KR20090044686A - Method for manufacturing expandable polystyrene particles with excellent flame retardancy - Google Patents

Method for manufacturing expandable polystyrene particles with excellent flame retardancy Download PDF

Info

Publication number
KR20090044686A
KR20090044686A KR1020070110892A KR20070110892A KR20090044686A KR 20090044686 A KR20090044686 A KR 20090044686A KR 1020070110892 A KR1020070110892 A KR 1020070110892A KR 20070110892 A KR20070110892 A KR 20070110892A KR 20090044686 A KR20090044686 A KR 20090044686A
Authority
KR
South Korea
Prior art keywords
polystyrene
aluminum hydroxide
particles
parts
polystyrene particles
Prior art date
Application number
KR1020070110892A
Other languages
Korean (ko)
Other versions
KR100898363B1 (en
Inventor
윤승희
전영호
이필우
이형준
Original Assignee
금호석유화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금호석유화학 주식회사 filed Critical 금호석유화학 주식회사
Priority to KR1020070110892A priority Critical patent/KR100898363B1/en
Publication of KR20090044686A publication Critical patent/KR20090044686A/en
Application granted granted Critical
Publication of KR100898363B1 publication Critical patent/KR100898363B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/20Making expandable particles by suspension polymerisation in the presence of the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant

Abstract

본 발명은 수산화알루미늄 입자를 포함하는 발포성 폴리스티렌 입자 제조 방법에 관한 것이다. 수산화알루미늄 입자를 포함하는 현탁 가능한 펠렛(pellet) 형태의 발포성 폴리스티렌 입자를 현탁한 후 발포제 및 C6 - C10 방향족 탄화수소를 투입하여 가열함으로써 얻어진다. 현탁 가능한 펠렛은 수산화알루미늄을 포함하고 L/D가 0.1~3.0 mm/0.5~3.0 mm 이거나 또는 부피가 5 mm3 이하인 펠렛 형태의 폴리스티렌 입자이다. 이러한 방법에 의해서 수득된 발포성 폴리스티렌 입자는 발포시 미세한 기포를 형성하고, 단열 및 우수한 난연 특성을 지니는 발포성 폴리스티렌 입자를 제공하게 된다.The present invention relates to a method for producing expandable polystyrene particles comprising aluminum hydroxide particles. It is obtained by suspending expandable polystyrene particles in the form of suspensionable pellets containing aluminum hydroxide particles, followed by heating by blowing a blowing agent and a C 6 -C 10 aromatic hydrocarbon. Suspended pellets are polystyrene particles in the form of pellets containing aluminum hydroxide and having an L / D of 0.1-3.0 mm / 0.5-3.0 mm or a volume of 5 mm 3 or less. The expandable polystyrene particles obtained by this method form fine bubbles upon foaming and provide expandable polystyrene particles having heat insulation and excellent flame retardant properties.

난연,수산화알루미늄, 단열, 발포, 폴리스티렌 Flame Retardant, Aluminum Hydroxide, Heat Insulation, Foam, Polystyrene

Description

난연 특성이 우수한 발포성 폴리스티렌 입자의 제조 방법{Method for manufacturing expandable polystyrene particles with excellent flame retardancy}Method for manufacturing expandable polystyrene particles with excellent flame retardancy

본 발명은 난연 특성이 우수한 발포성 폴리스티렌 입자의 제조 방법에 관한 것이며, 보다 상세하게는 수산화알루미늄을 포함하는 현탁 가능한 펠렛을 수성 현탁 시킨 후, 발포제 및 C6 - C10 방향족 탄화수소를 투입하여 가열하는 것을 포함하는 발포성 입자 제조 방법에 관한 것이다. The present invention relates to a method for producing expandable polystyrene particles having excellent flame retardant properties, and more particularly, comprising suspending a suspensionable pellet containing aluminum hydroxide, followed by heating by adding a blowing agent and a C 6 -C 10 aromatic hydrocarbon. It relates to a method for producing expandable particles.

폴리스티렌 발포체는 일반적으로 발포성 폴리스티렌 입자를 예비 발포하여 예비 발포립을 얻고, 이를 다수의 작은 구멍을 갖는 폐쇄 금형 속에 충진시킨 후, 가압 수증기 등으로 가열 발포시켜 발포립 사이의 공극을 메우는 동시에 발포립을 서로 융착 시킨 후, 이를 냉각하여 금형으로부터 이형 시킴으로써 제조된다.Polystyrene foams are generally pre-expanded foamable polystyrene particles to obtain pre-foamed granules, which are filled into a closed mold having a plurality of small holes, and then heated and foamed by pressurized steam to fill the voids between the foamed granules, After fusion to each other, it is produced by cooling and releasing from the mold.

이러한 폴리스티렌 발포체는 주로 단열재로 사용되는데, 패널 사이에 끼워 건물의 벽재 및 건축물의 판넬 등에 사용하므로 우수한 난연성,저열전도율, 저흡수 율, 높은 강도 등의 특성이 요구된다. 특히 단열재의 난연성 향상을 위해서 발포성 폴리스티렌 입자 및 발포체에 각종 난연제를 첨가하여 난연성을 향상시키고자하는 노력이 계속되어 왔다. The polystyrene foam is mainly used as a heat insulating material, sandwiched between the panels used in the wall of the building and the panel of the building, such as excellent flame retardancy, low thermal conductivity, low absorption rate, high strength is required. In particular, efforts have been made to improve the flame retardancy by adding various flame retardants to the expandable polystyrene particles and the foam in order to improve the flame retardancy of the heat insulating material.

단열재의 난연 성능을 향상시키기 위한 한 방안으로서, 합성수지 발포성 폴리스티렌 원료 입자 제조 과정에 유기계 브롬 난연제등을 첨가하여 난연성을 향상시키는 방법과 발포된 폴리스티렌 발포체에 유/무기 난연제를 코팅하여 난연성을 유지시키는 방법 등이 진행되어 왔다As a way to improve the flame retardant performance of the insulation, a method of improving the flame retardancy by adding an organic bromine flame retardant, etc. to the synthetic resin foam polystyrene raw material manufacturing process and a method of maintaining the flame retardancy by coating the organic / inorganic flame retardant on the foamed polystyrene foam Have been in progress

현재까지는 상기에서 기술한 방법 중 발포폴리스티렌 원료 입자에 첨가하는 경우에는 난연성이 건축물 내부 마감재료의 난연성능기준(난연재료;난연3급)에 미흡한 수준이며, 발포된 폴리스티렌 발포체에 코팅 첨가 방식으로 난연성을 향상시키는 방법 또한 제조 과정이 매우 복잡하고 생산성이 현저히 저하되어 극히 한정된 생산량만을 제조하고 있다So far, when added to the expanded polystyrene raw material particles in the above-described method, the flame retardancy is less than the flame retardant performance criteria (flame-retardant material; flame retardant class 3) of the interior finishing material of the building, and by adding a coating to the foamed polystyrene foam In addition, the manufacturing process is very complicated and the productivity is remarkably reduced, thus producing only a limited amount of production.

따라서 단열재로서 우수한 난연 성능과 생산성이 우수한 제조 방법이 요구되고 있는 실정이며 이러한 방법이 원초적인 발포성 폴리스티렌의 원료 입자 제조 방법으로 이루어지는 것이 바람직하다. Therefore, it is a situation that the manufacturing method excellent in flame-retardant performance and productivity which are excellent as a heat insulating material is calculated | required, and it is preferable that this method consists of the raw material particle manufacturing method of native foamable polystyrene.

본 발명의 목적은 수산화알루미늄 입자를 함유하는 발포성 폴리스티렌 입자의 새로운 제조 방법을 제공하는 것이다.It is an object of the present invention to provide a new process for producing expandable polystyrene particles containing aluminum hydroxide particles.

본 발명의 목적은 수산화알루미늄을 포함하는 펠렛 형태의 현탁 가능한 폴리스티렌 입자를 이용하여 수산화알루미늄을 함유하는 발포성 폴리스티렌 입자를 제조하는 방법을 제공하는 것이다. It is an object of the present invention to provide a process for producing expandable polystyrene particles containing aluminum hydroxide using suspended polystyrene particles in the form of pellets comprising aluminum hydroxide.

본 발명의 다른 목적은 저열전도율, 흡수율 및 강도와 같은 양호한 물성과 우수한 난연성을 지니는 수산화알루미늄 입자를 함유하는 발포성 폴리스티렌의 발포에 의해 얻어지는 신규 발포체를 제공하는것이다Another object of the present invention is to provide a novel foam obtained by foaming of expandable polystyrene containing aluminum hydroxide particles having good physical properties such as low thermal conductivity, water absorption and strength and excellent flame retardancy.

상기 목적을 이루기 위한 본 발명은 The present invention for achieving the above object

수산화알루미늄을 포함하는 현탁가능한 폴리스티렌 펠렛을 수성 현탁시키는 단계; 및 Aqueous suspending the suspendable polystyrene pellets comprising aluminum hydroxide; And

발포제 및 C6-C10 탄화수소를 투입하여 가열하는 단계; Heating by adding a blowing agent and a C6-C10 hydrocarbon;

를 포함하는 수산화알루미늄 입자를 함유하는 발포성 폴리스티렌 중합체 제조 방법으로 이루어진다. It consists of a method for producing a expandable polystyrene polymer containing aluminum hydroxide particles comprising a.

본 발명에 의해서, 수산화알루미늄을 함유하는 폴리스티렌 입자의 신규한 제조 방법이 제공된다. 이러한 폴리스티렌 입자를 발포함으로써, 기존 폴리스티렌 발포체의 기포 직경을 고수하여 흡수율, 강도,열전도율 등의 물성은 유지하면서 난연성을 획기적으로 향상시킨 우수한 발포체를 제조할 수 있었다.According to the present invention, a novel method for producing polystyrene particles containing aluminum hydroxide is provided. By foaming such polystyrene particles, it was possible to produce excellent foams that significantly improved flame retardancy while maintaining physical properties such as water absorption, strength, and thermal conductivity by sticking to the bubble diameter of existing polystyrene foams.

본 발명의 수산화알루미늄 입자를 함유하는 발포성 폴리스티렌 중합체 제조 방법은 수산화알루미늄을 포함하는 현탁가능한 폴리스티렌 펠렛을 수성 현탁시키는 단계; 및 발포제 및 C6-C10 탄화수소를 투입하여 가열하는 단계; 를 포함한다. The process for preparing expandable polystyrene polymers containing aluminum hydroxide particles of the present invention comprises the steps of: aqueous suspension of suspendable polystyrene pellets comprising aluminum hydroxide; And heating the blowing agent and the C 6 -C 10 hydrocarbon; It includes.

본 발명에 있어서, 현탁 가능한 폴리스티렌 펠렛은 통상적인 수성 현탁 등에 의해서 안정적으로 현탁될 수 있는 정도의 크기의 입자를 의미하며, 바람직하게는 L/D가 0.1~3.0mm/0.5~3.0mm이거나 또는 부피가 5 mm3 이하인 펠렛 형태의 폴리스티렌 입자를 의미한다. In the present invention, the susceptible polystyrene pellets mean particles of a size that can be stably suspended by conventional aqueous suspension, etc., preferably L / D is 0.1 ~ 3.0mm / 0.5 ~ 3.0mm or volume Means polystyrene particles in the form of pellets of 5 mm 3 or less.

본 발명의 실시에 있어서, 수산화알루미늄을 비롯한 다른 첨가제를 포함하는 폴리스티렌의 현탁 가능한 펠렛 형태로의 입자를 얻기 위해 압출은 단축 압출기 또는 이축 압출기를 이용하고, 수중 펠렛화기(Under Water Cutting) 또는 수냉식 다이면(Die-face)펠렛화기, 핫커팅(hot cutting)펠렛화기(Kneader공정 포함)의 사용에 의해 절단하여 상기 크기의 펠렛을 얻을 수 있다.In the practice of the present invention, the extrusion is carried out using a single screw extruder or twin screw extruder to obtain particles of polystyrene in the form of suspended pellets comprising other additives, including aluminum hydroxide, under water cutting or water cooling. Pellets of this size can be obtained by cutting by the use of a die-face pelletizer and a hot cutting pelletizer (including the Kneader process).

본 발명의 일 실시에 있어서, 펠렛의 제조에 사용되는 폴리스티렌 입자는 스티렌; 알킬 스티렌, 일예로 에틸스티렌, 디메틸스티렌 및 파라-메틸스티렌; 알파-알킬스티렌, 일예로 알파-메틸스티렌, 알파-에틸스티렌, 알파-프로필스티렌 및 알파-부틸스티렌; 할로겐화 스티렌, 일예로 클로로스티렌, 및 브로모스티렌; 및 비닐 톨루엔으로 이루어진 스티렌계 단량체의 중합체 및/또는 공중합체이며, 상기 스티렌계 단량체와 공중합 가능한 단량체, 일예로 아크릴로니트릴, 부타디엔, 알킬아크릴레이트, 일예로 메틸아크릴레이트, 알킬메타아크릴레이트, 일예로 메틸메타아크릴레이트, 이소부틸렌, 염화비닐, 이소프렌 및 이들의 혼합물과의 공중합체이다.In one embodiment of the invention, the polystyrene particles used for the production of pellets are styrene; Alkyl styrenes such as ethyl styrene, dimethyl styrene and para-methyl styrene; Alpha-alkylstyrenes such as alpha-methylstyrene, alpha-ethylstyrene, alpha-propylstyrene and alpha-butylstyrene; Halogenated styrenes such as chlorostyrene, and bromostyrene; And polymers and / or copolymers of styrene monomers composed of vinyl toluene, monomers copolymerizable with the styrene monomers, for example acrylonitrile, butadiene, alkyl acrylates, for example methyl acrylate, alkyl methacrylates, for example Copolymers with methyl methacrylate, isobutylene, vinyl chloride, isoprene and mixtures thereof.

본 발명에 있어서, 펠렛의 제조에 사용되는 수산화알루미늄은 난연성을 향상시키기 위해서 도입된다. 사용되는 수산화알루미늄은 단일 물질 및 상용성을 갖기 위해 합성한 수산화알루미늄을 사용할 수 있으며, 적절한 난연성 상승을 위해 입자 크기는 0.1 ㎛ 내지 50 ㎛가 바람직하며, 0.5㎛ 내지 10 ㎛가 특히 바람직하다. 본 발명에 있어서, 수산화알루미늄 입자는 스티렌 중합체 100중량부를 기준으로 10 내지 70 중량부를 사용하는 것이 바람직하며, 보다 바람직하게는 30 내지 60 중량부를 사용한다. In the present invention, aluminum hydroxide used for the production of pellets is introduced to improve flame retardancy. The aluminum hydroxide to be used may be synthesized aluminum hydroxide having a single material and compatibility, the particle size is preferably 0.1 ㎛ to 50 ㎛, particularly preferably 0.5 ㎛ to 10 ㎛ in order to increase the flame retardancy. In the present invention, the aluminum hydroxide particles are preferably used 10 to 70 parts by weight, more preferably 30 to 60 parts by weight based on 100 parts by weight of the styrene polymer.

본 발명에 있어서, 폴리스티렌 입자의 발포를 위해서 사용되는 발포제는 발포성 스티렌 중합체에 사용되는 통상의 발포제를 사용할 수 있으며, 바람직하게는 발포제는 폴리스티렌 중합체 100중량부를 기준으로 3 내지 10 중량부로 첨가된다. 적합한 발포제로는 탄소 원자수 4 내지 6 의 지방족 탄화수소를 사용할 수 있으며, 바람직하게는 펜탄과 사이클로펜탄의 혼합물이다.In the present invention, the blowing agent used for the foaming of the polystyrene particles may be used a conventional blowing agent used for the expandable styrene polymer, preferably the blowing agent is added in 3 to 10 parts by weight based on 100 parts by weight of the polystyrene polymer. Suitable blowing agents may use aliphatic hydrocarbons having 4 to 6 carbon atoms, preferably a mixture of pentane and cyclopentane.

본 발명에 있어서, C6-C10 방향족 탄화수소는 폴리스티렌 입자에 대한 발포제의 용해도, 발포성 폴리스티렌 입자의 경시성 안정화 및 발포성 향상, 펠렛 형태의 폴리스티렌 입자의 구형화를 용이하게 하기 위해서 사용되며, 폴리스티렌 입자를 기준으로 0.1-1.0 중량% 를 사용하는 것이 바람직하다. C6-C10의 방향족 탄화수소의 양이 적어지면, 발포성 폴리스티렌 입자의 발포성이 저하되고, 펠렛 형태의 폴리스티렌 입자의 사용시 구형화가 어렵고, 상기 방향족 탄화수소의 양이 너무 많을 경우 최종 성형품의 내열성이 저하를 야기할 수 있다. In the present invention, C6-C10 aromatic hydrocarbons are used to facilitate the solubility of the blowing agent to the polystyrene particles, to stabilize the foaming polystyrene particles over time and to improve the foamability, and to facilitate the spheroidization of the polystyrene particles in the form of pellets, based on the polystyrene particles Preference is given to using 0.1-1.0% by weight. When the amount of C6-C10 aromatic hydrocarbons is small, the foamability of the expandable polystyrene particles is reduced, spherical formation is difficult when using the pellet-type polystyrene particles, and if the amount of the aromatic hydrocarbons is too large, the heat resistance of the final molded product may be reduced. Can be.

상기 C6-C10 방향족 탄화수소에는 벤젠, 톨루엔, p-자일렌, o-자일렌, m-자일렌, 에틸벤젠, 프로필벤젠, 이소프로필벤젠 등을 포함할 수 있으며, 바람직하게는 톨루엔, 에틸 벤젠이다.The C6-C10 aromatic hydrocarbon may include benzene, toluene, p-xylene, o-xylene, m-xylene, ethylbenzene, propylbenzene, isopropylbenzene, etc., preferably toluene, ethyl benzene .

본 발명에 따른 폴리스티렌 발포체는 발포시 기포의 크기를 제어할 수 있도록 기포조절제를 포함할 수 있다. 폴리스티렌 발포체에 있어서, 기포 크기는 기계적 물성과 단열성능에 있어 중요한 역할을 하며, 보다 구체적으로 설명하면 기포 크기가 300㎛ 이상일 경우는 기포 내부의 기체 대류로 인한 열전도율 증가와 강도 저하를 초래하게 된다. 본 발명의 바람직한 실시에 있어서, 상기 기포조절제는 수산화알루미늄을 포함하는 현탁가능한 폴리스티렌 펠렛을 압출하는 과정이나 또는 본 발명에 따른 함침 공정에서 사용될 수 있다. 본 발명에 바람직한 일 실시예에 있어서, 기포 조절제로서 에틸렌 비스 스테아레이트, 탄산칼슘, 활석, 점토, 실리카, 바륨 스테아레이트, 규조토, 시트르산과 중탄산 나트륨 함량을 사용할 수 있으며, 5 중량부 이하, 바람직하게는 3 중량부 이하로 사용한다. The polystyrene foam according to the present invention may include a bubble control agent to control the size of the bubble at the time of foaming. In polystyrene foam, bubble size plays an important role in mechanical properties and thermal insulation performance, and more specifically, when the bubble size is 300 μm or more, the thermal conductivity increases and the strength decreases due to gas convection inside the bubble. In a preferred embodiment of the present invention, the bubble control agent can be used in the process of extruding suspendable polystyrene pellets comprising aluminum hydroxide or in the impregnation process according to the invention. In one preferred embodiment of the present invention, as the bubble control agent, ethylene bis stearate, calcium carbonate, talc, clay, silica, barium stearate, diatomaceous earth, citric acid and sodium bicarbonate can be used, preferably 5 parts by weight or less. Is used in 3 parts by weight or less.

본 발명에 따른 폴리스티렌 발포체는 난연성의 향상을 위해서, 수산화알루미늄을 포함하는 현탁가능한 폴리스티렌 펠렛을 압출하는 과정이나 또는 본 발명에 따른 함침 공정에서 도입될 수 있다. 본 발명에 바람직한 일 실시예에 있어서, 난연제로는 헥사브로모 시클로도데칸, 테트라브로모 시클로옥탄, 테트라브로모 비닐시클로헥산, 2,2'(4-알릴옥시-3,5-디브로모페닐)프로판, 트리브로모페닐 알릴 에테르 등의 브롬계 난연제와 통상적인 염소계, 인계 난연제를 사용할 수 있으며, 바람직하게는 헥사브로모 시클로도데칸이다.The polystyrene foams according to the invention can be introduced in the process of extruding suspending polystyrene pellets comprising aluminum hydroxide or in the impregnation process according to the invention for the purpose of improving flame retardancy. In one preferred embodiment of the invention, the flame retardant is hexabromo cyclododecane, tetrabromo cyclooctane, tetrabromo vinylcyclohexane, 2,2 '(4-allyloxy-3,5-dibromo Bromine flame retardants such as phenyl) propane and tribromophenyl allyl ether and conventional chlorine flame retardants can be used, and hexabromo cyclododecane is preferable.

본 발명에 있어서, 수산화알루미늄을 포함하는 현탁가능한 폴리스티렌 펠렛을 수성 현탁시키는 단계는 통상의 현탁 방식을 이용하여 이루어질 수 있으며, 특별한 제한은 없다. 발명의 일 실시에 있어서, 펠렛과 현탁제를 물에 투입하고 이를 교반하여 이루어질 수 있다. 현탁제는 폴리스티렌 중합공정에서 사용되는 통상의 현탁제를 사용할 수 있으며, 특별한 제한은 없다. In the present invention, the step of aqueous suspending suspendable polystyrene pellets comprising aluminum hydroxide can be carried out using conventional suspension methods, without particular limitation. In one embodiment of the invention, the pellet and suspending agent may be added to water and stirred. Suspensions may be used conventional suspensions used in the polystyrene polymerization process, there is no particular limitation.

본 발명에 있어서, 발포제 및 C6-C10 탄화수소를 투입하여 가열하는 단계는 100 - 130 ℃ 의 온도로 3-12 시간 정도 가열하여 이루어지는 것이 바람직하다. 가열 온도가 낮아질 경우 폴리스티렌의 연화 능력이 저하되어 폴리스티렌 내에 발포제의 투입이 용이치 않고, 펠렛의 구형화가 어려우며, 높아질 경우에는 분산 불안정을 초래하고, 폴리스티렌 및 난연제를 비롯한 기타 첨가제의 분해를 통한 품질 저하를 유발할 수 있다. In the present invention, the step of heating the blowing agent and the C6-C10 hydrocarbon is preferably heated by heating for about 3-12 hours at a temperature of 100-130 ℃. When the heating temperature is lowered, the softening capacity of polystyrene is lowered, so that it is not easy to add a blowing agent into the polystyrene, the pellet is difficult to be spherical, and when it is high, it causes dispersion instability and deteriorates the quality through decomposition of polystyrene and other additives including flame retardants. May cause.

본 발명에 따른 저열전도율, 흡수율, 및 강도와 같은 단열 특성과 우수한 난연성을 상승시키는 수산화알루미늄을 함유하는 발포성 폴리스티렌의 발포체는 수성 현탁된 폴리스티렌 입자에 발포제 및 C6-C10 방향족 탄화수소를 투입하여 가열하여 얻어진 발포성 폴리스티렌 입자를 발포함으로서 얻어질 수 있다. 발포 조건은 발포성 폴리스티렌의 발포에 사용되는 통상의 조건을 사용할 수 있으며, 특별한 제한은 없다. 발포된 수산화알루미늄을 함유한 발포체는 당업자에 의해서 기포의 직경이 30 - 200 마이크론이 되도록 발포될 수 있으며, 난연성을 비롯하여, 열전도율,흡수율 및 강도와 같은 특성이 우수하다는 장점을 가진다. Foams of expandable polystyrene containing aluminum hydroxide which increase thermal insulation properties such as low thermal conductivity, water absorption, and strength and excellent flame retardancy according to the present invention are obtained by heating a blowing agent and C6-C10 aromatic hydrocarbons into aqueous suspended polystyrene particles. Expandable polystyrene particles can be obtained by inclusion. The foaming conditions may use the conventional conditions used for the foaming of the expandable polystyrene, there is no particular limitation. Foams containing foamed aluminum hydroxide can be foamed by those skilled in the art to have a diameter of 30 to 200 microns, and have the advantage of excellent properties such as flame retardancy, heat conductivity, absorption rate and strength.

이하, 본 발명을 실시예에 의거 상세히 설명하면 다음과 같은 바, 본 발명이 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited by the Examples.

<< 실시예1Example 1 >>

폴리스티렌(금호석유화학;HIPS 490FB) 100중량%와 수산화알루미늄 50중량%를 블렌딩하여 이축성형기 200 oC에서 용융시키고, HOT CUTIING 펠렛화기를 이용하고, 수산화알루미늄을 포함하는 폴리스티렌을 압출하여 평균 부피가 1.5 mm3 내지 5 mm3의 펠렛을 얻었다. 다음으로 수산화알루미늄을 포함하는 펠렛 형태의 폴리스티렌 입자 100중량부, 순수 100중량부, 현탁제(트리칼슘 포스페이트, 주식회사 두본;DET-10) 0.24중량부, 난연제(헥사브로모시클로도데칸, GLC;CD75PTM) 0.35중량부를 상온에서 반응기에 삽입하고, 온도를 70 oC에서 1시간 30분 반응시키고, 120 oC 승온 완료 후 발포제(펜탄, SK)7중량부를 투입하고 5시간 유지하였다. 이렇게 얻어진 수산화알루미늄을 함유하는 발포성 폴리스티렌 입자를 탈수, 건조 후 블랜딩제를 코팅하여 물성평가를 진행하였고, 그 결과를 표1에 나타내었다.100% by weight of polystyrene (Kumho Petrochemical; HIPS 490FB) and 50% by weight of aluminum hydroxide were blended and melted in a biaxial molding machine at 200 ° C., and the polystyrene containing aluminum hydroxide was extruded using an HOT CUTIING pelletizing machine to Pellets of 1.5 mm 3 to 5 mm 3 were obtained. Next, 100 parts by weight of polystyrene particles in a pellet form containing aluminum hydroxide, 100 parts by weight of pure water, 0.24 parts by weight of a suspending agent (tricalcium phosphate, Dubon Co .; DET-10), a flame retardant (hexabromocyclododecane, GLC; 0.35 parts by weight of CD75P ) was inserted into the reactor at room temperature, and the temperature was reacted at 70 ° C. for 1 hour and 30 minutes. After completion of the temperature increase at 120 ° C., 7 parts by weight of a blowing agent (pentane, SK) was added and maintained for 5 hours. The expanded polystyrene particles containing the aluminum hydroxide thus obtained were dehydrated and dried, followed by coating a blending agent to evaluate physical properties, and the results are shown in Table 1.

<< 실시예2Example 2 >>

기포 조절제의 효과를 파악하기 위해, 에틸렌비스스테아레이트(선구화학) 2 중량부를 도입하고, 폴리스티렌(금호석유화학;HIPS 490FB) 100중량부와 수산화알루미늄 50중량부를 블렌딩하여 이축성형기 200 oC에서 용융시키고 HOT CUTTING 펠렛화기를 이용하여 수산화알루미늄을 포함하는 폴리스티렌을 압출하여 평균 부피가 1.5 mm3 내지 5mm3의 펠렛을 얻었다. 다음으로 함침 공정은 <실시예1>과 동일하고, 수산화알루미늄을 함유하는 발포성 폴리스티렌 입자를 탈수, 건조 후 블랜딩제를 코팅하여 물성평가를 진행하였고, 그 결과를 표1에 나타내었다.In order to understand the effect of the bubble control agent, 2 parts by weight of ethylenebisstearate (precursor) was introduced, 100 parts by weight of polystyrene (Kumho Petrochemical; HIPS 490FB) and 50 parts by weight of aluminum hydroxide were melted at 200 ° C. in a biaxial molding machine. and HOT CUTTING pelletizer by using an extruded polystyrene containing aluminum hydroxide to obtain the pellets of an average volume of 1.5 mm 3 to 5mm 3. Next, the impregnation process was the same as in <Example 1>, and the foamed polystyrene particles containing aluminum hydroxide were dehydrated and dried, followed by coating a blending agent to evaluate physical properties, and the results are shown in Table 1.

<< 실시예3Example 3 >>

상기 <실시예2>과 같이 동일한 펠렛 형태의 폴리스티렌 입자를 이용하여, 동일한 방식으로 함침하고 발포제를 펜탄(SK) 7중량부에서 조성을 달리하여 펜탄(SK) 6중량부, 시클로펜탄(SK) 1 중량부를 사용하였다. 다음으로 수산화알루미늄을 함유하는 발포성 폴리스티렌 입자를 탈수, 건조 후 블랜딩제를 코팅하여 물성평가를 진행하였고, 그 결과를 표1에 나타내었다.6 parts by weight of pentane (SK), cyclopentane (SK) by impregnating in the same manner using polystyrene particles of the same pellet form as in <Example 2> and varying the composition at 7 parts by weight of pentane (SK) Parts by weight were used. Next, after dewatering and drying the expandable polystyrene particles containing aluminum hydroxide, the blending agent was coated to evaluate the physical properties, and the results are shown in Table 1.

<< 실시예4Example 4 >>

상기 <실시예2>과 같이 동일한 미니 펠렛 형태의 폴리스티렌 입자를 이용하여, 함침 공정에 있어 톨루엔(SK) 0.5 중량부를 도입하는 것을 제외하고는 <실시예2>와 동일하게 제조하였다. 다음으로 수산화알루미늄을 함유하는 발포성 폴리스티렌 입자를 탈수, 건조 후 블랜딩제를 코팅하여 물성평가를 진행하였고, 그 결과를 표1에 나타내었다.Using the same mini-pellet polystyrene particles as in <Example 2>, it was prepared in the same manner as in <Example 2> except that 0.5 parts by weight of toluene (SK) was introduced in the impregnation process. Next, after dewatering and drying the expandable polystyrene particles containing aluminum hydroxide, the blending agent was coated to evaluate the physical properties, and the results are shown in Table 1.

<< 비교예1Comparative Example 1 >>

폴리스티렌(금호석유화학;HIPS 490FB) 100중량%를 이축성형기 200 oC에서 용융시키고 HOT CUTTING펠렛화기를 이용, 압출하여 평균 부피가 1.5 mm3 내지 5mm3의 펠렛을 얻었다. 다음으로 펠렛 형태의 폴리스티렌 입자 100중량부, 순수 100중량부, 현탁제(트리칼슘 포스페이트, 주식회사 두본;DET-10) 0.24중량부, 난연제(헥사브로모시클로도데칸, GLC;CD75PTM)0.35중량부를 상온에서 반응기에 삽입하고, 온도를 70 oC에서 1시간 30분 반응시키고, 120 oC 승온 완료 후 발포제(펜탄, SK)7%를 투입하고 5시간 유지하였다. 이렇게 얻어진 발포성 폴리스티렌 입자를 탈수, 건조 후 블랜딩제를 코팅하여 물성평가를 진행하였고, 그 결과를 표1에 나타내었다.100% by weight of polystyrene (Kumho Petrochemical; HIPS 490FB) was melted in a twin screw forming machine at 200 o C, and extruded using a hot cutting pelletizer to have an average volume of 1.5 mm 3 Pellets of from 5 mm 3 were obtained. Next, 100 parts by weight of polystyrene particles in pellet form, 100 parts by weight of pure water, 0.24 parts by weight of a suspending agent (tricalcium phosphate, Dubon; DET-10), and a flame retardant (hexabromocyclododecane, GLC; CD75P TM ) 0.35 weight The part was inserted into the reactor at room temperature, the temperature was reacted at 70 ° C. for 1 hour and 30 minutes, and after the completion of the temperature increase at 120 ° C., 7% of a blowing agent (pentane, SK) was added and maintained for 5 hours. The foamed polystyrene particles thus obtained were dehydrated and dried, followed by coating a blending agent to evaluate physical properties. The results are shown in Table 1 below.

물성표Property 실시예1Example 1 실시예2Example 2 실시예3Example 3 실시예4Example 4 비교예1Comparative Example 1 5분 발포성 (배)5 minutes effervescent 4040 4040 4040 5050 4040 발포립 외관Foam lip appearance 타원형Oval 타원형Oval 타원형Oval 구형rectangle 타원형Oval 발포체 밀도 (kg/m3)Foam Density (kg / m 3 ) 0.0300.030 0.0300.030 0.0300.030 0.0300.030 0.0300.030 난연성 (sec)Flame retardant (sec) 0.10.1 0.00.0 0.00.0 0.10.1 1.51.5 기포크기 (mm)Bubble size (mm) 200~500200-500 70~12070-120 60~10060-100 70~10070-100 100~120100-120 흡수량 (g/100cm2)Absorption amount (g / 100cm 2 ) 0.950.95 0.390.39 0.380.38 0.400.40 0.520.52

상기 표 1에 기대된 물성의 평가는 구체적으로 다음과 같이 수행하였다.Evaluation of the physical properties expected in Table 1 was performed specifically as follows.

1) 5분 발포성 : 0.3K의 스팀압으로 5분간 발포했을 때 발포 배수(배)1) 5-minute foamability: foamed drainage (doubled) when foamed for 5 minutes at 0.3K steam pressure

2) 밀도: 성평품의 질량(kg) / 성형품의 부피(m3)2) Density: Mass (kg) / Volume of molded articles (m3)

3) 난연성 : KSM -3808법에 의하여 측정3) Flame retardancy: measured by KSM-3808 method

4) 기포 크기: 셀 벽과 셀 사이의 평균직경(mm; 현미경으로 측정)4) Bubble size: average diameter between cell wall and cell (mm; measured under microscope)

5) 흡수량: 한국공업규격 KS M 3808에 규정된 발포 폴리스티렌 보온재의 흡수량 측정 방법에 준하여 흡수된 물의 양을 표면적으로 나눈 수치임(g/100cm2)5) Absorption amount: It is the number divided by the surface area of water absorbed according to the absorption method of expanded polystyrene insulation according to KS M 3808. (g / 100cm2)

상기 표1의 결과로부터, 발포성 폴리스티렌 입자에 수산화알루미늄의 도입은 난연성 개선 효과가 두드러짐을 확인할 수 있었고, 수산화알루미늄 도입으로 인한 기포 크기의 증가로 인한 물성 저하는 기포 조절제의 투입으로 적정 기포 크기를 조절할 수 있었다.From the results of Table 1, the introduction of aluminum hydroxide into the expandable polystyrene particles was confirmed that the effect of improving the flame retardancy, and the decrease in physical properties due to the increase in bubble size due to the introduction of aluminum hydroxide to control the appropriate bubble size by the addition of a bubble control agent Could.

또한 발포제의 도입에 있어 시클로펜탄과 같은 비점이 높고, 폴리스티렌에 용해도가 뛰어난 발포제의 선정은 열전도율 개선에 긍정적으로 작용하고, 더불어 톨루엔, 에틸벤젠과 같은 용제의 도입은 폴리스티렌 대한 발포제의 용해도를 높이고, 발포성 폴리스티렌 입자의 경시성 안정화 및 발포성 향상, 펠렛 형태의 폴리스티렌 입자의 구형화를 용이하게 함을 확인할 수 있었다.In addition, the selection of a blowing agent having a high boiling point such as cyclopentane and excellent solubility in polystyrene in the introduction of a blowing agent positively improves the thermal conductivity, and the introduction of a solvent such as toluene and ethylbenzene increases the solubility of the blowing agent in polystyrene. It was confirmed that stabilization of the effervescent polystyrene particles over time, improved foamability, and spheronization of the polystyrene particles in the form of pellets.

본 발명이 상기 실시예에 있어서, 상세하게 설명되었다 할지라도, 상기 실시예는 본 발명의 범위를 한정하기 위해서 기술된 것이 아니며, 단지 예시적인 목적으로 기술된 것이다.Although the present invention has been described in detail in the above embodiments, the above embodiments are not described to limit the scope of the present invention, but are described for illustrative purposes only.

당업자는 본원 발명의 범위와 사상을 벗어나지 않는 범위 내에서 발명의 변형이 가능하다는 것을 인식할 것이며, 본원 발명의 범위는 하기 특허청구범위에 의해서 결정된다. Those skilled in the art will recognize that modifications of the invention are possible without departing from the scope and spirit of the invention, and the scope of the invention is determined by the following claims.

본 발명에 의해 제조된 폴리스티렌 난연성이 우수하여 건축용을 비롯한 각종 단열재에 사용하기에 적합하다. The polystyrene produced by the present invention is excellent in flame retardancy and is suitable for use in various insulation materials including construction.

Claims (11)

수산화알루미늄을 포함하는 현탁가능한 폴리스티렌 펠렛을 수성 현탁시키는 단계; 및Aqueous suspending the suspendable polystyrene pellets comprising aluminum hydroxide; And 발포제 및 C6-C10 탄화수소를 투입하여 가열하는 단계; Heating by adding a blowing agent and a C6-C10 hydrocarbon; 를 포함하는 난연 특성이 우수한 발포성 폴리스티렌 입자의 제조 방법.Method for producing expandable polystyrene particles having excellent flame retardant properties, including. 제 1 항에 있어서, 상기 폴리스티렌 펠렛은 L/D가 0.1.0~3.0mm/0.5-3.0 mm 이거나 또는 부피가 5mm3 이하인 것을 특징으로 하는 방법.The method of claim 1, wherein the polystyrene pellets have an L / D of 0.1.0 to 3.0 mm / 0.5-3.0 mm or a volume of 5 mm 3 or less. 제 1 항에 있어서, 폴리스티렌 입자는 스티렌, 에틸스티렌, 디메틸스티렌, 파라-메틸스티렌, 알파-메틸스티렌, 알파-에틸스티렌, 알파-프로필스티렌, 알파-부틸스티렌, 클로로스티렌, 브로모스티렌 및 비닐 톨루엔의 단량체의 중합체 또는 공중합체, 단량체와 아크릴로니트릴, 부타디엔, 메틸아크릴레이트, 메틸메타아크릴레이트, 이소부틸렌, 염화비닐, 이소포렌 및 이들의 혼합물과의 공중합체인 것을 특징으로 하는 방법.The method of claim 1 wherein the polystyrene particles are styrene, ethylstyrene, dimethylstyrene, para-methylstyrene, alpha-methylstyrene, alpha-ethylstyrene, alpha-propylstyrene, alpha-butylstyrene, chlorostyrene, bromostyrene and vinyl. A polymer or copolymer of a monomer of toluene, a copolymer of a monomer with acrylonitrile, butadiene, methyl acrylate, methyl methacrylate, isobutylene, vinyl chloride, isophorene and mixtures thereof. 제 1 항에 있어서, 상기 가열단계는 100 - 130 ℃ 의 온도로 3-12 시간 가열이 행해지는 것을 특징으로 하는 방법.The method of claim 1 wherein said heating step comprises heating at a temperature of 100-130 ° C. for 3-12 hours. 제 1 항에 있어서, 상기 폴리스티렌 펠렛에 포함된 수산화알루미늄 입자의 크기는 0.1 ㎛ 내지 50 ㎛인 것을 특징으로 하는 방법. The method of claim 1, wherein the size of the aluminum hydroxide particles contained in the polystyrene pellets is characterized in that 0.1 ㎛ to 50 ㎛. 제 1 항 또는 제 5 항에 있어서, 상기 수산화알루미늄 입자는 폴리스티렌 입자 100중량부를 기준으로 5 내지 70 중량부인 것을 특징으로 하는 방법.The method according to claim 1 or 5, wherein the aluminum hydroxide particles are 5 to 70 parts by weight based on 100 parts by weight of polystyrene particles. 제 1 항에 있어서, 상기 펠렛은 인상흑연, 카본블랙, 수산화마그네슘, 유리섬유, 탄소섬유, 점토, 황토로 이루어진 그룹에서 선택되는 적외선 흡수제를 더 포함하는 것을 특징으로 하는 방법.The method of claim 1, wherein the pellet further comprises an infrared absorber selected from the group consisting of impression graphite, carbon black, magnesium hydroxide, glass fiber, carbon fiber, clay, loess. 제 1 항에 있어서, 상기 발포제로는 사이클로펜탄 단독 또는 사이클로펜탄을 제외한 지방족 탄화수소, 할로겐화 탄화수소, 무할로겐 탄화수소로 이루어진 그룹에서 선택되는 적어도 하나를 함께 사용하는 것을 특징으로 하는 방법.The method of claim 1, wherein the blowing agent is a cyclopentane alone or at least one selected from the group consisting of aliphatic hydrocarbons, halogenated hydrocarbons, halogen-free hydrocarbons except cyclopentane. 제 1 항 또는 제 8 항에 있어서, 상기 발포제는 폴리스티렌 중합체 100 중량부에 대해서 1-15 중량부를 사용하는 것을 특징으로 하는 방법.9. The method according to claim 1 or 8, wherein the blowing agent uses 1-15 parts by weight based on 100 parts by weight of polystyrene polymer. 제 1 항에 있어서, 상기 C6-C10 방향족 탄화수소는 톨루엔, 에틸벤젠 및 이들의 혼합물로 이루어진 그룹에서 선택되는 것을 특징으로 하는 방법.The method of claim 1, wherein the C6-C10 aromatic hydrocarbon is selected from the group consisting of toluene, ethylbenzene and mixtures thereof. 제 1 항에 있어서, 상기 방향족 탄화수소는 폴리스티렌 중합체 기준으로 0.1 내지 1 중량부로 사용되는 것을 특징으로 하는 방법.The method of claim 1, wherein the aromatic hydrocarbon is used in an amount of 0.1 to 1 parts by weight based on the polystyrene polymer.
KR1020070110892A 2007-11-01 2007-11-01 Method for manufacturing expandable polystyrene particles with excellent flame retardancy KR100898363B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070110892A KR100898363B1 (en) 2007-11-01 2007-11-01 Method for manufacturing expandable polystyrene particles with excellent flame retardancy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070110892A KR100898363B1 (en) 2007-11-01 2007-11-01 Method for manufacturing expandable polystyrene particles with excellent flame retardancy

Publications (2)

Publication Number Publication Date
KR20090044686A true KR20090044686A (en) 2009-05-07
KR100898363B1 KR100898363B1 (en) 2009-05-20

Family

ID=40855216

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070110892A KR100898363B1 (en) 2007-11-01 2007-11-01 Method for manufacturing expandable polystyrene particles with excellent flame retardancy

Country Status (1)

Country Link
KR (1) KR100898363B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101419457B1 (en) * 2012-08-24 2014-07-14 현대이피 주식회사 method for manufacturing expandable styrene polymer containing aluminium particles, and expandable styrene polymer produced thereby

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101099028B1 (en) 2009-11-13 2011-12-26 금호석유화학 주식회사 Method for producing expandable polystyrene small beads with large seed particles
KR101151745B1 (en) 2010-03-29 2012-06-15 세키스이가세이힝코교가부시키가이샤 Flame-retardant and expandable polystyrene resin beads

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100610392B1 (en) * 2004-11-01 2006-08-09 대림산업 주식회사 Nonflammable foamed thermoplastic material and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101419457B1 (en) * 2012-08-24 2014-07-14 현대이피 주식회사 method for manufacturing expandable styrene polymer containing aluminium particles, and expandable styrene polymer produced thereby

Also Published As

Publication number Publication date
KR100898363B1 (en) 2009-05-20

Similar Documents

Publication Publication Date Title
KR100801275B1 (en) Method for producing expandable polystyrene beads which have excellent heat insulation properties
US6340713B1 (en) Expandable styrene polymers containing graphite particles
RU2510406C2 (en) Compositions of expandable vinyl aromatic polymers with improved thermal insulation capacity, method for preparation thereof and expanded articles obtained therefrom
KR100782311B1 (en) Method for manufacturing expandable polystyrene particles with excellent thermal insulation capability
KR20120107114A (en) Flame-protected polymer foams
JP2011519997A (en) Expandable vinyl aromatic polymer composition with improved thermal insulation performance, process for its preparation and foamed articles obtained from the composition
KR100599847B1 (en) Method for manufacturing expandable polystyrene particles with excellent thermal insulation capability
EP2454313B2 (en) Thermo-insulating expanded articles and compositions for the preparation thereof
KR100898363B1 (en) Method for manufacturing expandable polystyrene particles with excellent flame retardancy
JP2024015417A (en) Expandable chlorinated vinyl chloride resin particles, expanded particles thereof, and chlorinated vinyl chloride resin foam molded articles using the same
US6342540B1 (en) Method for producing water expandable styrene polymers
KR100902786B1 (en) Expandable Polystyrene Using Recycled Styrene Resin and Method of Preparing the Same
KR101099027B1 (en) Method for producing expandable polystyrene beads which have excellent flammable capability
KR20090039877A (en) Method for producing expandable styrene polymers
KR100716224B1 (en) Two steps method for producing expandable polystyrene particles with high functional properties
KR20160072411A (en) Expandable polystyrene beads having excellent thermal insulation, flame retardancy and good moldability and a method of manufacturing the same
KR20130071864A (en) Manufacturing method of expandable polystyrene particles
KR20180019361A (en) Expandable polystyrene beads having excellent flame retardancy and preparing method therof
KR20180076147A (en) Expandable resin composition, foam using the same and method of the foam
KR100829345B1 (en) Expandable polystyrene type resin particles, a method for preparing the same, and expanded articles using the same resin particles
JP6135791B2 (en) Method for producing flame retardant foamable styrene resin particles
KR101772544B1 (en) Surface modified expandable polystyrene beads having excellent bonding and a method of manufacturing the same
KR101582712B1 (en) Expandable resin composition, method for preparing the same and foam using the same
JP2013023508A (en) Method of producing flame retardant foamable styrene based resin particle
KR20210004369A (en) A preparation method of polystyrene insulation foam with excellent insulation performance

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130306

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140512

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160511

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170421

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee