JPH0729707A - Manufacture of voltage-dependent nonlinear resistor - Google Patents

Manufacture of voltage-dependent nonlinear resistor

Info

Publication number
JPH0729707A
JPH0729707A JP5222695A JP22269593A JPH0729707A JP H0729707 A JPH0729707 A JP H0729707A JP 5222695 A JP5222695 A JP 5222695A JP 22269593 A JP22269593 A JP 22269593A JP H0729707 A JPH0729707 A JP H0729707A
Authority
JP
Japan
Prior art keywords
diameter
mixer
voltage
mixing
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5222695A
Other languages
Japanese (ja)
Inventor
Tsutomu Koyama
勉 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP5222695A priority Critical patent/JPH0729707A/en
Publication of JPH0729707A publication Critical patent/JPH0729707A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To enhance a voltage-dependent nonlinear resistor in resistance to an impulse discharge current and long-term reliability by a method wherein material metal oxide is uniformly dispersed into liquid and finely ground into primary particles when the material metal oxide consisting mainly of zinc oxide is mixed into liquid and ground into slurry. CONSTITUTION:A mixing process is separated into two sub-processes, a first sub-process wherein material metal oxide is uniformly dispersed into liquid by a mixer such as a ball mill where balls smaller than 8mm in diameter are used and a second sub-process wherein the metal oxide is finely ground into primary particles by another ball mill where balls smaller than 2mm in diameter are used. Or, the above two sub-processes are carried out at the same time. Slurry containing primary particles is sprayed and dried out into sintering material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化亜鉛を主成分とす
る金属酸化物を原料とする電圧非直線抵抗体の製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a voltage non-linear resistor made of a metal oxide containing zinc oxide as a main component.

【0002】[0002]

【従来の技術】電圧非直線抵抗体は、大きな電圧非直線
係数を有することはもちろん、大きな衝撃放電耐量を持
ち、長期信頼性も高いことが要求される。この電圧非直
線抵抗体は、例えば次の工程で製造される。まず、酸化
亜鉛に酸化プラセオジム、酸化コバルト、酸化ビスマ
ス、酸化アンチモン、酸化アルミニウム、酸化マグネシ
ウム、炭酸カリウム、酸化ほう素、酸化クロム、炭酸カ
ルシウムなどの微量の添加物と所定量の、例えばポリビ
ニルアルコールのようなバインダと純水とを加え、酸化
ジルコニウム (ZrO2 ) が97.25 %、残部が酸化イット
リウム (Y2 3 ) よりなる概略球状のボールが入った
ボールミルで混合してスラリーとし、このスラリーをス
プレードライヤ造粒機により噴霧、熱風乾燥して造粒
し、均一な微粒子の粉末材料とする。この粉末材料を金
型に充填し、1ton /cm2 の圧力でプレスし、成形体を
得る。この成形体を1300℃で2時間、空気中において焼
成し、直径14mm、厚さ1.0mmの円柱状の焼結体を得る。
この焼結体の両主面にAgペーストを印刷、焼き付けて直
径11mmのAg電極を形成する。次いで、Ag−Pb−Sn共晶は
んだによりリード線を銀電極上に固着し、次いでヒータ
により130 ℃に加熱し、エポキシ樹脂中にリード線を一
部残して漬ける。ヒータ加熱とエポキシ樹脂中にリード
線を一部残して漬ける動作を計3回実施し、約2mmの樹
脂厚を確保し、その後、150 ℃で2時間キープし硬化さ
せる。これにより樹脂層で被覆された電圧非直線抵抗体
を得る。以上の工程でボールミルに用いるボールには、
例えば特公平1−31683 号公報に記載されているように
直径2〜8mmのものが用いられる。
2. Description of the Related Art A voltage non-linear resistor is required to have a large voltage non-linear coefficient, a large shock discharge withstand capability, and high long-term reliability. This voltage nonlinear resistor is manufactured, for example, in the following process. First, zinc oxide is mixed with praseodymium oxide, cobalt oxide, bismuth oxide, antimony oxide, aluminum oxide, magnesium oxide, potassium carbonate, boron oxide, chromium oxide, calcium carbonate, and other trace amounts of additives such as polyvinyl alcohol. Such a binder and pure water are added and mixed in a ball mill containing roughly spherical balls of zirconium oxide (ZrO 2 ) of 97.25% and the balance of yttrium oxide (Y 2 O 3 ) to form a slurry. Spray with a spray dryer granulator, dry with hot air and granulate to obtain a uniform fine powder material. A die is filled with this powder material and pressed at a pressure of 1 ton / cm 2 to obtain a molded body. The compact is fired in air at 1300 ° C. for 2 hours to obtain a cylindrical sintered body having a diameter of 14 mm and a thickness of 1.0 mm.
Ag paste is printed and baked on both main surfaces of this sintered body to form an Ag electrode having a diameter of 11 mm. Then, the lead wire is fixed on the silver electrode by Ag-Pb-Sn eutectic solder, and then heated to 130 ° C. by a heater, and the lead wire is partially left in the epoxy resin. The heater is heated and the lead wire is partially immersed in the epoxy resin. This operation is performed three times in total to secure a resin thickness of about 2 mm, and then the resin is kept at 150 ° C for 2 hours for curing. As a result, a voltage non-linear resistor covered with the resin layer is obtained. In the ball used in the ball mill in the above process,
For example, those having a diameter of 2 to 8 mm are used as described in JP-B-1-31683.

【0003】図1の線11は、以上のように作成したサン
プルに、3000Aから1000A間隔で8/20μsec の衝撃放
電電流を2分間隔で2回印加し、その前後のバリスタ電
圧V 1mA の変化率を求めた結果を示す。7000A付近から
バリスタ電圧V1mA の変化率が10%を越えるのがわか
る。電圧非直線抵抗体の長期信頼性の性能を評価する一
つの方法としてプレッシャークッカーテスト( 以下PC
T) がある。このPCTとは、121 ℃、2気圧の水蒸気
の入った圧力室中に電圧非直線抵抗体サンプルを規定時
間放置し、その前後の特性変化により評価する方法であ
る。図2の線21に従来例の電圧非直線抵抗体のPCTの
結果を示す。160 H付近からバリスタ電圧V1mA の変化
率が10%を越えるのがわかる。
Line 11 in FIG. 1 is the sun created as described above.
For pull, 8 / 20μsec shock release at intervals of 3000A to 1000A
The electric current is applied twice at intervals of 2 minutes, and the varistor voltage before and after that is applied.
Pressure V 1mAThe result of having calculated | required the change rate of is shown. From around 7000A
Varistor voltage V1mAIs it clear that the change rate of
It A method for evaluating the long-term reliability performance of voltage nonlinear resistors.
As one method, pressure cooker test (PC
T) This PCT is steam at 121 ° C and 2 atm.
When a voltage non-linear resistor sample is specified in a pressure chamber containing
It is left for a while and evaluated by the change in characteristics before and after that.
It Line 21 of Fig. 2 shows the PCT of the conventional voltage non-linear resistor.
The results are shown. Varistor voltage V from around 160 H1mAchange of
You can see that the rate exceeds 10%.

【0004】[0004]

【発明が解決しようとする課題】混合工程には、次の二
つの機能が必要である。一つ目として、酸化亜鉛、他の
添加物、純水、バインダを均一に分散する機能がなけれ
ばならない。酸化亜鉛、他の添加物は粉体であり、純水
は液体である。純水中での粉体の均一な分散が必要であ
り、十分な均一分散により特性のばらつきが少なくな
り、衝撃放電耐量が増加する。二つ目として、粉体であ
る酸化亜鉛、他の添加物の一次粒子 (0.5μm〜数μ
m) を細かく粉砕する機能がなければならない。一次粒
子が細かくなることにより、各粒子の接触点が増加し、
焼成時において焼結反応が促進され、信頼性等に影響を
与える焼成密度の増加に対して寄与する。しかしなが
ら、上記の従来技術により製造された電圧非直線抵抗体
では衝撃放電電流耐量あるいはPCT時間において満足
すべき特性が得られないことがあった。
The mixing process requires the following two functions. First, it must have a function of uniformly dispersing zinc oxide, other additives, pure water, and a binder. Zinc oxide and other additives are powders, and pure water is a liquid. It is necessary to uniformly disperse the powder in pure water, and sufficient uniform dispersion reduces the variation in characteristics and increases the impact discharge withstand capacity. Second, the primary particles of powdered zinc oxide and other additives (0.5 μm to several μm).
m) must be capable of finely crushing. By making the primary particles finer, the contact points of each particle increase,
The sintering reaction is promoted during firing, which contributes to an increase in firing density which affects reliability and the like. However, the voltage non-linear resistor manufactured by the above-mentioned conventional technique may not have satisfactory characteristics in the impact discharge current withstand capacity or PCT time.

【0005】本発明の目的は、このような問題を解決
し、原料を液体中に均一に分散させたスラリーとし、そ
れを一次粒子に細かく粉砕することにより、衝撃放電電
流耐量および長期信頼性を向上させることのできる電圧
非直線抵抗体の製造方法を提供することにある。
An object of the present invention is to solve the above problems and to make a slurry in which a raw material is uniformly dispersed in a liquid and finely pulverize the slurry into primary particles to improve the withstand discharge current and long-term reliability. An object of the present invention is to provide a method of manufacturing a voltage non-linear resistor that can be improved.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、酸化亜鉛を主成分とする金属酸化物原
料を液体と共に混合機中で混合し、粉砕する工程を有す
る電圧非直線抵抗体の製造方法において、混合機中に用
いる硬質球状体が直径8mm以上および直径2mm以下であ
るものとする。金属酸化物原料を液体と共に混合機中で
混合、粉砕する工程が、直径8mm以上の硬質球状体を用
いる混合機中で混合する分散工程と、それにつづく直径
2mm以下の硬質球状体を用いる混合機中で混合する粉砕
工程からなってもよく、混合機中に直径8mm以上の硬質
球状体と直径2mm以下の硬質球状体を同時に入れて行う
工程であってもよい。そして、分散および粉砕工程によ
って得たスラリーを噴霧、乾燥して粉末材料に造粒し、
この粉末材料を加圧、成形したのち焼成することが有効
である。また、混合機に用いる硬質球状体が酸化ジルコ
ニウムおよび酸化イットリウムを成分とするセラミック
スよりなることが有効である。
In order to achieve the above-mentioned object, the present invention provides a method of mixing a metal oxide raw material containing zinc oxide as a main component with a liquid in a mixer and pulverizing it. In the method for producing the linear resistor, the hard spherical body used in the mixer has a diameter of 8 mm or more and a diameter of 2 mm or less. The step of mixing and pulverizing the metal oxide raw material with the liquid in the mixer is a dispersion step of mixing in a mixer using a hard spherical body having a diameter of 8 mm or more, and the subsequent mixing machine using a hard spherical body having a diameter of 2 mm or less. It may consist of a pulverizing step of mixing inside, or a step of putting a hard spherical body having a diameter of 8 mm or more and a hard spherical body having a diameter of 2 mm or less at the same time in a mixer. Then, the slurry obtained by the dispersion and pulverization process is sprayed, dried and granulated into a powder material,
It is effective to press and mold this powder material and then fire it. Further, it is effective that the hard spherical body used in the mixer is made of a ceramic containing zirconium oxide and yttrium oxide as components.

【0007】[0007]

【作用】上記の従来技術の製造方法で、混合工程のボー
ルミルに0.5、2.5、6、8、10、15、20mmの直径の硬
質球状体を使用して電圧非直線抵抗体の試料を作成し、
途中工程での中間特性、衝撃放電電流耐量、PCT時間
を測定した。全体の混合時間は40時間であった。図3、
図4、図5はその結果を示す。図3の混合工程でのスラ
リー状にならない粉体の比率が示すように、直径が8mm
より小さな球状体を使用した場合、液体と粉体の十分な
分散ができず、スラリー状にならない粉体の塊が生じ
る。これはボールミルによる回転の力が重量の小さな球
状体には伝達するが、この重量の小さな球状体ではスラ
リー状にならない粉体の塊を破壊し、分散させる力がな
いからである。衝撃放電電流耐量は分散が十分でないた
め劣ることになる。また、2mmより大きな球状体を使用
した場合、図4に示すように粉体の一次粒子の平均粒径
が大きくなるのに伴い焼成密度が低下する。この結果、
図5に示すようにPCT時間を低下する。これは液体中
に粉体の十分な分散ができ、スラリー状にはなるが、ボ
ールと酸化亜鉛、他の添加物との接触面積が十分でな
く、一次粒子を細かく粉砕することができないためであ
る。8mm以上の直径の硬質球状体を用いる分散工程によ
り、図3からわかるように、液体と粉体の十分な分散が
でき、スラリー状にならない粉体の塊が生じない。これ
はボールミルによる回転の力が重量の大きな球状体には
伝達し、この重量の大きなボールでスラリー状にならな
い粉体の塊を破壊しスラリー状にし、分散させることが
できる。また、2mm以下の直径の球状体を用いる粉砕工
程により、球状体と酸化亜鉛、他の添加物の接触面積が
十分大きくなり、図4からわかるように、一次粒子を細
かく粉砕することができ焼成密度の高い焼結体を得るこ
とができる。その結果、図3からわかるように衝撃放電
電流耐量が大きくなり、図5からわかるように長期信頼
性の性能を向上させることができる。
According to the above-mentioned conventional manufacturing method, a ball sphere of the mixing process is performed by using a hard spherical body having a diameter of 0.5, 2.5, 6, 8, 10, 15, 20 mm to produce a voltage non-linear resistor. Make a sample,
The intermediate characteristics, impact discharge current withstand capability and PCT time in the intermediate process were measured. The total mixing time was 40 hours. Figure 3,
4 and 5 show the results. As shown in the ratio of powder that does not become a slurry in the mixing process in Fig. 3, the diameter is 8 mm.
When smaller spheres are used, the liquid and powder cannot be sufficiently dispersed, resulting in powder lumps that do not form a slurry. This is because the rotational force of the ball mill is transmitted to the spherical body having a small weight, but the spherical body having a small weight has no force to destroy and disperse the lump of the powder which does not become a slurry. The impulsive discharge current resistance is inferior because the dispersion is not sufficient. When a spherical body having a size larger than 2 mm is used, the firing density decreases as the average particle size of the primary particles of the powder increases, as shown in FIG. As a result,
The PCT time is reduced as shown in FIG. This is because the powder can be sufficiently dispersed in the liquid to form a slurry, but the contact area between the balls and zinc oxide and other additives is not sufficient, and the primary particles cannot be finely pulverized. is there. As can be seen from FIG. 3, the dispersion process using the hard spheres having a diameter of 8 mm or more enables sufficient dispersion of the liquid and the powder, and does not cause powder lumps that do not become a slurry. This is because the rotation force of the ball mill is transmitted to the spherical body having a large weight, and the balls having a large weight can break up the lumps of the powder that are not in the slurry state to form the slurry state and disperse it. In addition, the crushing process using spheres with a diameter of 2 mm or less increases the contact area of the spheres with zinc oxide and other additives, and as shown in FIG. 4, the primary particles can be finely crushed and fired. A dense sintered body can be obtained. As a result, as can be seen from FIG. 3, the shock discharge current withstand capability is increased, and as can be seen from FIG. 5, long-term reliability performance can be improved.

【0008】このような8mm以上の直径の硬質球状体を
用いる分散工程と2mm以上の直径を用いる粉砕工程は別
個に行っても、同時に双方の硬質球状体を用いて併せて
行っても同じ効果が得られる。
The same effect can be obtained by performing the dispersing step using the hard spheres having a diameter of 8 mm or more and the crushing step using the diameter of 2 mm or more separately or simultaneously using both the hard spheres. Is obtained.

【0009】[0009]

【実施例】本発明の一実施例として電圧非直線抵抗体を
次の工程で製造した。まず、酸化亜鉛に酸化プラセオジ
ム、酸化コバルト、酸化ビスマス、酸化アンチモン、酸
化アルミニウム、酸化マグネシウム、炭酸カリウム、酸
化ほう素、酸化クロム、炭酸カリシウムなどの微量の添
加物と所定量のポリビニルアルコールと純水とを加えた
物を、第一の混合工程で、酸化ジルコニウム (ZrO2 )
を97.25 %、残部を酸化イットリウム (Y2 3 ) より
なる概略球状で直径20mmのボールが入ったボールミルで
分散してスラリーとし、その後、第二の混合工程で、概
略球状で直径1mmのボールが入ったボールミルで粉砕
し、このスラリーをスプレードライヤ造粒機により噴
霧、熱風乾燥して造粒し、均一な微粒子の粉末材料とし
た。この粉末材料を金型に充填し、1ton /cm2 の圧力
でプレスし、成形体を得た。この成形体を1300℃で2時
間、空気中において焼成し、直径14mm、厚さ1.0mmの円
柱状の焼結体を得た。この焼結体の両主面にAgペースト
を印刷、焼き付けて直径11mmのAg電極を形成した。次い
で、Ag−Pb−Sn共晶はんだによりリード線を銀電極上に
固着し、次いでヒータにより130 ℃に加熱し、エポキシ
樹脂中にリード線を一部残して浸漬した。ヒータ加熱と
エポキシ樹脂中にリード線を一部残して浸漬する動作を
計3回実施し、約2mmの樹脂厚を確保し、その後、150
℃で2時間キープし硬化させた。これにより樹脂層で被
覆された電圧非直線抵抗体を得た。なお、第一の混合工
程、第二の混合工程とも、工程に要する時間は200kg の
ロットに対し20時間であった。この時使用したZrO2
2 3 よりなる概略球状のボールの製造プロセスは、
一般的なセラミックスと同様なつくり方で、次のように
作られる。ZrO2 粉97.25 %と残部のY2 3 粉を用意
し、中和共沈法、アルコキシド法等により原料粉を作成
する。そして、600 ℃前後で仮焼成し、その後、純水
と、例えばポリビニルアルコールなどのバインダを加
え、ボールミル、アトライタ等の粉砕機で粉砕する。そ
して、スプレードライヤで熱風乾燥し造粒粉を得る。そ
して、ゴム製の型を用意し造粒粉を充填する。つづい
て、静水圧プレス (ラバープレス) により成形体を得、
その後1400〜1500℃の大気中で焼成し出来上がる。
EXAMPLE As an example of the present invention, a voltage non-linear resistor was manufactured in the following steps. First, a small amount of additives such as praseodymium oxide, cobalt oxide, bismuth oxide, antimony oxide, aluminum oxide, magnesium oxide, potassium carbonate, boron oxide, chromium oxide and calcium carbonate, and a predetermined amount of polyvinyl alcohol and pure water are added to zinc oxide. In the first mixing step, zirconium oxide (ZrO 2 )
Of 97.25% and the balance of yttrium oxide (Y 2 O 3 ) are dispersed in a ball mill containing roughly spherical balls with a diameter of 20 mm to form a slurry. Then, in the second mixing step, roughly spherical balls with a diameter of 1 mm are used. It was pulverized with a ball mill containing a mixture, and this slurry was sprayed with a spray dryer granulator, dried with hot air and granulated to obtain a powder material having uniform fine particles. A mold was filled with this powder material and pressed at a pressure of 1 ton / cm 2 to obtain a molded body. The compact was fired in air at 1300 ° C. for 2 hours to obtain a cylindrical sintered body having a diameter of 14 mm and a thickness of 1.0 mm. Ag paste was printed and baked on both main surfaces of this sintered body to form an Ag electrode having a diameter of 11 mm. Then, the lead wire was fixed on the silver electrode with Ag-Pb-Sn eutectic solder, and then heated to 130 ° C. with a heater, and the lead wire was partially immersed in the epoxy resin. The heater heating and the operation of immersing the lead wire in epoxy resin while leaving a part of it are carried out three times in total to secure a resin thickness of about 2 mm, and then 150
It was kept at ℃ for 2 hours and cured. As a result, a voltage nonlinear resistor covered with the resin layer was obtained. The time required for both the first mixing step and the second mixing step was 20 hours for a 200 kg lot. ZrO 2 used at this time,
The manufacturing process of the roughly spherical ball made of Y 2 O 3 is
It is made in the following way with the same manufacturing method as general ceramics. Prepare 97.25% ZrO 2 powder and the balance Y 2 O 3 powder, and prepare a raw material powder by a neutralization coprecipitation method, an alkoxide method, or the like. Then, it is calcined at around 600 ° C., after which pure water and a binder such as polyvinyl alcohol are added, and the mixture is pulverized by a pulverizer such as a ball mill or an attritor. Then, it is dried with hot air using a spray dryer to obtain granulated powder. Then, a rubber mold is prepared and filled with granulated powder. Subsequently, a hydrostatic press (rubber press) was used to obtain a molded body,
After that, it is baked in the air at 1400-1500 ° C to complete.

【0010】以上のように作成した電圧非直線抵抗体サ
ンプルに、3000Aから1000A間隔で8/20μsec の衝撃
放電電流を2分間隔で2回印加し、その前後のバリスタ
電圧V1mA の変化率を求めた。その結果を図1の線12に
示す。線11の従来例に比較して実施例は、大幅に向上し
ているのがわかる。次に、PCTを実施した。その結果
を図2の線22に示す。線21の従来例に比較して実施例
は、大幅に信頼性が向上しているのがわかる。
To the voltage non-linear resistor sample prepared as described above, an impact discharge current of 8/20 μsec was applied twice at intervals of 3000 A to 1000 A twice at intervals of 2 minutes, and the change rate of the varistor voltage V 1 mA before and after that was applied. I asked. The result is shown by line 12 in FIG. It can be seen that the embodiment is significantly improved compared to the conventional example of line 11. Next, PCT was performed. The result is shown by the line 22 in FIG. It can be seen that the embodiment is significantly improved in reliability as compared with the conventional example of line 21.

【0011】別の実施例では、上記実施例と同様な金属
酸化物原料に純水を加えたものを、ZrO2 97.25 %、残
部Y2 3 よりなる概略20mmと1mmの2種類のボールの
入ったボールミルで分散、粉砕してスラリーを得た。こ
のスラリーを用い、上記の実施例と同様の工程を経て樹
脂層で被覆された電圧非直線抵抗体を製造した。混合機
に使用したボールも、上記の実施例と同様な方法で作っ
たものである。そして、この電圧非直線抵抗体に対して
求めた衝撃放電電流印加時およびPCT時のバリスタ電
圧変化率は、図1、図2の線11、線12と同様であった。
In another embodiment, the same metal oxide raw material as that used in the above embodiment, to which pure water is added, is used to prepare two types of balls of about 20 mm and 1 mm, which are composed of 97.25% ZrO 2 and the balance Y 2 O 3 . It was dispersed and crushed with a ball mill to obtain a slurry. Using this slurry, a voltage non-linear resistor covered with a resin layer was manufactured through the same steps as those in the above-mentioned examples. The balls used in the mixer were also made in the same manner as in the above-mentioned examples. The rate of change in varistor voltage at the time of impact discharge current application and PCT obtained for this voltage non-linear resistor was similar to the lines 11 and 12 in FIGS. 1 and 2.

【0012】さらに別の実施例として、ZrO2 97.25
%、残部Y2 3 よりなるそれぞれ直径20mm、8mm、2
mm、0.5mmの概略球状のボールが一緒に入ったボールミ
ルで分散、粉砕を行い同様の結果を得た。以上の実施例
では、混合、粉砕の工程でボールミルを使用したが、振
動ミル、アトライタ等の混合、粉砕機を使用してもかま
わない。また、粉砕媒体としてのボールの材料には、Zr
2 ・Y2 3 セラミックス以外に、アルミナ、炭化け
い素、窒化けい素を用いてもよい。
As yet another embodiment, ZrO 2 97.25
%, And the balance Y 2 O 3 having diameters of 20 mm, 8 mm, 2 respectively
The same result was obtained by dispersing and pulverizing with a ball mill containing mm and 0.5 mm roughly spherical balls. In the above embodiments, the ball mill is used in the mixing and crushing steps, but a mixing and crushing machine such as a vibration mill or an attritor may be used. In addition, the material of the ball as the grinding medium is Zr
Alumina, silicon carbide, and silicon nitride may be used in addition to the O 2 · Y 2 O 3 ceramics.

【0013】[0013]

【発明の効果】本発明によれば、電圧非直線抵抗体の原
料金属酸化物を造粒工程が適用されるスラリーにする混
合工程を、大きい直径の硬質球状体を用いる分散工程
と、小さい直径の硬質球状体を用いて粉砕工程とを別個
あるいは同時に行うことにより、分散工程で液体中に粉
体の十分な分散が均一にでき、粉砕工程で細かい一次粒
子を得ることができるので、焼成密度の高い焼結体を得
ることができる。その結果、衝撃放電電流耐量が大き
く、長期信頼性の向上した電圧非直線抵抗体を得ること
ができた。
According to the present invention, the mixing step of making the raw material metal oxide of the voltage non-linear resistor into the slurry to which the granulation step is applied, the dispersion step using the hard spheres of large diameter, and the small diameter step. By performing the pulverization step separately or simultaneously with the hard spheres, the powder can be sufficiently dispersed in the liquid in the dispersion step, and fine primary particles can be obtained in the pulverization step. It is possible to obtain a high sintered body. As a result, it was possible to obtain a voltage nonlinear resistor having a large shock discharge current resistance and improved long-term reliability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による電圧非直線抵抗体と従
来例の電圧非直線抵抗体の衝撃放電電流とバリスタ電圧
変化率との関係線図
FIG. 1 is a diagram showing the relationship between the impact discharge current and the varistor voltage change rate of a voltage nonlinear resistor according to an embodiment of the present invention and a conventional voltage nonlinear resistor.

【図2】本発明の一実施例による電圧非直線抵抗体と従
来例の電圧非直線抵抗体のPCT時間とバリスタ電圧変
化率との関係線図
FIG. 2 is a graph showing the relationship between the PCT time and the varistor voltage change rate of a voltage nonlinear resistor according to an embodiment of the present invention and a conventional voltage nonlinear resistor.

【図3】混合機に用いるボールの直径とスラリー状にな
らない粉体の比率および衝撃放電電流耐量との関係線図
FIG. 3 is a relational diagram of the diameter of balls used in a mixer, the ratio of powder that does not become a slurry, and the impact discharge current withstand capacity.

【図4】混合機に用いるボールの直径と一次粒子の平均
粒径、焼成密度との関係線図
FIG. 4 is a diagram showing the relationship between the diameter of balls used in a mixer, the average particle diameter of primary particles, and the firing density.

【図5】混合機に用いるボールの直径とPCT時間との
関係線図
FIG. 5 is a diagram showing the relationship between the diameter of balls used in a mixer and the PCT time.

【符号の説明】[Explanation of symbols]

11、21 従来例試料 12、22 実施例試料 11, 21 Conventional sample 12, 22 Example sample

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】酸化亜鉛を主成分とする金属酸化物原料を
液体と共に混合機中で混合し、粉砕する工程を有する電
圧非直線抵抗体の製造方法において、混合機中に用いる
硬質球状体が直径8mm以上および直径2mm以下であるこ
とを特徴とする電圧非直線抵抗体の製造方法。
1. A method for producing a voltage non-linear resistor comprising a step of mixing a metal oxide raw material containing zinc oxide as a main component with a liquid in a mixer and pulverizing the hard spherical body used in the mixer. A method of manufacturing a voltage non-linear resistor having a diameter of 8 mm or more and a diameter of 2 mm or less.
【請求項2】金属酸化物原料を液体と共に混合機中で混
合、粉砕する工程が、直径8mm以上の硬質球状体を用い
る混合機中で混合する分散工程と、それにつづく直径2
mm以下の硬質球状体を用いる混合機中で混合する粉砕工
程とからなる請求項1記載の電圧非直線抵抗体の製造方
法。
2. A step of mixing and crushing a metal oxide raw material with a liquid in a mixer, a dispersing step of mixing in a mixer using hard spheres having a diameter of 8 mm or more, and a subsequent diameter 2
The method for producing a voltage non-linear resistor according to claim 1, comprising a pulverization step of mixing in a mixer using a hard spherical body having a size of mm or less.
【請求項3】金属酸化物原料を液体と共に混合機中で混
合、粉砕する工程が、混合機中に直径8mm以上の硬質球
状体と直径2mm以下の硬質球状体を同時に入れて行う工
程である請求項1記載の電圧非直線抵抗体の製造方法。
3. The step of mixing and pulverizing a metal oxide raw material with a liquid in a mixer is a step in which a hard spherical body having a diameter of 8 mm or more and a hard spherical body having a diameter of 2 mm or less are simultaneously put in the mixer. The method of manufacturing a voltage nonlinear resistor according to claim 1.
【請求項4】分散および粉砕工程によって得たスラリー
を噴霧、乾燥して粉末材料に造粒し、この粉末材料を加
圧、成形したのち焼成する請求項1ないし3のいずれか
に記載の電圧非直線抵抗体の製造方法。
4. The voltage according to claim 1, wherein the slurry obtained by the dispersion and pulverization process is sprayed, dried and granulated into a powder material, and the powder material is pressed and molded and then fired. Manufacturing method of non-linear resistor.
【請求項5】混合機に用いる硬質球状体が酸化ジルコニ
ウムおよび酸化イットリウムを成分とするセラミックス
よりなる請求項1ないし4のいずれかに記載の電圧非直
線抵抗体の製造方法。
5. The method for producing a voltage non-linear resistor according to claim 1, wherein the hard spherical body used in the mixer is made of a ceramic containing zirconium oxide and yttrium oxide as components.
JP5222695A 1993-05-10 1993-09-08 Manufacture of voltage-dependent nonlinear resistor Pending JPH0729707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5222695A JPH0729707A (en) 1993-05-10 1993-09-08 Manufacture of voltage-dependent nonlinear resistor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-107107 1993-05-10
JP10710793 1993-05-10
JP5222695A JPH0729707A (en) 1993-05-10 1993-09-08 Manufacture of voltage-dependent nonlinear resistor

Publications (1)

Publication Number Publication Date
JPH0729707A true JPH0729707A (en) 1995-01-31

Family

ID=26447173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5222695A Pending JPH0729707A (en) 1993-05-10 1993-09-08 Manufacture of voltage-dependent nonlinear resistor

Country Status (1)

Country Link
JP (1) JPH0729707A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009260177A (en) * 2008-04-21 2009-11-05 Nippon Oil Corp Activated charcoal for electric double-layer capacitor electrode and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009260177A (en) * 2008-04-21 2009-11-05 Nippon Oil Corp Activated charcoal for electric double-layer capacitor electrode and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US4094061A (en) Method of producing homogeneous sintered ZnO non-linear resistors
JP2020509582A (en) Zinc oxide surge arrester valve block with lead-free high insulating ceramic coating and method for preparing it
JPS62132765A (en) Manufacture of high insulation high alumina base ceramic composition
JPH0729707A (en) Manufacture of voltage-dependent nonlinear resistor
JP5337073B2 (en) Current-voltage nonlinear resistor and method for manufacturing the same
JP2836893B2 (en) Method of manufacturing voltage non-linear resistor
JPS605062A (en) Manufacture of zinc oxide varistor
JP2977214B2 (en) Mixing and grinding method of barium titanate-based ceramic raw materials
JPH05254916A (en) Production of voltage nonlinear resistor
JPS6035803B2 (en) Manufacturing method of non-linear resistor
JPH05258914A (en) Manufacture of voltage non-linear resistor
JP3210063B2 (en) Power resistor
JPH02164006A (en) Zinc oxide type varistor
JPH0773082B2 (en) Method for producing zinc oxide varistor
JPS62165304A (en) Manufacture of nonlinear voltage characteristics resistance element
JPS58225601A (en) Method of producing nonlinear resistor
JPS62237707A (en) Manufacture of voltage nonlinear resistance element
JPH02114603A (en) Manufacture of glaze varistor
JPS6250042B2 (en)
JPS58153303A (en) Method of producing voltage nonlinear resistor
JPS6014401A (en) Method of producing nonlinear resistor
JP2000012309A (en) Manufacture of zinc oxide varistor
JPH02119102A (en) Manufacture of voltage non-linear resistor
JPH0131683B2 (en)
JPH0630283B2 (en) Non-linear resistor manufacturing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20041109

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050315