 내에 보다 많은 스퍼터링 타겟부(300)를 형성할 수 있다.
본 발명은 상기 실시예로 한정되지 않고, 본 발명의 취지를 벗어나지 않는 한도내에서 다양하게 변경하여 실시할 수 있다.
도 1은 OLED의 밴드다이어그램.
도 2는 OLED의 유기막 상에 Al과 ITO전극을 각각 증착한 후 측정한 전류-전압 관계 그래프.
도 3은 본 발명의 실시예에 따른 OLED의 단면을 개략적으로 도시한 도면.
도 4는 본 발명의 실시예에 따른 대향 타겟 방식 스퍼터링 장치의 구조를 개략적으로 도시한 도면
도 5a ~ 5b는 도 4의 스퍼터링 타겟부를 개략적으로 도시한 도면.
도 6a ~ 6b는 본 발명의 실시예에 따른 대향 타겟 방식 스퍼터링 장치의 동작을 설명하기 위한 도면.

Claims (6)

  1. 반응영역이 정의된 챔버와;
    상기 반응영역 내로 기판을 이송 및 고정하는 기판 장착부와;
    상기 기판과 수직하게 위치하는 한쌍의 제 1 및 제 2 타겟으로 각각 이루어지는 제 1 및 2 스퍼터링 타겟과;
    상기 제 1 스퍼터링 타겟의 상기 제 1 및 제 2 타겟의 각 배면에 위치하는 제 1 및 제 2 자계 발생수단과;
    상기 제 2 스퍼터링 타겟의 상기 제 1 및 제 2 타겟의 각 배면에 위치하는 제 2 및 제 3 자계 발생수단
    을 포함하며, 상기 제 1 및 제 2 스퍼터링 타겟은 상기 제 2 자계 발생수단을 공용(共用)으로 사용하는 것을 특징으로 하는 대향 타겟 방식 스퍼터링 장치.
  2. 제 1 항에 있어서,
    상기 제 1 내지 제 3 자계 발생수단은 영구자석으로, 상기 제 1 및 제 2 자계 발생수단은 서로 극성이 다르게 배치되며, 상기 제 2 및 제 3 자계 발생수단은 서로 극성이 다르게 배치되는 것을 특징으로 하는 대향 타겟 방식 스퍼터링 장치.
  3. 제 2 항에 있어서,
    상기 제 2 자계 발생수단은 상기 제 1 스퍼터링 타겟과 상기 제 2 스퍼터링 타겟으로 각각 서로 다른 극성이 향하도록을 하는 것을 특징으로 하는 대향 타겟 방식 스퍼터링 장치.
  4. 제 1 항에 있어서,
    상기 제 1 및 제 2 스퍼터링 타겟에는 각각 스퍼터링 가스를 공급하는 스퍼터링 가스공급수단을 더욱 구비하는 것을 특징으로 하는 대향 타겟 방식 스퍼터링 장치.
  5. 제 1 항에 있어서,
    상기 제 1 및 제 2 스퍼터링 타겟에는 각각 상기 제 1 내지 제 3 자계 발생수단을 냉각시키기 위한 냉각수단을 더욱 구비하는 것을 특징으로 하는 대향 타겟 방식 스퍼터링 장치.
  6. 제 1 항에 있어서,
    상기 기판 장착부는 인력 또는 척력을 통해 상기 기판을 비접촉 방식으로 고 정한 후, 인라인(in-line) 방식을 통해 이송하는 것을 특징으로 하는 대향 타겟 방식 스퍼터링 장치.
KR1020080050123A 2008-05-29 2008-05-29 대향 타겟 방식 스퍼터링 장치 KR20090124116A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080050123A KR20090124116A (ko) 2008-05-29 2008-05-29 대향 타겟 방식 스퍼터링 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080050123A KR20090124116A (ko) 2008-05-29 2008-05-29 대향 타겟 방식 스퍼터링 장치

Publications (1)

Publication Number Publication Date
KR20090124116A true KR20090124116A (ko) 2009-12-03

Family

ID=41686087

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080050123A KR20090124116A (ko) 2008-05-29 2008-05-29 대향 타겟 방식 스퍼터링 장치

Country Status (1)

Country Link
KR (1) KR20090124116A (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101250311B1 (ko) * 2012-01-11 2013-04-03 (주)이루자 스퍼터링 장치와 이를 이용한 전자소자용 기판 및 유기전계발광소자 제조 방법
KR20140126514A (ko) * 2013-04-23 2014-10-31 주식회사 선익시스템 스퍼터링 장치 및 이를 포함하는 증착장치
KR20150014313A (ko) * 2013-07-29 2015-02-06 삼성디스플레이 주식회사 증착 장치 및 이를 이용한 유기 발광 디스플레이 장치의 제조 방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101250311B1 (ko) * 2012-01-11 2013-04-03 (주)이루자 스퍼터링 장치와 이를 이용한 전자소자용 기판 및 유기전계발광소자 제조 방법
KR20140126514A (ko) * 2013-04-23 2014-10-31 주식회사 선익시스템 스퍼터링 장치 및 이를 포함하는 증착장치
KR20150014313A (ko) * 2013-07-29 2015-02-06 삼성디스플레이 주식회사 증착 장치 및 이를 이용한 유기 발광 디스플레이 장치의 제조 방법

Similar Documents

Publication Publication Date Title
JP2005317548A (ja) マルチカラー電子発光ディスプレイ
KR101553942B1 (ko) 플렉서블 디스플레이 제조장치
EP1422765A2 (en) Highly efficient organic electroluminescent device
KR20110108050A (ko) 유기전계발광소자 및 이의 제조방법
JP2008270187A (ja) 成膜装置、製造装置、成膜方法、および発光装置の作製方法
US9537096B2 (en) Method for producing organic electroluminescent element, and organic electroluminescent display device
WO2015174311A1 (ja) 蒸着装置用マスク、蒸着装置、蒸着方法、及び、有機エレクトロルミネッセンス素子の製造方法
WO2015083600A1 (ja) 蒸着装置、蒸着方法、及び、有機エレクトロルミネッセンス素子の製造方法
US20160155944A1 (en) Vapor deposition apparatus, vapor deposition method, and method for producing organic electroluminescent element
KR101188361B1 (ko) 원료 공급 유닛 및 스퍼터링 장치
US20140224644A1 (en) Deposition apparatus and method of manufacturing organic light emitting display apparatus using the same
US8679306B2 (en) Sputtering apparatus
KR100780042B1 (ko) 유기전계 발광 디스플레이 소자 증착장치
KR20090124116A (ko) 대향 타겟 방식 스퍼터링 장치
KR20110124429A (ko) 유기박막 증착장치 및 이를 이용한 유기전계발광소자의 제조방법
US20090051280A1 (en) Light-emitting device, method for manufacturing light-emitting device, and substrate processing apparatus
CN1752273A (zh) 对向靶溅射装置和有机电致发光显示装置的制造方法
KR101441386B1 (ko) 스퍼터링 장치
KR100712122B1 (ko) 평판표시장치
JP2006089850A (ja) 対向ターゲット式スパッタリング装置及びこれを用いた有機電界発光表示装置の製造方法
KR100848335B1 (ko) 복수의 대향 타겟식 스퍼터를 이용한 증착장치 및 이를이용한 증착방법
JP2008240117A (ja) 透明導電膜の製造方法、表示装置の製造方法及びスパッタリング装置
CN219679167U (zh) 有机发光器件生产线
KR100670464B1 (ko) 대향 타겟식 스퍼터링 장치
KR100601518B1 (ko) 스퍼터링 장치 및 이를 이용한 유기 전계 발광 표시장치의 제조 방법

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid