KR20090111290A - Active carbon for an electric double layer capacitor electrode and process for manufacturing the same - Google Patents

Active carbon for an electric double layer capacitor electrode and process for manufacturing the same Download PDF

Info

Publication number
KR20090111290A
KR20090111290A KR1020090034603A KR20090034603A KR20090111290A KR 20090111290 A KR20090111290 A KR 20090111290A KR 1020090034603 A KR1020090034603 A KR 1020090034603A KR 20090034603 A KR20090034603 A KR 20090034603A KR 20090111290 A KR20090111290 A KR 20090111290A
Authority
KR
South Korea
Prior art keywords
activated carbon
double layer
layer capacitor
electric double
diameter
Prior art date
Application number
KR1020090034603A
Other languages
Korean (ko)
Other versions
KR101553716B1 (en
Inventor
마사키 후지이
신야 다구치
게이조 이카이
유타카 사노카와
Original Assignee
니폰 오일 코포레이션 (신 니혼 세키유 가부시키 가이샤)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 니폰 오일 코포레이션 (신 니혼 세키유 가부시키 가이샤) filed Critical 니폰 오일 코포레이션 (신 니혼 세키유 가부시키 가이샤)
Publication of KR20090111290A publication Critical patent/KR20090111290A/en
Application granted granted Critical
Publication of KR101553716B1 publication Critical patent/KR101553716B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)

Abstract

PURPOSE: An active carbon for an electric double layer capacitor electrode and a method for manufacturing the same are provided to use an active carbon whose average particle size is mall and whose non surface size is relatively large in an electrode, thereby improving electrostatic capacity per a unit volume. CONSTITUTION: A carbon material which can be graphitized is plastic-processed. The carbon material is revived by alkali metal hydroxide. The revived carbon material is wetly crashed by using two kinds of balls having different diameters. A plastic processing temperature is between 500 and 700°C. A diameter of a larger ball between two kinds of balls having different diameters is from 1 to 30 mm and a diameter of a smaller ball is from 1/10 to 1/2 of a diameter of a large ball.

Description

전기 이중층 커패시터 전극용 활성탄 및 그 제조방법{ACTIVE CARBON FOR AN ELECTRIC DOUBLE LAYER CAPACITOR ELECTRODE AND PROCESS FOR MANUFACTURING THE SAME}ACTIVE CARBON FOR AN ELECTRIC DOUBLE LAYER CAPACITOR ELECTRODE AND PROCESS FOR MANUFACTURING THE SAME}

본 발명은 전기 이중층 커패시터 전극용 탄소재인 활성탄 및 그 제조방법에 관한 것이다.The present invention relates to activated carbon which is a carbon material for electric double layer capacitor electrodes and a method of manufacturing the same.

활성탄은 탄소처리한 야자 코크스, 석유 코크스, 석탄 코크스 등의 탄소 재료를 부활시켜 다공질 구조로 만든 것이다. 표면적이 큰 다공질의 활성탄은 흡착제 또는 촉매 담체, 전기 이중층 커패시터, 리튬 이차 전지 등의 전극 재료 등에 많이 이용되고 있다. 특히, 하이브리드카 등에 사용되는 전기 이중층 커패시터에서, 에너지 밀도, 즉 정전용량을 증대시키기 위해, 그 전극재료로서 미소세공이 효과적으로 형성된 결정화도가 높고 표면적이 큰 활성탄이 요구되고 있다.Activated carbon is made of porous structure by reviving carbon materials such as carbonized palm coke, petroleum coke and coal coke. Porous activated carbon having a large surface area is widely used in electrode materials such as adsorbents or catalyst carriers, electric double layer capacitors, and lithium secondary batteries. In particular, in an electric double layer capacitor used in a hybrid car or the like, in order to increase the energy density, that is, the capacitance, activated carbon having a high crystallinity and a large surface area in which micropores are effectively formed as the electrode material is required.

이러한 전기 이중층 커패시터의 전극 재료에 사용가능한 미소세공이 효과적으로 형성된 활성탄의 공업 생산에는 석유 코크스 등의 탄소 재료와 수산화칼륨 등의 알칼리 금속화합물을 불활성 가스 분위기 등에서, 예컨대 600 내지 1200℃의 범위로 가열하고, 알칼리 금속을 흑연 결정층 사이에 침입시켜 반응시키는 부활 방법 이 일반적으로 사용되고 있다. 이와 같은 부활에서 층상의 축합 다환 탄소화합물이 적층된 층상 구조에 알칼리 금속이 침입하여 미소세공이 형성된다.In industrial production of activated carbon having micropores effectively formed in the electrode material of such an electric double layer capacitor, carbon materials such as petroleum coke and alkali metal compounds such as potassium hydroxide are heated in an inert gas atmosphere, for example, in a range of 600 to 1200 ° C. The activating method which invades and reacts alkali metal between a graphite crystal layer is generally used. In this revival, alkali metal invades the layered structure in which the layered condensed polycyclic carbon compound is laminated to form micropores.

알칼리 부활 처리하여 수득되는 활성탄은 비교적 비표면적이 크고, 더구나 전기 이중층 커패시터용 전극을 제작할 때에는 활성탄의 평균 입경이 작고 활성탄의 입도를 일치시켜, 조야한 큰 입자를 함유하지 않는 것이 요구된다.Activated carbon obtained by alkaline activation treatment has a relatively large specific surface area, and furthermore, when producing an electrode for an electric double layer capacitor, it is required that the average particle diameter of the activated carbon is small and the particle size of the activated carbon is matched so as not to contain coarse large particles.

특허문헌 1에서는, 전기 이중층 커패시터용 전극을 제조할 때 활성탄의 입도를 일치시키기 위해 활성탄을 볼밀로 분쇄하여, BET법에 의한 비표면적이 1300㎡/g 이상 2200㎡/g 이하, 평균 입경 1㎛ 이상 7㎛ 이하인 활성탄을 수득한다. 특허문헌 2에서는 볼밀 분쇄법에 의해 평균 입경 100nm 내지 10㎛인 활성탄을 수득한다. 또한, 특허문헌 3에서는 활성탄을 고순도화하는 것을 목적으로 하여 세정액 공존 하에 부활 후의 활성탄을 습식 분쇄하고 있다. 하지만, 비표면적이 크고 더구나 전기 이중층 커패시터용 전극을 제작할 때 활성탄의 평균 입경이 작아서 활성탄의 입도를 일치시키는 일이 필요하다는 관점에서 아직 불충분한 것이었다.In patent document 1, when manufacturing the electrode for electric double layer capacitors, in order to match the particle size of activated carbon, the activated carbon is grind | pulverized by the ball mill, and the specific surface area by BET method is 1300 m <2> / g or more and 2200 m <2> / g or less, average particle diameter 1 micrometer. Activated carbon of 7 µm or less is obtained. In patent document 2, the activated carbon whose average particle diameter is 100 nm-10 micrometers is obtained by the ball mill grinding method. In addition, in patent document 3, the activated carbon after reactivation is wet-pulverized in the presence of washing | cleaning liquid coexistence for the purpose of high purity of activated carbon. However, the specific surface area was large, and the production of electrodes for electric double layer capacitors was still insufficient in view of the fact that the average particle diameter of activated carbon was small, so that it was necessary to match the particle size of activated carbon.

특허문헌 1: 일본 특허공개 2000-182904호 공보Patent Document 1: Japanese Patent Application Laid-Open No. 2000-182904

특허문헌 2: 일본 특허공개 2006-324183호 공보Patent Document 2: Japanese Patent Application Laid-Open No. 2006-324183

특허문헌 3: 일본 특허공개 2008-7387호 공보Patent Document 3: Japanese Patent Application Laid-Open No. 2008-7387

활성탄의 입자 직경을 작게 하는 방법으로는, 활성탄을 목적 입도까지 분쇄하는 방법과 원료의 미세한 것을 부활시켜 활성탄을 수득하는 방법이 있지만, 전자는 분쇄에 의해 세공이 파손되어 비표면적의 저하를 초래하기 때문에 바람직하지 않고, 후자에서는 부활 시에 입자끼리의 융착이 일어나기 때문에 수득된 활성탄의 입자 직경은 원료의 직경보다 커져버리는 문제가 있다. 본 발명자들은 알칼리 부활 후의 활성탄을 습식 분쇄하고, 더구나 볼밀의 볼을 큰 직경과 작은 직경을 조합시킴으로써 비표면적이 크고 입경이 작은 활성탄을 용이하게 수득할 수 있는 것을 발견하고 본 발명을 완성한 것이다.As a method of reducing the particle diameter of activated carbon, there are a method of pulverizing activated carbon to a desired particle size and a method of activating fine particles of a raw material to obtain activated carbon. However, the former causes the pore to be broken by pulverization, resulting in a decrease in specific surface area. For this reason, it is not preferable. In the latter case, since the fusion of the particles occurs at the time of activation, the particle diameter of the obtained activated carbon has a problem that becomes larger than the diameter of the raw material. The present inventors have completed the present invention by finding that activated carbon after alkali activation is wet-pulverized, and furthermore, by combining the ball mill ball with a large diameter and a small diameter, the activated carbon having a large specific surface area and a small particle size can be easily obtained.

즉, 본 발명은 용이하게 흑연화가능한 탄소재를, 소성 처리한 후, 알칼리 금속 수산화물을 이용해서 부활 처리하고, 그 후 직경이 상이한 2종의 볼을 이용해서 습식 분쇄하는 것을 특징으로 하는, 평균 입자 직경이 0.5 내지 5㎛이고, BET 비표면적이 1500 내지 2500㎡/g인 전기 이중층 커패시터 전극용 활성탄의 제조방법에 관한 것이다. That is, the present invention is characterized in that the carbon material which can be easily graphitized is calcined, then activated by using an alkali metal hydroxide, and then wet pulverized using two kinds of balls having different diameters. The present invention relates to a method for producing activated carbon for an electric double layer capacitor electrode having a particle diameter of 0.5 to 5 m and a BET specific surface area of 1500 to 2500 m 2 / g.

또한, 본 발명은 용이하게 흑연화가능한 탄소재의 평균 입자 직경이 0.5 내지 8㎛인 것을 특징으로 하는 전기 이중층 커패시터 전극용 활성탄의 제조방법에 관한 것이다.The present invention also relates to a method for producing activated carbon for an electric double layer capacitor electrode, wherein the average particle diameter of the easily graphitizable carbon material is 0.5 to 8 µm.

또한, 본 발명은 직경이 상이한 2종의 볼이 큰 볼의 직경은 1 내지 30mm이 고, 작은 볼의 직경은 큰 볼의 직경의 1/10 내지 1/2인 것을 특징으로 하는 전기 이중층 커패시터 전극용 활성탄의 제조방법에 관한 것이다.In addition, the present invention is the electric double layer capacitor electrode, characterized in that the diameter of the large ball of two kinds of balls having different diameters is 1 to 30mm, and the diameter of the small ball is 1/10 to 1/2 of the diameter of the large ball. It relates to a method for producing molten activated carbon.

또한, 본 발명은 상기 제조방법에 의해 수득되는 전기 이중층 커패시터 전극용 활성탄에 관한 것이다.The present invention also relates to activated carbon for electric double layer capacitor electrodes obtained by the above production method.

또한, 본 발명은 상기 전기 이중층 커패시터 전극용 활성탄을 이용한 전기 이중층 커패시터에 관한 것이다.The present invention also relates to an electric double layer capacitor using activated carbon for the electric double layer capacitor electrode.

본 발명에 따르면, 평균 입자 직경이 작고, 또한 입도를 일치시킨, 비표면적이 비교적 큰 전기 이중층 커패시터용 활성탄을 용이하고 더욱 저렴한 가격으로 제조할 수 있다. 또한, 본 발명에 따라 수득되는 활성탄을 전극에 이용함으로써, 단위 체적당 정전용량이 큰 활성탄이 제공된다. According to the present invention, activated carbon for an electric double layer capacitor having a small specific particle diameter and a relatively large specific surface area having a matching particle size can be produced easily and at a lower cost. In addition, by using the activated carbon obtained according to the present invention for the electrode, activated carbon having a large capacitance per unit volume is provided.

이하, 본 발명에 대해 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에서 출발 원료로서 이용되는, 용이하게 흑연화가능한 탄소재로는, 석유 코크스 또는 석탄 코크스 등을 탄소화한 것, 중간상 피치 또는 이를 방사한 중간상 피치 섬유를 불용화 및 탄소화한 것 등을 예로 들 수 있지만, 본 발명에서는 석유 코크스가 바람직하고, 석유 생코크스가 특히 바람직하다.Easily graphitizable carbon materials used as starting materials in the present invention include carbonized petroleum coke or coal coke, insoluble and carbonized mesophase pitch or mesophase pitch fibers spun therein, and the like. Although an example is mentioned, petroleum coke is preferable and petroleum coke is especially preferable in this invention.

본 발명에서 출발 원료로서 바람직하게 이용되는 석유 생코크스는 알킬 측쇄를 가진 다환 방향족 화합물을 적층시킨 집합체로서, 열용화되지 않는 고체이다.Petroleum raw coke preferably used as a starting material in the present invention is an aggregate in which a polycyclic aromatic compound having an alkyl side chain is laminated, and is a solid that is not thermally dissolved.

석유 코크스는 석유의 중질 유분을 500℃ 정도의 고온에서 열분해(코킹)하여 수득하는 고형의 탄소를 주성분으로 하는 제품이고, 통상의 석탄계 코크스에 대응하여 석유 코크스라 부른다. 석유 코크스는 지연 코킹법에 의한 것과 유동 코킹법에 의한 것이 있고, 현재는 전자에 의한 것이 대부분을 차지하고 있다. 본 발명에서는 이 석유 코크스로, 코커에서 나온 상태 그대로인 석유성 코크스(생코크스)를 이용하는 것이 바람직하다. 지연 코킹법에 의해 생산된 생코크스는 휘발분이 통상 6 내지 13질량%이고, 유동 코킹법에 의해 생산된 생코크스는 휘발분이 통상 4 내지 7질량%이다. 본 발명에서는 어떠한 방법에 의한 생코크스를 이용해도 좋지만, 용이하게 입수가 가능하고 또한 품질이 안정한 지연 코킹법에 의해 생산된 생코크스가 특히 바람직하다.Petroleum coke is a product composed mainly of solid carbon obtained by pyrolyzing (coking) heavy oil of petroleum at a high temperature of about 500 ° C, and is called petroleum coke in response to ordinary coal-based coke. Petroleum coke is based on the delayed caulking method and the flow caulking method, and the former is mostly used by the former. In this invention, it is preferable to use petroleum coke (raw coke) as it is from the coker as this petroleum coke. The raw coke produced by the delayed coking method has a volatile matter normally 6-13 mass%, and the fresh coke produced by the flow coking method has a volatile matter normally 4-7 mass%. Although the raw coke by any method may be used in this invention, the fresh coke produced by the delayed coking method which can be obtained easily and is stable in quality is especially preferable.

상기 석유의 중질 유분으로는, 특별히 한정되는 것은 없지만, 석유류를 감압증류했을 때 잔사유로서 수득되는 중질유, 석유류를 유동접촉분해하여 수득되는 중질유, 석유류를 수소화탈황하여 수득되는 중질유 및 이들의 혼합물 등이 포함된다.The heavy oil fraction of the petroleum is not particularly limited, but heavy oil obtained as a residue when petroleum is distilled under reduced pressure, heavy oil obtained by fluid catalytic cracking of petroleum, heavy oil obtained by hydrodesulfurization of petroleum, and mixtures thereof This includes.

본 발명에 있어서, 상기 흑연화용이성 탄소재료를 소성 처리한 후, 알칼리 금속 수산화물을 이용하여 부활 공정으로 부활 처리한다.In the present invention, the graphitizing easy carbon material is calcined, and then activated by an activating step using an alkali metal hydroxide.

이 때, 적어도 부활 공정 전의 흑연화용이성 탄소재의 평균 입자 직경은 0.5 내지 8㎛, 바람직하게는 1 내지 6㎛로 조정한다. 흑연화용이성 탄소재의 입자 직경이 0.5㎛ 미만이면, 입자끼리 융착에 의해 입자 직경의 증대를 초래하기 때문에 바람직하지 않고, 흑연화용이성 탄소재의 입자 직경이 8㎛를 초과하면 목적으로 하는 활성탄의 입자 직경보다 커지기 때문에 바람직하지 않다.At this time, the average particle diameter of the graphitizing easy carbon material at least before an activation process is adjusted to 0.5-8 micrometers, Preferably it is 1-6 micrometers. If the particle diameter of the graphitizing carbon material is less than 0.5 µm, it is not preferable because the particle diameter is increased by fusion of the particles. If the particle diameter of the graphitizing carbon material exceeds 8 µm, It is not preferable because it becomes larger than the particle diameter.

흑연화용이성 탄소재의 입자 직경을 조정하는 방법으로는 특별히 한정되지 않지만, 통상 제트밀 등의 분쇄 수단으로 분쇄한다. 분쇄는 통상 후술하는 소성 처리 후에 수행하지만 소성 처리 전에 수행해도 좋다.Although it does not specifically limit as a method of adjusting the particle diameter of a graphitizing easy carbon material, Usually, it grinds by grinding means, such as a jet mill. Grinding is usually carried out after the firing treatment described later, but may be carried out before the firing treatment.

흑연화용이성 탄소재의 소성 조건은 소성 온도가 500 내지 700℃, 바람직하게는 520 내지 680℃이고, 소성 시간은 목적 온도에 도달해서부터 유지 시간으로서 10분 내지 2시간 정도이다.The firing conditions of the graphitizing easy carbon material have a firing temperature of 500 to 700 ° C, preferably 520 to 680 ° C, and the firing time is about 10 minutes to 2 hours as a holding time from reaching the target temperature.

부활 공정에서 부활 처리의 반응 조건은, 이 반응을 충분히 진행시킬 수 있다면 특별히 한정되지 않고, 통상의 활성탄 제조에서 수행되는 공지의 부활 처리와 동일한 반응 조건으로 부활 반응을 진행할 수 있다. 예를 들어, 부활 공정에서 부활 반응은 통상의 활성탄의 제조 시에 수행되는 알칼리 금속 수산화물을 소성 후의 탄화물에 혼합하여, 바람직하게는 400℃ 이상, 더욱 바람직하게는 600℃ 이상, 특히 바람직하게는 700℃ 이상의 고온의 온도 조건으로 가열하여 수행할 수 있다. 또한, 이 가열 온도의 상한은 부활 반응이 지장없이 진행되는 온도이면 특별히 한정되지 않지만, 통상 900℃ 이하가 바람직하다.The reaction conditions of the activating process in the activating step are not particularly limited as long as the reaction can proceed sufficiently, and the activating reaction can be carried out under the same reaction conditions as those of the known activating process performed in normal activated carbon production. For example, in the activating process, the activating reaction is carried out by mixing alkali metal hydroxides carried out in the production of ordinary activated carbon with the carbide after firing, preferably at least 400 ° C, more preferably at least 600 ° C, particularly preferably at 700 It may be carried out by heating to a temperature condition of high temperature or more. The upper limit of this heating temperature is not particularly limited as long as the activation reaction proceeds without any problems, but is usually 900 ° C. or lower.

부활 공정에서 부활 반응에 사용되는 알칼리 금속 수산화물로는, 예컨대 KOH, NaOH, RbOH, CsOH가 있다. 이 중에서 부활 효과의 관점에서 KOH가 바람직하다.Examples of alkali metal hydroxides used for the activation reaction in the activation process include KOH, NaOH, RbOH, and CsOH. Among these, KOH is preferable from a viewpoint of an activating effect.

알칼리 부활 방법은 통상 알칼리 금속 수산화물 등의 부활제와 탄화물을 혼합하여 가열함으로써 수행한다. 탄화물과 부활제의 혼합 비율은 특별히 한정되는 것은 아니지만, 통상 양자의 질량비(탄화물:부활제)가 1:0.5 내지 1:5의 범위가 바람직하고, 1:1 내지 1:3의 범위가 더욱 바람직하다.The alkali activation method is usually performed by mixing and heating an activating agent such as an alkali metal hydroxide and a carbide. Although the mixing ratio of a carbide and an activator is not specifically limited, Usually, the mass ratio (carbide: activator) of both is preferably in the range of 1: 0.5 to 1: 5, and more preferably in the range of 1: 1 to 1: 3. Do.

본 발명에서는 이렇게 수득한 부활물을 통상 수중에 투입해서 알칼리 슬러리로 만들고 이 알칼리 슬러리를 습식 분쇄하고, 그 후 세정을 수행함으로써 활성탄을 수득하는 방법을 바람직하게 채용할 수 있지만, 부활물을 세정 처리한 후 물 슬러리로부터 습식 분쇄해도 좋다.In the present invention, a method of obtaining activated carbon by preferably adding the activated product thus obtained into water to make an alkali slurry, wet grinding the alkali slurry, and then performing washing, can preferably be employed. After that, wet grinding may be performed from the water slurry.

슬러리 농도는 2 내지 40% 범위가 바람직하고, 5 내지 20% 범위가 더욱 바람직하다. 슬러리 농도가 2% 미만인 경우에는 분쇄 효율이 악화되기 때문에 바람직하지 않고, 슬러리 농도가 40%를 초과하면 유동성이 악화되어 볼에 의한 충격력이 저하되기 때문에 바람직하지 않다. The slurry concentration is preferably in the range of 2 to 40%, more preferably in the range of 5 to 20%. When the slurry concentration is less than 2%, the grinding efficiency is deteriorated, which is not preferable. When the slurry concentration is more than 40%, the fluidity is deteriorated and the impact force due to the balls is not preferable.

습식 분쇄에 이용되는 장치는 본 발명의 목적이 달성되는 것이면 특별히 한정되지 않으며, 예컨대 볼밀, 아트라이터, 샌드밀, 비즈밀 등이 있지만, 볼밀이 바람직하게 사용된다.The apparatus used for the wet grinding is not particularly limited as long as the object of the present invention is achieved. For example, a ball mill, an attritor, a sand mill, a bead mill and the like are used, but a ball mill is preferably used.

이하, 볼밀에 의해 습식 분쇄하는 예를 설명한다.Hereinafter, the example of wet grinding by a ball mill is demonstrated.

볼로는, 알루미나 볼, 지르코니아 볼, 스테인리스 볼, 질화규소 볼, 텅스텐카바이드 볼 등이 있다.Examples of the balls include alumina balls, zirconia balls, stainless balls, silicon nitride balls, tungsten carbide balls, and the like.

본 발명에서는 분쇄 시의 충격을 완화시키기 위해, 볼 직경이 상이한 적어도 2종류의 볼을 이용하는 것이 필요하다. 이 경우, 융착 입자의 해쇄(解碎)가 주로 이루어지고, 입자의 분쇄는 비교적 적게 이루어지도록 한 볼의 조합이 중요하다. In this invention, in order to alleviate the impact at the time of grinding | pulverization, it is necessary to use at least 2 types of ball from which a ball diameter differs. In this case, it is important to combine the balls so that the crushed particles are mainly disintegrated and the particles are pulverized relatively little.

큰 볼의 직경은 1 내지 30mm가 바람직하고, 5 내지 20mm가 더욱 바람직하며, 작은 볼의 직경은 큰 볼의 볼 직경에 대해 1/10 내지 1/2 범위가 바람직하다.The diameter of the large ball is preferably 1 to 30 mm, more preferably 5 to 20 mm, and the diameter of the small ball is preferably in the range of 1/10 to 1/2 to the ball diameter of the large ball.

큰 볼의 총 중량과 작은 볼의 총 중량의 비는 1/10 내지 10/1 범위인 것이 바람직하고, 2/8 내지 8/2 범위가 더욱 바람직하다.The ratio of the total weight of the large balls to the total weight of the small balls is preferably in the range of 1/10 to 10/1, more preferably in the range of 2/8 to 8/2.

분쇄 시간은 너무 길거나 너무 짧아도 목적의 입자 직경, 표면적을 가진 활성탄이 수득되지 않기 때문에, 30분 내지 5시간이 바람직하고, 60분 내지 3시간이 더욱 바람직하다. 또한, 회전수는 10 내지 100rpm이 바람직하고, 30 내지 60rpm이 더욱 바람직하다.Since the milling time is too long or too short, activated carbon having a desired particle diameter and surface area is not obtained, preferably from 30 minutes to 5 hours, more preferably from 60 minutes to 3 hours. Moreover, 10-100 rpm is preferable and 30-60 rpm is more preferable.

부활물의 세정 방법으로는, 부활물을 세정액으로 세정하고, 고액분리하는 방법이 바람직하게 채용된다. 예컨대, 부활물을 세정액에 침지하고, 필요에 따라 교반, 가열을 수행하여 세정액과 혼합한 후, 세정액을 제거하는 방법을 예로 들 수 있다.As the washing method of the activator, a method of washing the activator with a washing liquid and separating the solid solution is preferably employed. For example, a method of immersing the activator in a washing liquid, stirring and heating as necessary to mix with the washing liquid, and then removing the washing liquid is exemplified.

세정액으로는, 물 및/또는 산수용액을 이용하는 것이 바람직하고, 예컨대 물에 의한 세정, 산수용액에 의한 세정, 추가로 물에 의한 세정 등을 적절히 조합하여 이용할 수 있다.As a washing | cleaning liquid, it is preferable to use water and / or an acidic aqueous solution, For example, washing | cleaning with water, the washing with an acidic aqueous solution, the washing with water, etc. can be combined suitably, and can be used.

산 수용액으로는 염산, 요오드화수소산, 브롬화수소산 등의 할로겐화 수소산, 황산, 탄산 등의 무기산을 바람직한 예로서 들 수 있다. 산 수용액의 농도는 예컨대 0.01 내지 3N이다. 이들 세정액에 의한 세정은 필요에 따라 여러번 반복해서 수행할 수 있다.As an aqueous acid solution, inorganic acids, such as hydrochloric acid, such as hydrochloric acid, hydroiodic acid, and hydrobromic acid, sulfuric acid, a carbonic acid, are mentioned as a preferable example. The concentration of the acid aqueous solution is, for example, 0.01 to 3N. Washing with these cleaning liquids can be repeated several times as needed.

탄화물 중에 잔류하는 알칼리 금속의 양에 대해서는 전기이중층 커패시터로 했을 때에는 악영향을 미칠 가능성이 있는 수준보다 낮은 양(바람직하게는 1000질량ppm 이하)이면 특별히 한정되지 않지만, 통상, 예컨대 세정 배출수의 pH가 7 내지 8 정도가 되도록 세정하는 동시에, 가능하다면 알칼리 금속분이 제거되도록 세 정하는 것이 바람직하다. 세정 후에는 통상 수행되는 건조 공정을 거쳐 목적의 활성탄을 수득할 수 있다.The amount of alkali metal remaining in the carbide is not particularly limited as long as it is lower than the level which may adversely affect the electric double layer capacitor (preferably 1000 mass ppm or less). It is preferable to wash to about 8 to 8 while washing to remove the alkali metal powder if possible. After washing, a target activated carbon can be obtained through a drying process usually performed.

본 발명에 의해 수득되는 활성탄은 평균 입자 직경이 0.5 내지 5㎛, 비표면적이 1500 내지 2500㎡/g 이고, 부활 처리 후의 활성탄의 질소 가스 흡착법에 의한 세공 직경이 0.1 내지 50nm인 세공 용적이 0.1 내지 3ml/g, 수은압입법에 의한 세공 직경이 0.05 내지 300㎛인 세공 용적이 0.4 내지 5ml/g, 알칼리 금속량이 200질량ppm 이하이다.The activated carbon obtained by the present invention has an average particle diameter of 0.5 to 5 µm, a specific surface area of 1500 to 2500 m 2 / g, and a pore volume of 0.1 to 50 nm by a nitrogen gas adsorption method of activated carbon after the activation process. The pore volume of 3 ml / g, the pore diameter of 0.05-300 micrometers by a mercury porosimetry is 0.4-5 ml / g, and the amount of alkali metals is 200 mass ppm or less.

이어서, 본 발명의 전기 이중층 커패시터에 대해 설명한다.Next, the electric double layer capacitor of this invention is demonstrated.

본 발명의 전기 이중층 커패시터는 상기와 같이 조제한 활성탄을 함유하는 전극을 구비하는 것을 특징으로 하는 것이다.The electric double layer capacitor of this invention is characterized by including the electrode containing the activated carbon prepared as mentioned above.

상기 전극은, 예컨대 활성탄과 결착제, 더욱 바람직하게는 도전제를 첨가해서 구성하고, 추가로 집전체와 일체화한 전극이어도 좋다.The electrode may be configured by, for example, adding activated carbon and a binder, more preferably a conductive agent, and further integrated with a current collector.

여기서 사용되는 결착제로는, 공지의 것을 사용할 수 있고, 예컨대 폴리에틸렌, 폴리프로필렌 등의 폴리올레핀, 폴리테트라플루오로에틸렌, 폴리플루오르화비닐리덴, 플루오로올레핀/비닐에테르 공중합체 가교 폴리머 등의 플루오르화 폴리머, 카르복시메틸셀룰로스 등의 셀룰로스류, 폴리비닐피롤리돈, 폴리비닐알콜 등의 비닐계 폴리머, 폴리아크릴산 등이 있다. 전극 중에 결착제의 함유량은 특별히 한정되지 않지만, 활성탄과 결착제의 합계량에 대해 통상 0.1 내지 30질량% 정도의 범위 내에서 적절히 선택한다.As a binder used here, a well-known thing can be used, For example, Fluorinated polymers, such as polyolefin, such as polyethylene and a polypropylene, polytetrafluoroethylene, polyvinylidene fluoride, and a fluoroolefin / vinyl ether copolymer crosslinked polymer And celluloses such as carboxymethyl cellulose, vinyl polymers such as polyvinylpyrrolidone and polyvinyl alcohol, and polyacrylic acid. Although content of a binder in an electrode is not specifically limited, Usually, it selects suitably within the range of about 0.1-30 mass% with respect to the total amount of activated carbon and a binder.

도전제로는, 카본블랙, 분말 그래파이트, 산화 티탄, 산화 루테늄 등의 분말 이 이용된다. 전극 중에 도전제의 배합량은 배합 목적에 따라 적절히 선택하지만, 활성탄, 결착제 및 도전제의 합계량에 대해 통상 1 내지 50질량%, 바람직하게는 2 내지 30질량% 정도의 범위 내에서 적절히 선택한다.As the conductive agent, powders such as carbon black, powdered graphite, titanium oxide, ruthenium oxide and the like are used. Although the compounding quantity of a electrically conductive agent in an electrode is suitably selected according to the compounding purpose, it is suitably selected within the range of 1-50 mass% normally, Preferably it is about 2-30 mass% with respect to the total amount of activated carbon, a binder, and a electrically conductive agent.

또한, 활성탄, 결착제, 도전제를 혼합하는 방법으로는, 공지의 방법이 적절히 적용되고, 예컨대 결착제를 용해하는 성질을 가진 용매를 상기 성분에 첨가하여 슬러리 상으로 만든 것을 집전체 위에 균일하게 도포하는 방법, 또는 용매를 첨가하지 않고 상기 성분을 혼련한 후에 상온 또는 가열 하에 가압 성형하는 방법이 채용된다.In addition, as a method of mixing activated carbon, a binder, and a conductive agent, a well-known method is appropriately applied, and for example, a solvent having a property of dissolving the binder is added to the component to make a slurry on the current collector uniformly. The method of apply | coating, or the method of pressure-molding under normal temperature or heating after kneading the said component without adding a solvent is employ | adopted.

또한, 집전체로는, 공지의 재질 및 형상의 것을 사용할 수 있고, 예컨대 알루미늄, 티탄, 탄탈, 니켈 등의 금속, 또는 스테인리스 등의 합금을 이용할 수 있다.Moreover, as a collector, what is well-known material and a shape can be used, For example, metals, such as aluminum, titanium, tantalum, and nickel, or alloys, such as stainless steel, can be used.

본 발명의 전기 이중층 커패시터의 단위 셀은 일반적으로 상기 전극을 정극 및 부극으로서 한 쌍 이용하고, 세퍼레이터(폴리프로필렌 섬유 부직포, 유리 섬유 부직포, 합성 셀룰로스지 등)를 매개로 대향시켜, 전해액 중에 침지함으로써 형성된다.The unit cell of the electric double layer capacitor of the present invention generally uses a pair of the above electrodes as a positive electrode and a negative electrode, and faces them through a separator (polypropylene fiber nonwoven fabric, glass fiber nonwoven fabric, synthetic cellulose paper, etc.) and immerses them in an electrolyte solution. Is formed.

전해액으로는, 공지의 수계 전해액, 유기계 전해액을 사용할 수 있지만, 유기계 전해액을 사용하는 것이 더욱 바람직하다. 이와 같은 유기계 전해액으로는, 전기화학의 전해액의 용매로서 사용되고 있는 것을 이용할 수 있고, 예컨대 프로필렌 카보네이트, 에틸렌 카보네이트, 부틸렌 카보네이트, γ-부티로락톤, 설포란, 설포란 유도체, 3-메틸설포란, 1,2-디메톡시에탄, 아세토니트릴, 글루타로니트릴, 발레로니트릴, 디메틸포름아미드, 디메틸설폭사이드, 테트라하이드로푸란, 디메톡시에탄, 메틸포르메이트, 디메틸카보네이트, 디에틸카보네이트, 에틸메틸카보네이트 등을 예로 들 수 있다. 또한, 이들 전해액을 혼합하여 사용해도 좋다.As an electrolyte solution, although well-known aqueous electrolyte solution and organic electrolyte solution can be used, it is more preferable to use organic electrolyte solution. As such an organic electrolyte solution, one used as a solvent of an electrochemical electrolyte solution can be used, and for example, propylene carbonate, ethylene carbonate, butylene carbonate, γ-butyrolactone, sulfolane, sulfolane derivatives, and 3-methyl sulfolane , 1,2-dimethoxyethane, acetonitrile, glutaronitrile, valeronitrile, dimethylformamide, dimethylsulfoxide, tetrahydrofuran, dimethoxyethane, methyl formate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate Etc. can be mentioned. In addition, you may mix and use these electrolyte solutions.

또한, 유기 전해액 중의 지지 전해질은 특별히 한정되지 않지만, 전기화학 분야 또는 전지 분야에서 통상 사용되는 염류, 산류, 알칼리류 등의 각종의 것을 사용할 수 있고, 예컨대 알칼리 금속염, 알칼리 토류 금속염 등의 무기 이온염, 4급 암모늄염, 환상 4급 암모늄염, 4급 설포늄염 등이 있고, (C2H5)4NBF4, (C2H5)3(CH3)NBF4, (C2H5)4PBF4, (C2H5)3(CH3)PBF4 등이 바람직하다. 전해액 중에 이들 염의 농도는 통상 0.1 내지 5mol/l, 바람직하게는 0.5 내지 3mol/l 정도의 범위 내에서 적당히 선택된다.In addition, the supporting electrolyte in the organic electrolytic solution is not particularly limited, but various kinds of salts, acids, alkalis and the like commonly used in the electrochemical field or the battery field can be used. For example, inorganic ion salts such as alkali metal salts and alkaline earth metal salts can be used. , Quaternary ammonium salts, cyclic quaternary ammonium salts, quaternary sulfonium salts, and the like, (C 2 H 5 ) 4 NBF 4 , (C 2 H 5 ) 3 (CH 3 ) NBF 4 , (C 2 H 5 ) 4 PBF 4 , (C 2 H 5 ) 3 (CH 3 ) PBF 4, and the like are preferable. The concentration of these salts in the electrolyte is usually appropriately selected within the range of about 0.1 to 5 mol / l, preferably about 0.5 to 3 mol / l.

전기 이중층 커패시터의 더욱 구체적인 구성은 특별히 한정되지 않지만, 예컨대 두께 10 내지 500㎛의 얇은 시트상 또는 디스크 상의 한쌍의 전극(정극과 부극) 사이에 세퍼레이터를 매개로 하여 금속 케이스에 수용된 코인형, 한쌍의 전극을 세퍼레이터를 매개로 권회(捲回)시킨 권회형, 세퍼레이터를 매개로 다수의 전극군을 적층시킨 적층형 등이 있다.A more specific configuration of the electric double layer capacitor is not particularly limited, but a coin-shaped, pair of coins housed in a metal case via a separator between a pair of electrodes (positive electrode and negative electrode) on a thin sheet or disk of 10 to 500 μm in thickness, for example. The winding type which wound an electrode through a separator, and the laminated type which laminated | stacked many electrode groups via the separator are mentioned.

실시예Example

이하, 실시예에 의해 본 발명을 구체적으로 설명하지만, 본 발명은 이들 실시예에만 한정되는 것은 아니다.Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited only to these Examples.

또한, 수소/탄소원자비, 휘발분, 진밀도, 비표면적, 입도분포측정, 정전용량 은 다음과 같은 방법으로 구했다.In addition, hydrogen / carbon atomic ratio, volatile matter, true density, specific surface area, particle size distribution measurement, and capacitance were obtained by the following method.

(1) 수소/탄소원자비(1) hydrogen / carbon atomic ratio

유기원소분석장치(주화분석센터 제품 SUMIGRAPH HCN-22F)를 이용하여 시료 중의 탄소 질량%, 수소 질량%를 구하고, 수소/탄소 원자비를 산출했다.Using the organic element analyzer (SUMIGRAPH HCN-22F, manufactured by Coin Analysis Center), carbon mass% and hydrogen mass% in the sample were obtained, and the hydrogen / carbon atomic ratio was calculated.

(2) 휘발분(2) volatiles

JIS M8812 "석유류 및 코크스류 공업분석법"에 기재된 방법에 준하여 측정했다.It measured according to the method described in JIS M8812 "Oil and coke industrial analysis method."

(3) 진밀도(3) true density

JIS K 2151에 준하여 측정했다.It measured according to JISK2151.

(4) 비표면적(4) specific surface area

질소 가스 흡착법(BET법)으로 측정했다.It measured by nitrogen gas adsorption method (BET method).

(5) 입도분포측정(5) Particle size distribution measurement

레이저 회절식 입도분포 측정 장치(굴장제작소 제품, LA-950형)를 이용하여 물을 분산매로 하여 소량의 계면활성제를 첨가하여 초음파 조사한 후 측정했다. 수득된 체적 기준의 입도 적분 곡선으로부터 10% 입경(D10), 50% 입경(평균입경(D50)), 90% 입경(D90)을 구했다.Using a laser diffraction particle size distribution measuring device (manufactured by KLC, Model LA-950), water was used as a dispersion medium, and a small amount of surfactant was added and ultrasonic measurement was performed. 10% particle size (D10), 50% particle size (average particle diameter (D50)), and 90% particle size (D90) were obtained from the obtained particle size integral curve.

(6) 정전용량(6) capacitance

상기 코인형 셀에 1F당 2mA의 정전류에서 2.7V까지 충전시켰다. 충전 종료 후 30분 동안 2.7V로 유지시킨 후, 1mA의 정전류 방전을 20℃에서 수행했다. 그리고, 방전 곡선에서 충전 전압의 80%를 V1, 40%를 V2, 80%부터 40%까지 전압이 하강 하기까지 걸린 시간을 △T, 방전 전류값을 I로 했을 때, 다음과 같은 식에 따라 정전용량 C[F]를 산출하고, 이것을 전극에 함유된 활성탄의 질량(정극, 부극의 합계)으로 나누면, 질량당 정전용량[F/g]이 산출된다. 이 F/g에, 전극 밀도[g/cc]를 곱해서 F/cc를 산출했다.The coin-type cell was charged to 2.7V at a constant current of 2mA per 1F. After the charge was maintained at 2.7 V for 30 minutes, a constant current discharge of 1 mA was performed at 20 ° C. In the discharge curve, when ΔT and the discharge current value I are the time taken for the voltage to fall from 80% of the charging voltage to V1, 40% to V2, and 80% to 40%, the following equation is obtained. When capacitance C [F] is calculated and divided by the mass of the activated carbon contained in the electrode (the sum of the positive and negative electrodes), the capacitance per mass [F / g] is calculated. This F / g was multiplied by the electrode density [g / cc] to calculate F / cc.

정전용량 C[F] = I△T/(V1-V2)Capacitance C [F] = I △ T / (V1-V2)

[실시예 1]Example 1

원료로서 석유 생 코크스를 사용했다. 그 물성은 표 1에 나타낸다.Petroleum raw coke was used as a raw material. The physical properties are shown in Table 1.

상기 생 코크스를 질소 가스 분위기 중, 550℃에서 1시간 소성했다. 그 때, 승온 속도는 200℃/시간로 했다. 소성 후의 탄화물의 물성은 표 1에 나타낸다. 이 탄화물을 제트 밀로 분쇄했을 때의 입도 분포는 도 1에 나타낸다. 분쇄물의 평균 입자 직경(D50)은 2.5㎛였다. 이어서, 이 분쇄물 100질량부에 대해 수산화칼륨이 220 중량부가 되도록 혼합하고, 질소 가스 분위기 중, 700℃에서 1시간 부활 반응을 수행했다. 반응 후에 반응물을 물에 투입하여 알칼리 슬러리를 수득했다.The raw coke was calcined at 550 ° C. for 1 hour in a nitrogen gas atmosphere. At that time, the temperature increase rate was 200 degreeC / hour. The physical properties of the carbide after firing are shown in Table 1. The particle size distribution when this carbide is pulverized with a jet mill is shown in FIG. The average particle diameter (D50) of the milled product was 2.5 μm. Subsequently, it mixed so that potassium hydroxide might be 220 weight part with respect to 100 mass parts of this pulverized products, and the activating reaction was performed at 700 degreeC in nitrogen gas atmosphere for 1 hour. After the reaction, the reaction was added to water to obtain an alkali slurry.

이 슬러리 500g(고형분/물 = 1/20 중량비)을 내경 234mm, 높이 234mm의 볼밀 포트에 알루미나 볼(직경 17mm인 것 5kg, 직경 5mm인 것 5kg)과 함께 투입하고, 60rpm의 회전속도로 1시간 분쇄 처리했다. 이 분쇄물을 수 세정 및 산 세정(염산 사용)을 반복해서 잔존 칼륨을 제거한 것을 건조하여 활성탄을 수득했다. 수득된 활성탄의 입도 분포는 도 1에 나타낸다. 이 활성탄의 평균 입자 직경은 3.9㎛이고, 비표면적은 2220㎡/g이었다. 결과를 표 2에 나타낸다.500 g of this slurry (solid content / water = 1/20 weight ratio) were charged together with an alumina ball (5 kg having a diameter of 17 mm and 5 kg having a diameter of 5 mm) into a ball mill pot having an inner diameter of 234 mm and a height of 234 mm, and rotating at 60 rpm for 1 hour. Grinding treatment. The pulverized product was repeatedly washed with water and acid washed (using hydrochloric acid) to remove residual potassium, and dried to obtain activated carbon. The particle size distribution of the obtained activated carbon is shown in FIG. The average particle diameter of this activated carbon was 3.9 micrometers, and the specific surface area was 2220 m <2> / g. The results are shown in Table 2.

상기 활성탄 80질량부에 카본 블랙을 10질량부, 폴리테트라플루오로에틸렌 분말을 10질량부 첨가하고, 유발(乳鉢)에서 페이스트상이 될 때까지 혼련했다. 이어서, 수득된 페이스트를 180kPa의 롤러 프레스로 압연(壓延)하여 두께 200㎛의 전극 시트를 제작했다.10 parts by mass of carbon black and 10 parts by mass of polytetrafluoroethylene powder were added to 80 parts by mass of the activated carbon, and the mixture was kneaded until it became a paste in a mortar. Subsequently, the obtained paste was rolled by the roller press of 180 kPa, and the electrode sheet of thickness 200micrometer was produced.

상기 전극 시트로 직경 16mm의 원반상 디스크를 2매 타발하고, 120℃, 13.3Pa(0.1Torr)에서 2시간 진공 건조한 후, 이슬점 -85℃의 질소 대기 하인 글로브박스 중에서 유기 전해액(트리에틸메틸암모늄테트라플루오로보레이트의 프로필렌 카보네이트 용액, 농도: 1몰/리터)을 진공 함침시켰다. 이어서, 2매의 전극을 각각 정극, 부극으로 하고, 양 전극에 셀룰로스계 세퍼레이터(일본 고도지공업사 제품, 상품명: TF40-50, 두께: 50㎛), 양단에 알루미늄박의 집전체를 부착하고, 옥천사 제품인 2극식 셀에 조립해서 전기 이중층 커패시터(코인형 셀)을 제작했다. 수득된 각 커패시터에 대해 정전용량을 측정했다. 결과는 표 3에 나타낸다.Two disc-shaped disks of 16 mm in diameter were punched out using the electrode sheet, and vacuum dried at 120 DEG C and 13.3 Pa (0.1 Torr) for 2 hours, followed by organic electrolyte solution (triethylmethylammonium) in a glove box under nitrogen atmosphere at -85 DEG C. Propylene carbonate solution of tetrafluoroborate, concentration: 1 mol / liter) was vacuum impregnated. Subsequently, two electrodes were used as a positive electrode and a negative electrode, respectively, and the cellulose separator (made by Nippon Kogyo Kogyo Co., Ltd., brand name: TF40-50, thickness: 50 micrometers), the current collector of aluminum foil is attached to both ends, An electric double layer capacitor (coin-type cell) was fabricated by assembling in a two-pole cell manufactured by Okcheon Corporation. The capacitance was measured for each capacitor obtained. The results are shown in Table 3.

[실시예 2]Example 2

실시예 1에서 이용된 원료 생 코크스를 650℃에서 1시간 소성했다. 승온 속도 또는 대기 가스는 실시예 1과 동일하게 했다. 소성 후의 탄화물의 물성은 표 1에 나타낸다.The raw raw coke used in Example 1 was baked at 650 degreeC for 1 hour. The temperature increase rate or atmospheric gas was the same as that of Example 1. The physical properties of the carbide after firing are shown in Table 1.

이 탄화물을 제트 밀로 분쇄했다. 분쇄물의 입도 분포는 도 2에 제시했다. 평균 입자 직경(D50)은 0.9㎛였다. 이 분쇄물을 실시예 1과 동일하게 부활 처리하고, 알칼리 슬러리를 수득했다.This carbide was ground with a jet mill. The particle size distribution of the milled product is shown in FIG. 2. The average particle diameter (D50) was 0.9 micrometer. This pulverized product was activated in the same manner as in Example 1 to obtain an alkali slurry.

이 슬러리 500g(고형분/물 = 1/10 중량비)을 실시예 1과 동일하게 볼 밀을 이용하여 60rpm의 회전 속도로 3시간 동안 분쇄 처리했다. 이 분쇄물을 수 세정 및 산 세정(염산 사용)을 반복하여 잔존 칼륨을 제거한 것을 건조하여 활성탄을 수득했다. 수득된 활성탄의 입도 분포는 도 2에 제시했다. 이 활성탄의 평균 입자 직경은 1.0㎛이고, 비표면적은 1680㎡/g 이었다. 결과는 표 2에 나타낸다.500 g of this slurry (solid content / water = 1/10 weight ratio) were pulverized for 3 hours at a rotational speed of 60 rpm using a ball mill in the same manner as in Example 1. This pulverized product was repeatedly washed with water and acid washed (using hydrochloric acid) to remove residual potassium, and dried to obtain activated carbon. The particle size distribution of the obtained activated carbon is shown in FIG. 2. The average particle diameter of this activated carbon was 1.0 micrometer, and the specific surface area was 1680 m <2> / g. The results are shown in Table 2.

다음으로, 이 활성탄을 이용하여 실시예 1과 동일하게 전기 이중층 커패시터를 제작하고, 정전용량을 측정했다. 결과는 표 3에 제시한다.Next, using this activated carbon, the electric double layer capacitor was produced like Example 1, and the capacitance was measured. The results are shown in Table 3.

[실시예 3]Example 3

실시예 1에서 이용된 생 코크스 소성물을 제트 밀로 분쇄했다. 분쇄물의 입도 분포는 도 3에 나타낸다. 평균 입자 직경(D50)은 4.7㎛였다. 이 분쇄물을 실시예 1과 동일하게 부활시키고, 알칼리 슬러리를 수득했다.The raw coke fired product used in Example 1 was ground with a jet mill. The particle size distribution of the milled product is shown in FIG. 3. The average particle diameter (D50) was 4.7 micrometers. This pulverized product was activated in the same manner as in Example 1 to obtain an alkali slurry.

이 슬러리 500g(고형분/물 = 1/20 중량비)을 실시예 1과 동일하게 볼 밀을 이용해서 60rpm의 회전 속도로 4시간 동안 분쇄 처리했다. 이 분쇄물을 물 세정 및 산 세정(염산 사용)을 반복하여 잔존 칼륨을 제거한 것을 건조하여 활성탄을 수득했다. 수득한 활성탄의 입도 분포는 도 3에 나타낸다. 이 활성탄의 평균 입자 직경은 4.0㎛이고, 비표면적은 2120㎡/g 이었다. 결과는 표 2에 나타낸다.500 g of this slurry (solid content / water = 1/20 weight ratio) were pulverized for 4 hours at a rotational speed of 60 rpm using a ball mill in the same manner as in Example 1. This pulverized product was repeatedly washed with water and acid washed with hydrochloric acid to remove residual potassium, and dried to obtain activated carbon. The particle size distribution of the obtained activated carbon is shown in FIG. The average particle diameter of this activated carbon was 4.0 micrometers, and the specific surface area was 2120 m <2> / g. The results are shown in Table 2.

이어서, 이 활성탄을 이용하여 실시예 1과 동일하게 전기 이중층 커패시터를 제작하고, 정전용량을 측정했다. 결과는 표 3에 나타낸다.Next, using this activated carbon, the electric double layer capacitor was produced like Example 1, and the capacitance was measured. The results are shown in Table 3.

[실시예 4]Example 4

실시예 1에서 이용된 원료 생 코크스의 제트밀 분쇄물을 실시예 1과 동일하게 부활 처리하고, 알칼리 슬러리를 수득했다.The jet mill pulverized product of the raw raw coke used in Example 1 was activated in the same manner as in Example 1 to obtain an alkali slurry.

이 슬러리에 대해 물 세정 및 산 세정(염산 사용)을 반복하여 잔존 칼륨을 제거하고, 세정 슬러리를 수득했다. 이 슬러리 500g(고형분/물 = 1/20 중량비)을 실시예 1과 동일하게 볼 밀을 이용하여 60rpm의 회전 속도로 1시간 동안 분쇄 처리했다. 수득된 활성탄의 평균 입자 직경은 3.6㎛이고, 비표면적은 2260㎡/g이었다. 결과는 표 2에 나타낸다.Water washing and acid washing (using hydrochloric acid) were repeated for this slurry to remove residual potassium, thereby obtaining a washing slurry. 500 g of this slurry (solid content / water = 1/20 weight ratio) were pulverized for 1 hour at a rotational speed of 60 rpm using a ball mill in the same manner as in Example 1. The average particle diameter of the obtained activated carbon was 3.6 micrometers, and the specific surface area was 2260 m <2> / g. The results are shown in Table 2.

이어서, 이 활성탄을 이용하여 실시예 1과 동일하게 전기 이중층 커패시터를 제작하고 정전용량을 측정했다. 결과는 표 3에 제시했다.Next, using this activated carbon, the electric double layer capacitor was produced like Example 1, and the capacitance was measured. The results are shown in Table 3.

[비교예 1] Comparative Example 1

실시예 1에서 이용된 원료 생 코크스의 제트 밀 분쇄물을 실시예 1과 동일하게 부활 처리하고, 알칼리 슬러리를 수득했다.The jet mill pulverized product of the raw raw coke used in Example 1 was activated in the same manner as in Example 1 to obtain an alkali slurry.

이 슬러리에 대해 물 세정 및 산 세정(염산 사용)을 반복하여 잔존 칼륨을 제거하고, 건조하여 활성탄을 수득했다. 수득된 활성탄의 입도 분포는 도 4에 제시했다. 이 활성탄의 평균 입자 직경은 15.1㎛이고, 비표면적은 2320㎡/g이었다. 결과는 표 2에 나타낸다.Water washing and acid washing (using hydrochloric acid) were repeated for this slurry to remove residual potassium and dried to obtain activated carbon. The particle size distribution of the obtained activated carbon is shown in FIG. 4. The average particle diameter of this activated carbon was 15.1 micrometers, and the specific surface area was 2320 m <2> / g. The results are shown in Table 2.

이어서, 이 활성탄을 이용하여 실시예 1과 동일하게 전기 이중층 커패시터를 제작하고 정전용량을 측정했다. 결과는 표 3에 제시했다.Next, using this activated carbon, the electric double layer capacitor was produced like Example 1, and the capacitance was measured. The results are shown in Table 3.

[비교예 2]Comparative Example 2

비교예 1에서 수득하여 건조한 활성탄 20g을 실시예 1에서 이용한 볼 밀 포트와 알루미나 볼에 투입하고, 60rpm의 회전속도로 3시간 동안 분쇄 처리했다. 수득된 활성탄의 평균 입자 직경은 3.8㎛이고, 비표면적은 1460㎡/g이었다. 결과는 표 2에 나타낸다.20 g of dried activated carbon obtained in Comparative Example 1 was charged into a ball mill pot and an alumina ball used in Example 1, and ground at a rotational speed of 60 rpm for 3 hours. The average particle diameter of the obtained activated carbon was 3.8 micrometers, and the specific surface area was 1460 m <2> / g. The results are shown in Table 2.

이어서, 이 활성탄을 이용하여 실시예 1과 동일하게 전기 이중층 커패시터를 제작하고 정전용량을 측정했다. 결과는 표 3에 제시했다.Next, using this activated carbon, the electric double layer capacitor was produced like Example 1, and the capacitance was measured. The results are shown in Table 3.

[비교예 3]Comparative Example 3

실시예 4와 동일한 조작으로 수득한 세정 슬러리 500g을, 알루미나 볼로서 직경 17mm인 것을 10kg 이용한 것 외에는 동일하게 하여 습식 분쇄 처리했다. 수득된 활성탄의 평균 입자 직경은 6.7㎛이고, 비표면적은 2190㎡/g이었다. 결과는 표 2에 제시했다.500 g of the cleaning slurry obtained by the same operation as in Example 4 was subjected to the wet grinding treatment in the same manner except that 10 kg of a diameter of 17 mm was used as the alumina ball. The average particle diameter of the obtained activated carbon was 6.7 micrometers, and the specific surface area was 2190 m <2> / g. The results are shown in Table 2.

이어서, 이 활성탄을 이용해서 실시예 1과 동일하게 전기 이중층 커패시터를 제작하고, 정전용량을 측정했다. 결과는 표 3에 제시한다.Then, using this activated carbon, the electric double layer capacitor was produced like Example 1, and the capacitance was measured. The results are shown in Table 3.

[비교예 4] [Comparative Example 4]

실시예 4와 동일한 조작으로 수득한 세정 슬러리 500g을, 알루미나 볼로서 직경 5mm인 것을 10kg 사용한 것 외에는 동일하게 하여 습식 분쇄 처리했다. 수득된 활성탄의 평균 입자 직경은 7.4㎛이고, 비표면적은 2040㎡/g이었다. 결과는 표 2에 제시했다.500 g of the cleaning slurry obtained by the same operation as in Example 4 was subjected to the wet grinding treatment in the same manner except that 10 kg of the alumina ball having a diameter of 5 mm was used. The average particle diameter of the obtained activated carbon was 7.4 micrometers, and the specific surface area was 2040 m <2> / g. The results are shown in Table 2.

이어서, 이 활성탄을 이용하여 실시예 1과 동일하게 전기 이중층 커패시터를 제작하고, 정전용량을 측정했다. 결과는 표 3에 제시했다.Next, using this activated carbon, the electric double layer capacitor was produced like Example 1, and the capacitance was measured. The results are shown in Table 3.

소성온도 ℃Firing temperature ℃ 유지시간 hrHold time hr H/C 원자비 -H / C atomic ratio- 휘발분 질량%Volatile Mass% 진밀도 g/㎤True density g / cm3 원료Raw material 0.4220.422 6.76.7 1.411.41 실시예 1Example 1 550550 1One 0.4100.410 4.64.6 1.401.40 실시예 2Example 2 650650 1One 0.3800.380 3.83.8 1.451.45

Figure 112009024051814-PAT00001
Figure 112009024051814-PAT00001

Figure 112009024051814-PAT00002
Figure 112009024051814-PAT00002

도 1은 실시예 1의 활성탄 및 부활 전의 탄화물의 입도 분포 곡선을 도시한 것이다.1 shows particle size distribution curves of activated carbon of Example 1 and carbides before activation.

도 2는 실시예 2의 활성탄 및 부활 전의 탄화물의 입도 분포 곡선을 도시한 것이다.FIG. 2 shows particle size distribution curves of activated carbon of Example 2 and carbides before activation.

도 3은 실시예 3의 활성탄 및 부활 전의 탄화물의 입도 분포 곡선을 도시한 것이다.FIG. 3 shows particle size distribution curves of activated carbon of Example 3 and carbides before activation.

도 4는 비교예 1의 활성탄 및 부활 전의 탄화물의 입도 분포 곡선을 도시한 것이다.4 shows particle size distribution curves of activated carbon of Comparative Example 1 and carbides before reactivation.

Claims (6)

용이하게 흑연화가능한 탄소재를 소성 처리하는 단계;Calcining the easily graphitizable carbon material; 상기 탄소재를 알칼리금속 수산화물로 부활처리하는 단계; 및 Activating the carbon material with an alkali metal hydroxide; And 부활처리된 탄소재를 직경이 서로 다른 2종의 볼(ball)을 이용하여 습식 분쇄하는 단계를 포함하는, 평균 입자 직경이 0.5 내지 5㎛이고 BET 비표면적이 1500 내지 2500㎡/g인, 전기 이중층 커패시터 전극용 활성탄의 제조방법.Wet grinding the activated carbon material by using two kinds of balls of different diameters, the average particle diameter of 0.5 to 5㎛, BET specific surface area of 1500 to 2500m 2 / g, electric Method for producing activated carbon for a double layer capacitor electrode. 제1항에 있어서, 용이하게 흑연화가능한 탄소재의 평균 입자 직경이 0.5 내지 8㎛인, 전기 이중층 커패시터 전극용 활성탄의 제조방법.The method for producing activated carbon for electric double layer capacitor electrodes according to claim 1, wherein the average particle diameter of the easily graphitizable carbon material is 0.5 to 8 mu m. 제1항 또는 제2항에 있어서, 소성 처리 온도가 500 내지 700℃인, 전기 이중층 커패시터 전극용 활성탄의 제조방법.The manufacturing method of the activated carbon for electric double layer capacitor electrodes of Claim 1 or 2 whose baking process temperature is 500-700 degreeC. 제1항 내지 제3항 중 어느 한 항에 있어서, 직경이 서로 다른 2종의 볼 중에서 큰 볼의 직경은 1 내지 30mm이고 작은 볼의 직경은 큰 볼의 직경의 1/10 내지 1/2인, 전기 이중층 커패시터 전극용 활성탄의 제조방법.The method of any one of claims 1 to 3, wherein, among two kinds of balls having different diameters, the diameter of the large ball is 1 to 30 mm and the diameter of the small ball is 1/10 to 1/2 of the diameter of the large ball. Method for producing activated carbon for electric double layer capacitor electrode. 제1항 내지 제4항 중 어느 한 항에 기재된 제조방법에 의해 생산된 전기 이중층 커패시터 전극용 활성탄.Activated carbon for electric double layer capacitor electrodes produced by the manufacturing method according to any one of claims 1 to 4. 제5항에 기재된 전기 이중층 커패시터 전극용 활성탄을 이용하는 전기 이중층 커패시터.An electric double layer capacitor using the activated carbon for electric double layer capacitor electrodes of Claim 5.
KR1020090034603A 2008-04-21 2009-04-21 Active carbon for an electric double layer capacitor electrode and process for manufacturing the same KR101553716B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008110098A JP2009260177A (en) 2008-04-21 2008-04-21 Activated charcoal for electric double-layer capacitor electrode and manufacturing method thereof
JPJP-P-2008-110098 2008-04-21

Publications (2)

Publication Number Publication Date
KR20090111290A true KR20090111290A (en) 2009-10-26
KR101553716B1 KR101553716B1 (en) 2015-09-16

Family

ID=41387204

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090034603A KR101553716B1 (en) 2008-04-21 2009-04-21 Active carbon for an electric double layer capacitor electrode and process for manufacturing the same

Country Status (2)

Country Link
JP (1) JP2009260177A (en)
KR (1) KR101553716B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101321523B1 (en) * 2011-08-12 2013-11-21 충북대학교 산학협력단 Manufacturing of active carbon for capacitor electrode using NaOH chemical activation and a capacitor made thereof
KR101381710B1 (en) * 2012-05-09 2014-04-04 파워카본테크놀로지 (주) Method for manufacturing active carbon for electrode using cokes and method for manufacturing active carbon composition for electrode
CN105761951A (en) * 2016-05-13 2016-07-13 国网新疆电力公司乌鲁木齐供电公司 Method for preparing three-dimensional nickel oxide/graphene composite material for supercapacitor
KR102003641B1 (en) * 2018-04-20 2019-07-25 전북대학교산학협력단 3D composite conductor for gas sensor using activated carbon and manufacturing method thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110236567A1 (en) 2010-03-26 2011-09-29 Semiconductor Energy Laboratory Co., Ltd. Method of forming electrode
JP5039843B1 (en) * 2011-07-29 2012-10-03 ニチアス株式会社 Conductive sheet for electric double layer capacitor
KR102086589B1 (en) 2013-11-08 2020-03-10 파워카본테크놀로지(주) Electrode materials, electrochemical device comprising the same and method for manufacturing the same
KR101932966B1 (en) 2016-11-30 2018-12-27 삼신디바이스 주식회사 Super capacitor and method for manufacturing the same
KR101950193B1 (en) 2017-04-26 2019-02-21 한국과학기술연구원 Powered activated carbon for removing taste and odor in water and Method for fabricating the same and Method for removal of manganese ions using the same and Coagulation method using the same
KR102016520B1 (en) 2017-10-24 2019-08-30 삼신디바이스 주식회사 Super capacitor with high voltage and method for manufacturing the same
KR20210066054A (en) 2019-11-27 2021-06-07 파워카본테크놀로지 (주) Activated carbon for electric double layer capacitor by co2-alkali complex activation process and method for manufacturing the same
KR20220063537A (en) 2020-11-10 2022-05-17 파워카본테크놀로지 (주) ACTIVATED CARBON FOR ELECTRIC DOUBLE LAYER CAPACITOR BY NaOH-CO2 COMPLEX ACTIVATION PROCESS AND METHOD FOR MANUFACTURING THE SAME
KR20240067150A (en) 2022-11-04 2024-05-16 파워카본테크놀로지 (주) Activated carbon for highly reliable electric double layer capacitor through CO2-alkali complex activation and method for manufacturing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346838Y2 (en) * 1985-08-09 1991-10-03
JPH03174303A (en) * 1989-08-24 1991-07-29 Hitachi Chem Co Ltd Powder of high temperature superconductor and production thereof
JPH0729707A (en) * 1993-05-10 1995-01-31 Fuji Electric Co Ltd Manufacture of voltage-dependent nonlinear resistor
JPH11319609A (en) * 1998-05-14 1999-11-24 Sumitomo Metal Mining Co Ltd Unit for feeding ball to ball mill
JP2004149363A (en) * 2002-10-31 2004-05-27 Honda Motor Co Ltd Method of manufacturing active carbon
JP2006179558A (en) * 2004-12-21 2006-07-06 Osaka Gas Co Ltd Hydrocarbon material and its manufacturing method
JP4533876B2 (en) * 2005-09-29 2010-09-01 昭和電工株式会社 Activated carbon and its production method and use
JP5210504B2 (en) * 2006-06-30 2013-06-12 関西熱化学株式会社 Activated carbon purification method and activated carbon purification apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101321523B1 (en) * 2011-08-12 2013-11-21 충북대학교 산학협력단 Manufacturing of active carbon for capacitor electrode using NaOH chemical activation and a capacitor made thereof
KR101381710B1 (en) * 2012-05-09 2014-04-04 파워카본테크놀로지 (주) Method for manufacturing active carbon for electrode using cokes and method for manufacturing active carbon composition for electrode
CN105761951A (en) * 2016-05-13 2016-07-13 国网新疆电力公司乌鲁木齐供电公司 Method for preparing three-dimensional nickel oxide/graphene composite material for supercapacitor
KR102003641B1 (en) * 2018-04-20 2019-07-25 전북대학교산학협력단 3D composite conductor for gas sensor using activated carbon and manufacturing method thereof

Also Published As

Publication number Publication date
KR101553716B1 (en) 2015-09-16
JP2009260177A (en) 2009-11-05

Similar Documents

Publication Publication Date Title
KR20090111290A (en) Active carbon for an electric double layer capacitor electrode and process for manufacturing the same
JP5473282B2 (en) Carbon material for electric double layer capacitor and manufacturing method thereof
KR101470050B1 (en) Process for producing activated carbon for electric double layer capacitor electrode
JP5344972B2 (en) Carbon material for electric double layer capacitor electrode and manufacturing method thereof
JP4708152B2 (en) Method for producing carbon material for electric double layer capacitor electrode
US7754178B2 (en) Raw-material carbon composition for carbon material for electrode of electric double-layer capacitor
JP5599186B2 (en) Activated carbon for electric double layer capacitor electrode and manufacturing method thereof
KR102159201B1 (en) Activated carbon for electric double layer capacitor electrode and production method for same
EP2554516A1 (en) Activated charcoal for electric double-layer capacitor electrode and method for producing the same
JP4092344B2 (en) Raw material composition of carbon material for electric double layer capacitor electrode
JP5242090B2 (en) Method for producing activated carbon for electric double layer capacitor electrode
KR20180087440A (en) Non-aqueous lithium secondary battery
WO2015146459A1 (en) Activated carbon, method for producing activated carbon and method for treating activated carbon
JP5242216B2 (en) Carbon material for electric double layer capacitor electrode and manufacturing method thereof
JP2005142439A (en) Manufacturing method of activated carbon for electric double layer capacitor electrode and its carbon raw material
JP6815147B2 (en) Non-aqueous lithium storage element
JP2008010559A (en) Activated carbon for electric double-layer capacitor electrode

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180905

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190909

Year of fee payment: 5