JP2024015417A - Expandable chlorinated vinyl chloride resin particles, expanded particles thereof, and chlorinated vinyl chloride resin foam molded articles using the same - Google Patents

Expandable chlorinated vinyl chloride resin particles, expanded particles thereof, and chlorinated vinyl chloride resin foam molded articles using the same Download PDF

Info

Publication number
JP2024015417A
JP2024015417A JP2023211503A JP2023211503A JP2024015417A JP 2024015417 A JP2024015417 A JP 2024015417A JP 2023211503 A JP2023211503 A JP 2023211503A JP 2023211503 A JP2023211503 A JP 2023211503A JP 2024015417 A JP2024015417 A JP 2024015417A
Authority
JP
Japan
Prior art keywords
vinyl chloride
chloride resin
chlorinated vinyl
expandable
resin particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023211503A
Other languages
Japanese (ja)
Inventor
祐貴 根岩
竜太 沓水
正太郎 丸橋
克幸 田中
尚樹 下河邊
智 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2023211503A priority Critical patent/JP2024015417A/en
Publication of JP2024015417A publication Critical patent/JP2024015417A/en
Pending legal-status Critical Current

Links

Abstract

【課題】本発明の目的は、難燃性能に優れ、かつ、高い発泡倍率および高い独立気泡率を両立した塩素化塩化ビニル系樹脂発泡成形体を与えうる発泡性塩素化塩化ビニル系樹脂粒子を提供することにある。【解決手段】(A)塩素化塩化ビニル系樹脂、(B)アクリル系樹脂、および、(C)発泡剤を含有する、発泡性塩素化塩化ビニル系樹脂粒子。【選択図】なし[Problem] An object of the present invention is to provide expandable chlorinated vinyl chloride resin particles that can provide a chlorinated vinyl chloride resin foam molded product that has excellent flame retardancy and has both a high expansion ratio and a high closed cell ratio. It is about providing. SOLUTION: Expandable chlorinated vinyl chloride resin particles containing (A) a chlorinated vinyl chloride resin, (B) an acrylic resin, and (C) a blowing agent. [Selection diagram] None

Description

本発明は、発泡性塩素化塩化ビニル系樹脂粒子、その発泡粒子、およびこれらを用いた
塩素化塩化ビニル系樹脂発泡成形体に関する。
The present invention relates to expandable chlorinated vinyl chloride resin particles, expanded particles thereof, and chlorinated vinyl chloride resin foam molded articles using these particles.

樹脂発泡体は、軽量性、断熱性、緩衝性等を有し、住宅等の断熱材や配管等の保温材と
して従来より広く使用されている。その中でも、発泡剤を含有した発泡性スチレン系樹脂
粒子を用いて得られるスチレン系樹脂発泡成形体は、形状の自由度が高く、押出発泡法等
で得られるボード形状の様な単純形状の発泡体では施工困難な部位にも適用できる断熱材
として、広く活用されている。 スチレン系樹脂は燃えやすい樹脂であるところ、スチレ
ン系樹脂発泡成形体には難燃剤が添加され、ある程度の難燃性能は確保されている。しか
し、近年の工事現場での火災事故や、高層マンションでの火災事例などから、建築用の断
熱材には、従来よりも高い難燃性能が求められつつある。
Resin foams have light weight, heat insulating properties, cushioning properties, etc., and have been widely used as heat insulating materials for houses, etc., and heat insulating materials for piping, etc. Among them, styrenic resin foam molded products obtained using expandable styrenic resin particles containing a blowing agent have a high degree of freedom in shape, and can be formed into simple shapes such as board shapes obtained by extrusion foaming method etc. It is widely used as a heat insulating material that can be applied to areas of the body that are difficult to install. Styrenic resin is easily flammable, but a flame retardant is added to the styrene resin foam molding to ensure a certain degree of flame retardant performance. However, due to recent fire accidents at construction sites and fires in high-rise condominiums, there is a growing demand for higher flame retardant performance in insulation materials for buildings than ever before.

難燃性能に優れる発泡体としては、例えば、難燃性能に優れる塩化ビニル系樹脂あるい
は塩素化塩化ビニル系樹脂を基材樹脂とした樹脂発泡成形体が上げられる。
例えば、特許文献1には、塩素化塩化ビニル系樹脂とアクリル系樹脂および/またはス
チレン系樹脂とを主成分とする樹脂組成物を発泡成形してなる樹脂発泡成形体が記載され
ている。
また、特許文献2には、塩化ビニル系重合体と塩素化塩化ビニル系重合体とからなる重
合体混合物にアクリル系樹脂及び/またはスチレン系樹脂を配合してなる押出発泡成形体
の製造方法が記載されている。
更に、特許文献3には、平均塩素含有量が60~72重量%である塩素化塩化ビニル樹
脂単体または塩化ビニル樹脂との混合物100重量部、特定の金属化合物、及び安定剤と
、メタクリル酸エステル系樹脂、分解型有機発泡剤からなる発泡用塩素化塩化ビニル系樹
脂組成物が開示されている。
Examples of foams with excellent flame retardancy include resin foam moldings using a vinyl chloride resin or chlorinated vinyl chloride resin as a base resin, which have excellent flame retardance.
For example, Patent Document 1 describes a resin foam molded article formed by foam-molding a resin composition whose main components are a chlorinated vinyl chloride resin, an acrylic resin, and/or a styrene resin.
Furthermore, Patent Document 2 describes a method for producing an extruded foam molded article by blending an acrylic resin and/or a styrene resin into a polymer mixture consisting of a vinyl chloride polymer and a chlorinated vinyl chloride polymer. Are listed.
Furthermore, Patent Document 3 describes 100 parts by weight of a chlorinated vinyl chloride resin alone or a mixture with vinyl chloride resin having an average chlorine content of 60 to 72% by weight, a specific metal compound, a stabilizer, and a methacrylic acid ester. A foaming chlorinated vinyl chloride resin composition comprising a resin and a decomposable organic blowing agent is disclosed.

特許文献1及び2記載の発泡体は、難燃性能、高独立気泡率、高発泡倍率の性能を兼ね
備えている。特許文献3記載の発泡体は発泡倍率が2~4倍と非常に低倍率である。尚、
特許文献1~3に開示される技術はいずれも押出発泡技術であることから、単純形状の発
泡成形体であり、形状自由度の観点で課題が残されている。
The foams described in Patent Documents 1 and 2 have flame retardant performance, high closed cell ratio, and high expansion ratio. The foam described in Patent Document 3 has a very low expansion ratio of 2 to 4 times. still,
Since the techniques disclosed in Patent Documents 1 to 3 are all extrusion foaming techniques, they are foam molded articles with simple shapes, and problems remain in terms of the degree of freedom of shape.

一方、押出発泡体とは発泡プロセスが全く異なる、発泡性粒子を発泡成形してなる発泡
成形体としては、次のような発明が提案されている。
特許文献4には、塩素化塩化ビニル樹脂と相溶性を呈する溶剤および発泡剤を含有して
なる塩素化塩化ビニル樹脂予備発泡粒子が記載されている。基材樹脂は、塩化ビニル樹脂
よりも難燃性能に優れる塩素化塩化ビニル樹脂であるため、難燃性能に優れる発泡成形体
であるが、温暖化係数の高い発泡剤を使用し、かつ有機溶剤を大量に使用するため、環境
、及びコスト面で課題がある。
On the other hand, the following invention has been proposed as a foam molded product formed by foam molding expandable particles, which has a completely different foaming process from that of an extruded foam.
Patent Document 4 describes pre-expanded chlorinated vinyl chloride resin particles containing a foaming agent and a solvent that is compatible with the chlorinated vinyl chloride resin. The base resin is chlorinated vinyl chloride resin, which has better flame retardant performance than vinyl chloride resin, so it is a foam molded product with excellent flame retardant performance, but it uses a foaming agent with a high global warming coefficient and an organic solvent. Since large amounts of carbon dioxide are used, there are environmental and cost issues.

以上のように、難燃性能に優れる塩化ビニル系樹脂、あるいは塩素化塩化ビニル系樹脂
を基材とした発泡成形体は従来より存在するものの、難燃性能、軽量性、形状付与性、環
境適合性、及びコスト面について改善の余地がある。
As mentioned above, foamed molded products based on vinyl chloride resins or chlorinated vinyl chloride resins that have excellent flame retardancy have existed for a long time, but they have good flame retardancy, light weight, shapeability, and environmental compatibility. There is room for improvement in terms of performance and cost.

特開昭59-49243号公報Japanese Unexamined Patent Publication No. 59-49243 特開昭59-33334号公報Japanese Unexamined Patent Publication No. 59-33334 特開平11-269295号公報Japanese Patent Application Publication No. 11-269295 特開平2-182735号公報Japanese Unexamined Patent Publication No. 2-182735

従って、本発明の目的は、難燃性能に優れ、かつ、高い発泡倍率および高い独立気泡率
を両立する塩素化塩化ビニル系樹脂発泡成形体を与えうる発泡性塩素化塩化ビニル系樹脂
粒子を提供することにある。
Therefore, an object of the present invention is to provide expandable chlorinated vinyl chloride resin particles that can provide a chlorinated vinyl chloride resin foam molded article that has excellent flame retardancy and has both a high expansion ratio and a high closed cell ratio. It's about doing.

本願の発明者らは、上述した課題を解決すべく鋭意検討を重ねた結果、塩素化塩化ビニ
ル系樹脂と、アクリル系樹脂とを組み合わせて製造された発泡性樹脂粒子が、軽量性およ
び独立気泡率に優れる塩素化塩化ビニル系樹脂発泡成形体を与え得ることを見出し、本発
明を完成するに至った。
As a result of intensive studies to solve the above-mentioned problems, the inventors of the present application have found that expandable resin particles manufactured by combining a chlorinated vinyl chloride resin and an acrylic resin are lightweight and have closed-cell cells. The present inventors have discovered that it is possible to provide a chlorinated vinyl chloride resin foam molded article with an excellent yield, and have completed the present invention.

即ち、本発明は、
[1]次の(A)~(C)を含有する、発泡性塩素化塩化ビニル系樹脂粒子:
(A)塩素化塩化ビニル系樹脂、
(B)アクリル系樹脂、および、
(C)発泡剤、
[2]前記(A)塩素化塩化ビニル系樹脂100重量部に対して、前記(B)アクリル
系樹脂が1~50重量部含有される、[1]記載の発泡性塩素化塩化ビニル系樹脂粒子、
[3]前記(A)塩素化塩化ビニル系樹脂の塩素含有量が60重量%以上75重量%以
下である、[1]または[2]記載の発泡性塩素化塩化ビニル系樹脂粒子、
[4]前記(A)塩素化塩化ビニル系樹脂の平均重合度が400以上1500以下であ
る、[1]~[3]のいずれかに記載の発泡性塩素化塩化ビニル系樹脂粒子、
[5]前記(B)アクリル系樹脂が前記(A)塩素化塩化ビニル系樹脂の重量平均分子
量よりも高い、[1]~[4]のいずれかに記載の発泡性塩素化塩化ビニル系樹脂粒子、
[6]前記(C)発泡剤が物理発泡剤である、[1]~[5]のいずれかに記載の発泡
性塩素化塩化ビニル系樹脂粒子、
[7]前記(C)発泡剤が炭素数4~6の飽和炭化水素を含む、[6]に記載の発泡性
塩素化塩化ビニル系樹脂粒子、
[8]前記炭素数4~6の飽和炭化水素の少なくとも一種がペンタンである、[7]記
載の発泡性塩素化塩化ビニル系樹脂粒子、
[9]前記(C)発泡剤がケトンを含む、[1]~[8]のいずれかに記載の発泡性塩
素化塩化ビニル系樹脂粒子、
[10]前記(C)発泡剤が発泡性塩素化塩化ビニル系樹脂粒子100重量%において
1~40重量%含有されている、[1]~[9]のいずれかに記載の発泡性塩素化塩化ビ
ニル系樹脂粒子、
[11]塩素化ポリエチレンを含有する、[1]~[10]のいずれかに記載の発泡性
塩素化塩化ビニル系樹脂粒子、
[12]前記発泡性塩素化塩化ビニル系樹脂粒子の真密度が1200kg/m以上で
ある、[1]~[11]のいずれかに記載の発泡性塩素化塩化ビニル系樹脂粒子、
[13]前記発泡性塩素化塩化ビニル系樹脂粒子の真密度が1300kg/m以上であ
る、[1]~[12]のいずれかに記載の発泡性塩素化塩化ビニル系樹脂粒子、
[14]次の工程(I)~(III)を含む、発泡性塩素化塩化ビニル系樹脂粒子の製
造方法:
(I)塩素化塩化ビニル系樹脂、アクリル系樹脂、および、発泡剤を含有する溶融混練物
を作製する工程
(II)前記溶融混練物を、小孔を有するダイスを通じて、加圧循環水内に押し出す工程
(III)前記押し出し直後の溶融混練物を切断すると共に、加圧循環水により冷却固化
する工程、
[15][1]~[13]のいずれかに記載の発泡性塩素化塩化ビニル系樹脂粒子、ま
たは、[14]で得られた発泡性塩素化塩化ビニル系樹脂粒子を予備発泡してなる塩素化
塩化ビニル系樹脂発泡粒子、
[16] 独立気泡率が70%以上である、[15]に記載の塩素化塩化ビニル系樹脂
発泡粒子、
[17][15]又は[16]のいずれかに記載の塩素化塩化ビニル系樹脂発泡粒子を
発泡成形してなる塩素化塩化ビニル系樹脂発泡成形体、
[18]独立気泡率が70%以上である、[17]に記載の塩素化塩化ビニル系樹脂発
泡成形体、
[19][15]又は[16]のいずれかに記載の塩素化塩化ビニル系樹脂発泡粒子を
成形する工程を含む、塩素化塩化ビニル系樹脂発泡成形体の製造方法、
に関する。
That is, the present invention
[1] Expandable chlorinated vinyl chloride resin particles containing the following (A) to (C):
(A) Chlorinated vinyl chloride resin,
(B) acrylic resin, and
(C) a blowing agent;
[2] The expandable chlorinated vinyl chloride resin according to [1], wherein the (B) acrylic resin is contained in 1 to 50 parts by weight based on 100 parts by weight of the (A) chlorinated vinyl chloride resin. particle,
[3] The expandable chlorinated vinyl chloride resin particles according to [1] or [2], wherein the chlorine content of the (A) chlorinated vinyl chloride resin is 60% by weight or more and 75% by weight or less;
[4] The expandable chlorinated vinyl chloride resin particles according to any one of [1] to [3], wherein the average degree of polymerization of the chlorinated vinyl chloride resin (A) is 400 or more and 1500 or less;
[5] The expandable chlorinated vinyl chloride resin according to any one of [1] to [4], wherein the (B) acrylic resin has a weight average molecular weight higher than the weight average molecular weight of the (A) chlorinated vinyl chloride resin. particle,
[6] The expandable chlorinated vinyl chloride resin particles according to any one of [1] to [5], wherein the blowing agent (C) is a physical blowing agent;
[7] The expandable chlorinated vinyl chloride resin particles according to [6], wherein the blowing agent (C) contains a saturated hydrocarbon having 4 to 6 carbon atoms;
[8] The expandable chlorinated vinyl chloride resin particles according to [7], wherein at least one of the saturated hydrocarbons having 4 to 6 carbon atoms is pentane;
[9] The expandable chlorinated vinyl chloride resin particles according to any one of [1] to [8], wherein the blowing agent (C) contains a ketone;
[10] The foaming chlorination according to any one of [1] to [9], wherein the foaming agent (C) is contained in an amount of 1 to 40% by weight based on 100% by weight of the foaming chlorinated vinyl chloride resin particles. vinyl chloride resin particles,
[11] The expandable chlorinated vinyl chloride resin particles according to any one of [1] to [10], containing chlorinated polyethylene;
[12] The expandable chlorinated vinyl chloride resin particles according to any one of [1] to [11], wherein the expandable chlorinated vinyl chloride resin particles have a true density of 1200 kg/m 3 or more.
[13] The expandable chlorinated vinyl chloride resin particles according to any one of [1] to [12], wherein the expandable chlorinated vinyl chloride resin particles have a true density of 1300 kg/m 3 or more.
[14] Method for producing expandable chlorinated vinyl chloride resin particles, including the following steps (I) to (III):
(I) Step of producing a melt-kneaded product containing a chlorinated vinyl chloride resin, an acrylic resin, and a blowing agent (II) The melt-kneaded product is passed through a die having small holes into pressurized circulating water. Extrusion step (III) cutting the melt-kneaded product immediately after extrusion, and cooling and solidifying it with pressurized circulating water;
[15] Pre-foamed from the expandable chlorinated vinyl chloride resin particles according to any one of [1] to [13] or the expandable chlorinated vinyl chloride resin particles obtained in [14] Chlorinated vinyl chloride resin foam particles,
[16] The expanded chlorinated vinyl chloride resin particles according to [15], which have a closed cell ratio of 70% or more,
[17] A chlorinated vinyl chloride resin foam molded article formed by foam molding the chlorinated vinyl chloride resin foam particles according to any one of [15] or [16],
[18] The chlorinated vinyl chloride resin foam molded article according to [17], which has a closed cell ratio of 70% or more,
[19] A method for producing a chlorinated vinyl chloride resin foam molded article, comprising a step of molding the chlorinated vinyl chloride resin foam particles according to any one of [15] or [16],
Regarding.

本発明の発泡性塩素化塩化ビニル系樹脂粒子によれば、難燃性能に優れ、且つ高発泡倍
率及び高独立気泡率を有する塩素化塩化ビニル系樹脂発泡体が得られる。
According to the expandable chlorinated vinyl chloride resin particles of the present invention, a chlorinated vinyl chloride resin foam having excellent flame retardant performance and a high expansion ratio and a high closed cell ratio can be obtained.

本発明の実施例6における、発泡性粒子を予備発泡したときの、発泡性粒子の投入量と発泡粒子の真密度との関係を示すグラフである。It is a graph showing the relationship between the input amount of expandable particles and the true density of expanded particles when the expandable particles are pre-foamed in Example 6 of the present invention. 本発明の実施例6における、発泡性粒子を予備発泡したときの、発泡粒子の真密度と独立気泡率との関係を示すグラフである。It is a graph showing the relationship between the true density and the closed cell ratio of foamed particles when the expandable particles are pre-foamed in Example 6 of the present invention.

(塩素化塩化ビニル系樹脂)
本発明では、塩素化塩化ビニル系樹脂を用いることにより、優れた難燃性能及び軽量性
を両立した発泡成形体を得ることができる。
(Chlorinated vinyl chloride resin)
In the present invention, by using a chlorinated vinyl chloride resin, it is possible to obtain a foamed molded article that has both excellent flame retardant performance and light weight.

本発明で用いられるの塩素化塩化ビニル系樹脂は、通常、原料として塩化ビニル系樹脂
を用い、同塩化ビニル系樹脂を水性媒体中に分散した状態で塩素を供給し、それに水銀灯
を照射し光塩素化するか、あるいは加熱塩素化するなど水性媒体中で塩素化する方法、塩
化ビニル系樹脂を気層中、水銀灯の照射下で塩素化を行うなど気層中で塩素化する方法な
どにより製造される。
The chlorinated vinyl chloride resin used in the present invention is usually produced by using vinyl chloride resin as a raw material, supplying chlorine while dispersing the vinyl chloride resin in an aqueous medium, and then irradiating it with a mercury lamp. Manufactured by chlorination, or chlorination in an aqueous medium such as heating chlorination, or chlorination of vinyl chloride resin in an air layer, such as chlorination under irradiation with a mercury lamp. be done.

塩素化塩化ビニル系樹脂としては各種塩化ビニル系樹脂を塩素化したものが使用される
。塩素化される塩化ビニル系樹脂としては、塩化ビニルの単独重合体、および塩化ビニル
と他の共重合可能な単量体、例えば、エチレン、プロピレン、酢酸ビニル、塩化アリル、
アリルグリシジルエーテル、アクリル酸エステル、ビニルエーテル等との共重合体等が挙
げられる。
As the chlorinated vinyl chloride resin, chlorinated vinyl chloride resins are used. Vinyl chloride resins to be chlorinated include vinyl chloride homopolymers and other monomers copolymerizable with vinyl chloride, such as ethylene, propylene, vinyl acetate, allyl chloride,
Examples include copolymers with allyl glycidyl ether, acrylic ester, vinyl ether, and the like.

原料の塩素化前の塩化ビニル系樹脂の平均重合度は、特に限定されないが、下限は30
0以上が好ましく、400以上がより好ましい。一方、上限は3000以下であることが
好ましく、より好ましくは1500以下である。平均重合度が前記範囲であれば、高い発
泡倍率を得られる傾向にある。尚、塩素化塩化ビニル系樹脂の平均重合度は、実質的に塩
素化前の塩化ビニル系樹脂の平均重合度とみなす。平均重合度はJIS K6720-2
に準拠して測定される。
The average degree of polymerization of the vinyl chloride resin before chlorination of the raw material is not particularly limited, but the lower limit is 30
It is preferably 0 or more, and more preferably 400 or more. On the other hand, the upper limit is preferably 3000 or less, more preferably 1500 or less. When the average degree of polymerization is within the above range, a high expansion ratio tends to be obtained. The average degree of polymerization of the chlorinated vinyl chloride resin is substantially the average degree of polymerization of the vinyl chloride resin before chlorination. Average degree of polymerization is JIS K6720-2
Measured in accordance with

塩素化塩化ビニルの重量平均分子量は、特に限定されないが、30,000以上400
,000以下の範囲であることが好ましい。重量平均分子量が前記範囲であれば、高い発
泡倍率を得られる傾向にある。重量平均分子量は、ゲルパーミエーションクロマトグラフ
ィーによって、ポリスチレン換算分子量で評価される。
The weight average molecular weight of chlorinated vinyl chloride is not particularly limited, but is 30,000 or more and 400
,000 or less is preferable. When the weight average molecular weight is within the above range, a high expansion ratio tends to be obtained. The weight average molecular weight is evaluated by gel permeation chromatography based on polystyrene equivalent molecular weight.

塩素化塩化ビニル系樹脂の塩素含有量は、60重量%以上75重量%以下の範囲である
ことが発泡性を確保する観点から好ましい。より好ましくは、64重量%以上70重量%
以下である。塩素含有量が高いほど高い発泡倍率を得られる傾向にあるが、一方で塩素含
有量が高すぎると溶融粘度の上昇により、加工性が著しく損なわれる傾向にある。塩素化
塩化ビニル系樹脂及び塩化ビニル系樹脂の塩素含有量は、JIS K7385 B法に準
拠して測定される。
The chlorine content of the chlorinated vinyl chloride resin is preferably in the range of 60% by weight or more and 75% by weight or less from the viewpoint of ensuring foamability. More preferably 64% by weight or more and 70% by weight
It is as follows. The higher the chlorine content, the higher the expansion ratio tends to be obtained, but on the other hand, if the chlorine content is too high, the processability tends to be significantly impaired due to an increase in melt viscosity. The chlorine content of the chlorinated vinyl chloride resin and the vinyl chloride resin is measured in accordance with JIS K7385 B method.

(アクリル系樹脂)
本発明では、アクリル系樹脂を塩素化塩化ビニル系樹脂に組み合わせて用いることによ
り、高発泡倍率並びに高独立気泡率の発泡粒子並びに発泡成形体を得ることができる。特
に空気や水蒸気加熱条件での予備発泡や発泡成形において当該効果が際立って優れる。
(acrylic resin)
In the present invention, by using an acrylic resin in combination with a chlorinated vinyl chloride resin, it is possible to obtain expanded particles and foamed molded articles having a high expansion ratio and a high closed cell ratio. This effect is particularly outstanding in pre-foaming and foam molding under air or steam heating conditions.

アクリル系樹脂の具体例としては、たとえばメタクリル酸メチルを重合させてえられる
ポリメタクリル酸メチル、メタクリル酸メチルと、メタクリル酸n-ブチルなどのアルキ
ル基の炭素数が2~8のメタクリル酸アルキルエステル、アクリル酸エチルなどのアルキ
ル基の炭素数が1~8のアクリル酸アルキルエステル、およびブチレン、置換スチレン、
アクリロニトリルなどのこれらと共重合可能な単量体の少なくとも1種との共重合体など
があげられる。アクリル系樹脂は、その重量平均分子量が、使用される塩素化塩化ビニル
系樹脂の重量平均分子量よりも高いのものを使用することが高発泡倍率及び高独立気泡率
を確保しやすい点から好ましい。尚、アクリル系樹脂の重量平均分子量は、ゲルパーミエ
ーションクロマトグラフィーによって、ポリスチレン換算分子量で評価される。アクリル
系樹脂として、例えばカネカ製のカネエースPA-40等を使用することができる。
Specific examples of acrylic resins include polymethyl methacrylate obtained by polymerizing methyl methacrylate, methyl methacrylate, and methacrylic acid alkyl esters in which the alkyl group has 2 to 8 carbon atoms, such as n-butyl methacrylate. , acrylic acid alkyl esters in which the alkyl group has 1 to 8 carbon atoms such as ethyl acrylate, and butylene, substituted styrene,
Examples include copolymers with at least one monomer copolymerizable with these, such as acrylonitrile. It is preferable to use an acrylic resin whose weight average molecular weight is higher than the weight average molecular weight of the chlorinated vinyl chloride resin used, since this facilitates ensuring a high expansion ratio and a high closed cell ratio. Note that the weight average molecular weight of the acrylic resin is evaluated by gel permeation chromatography based on the molecular weight in terms of polystyrene. As the acrylic resin, for example, Kane Ace PA-40 manufactured by Kaneka Co., Ltd. can be used.

アクリル系樹脂の含有量は、本発明の効果を損なわない範囲であれば特に限定されない
が、塩素化塩化ビニル系樹脂100重量部に対して1~50重量部であることが好ましく
、5~50重量部がより好ましく、8重量部を超え、30重量部以下が更に好ましい。1
重量部以上であると、高い発泡倍率並びに高い独立気泡率を有する発泡粒子および/また
は発泡成形体を得やすくなり、50重量部以下であると、難燃性能に優れた発泡粒子およ
び/または発泡成形体を得ることができる。
The content of the acrylic resin is not particularly limited as long as it does not impair the effects of the present invention, but it is preferably 1 to 50 parts by weight, and 5 to 50 parts by weight based on 100 parts by weight of the chlorinated vinyl chloride resin. Parts by weight are more preferred, and more than 8 parts by weight and even more preferably 30 parts by weight or less. 1
When the amount is 50 parts by weight or more, it is easy to obtain expanded particles and/or a foamed molded product having a high expansion ratio and a high closed cell ratio, and when it is 50 parts by weight or less, foamed particles and/or foamed products with excellent flame retardant performance can be obtained. A molded body can be obtained.

(発泡剤)
本発明で用いられる発泡剤は、特に限定されないが例えば下記の発泡剤が挙げられる。
例えばノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ネオペンタン、
シクロペンタン、ノルマルヘキサン、又はシクロヘキサン等の炭化水素、ジメチルエーテ
ル、ジエチルエーテル、メチルエチルエーテル、イソプロピルエーテル、n-ブチルエー
テル、ジイソプロピルエーテル、フラン、フルフラール、2-メチルフラン、テトラヒド
ロフラン、テトラヒドロピランなどのエーテル、ジメチルケトン、メチルエチルケトン、
ジエチルケトン、メチルn-プロピルケトン、メチル-n-ブチルケトン、メチル-i-
ブチルケトン、メチル-n-ヘキシルケトン、エチル-n-プロピルケトン、エチル-n
-ブチルケトンなどのケトン、メタノール、エタノール、プロピルアルコール、i-プロ
ピルアルコール、ブチルアルコール、i-ブチルアルコール、t-ブチルアルコールなど
の炭素数1~4の飽和アルコール、蟻酸メチルエステル、蟻酸エチルエステル、蟻酸プロ
ピルエステル、蟻酸ブチルエステル、蟻酸アミルエステル、プロピオン酸メチルエステル
、プロピオン酸エチルエステルなどのカルボン酸エステル、塩化メチル、塩化エチルなど
のハロゲン化アルキル、トランス-1,3,3,3-テトラフルオロプロペン(トランス
-HFO-1234e)、シス-1,3,3,3-テトラフルオロプロペン(シス-HF
O-1234ze)、2,3,3,3-テトラフルオロプロペン(トランス-HFO-1
234yf)、トランス-1-クロロ-3,3,3-トリフルオロプロペン(トランス-
HCFO-1233zd)、シス-1-クロロ-3,3,3-トリフルオロプロペン(シ
ス-HCFO-1233zd)などのハイドロフルオロオレフィンあるいは塩素化された
ハイドロフルオロオレフィン、水、二酸化炭素、窒素などの無機発泡剤などの物理発泡剤
、アゾ化合物、テトラゾールなどの化学発泡剤などを用いることができる。これら他の発
泡剤は、単独で用いてもよいし、2種以上を混合して用いてもよい。
(foaming agent)
The blowing agent used in the present invention is not particularly limited, but examples include the following blowing agents.
For example, normal butane, isobutane, normal pentane, isopentane, neopentane,
Hydrocarbons such as cyclopentane, normal hexane, or cyclohexane, ethers such as dimethyl ether, diethyl ether, methyl ethyl ether, isopropyl ether, n-butyl ether, diisopropyl ether, furan, furfural, 2-methylfuran, tetrahydrofuran, and tetrahydropyran, dimethyl Ketone, methyl ethyl ketone,
Diethyl ketone, methyl n-propyl ketone, methyl-n-butyl ketone, methyl-i-
Butyl ketone, methyl-n-hexyl ketone, ethyl-n-propyl ketone, ethyl-n
- Ketones such as butyl ketone, saturated alcohols with 1 to 4 carbon atoms such as methanol, ethanol, propyl alcohol, i-propyl alcohol, butyl alcohol, i-butyl alcohol, t-butyl alcohol, formic acid methyl ester, formic acid ethyl ester, formic acid Carboxylic acid esters such as propyl ester, butyl formate, amyl formate, methyl propionate and ethyl propionate, alkyl halides such as methyl chloride and ethyl chloride, trans-1,3,3,3-tetrafluoropropene (trans-HFO-1234e), cis-1,3,3,3-tetrafluoropropene (cis-HF
O-1234ze), 2,3,3,3-tetrafluoropropene (trans-HFO-1
234yf), trans-1-chloro-3,3,3-trifluoropropene (trans-
HCFO-1233zd), cis-1-chloro-3,3,3-trifluoropropene (cis-HCFO-1233zd), or chlorinated hydrofluoroolefins, water, carbon dioxide, nitrogen, and other inorganic Physical foaming agents such as foaming agents, chemical foaming agents such as azo compounds, tetrazole, etc. can be used. These other blowing agents may be used alone or in combination of two or more.

発泡剤としては、物理発泡剤を使用することが好ましく、中でも炭素数4~6の飽和炭
化水素がより好ましい。炭素数4~6の飽和炭化水素として、発泡剤の樹脂への溶解性及
び保持性の観点から、少なくともペンタンが含有されることが好ましい。
As the blowing agent, it is preferable to use a physical blowing agent, and among them, a saturated hydrocarbon having 4 to 6 carbon atoms is more preferable. As the saturated hydrocarbon having 4 to 6 carbon atoms, at least pentane is preferably contained from the viewpoint of solubility and retention of the blowing agent in the resin.

発泡剤としてケトンを含むことが、発泡剤の溶解性向上の観点から好ましい。例えば、
ケトンを前記炭素数4~6の飽和炭化水素と併用することにより、炭素数4~6の飽和炭
化水素の樹脂への溶解性を更に向上しうる。
It is preferable to include a ketone as a blowing agent from the viewpoint of improving the solubility of the blowing agent. for example,
By using a ketone in combination with the saturated hydrocarbon having 4 to 6 carbon atoms, the solubility of the saturated hydrocarbon having 4 to 6 carbon atoms in the resin can be further improved.

本発明の発泡性塩素化塩化ビニル系樹脂粒子における発泡剤の含有量は、発泡性塩素化
塩化ビニル系樹脂粒子100重量%に対して1~40重量%であることが好ましい。前記
所定の範囲に発泡剤の含有量を制御することにより、高い発泡倍率及び高い独立気泡率を
有する発泡粒子及び発泡成形体を得やすい、という効果を奏する。より好ましい範囲とし
ては、5~20重量%である。
The content of the blowing agent in the expandable chlorinated vinyl chloride resin particles of the present invention is preferably 1 to 40% by weight based on 100% by weight of the expandable chlorinated vinyl chloride resin particles. By controlling the content of the blowing agent within the predetermined range, it is possible to easily obtain expanded particles and foamed molded articles having a high expansion ratio and a high closed cell ratio. A more preferable range is 5 to 20% by weight.

(その他添加剤)
本発明の効果を損なわない範囲で、必要に応じて、難燃剤、安定剤、加工助剤、滑剤、
造核剤、発泡助剤、帯電防止剤、輻射伝熱抑制剤、溶剤及び顔料・染料などの着色剤等を
含有しても良い。
(Other additives)
Flame retardants, stabilizers, processing aids, lubricants,
It may contain a nucleating agent, a foaming aid, an antistatic agent, a radiation heat transfer inhibitor, a solvent, and a coloring agent such as a pigment or dye.

難燃剤としては、公知の難燃剤を使用することができ、例えば、臭素系難燃剤、リン系
難燃剤、ポリリン酸アンモニウム、メラミンシアヌレート等のイントメッセント系難燃剤
、水酸化アルミニウム、水酸化マグネシウム等の水酸化化合物、酸化アンチモン、酸化亜
鉛などの難燃助剤が挙げられる。
As the flame retardant, known flame retardants can be used, such as brominated flame retardants, phosphorus flame retardants, ammonium polyphosphate, intumescent flame retardants such as melamine cyanurate, aluminum hydroxide, hydroxide, etc. Examples include hydroxide compounds such as magnesium, flame retardant aids such as antimony oxide, and zinc oxide.

安定剤としては、従来より塩化ビニル系樹脂に用いられるものを使用することができる
。例えば、錫系安定剤、フェノール系化合物、リン系化合物、アミン系化合物などの酸化
防止剤、エポキシ系安定剤、ゼオライト等が挙げられる。其々の安定剤の使用量は、本発
明の効果を損なわない範囲であれば、特に限定されないが、塩素化塩化ビニル系樹脂10
0重量部に対して10重量部以下であることが好ましい。
As the stabilizer, those conventionally used for vinyl chloride resins can be used. Examples include tin-based stabilizers, antioxidants such as phenol-based compounds, phosphorus-based compounds, and amine-based compounds, epoxy-based stabilizers, and zeolites. The amount of each stabilizer used is not particularly limited as long as it does not impair the effects of the present invention, but chlorinated vinyl chloride resin 10
The amount is preferably 10 parts by weight or less relative to 0 parts by weight.

加工助剤としては、スチレンーアクリロニトリル共重合体のような芳香族ビニル単量体
及び不飽和ニトリル単量体を構造単位に有する共重合体、メタクリル酸メチル - ブタ
ジエン - スチレン系重合体のような耐衝撃改良剤、塩素化ポリエチレンなどが挙げら
れる。中でも、塩素化塩化ビニル系樹脂の流動性を改善し、成形加工性を改善する観点か
ら、塩素化ポリエチレンを含有することが好ましい。塩素化ポリエチレンの使用量は、本
発明の効果を損なわない範囲であれば、特に限定されないが、塩素化塩化ビニル系樹脂1
00重量部に対して1~30重量部であることが好ましい。尚、塩素化ポリエチレンの塩
素含有量は、JIS K7385 B法に準拠して測定される。
Examples of processing aids include copolymers having aromatic vinyl monomers and unsaturated nitrile monomers as structural units, such as styrene-acrylonitrile copolymers, and methyl methacrylate-butadiene-styrene polymers. Examples include impact modifiers, chlorinated polyethylene, and the like. Among these, it is preferable to contain chlorinated polyethylene from the viewpoint of improving the fluidity of the chlorinated vinyl chloride resin and improving the moldability. The amount of chlorinated polyethylene used is not particularly limited as long as it does not impair the effects of the present invention, but chlorinated vinyl chloride resin 1
The amount is preferably 1 to 30 parts by weight per 00 parts by weight. Note that the chlorine content of chlorinated polyethylene is measured in accordance with JIS K7385 B method.

滑剤としては、エステルワックス、ポリエチレンワックス等のワックス、ステアリン酸
カルシウム、ステアリン酸亜鉛等の脂肪酸金属塩などが挙げられる。
Examples of the lubricant include waxes such as ester wax and polyethylene wax, and fatty acid metal salts such as calcium stearate and zinc stearate.

造核剤としては、シリカ、ケイ酸カルシウム、ワラストナイト、カオリン、クレイ、マ
イカ、酸化亜鉛、炭酸カルシウム、炭酸水素ナトリウム、ゼオライトもしくはタルク等の
無機化合物が挙げられる。
Nucleating agents include inorganic compounds such as silica, calcium silicate, wollastonite, kaolin, clay, mica, zinc oxide, calcium carbonate, sodium hydrogen carbonate, zeolite, or talc.

輻射伝熱抑制剤としては、近赤外又は赤外領域の光を反射、散乱又は吸収する特性を有
する物質が挙げられ、例えば、グラファイト、グラフェン、カーボンブラック、膨張黒鉛
、酸化チタンなどがある。
Examples of the radiation heat transfer inhibitor include substances that have the property of reflecting, scattering, or absorbing light in the near-infrared or infrared region, such as graphite, graphene, carbon black, expanded graphite, and titanium oxide.

本発明の効果を損なわない範囲で、塩素化塩化ビニル系樹脂に他の熱可塑性樹脂や熱硬
化性樹脂を併用してもよい。難燃性能の点から、塩化ビニル系樹脂が好ましい。塩化ビニ
ル系樹脂としては、塩化ビニルの単独重合体、および塩化ビニルと他の共重合可能な単量
体、例えば、エチレン、プロピレン、酢酸ビニル、塩化アリル、アリルグリシジルエーテ
ル、アクリル酸エステル、ビニルエーテル等との共重合体等が挙げられる。塩化ビニル系
樹脂の平均重合度は、特に限定はされないが、300以上7000以下であることが好ま
しい。
Other thermoplastic resins or thermosetting resins may be used in combination with the chlorinated vinyl chloride resin to the extent that the effects of the present invention are not impaired. From the viewpoint of flame retardant performance, vinyl chloride resin is preferred. Examples of the vinyl chloride resin include vinyl chloride homopolymers and other monomers copolymerizable with vinyl chloride, such as ethylene, propylene, vinyl acetate, allyl chloride, allyl glycidyl ether, acrylic ester, vinyl ether, etc. Examples include copolymers with The average degree of polymerization of the vinyl chloride resin is not particularly limited, but is preferably 300 or more and 7000 or less.

他の樹脂を併用する場合、他の樹脂の配合量は、本発明の効果を損なわない範囲であれ
ば特に限定されないが、塩素化塩化ビニル系樹脂100重量部に対して0~99重量部が
好ましい。
When using other resins in combination, the amount of the other resins is not particularly limited as long as it does not impair the effects of the present invention, but it is 0 to 99 parts by weight based on 100 parts by weight of the chlorinated vinyl chloride resin. preferable.

本発明の発泡性塩素化塩化ビニル系樹脂粒子は、後述するような発泡性樹脂粒子を予備
発泡・発泡成形できる形状の粒子であれば、粒子の形状は特に問わないが、一般的な粒状
物(例えば、球状、略球状、凸レンズ状、紡錘状などの丸みを帯びた小さい粒子)だけで
なく、棒状(円柱状)、板状、扁平状の粒子も含まれるものとする。尚、本発明の発泡性
塩素化塩化ビニル系樹脂粒子の粒重量は発泡粒子の成形金型への充填性、ひいては発泡成
形体の表面美麗性などの成形性を確保する観点から、0.5~10mg/粒であることが
好ましい。
The shape of the expandable chlorinated vinyl chloride resin particles of the present invention is not particularly limited as long as the particles have a shape that allows for pre-foaming and foam molding of expandable resin particles as described below, but general granules can be used. (For example, rounded small particles such as spherical, substantially spherical, convex lens, spindle, etc.) as well as rod-shaped (cylindrical), plate-shaped, and flat particles are included. In addition, the particle weight of the expandable chlorinated vinyl chloride resin particles of the present invention is 0.5 from the viewpoint of ensuring the filling property of the foamed particles into the molding die and the moldability such as the surface beauty of the foamed molded product. The amount is preferably 10 mg/grain.

本発明の発泡性塩素化塩化ビニル系樹脂粒子は、発泡性塩素化塩化ビニル系樹脂粒子か
らの発泡剤の逸散速度を小さくする、あるいはより発泡倍率を向上させる観点から、真密
度が1200kg/m以上であることが好ましく、1300kg/m以上がより好ま
しい。ここでいう真密度は、後述する測定方法で求めることができる。
The expandable chlorinated vinyl chloride resin particles of the present invention have a true density of 1200 kg/1,200 kg/cm from the viewpoint of reducing the escape rate of the blowing agent from the expandable chlorinated vinyl chloride resin particles or further improving the expansion ratio. It is preferably at least 1300 kg/m 3 , more preferably at least 1300 kg/m 3 . The true density here can be determined by the measurement method described later.

(発泡性塩素化塩化ビニル系樹脂粒子の製造方法)
本発明の発泡性塩素化塩化ビニル系樹脂粒子は、公知の製造方法で得ることができるが
、例えば、以下の2つの製造方法が挙げられる。
(Method for producing expandable chlorinated vinyl chloride resin particles)
The expandable chlorinated vinyl chloride resin particles of the present invention can be obtained by known manufacturing methods, and examples thereof include the following two manufacturing methods.

第1の発泡性塩素化塩化ビニル系樹脂粒子の製造方法(以下、「第1の製造方法」と称
することがある。)としては、(A)塩素化塩化ビニル系樹脂、及び(B)アクリル系樹
脂、更に必要に応じて他の添加剤を押出機、ロール加工機、バンバリミキサーなどの公知
の混練機にて加熱溶融混合した後、造粒し、得られた塩素化塩化ビニル系樹脂粒子をオー
トクレーブ中にて、発泡剤を含浸させることで、発泡性塩素化塩化ビニル系樹脂粒子を得
る製造方法がある。
The first method for producing expandable chlorinated vinyl chloride resin particles (hereinafter sometimes referred to as the "first production method") includes (A) chlorinated vinyl chloride resin, and (B) acrylic resin. The chlorinated vinyl chloride resin particles are obtained by heat-melting and mixing the resin and other additives as necessary in a known kneading machine such as an extruder, roll processing machine, or Banbury mixer, followed by granulation. There is a manufacturing method for obtaining expandable chlorinated vinyl chloride resin particles by impregnating the particles with a blowing agent in an autoclave.

第2の発泡性塩素化塩化ビニル系樹脂粒子の製造方法(以下、「第2の製造方法」と称
することがある。)としては、(A)塩素化塩化ビニル系樹脂、及び(B)アクリル系樹
脂、更に必要に応じて他の添加剤を押出機に供給して溶融混練し、発泡剤を前記押出機ま
たは押出機以降の分散設備によって溶融混練物に溶解・分散させ、押出機以降に取り付け
た、小孔を多数有するダイスを通じて、加圧循環水で満たされたカッターチャンバー内に
発泡剤含有塩素化塩化ビニル系樹脂組成物の溶融混練物を押し出し、押し出し直後から、
ダイスと接する回転カッターにより前記溶融混練物を切断すると共に加圧循環水により冷
却固化し、発泡性塩素化塩化ビニル系樹脂粒子を得る製造方法である。
The second method for producing expandable chlorinated vinyl chloride resin particles (hereinafter sometimes referred to as the "second production method") includes (A) chlorinated vinyl chloride resin, and (B) acrylic. The system resin and other additives as necessary are supplied to an extruder and melt-kneaded, and the blowing agent is dissolved and dispersed in the melt-kneaded product by the extruder or dispersion equipment after the extruder. Immediately after extrusion, a melted kneaded product of a chlorinated vinyl chloride resin composition containing a blowing agent is extruded into a cutter chamber filled with pressurized circulating water through an attached die having a large number of small holes, and immediately after extrusion,
In this manufacturing method, the melt-kneaded material is cut by a rotary cutter in contact with a die, and is cooled and solidified by pressurized circulating water to obtain expandable chlorinated vinyl chloride resin particles.

第2の製造方法によれば、本発明の効果の発現される程度が向上する傾向があり、より
発泡倍率及び独立気泡率に優れる塩素化塩化ビニル発泡粒子を与えうる発泡性塩素化塩化
ビニル系樹脂粒子が得られる。
According to the second production method, the degree to which the effects of the present invention are expressed tends to be improved, and the expandable chlorinated vinyl chloride-based particles can provide expanded chlorinated vinyl chloride particles having an excellent expansion ratio and closed cell ratio. Resin particles are obtained.

尚、第1及び第2の製法方法に共通して、塩素化塩化ビニル系樹脂、必要に応じて併用
される塩化ビニル系樹脂は十分にゲル化させることが好ましい。十分にゲル化が行われな
いと、発泡性樹脂粒子とした場合に、発泡剤の樹脂粒子からの散逸速度が大きくなる場合
があり、発泡に発泡剤が寄与し難い傾向にあり、結果として高発泡倍率あるいは高独立気
泡率を有する発泡粒子及び発泡成形体を得ることが困難となる場合がある。
In addition, common to the first and second manufacturing methods, it is preferable that the chlorinated vinyl chloride resin and the vinyl chloride resin used in combination as necessary be sufficiently gelled. If gelation is not carried out sufficiently, the dissipation rate of the blowing agent from the resin particles may increase when formed into expandable resin particles, making it difficult for the blowing agent to contribute to foaming, resulting in high It may be difficult to obtain expanded particles and foamed molded articles having a high expansion ratio or a high closed cell ratio.

樹脂溶融混練(混合)時の樹脂温度については、塩素化塩化ビニル系樹脂、必要により
併用される塩化ビニル系樹脂及び添加剤の分解に影響を及ぼす可能性があることから、1
60℃以上250℃未満であることが好ましく、更に好ましくは160℃以上240℃未
満である。樹脂温度が250℃を超えると塩素化塩化ビニル系樹脂、必要により併用され
る塩化ビニル系樹脂及び添加剤の分解の恐れがあり、結果として発泡性塩素化塩化ビニル
系樹脂粒子の劣化を誘発し、発泡性能の低下に繋がる恐れがある。
The resin temperature during resin melt kneading (mixing) may affect the decomposition of the chlorinated vinyl chloride resin, the vinyl chloride resin used together if necessary, and additives.
The temperature is preferably 60°C or more and less than 250°C, more preferably 160°C or more and less than 240°C. If the resin temperature exceeds 250°C, there is a risk of decomposition of the chlorinated vinyl chloride resin, the vinyl chloride resin and additives used together if necessary, and as a result, the deterioration of the expandable chlorinated vinyl chloride resin particles may be induced. , which may lead to a decrease in foaming performance.

(造粒工程の各条件)
第1及び第2の発泡性塩素化塩化ビニル系樹脂粒子の製造方法における塩素化塩化ビニ
ル系樹脂粒子の造粒工程の条件について説明する。
(Each condition of granulation process)
The conditions for the step of granulating chlorinated vinyl chloride resin particles in the first and second methods for producing expandable chlorinated vinyl chloride resin particles will be described.

ダイスから溶融混練物を押出す実施形態においては、ダイスは特に限定されないが、例
えば、好ましくは直径0.3mm~2.0mm、より好ましくは0.4mm~1.5mm
の小孔を有するものが挙げられる。
In the embodiment in which the melt-kneaded product is extruded from a die, the die is not particularly limited, but preferably has a diameter of 0.3 mm to 2.0 mm, more preferably 0.4 mm to 1.5 mm.
Examples include those with small pores.

ロール加工機等でシート状の溶融混練物を得る実施形態については、得られたシートを
冷却した後、カッターやシュレッダーなどの裁断設備でシート状の塩素化塩化ビニル系樹
脂粒子を造粒する例が挙げられる。尚、この際のシート状の塩素化塩化ビニル系樹脂粒子
の厚みは、混練設備であるロール加工機のクリアランスの調整や、得られたシートを更に
プレスすることで調整できる。
Regarding an embodiment in which a sheet-like melt-kneaded material is obtained using a roll processing machine, etc., an example is in which the obtained sheet is cooled and then granulated into sheet-like chlorinated vinyl chloride resin particles using cutting equipment such as a cutter or shredder. can be mentioned. The thickness of the sheet-like chlorinated vinyl chloride resin particles at this time can be adjusted by adjusting the clearance of a roll processing machine serving as kneading equipment or by further pressing the obtained sheet.

第2の発泡性塩素化塩化ビニル系樹脂粒子の製造方法において、ダイスより押出される
直前の溶融樹脂の温度は、発泡剤を含まない状態での樹脂のガラス転移温度をTgとする
と、Tg+20℃以上であることが好ましく、Tg+30℃~Tg+110℃であること
がより好ましく、Tg+40℃~Tg+90℃であることがさらに好ましい。尚、塩素化
塩化ビニル系樹脂については、塩素含有量の増加に伴い、ガラス転移温度が上昇するため
、使用する塩素化塩化ビニル系樹脂の塩素含有量に伴い、適宜調整することが好ましい。
Tg+20℃以上であれば、押出された溶融樹脂の粘度が低くなり、小孔詰まりが発生し
にくく、実質小孔開口率の低下が起きないため、得られる発泡性塩素化塩化ビニル系樹脂
粒子の形状が歪もしくは不揃いとなる事態を避けることができる。一方で、Tg+110
℃以下であれば、押出された溶融樹脂が固化し易くなり、回転カッターに巻き付き難くな
り、安定的に切断できる。
In the second method for producing expandable chlorinated vinyl chloride resin particles, the temperature of the molten resin immediately before extrusion from the die is Tg + 20°C, where Tg is the glass transition temperature of the resin without a blowing agent. It is preferably Tg+30°C to Tg+110°C, and even more preferably Tg+40°C to Tg+90°C. In addition, as for the chlorinated vinyl chloride resin, the glass transition temperature increases as the chlorine content increases, so it is preferable to adjust the temperature appropriately according to the chlorine content of the chlorinated vinyl chloride resin to be used.
If the temperature is Tg + 20°C or higher, the viscosity of the extruded molten resin will be low, pore clogging will be less likely to occur, and the pore opening ratio will not actually decrease, so the resulting expandable chlorinated vinyl chloride resin particles will be It is possible to avoid a situation where the shape becomes distorted or irregular. On the other hand, Tg+110
If the temperature is below 0.degree. C., the extruded molten resin will solidify easily and will be difficult to wrap around the rotary cutter, allowing stable cutting.

第2の発泡性塩素化塩化ビニル系樹脂粒子の製造方法における循環加圧冷却水に押出さ
れた溶融樹脂を切断する切断装置としては、特に限定されないが、例えば、ダイスに接触
する回転カッターで切断されて小球化され、加圧循環冷却水中で発泡することなく、遠心
脱水機まで移送されて脱水・集約される装置、等が挙げられる。
The cutting device for cutting the molten resin extruded into the circulating pressurized cooling water in the second method for producing expandable chlorinated vinyl chloride resin particles is not particularly limited, but for example, a rotating cutter that comes into contact with a die can be used to cut the molten resin. An example of this is a device in which the water is pulverized into spherules, and then transferred to a centrifugal dehydrator for dehydration and consolidation without foaming in pressurized circulating cooling water.

加圧循環冷却水の条件については、使用する樹脂、添加剤、発泡剤、含有量によって調
整すべきであるが、ダイスより押し出される溶融樹脂の発泡が抑制され、安定的にカッタ
ーで切断される条件が好ましい。具体的には、加圧循環冷却水の温度条件としては、好ま
しくは40℃~99℃、より好ましくは60~90℃である。圧力条件としては、得られ
る発泡性塩素化塩化ビニル系樹脂粒子の発泡倍率が1.0~1.2倍となるよう、圧力を
調整することが好ましい。尚、発泡性塩素化塩化ビニル系樹脂粒子の発泡倍率は、基材樹
脂の真密度(kg/m)を発泡性塩素化塩化ビニル系樹脂粒子の真密度(kg/m
で除した値を指す。使用する発泡剤の種類にも依存するが、圧力条件は、好ましくは0.
6~2.0MPa、より好ましくは0.7~1.7MPa、更に好ましくは0.8~1.
5MPaである。
The conditions of the pressurized circulating cooling water should be adjusted depending on the resin, additives, foaming agent, and content used, but the foaming of the molten resin extruded from the die is suppressed, and the cutter can cut stably. Conditions are favorable. Specifically, the temperature condition of the pressurized circulating cooling water is preferably 40°C to 99°C, more preferably 60 to 90°C. The pressure conditions are preferably adjusted so that the expansion ratio of the resulting expandable chlorinated vinyl chloride resin particles is 1.0 to 1.2 times. The expansion ratio of the expandable chlorinated vinyl chloride resin particles is calculated by subtracting the true density (kg/m 3 ) of the base resin from the true density (kg/m 3 ) of the expandable chlorinated vinyl chloride resin particles.
refers to the value divided by Although it depends on the type of blowing agent used, the pressure conditions are preferably 0.
6 to 2.0 MPa, more preferably 0.7 to 1.7 MPa, even more preferably 0.8 to 1.
It is 5 MPa.

本発明の発泡性塩素化塩化ビニル系樹脂粒子の製造方法において、上記第1の発泡性塩
素化塩化ビニル系樹脂粒子での発泡剤の含浸条件等は、一般的に行なわれる条件と同様で
よく、適宜設定すればよい。
In the method for producing expandable chlorinated vinyl chloride resin particles of the present invention, conditions for impregnating the first expandable chlorinated vinyl chloride resin particles with a blowing agent may be the same as those commonly used. , may be set appropriately.

(塩素化塩化ビニル系樹脂発泡粒子及びその製造方法)
本発明の発泡性塩素化塩化ビニル系樹脂粒子は、加熱空気や水蒸気などの加熱媒体によ
り、2~110倍に予備発泡されて塩素化塩化ビニル系樹脂発泡粒子にされたのち、発泡
成形体に使用されうる。
(Chlorinated vinyl chloride resin foam particles and manufacturing method thereof)
The expandable chlorinated vinyl chloride resin particles of the present invention are pre-foamed to a size of 2 to 110 times using a heating medium such as heated air or water vapor to form expanded chlorinated vinyl chloride resin particles, and then formed into a foamed molded product. can be used.

使用できる水蒸気は、飽和水蒸気であってもよいし過熱水蒸気であってもよい。 The steam that can be used may be saturated steam or superheated steam.

発泡時の加熱温度は、樹脂のガラス転移温度や融点、更には発泡剤の含有量によって適
宜調整すべきであるが、90℃以上が好ましく、100℃以上がより好ましい。一方、発
泡粒子間の発泡倍率バラつきの抑制や発泡粒子の収縮防止の観点の点から150℃以下が
好ましく、130℃以下がより好ましい。
The heating temperature during foaming should be appropriately adjusted depending on the glass transition temperature and melting point of the resin, as well as the content of the foaming agent, but is preferably 90°C or higher, more preferably 100°C or higher. On the other hand, the temperature is preferably 150°C or lower, more preferably 130°C or lower, from the viewpoint of suppressing variations in expansion ratio among foamed particles and preventing shrinkage of foamed particles.

ここで特許文献1、2、及び3に記載される押出発泡法により発泡体を得る技術と、本
発明の発泡性樹脂粒子から発泡体を得る技術の相違点について詳細に説明する。
Here, the differences between the technique of obtaining a foam by the extrusion foaming method described in Patent Documents 1, 2, and 3 and the technique of obtaining a foam from expandable resin particles of the present invention will be explained in detail.

押出発泡法は、樹脂が溶融した状態で高圧状態から低圧状態へ圧力を開放させることに
よって樹脂に溶解・分散していた発泡剤を膨張させ、発泡体を得る技術であり、極めて短
時間で発泡が行われるのが一般的である。それに対して、本発明の様に発泡性樹脂粒子か
ら発泡粒子を得る方法では、上述の通り、発泡性樹脂粒子を空気や水蒸気等の加熱媒体を
用いて加熱せしめることで発泡させ、押出発泡法と比較すると発泡に要する時間が極めて
長い傾向にある。発泡工程において発泡剤が発泡性樹脂粒子あるいは発泡粒子から散逸し
てしまうと、発泡粒子セル内の圧力低下が生じ、発泡力が大きく損なわれるため、基材樹
脂の発泡剤保持性は押出発泡法よりも留意すべき課題であると推測される。
The extrusion foaming method is a technology in which the foaming agent dissolved and dispersed in the resin is expanded by releasing pressure from a high pressure state to a low pressure state while the resin is molten, and a foam is obtained. is generally carried out. On the other hand, in the method of obtaining foamed particles from foamable resin particles as in the present invention, as mentioned above, the foamable resin particles are foamed by heating them using a heating medium such as air or water vapor, and the extrusion foaming method is used. The time required for foaming tends to be extremely long. If the blowing agent dissipates from the expandable resin particles or foamed particles during the foaming process, the pressure inside the foamed particle cells will decrease and the foaming power will be greatly impaired. It is assumed that this is an issue that should be given more attention.

(B)アクリル系樹脂は、(A)塩素化塩化ビニル系樹脂と比較すると、気体透過性に
優れる傾向にあるため、(B)アクリル系樹脂を(A)塩素化塩化ビニル系樹脂と組み合
わせると、発泡時の発泡剤の散逸が顕著となる恐れがあることから、特許文献1,2及び
3の効果が必ずしも発泡性粒子の発泡プロセスひいては発泡性粒子の高倍発泡化に適する
とは考えづらい。
(B) Acrylic resin tends to have better gas permeability than (A) chlorinated vinyl chloride resin, so when (B) acrylic resin is combined with (A) chlorinated vinyl chloride resin, Since there is a possibility that the blowing agent dissipates significantly during foaming, it is difficult to think that the effects of Patent Documents 1, 2, and 3 are necessarily suitable for the foaming process of expandable particles and, furthermore, for high expansion of expandable particles.

一方、本発明者らは、発泡性粒子の発泡プロセスにおいて、加熱媒体として空気あるい
は水蒸気を用いることに着眼点を置き、鋭意技術検討を行った結果、驚くべきことに、(
B)アクリル系樹脂を(A)塩素化塩化ビニル系樹脂と組み合わせることが(A)塩素化
塩化ビニル系樹脂の発泡性向上に好適であることを見出したのである。
On the other hand, the present inventors focused on using air or water vapor as a heating medium in the foaming process of expandable particles, and as a result of intensive technical studies, surprisingly, (
They have discovered that combining B) an acrylic resin with (A) a chlorinated vinyl chloride resin is suitable for improving the foamability of (A) a chlorinated vinyl chloride resin.

以下に本発明者らが推察した発泡性が向上したメカニズムを記載する。(B)アクリル
系樹脂と(A)塩素化塩化ビニル系樹脂と組み合わせると発泡性粒子に含有されている発
泡剤の散逸速度が上昇する恐れがあるものの、気体透過性の優れる(B)アクリル系樹脂
の効果により、発泡性粒子の発泡プロセス中に、加熱媒体の空気あるいは水蒸気が発泡粒
子中に進入することで、発泡粒子セル内の圧力バランスに寄与し高い発泡倍率が得られた
ものと推察される。樹脂に含有されていない気体を発泡に寄与させるという作用機序は特
許文献1,2、及び3に記載される押出発泡技術からは容易に類推できないものである。
The mechanism of improved foaming properties as deduced by the present inventors will be described below. (B) Acrylic resin has excellent gas permeability, although the dissipation rate of the blowing agent contained in the expandable particles may increase when combined with (B) acrylic resin and (A) chlorinated vinyl chloride resin. It is presumed that due to the effect of the resin, air or water vapor as a heating medium enters the foamed particles during the foaming process of the expandable particles, contributing to the pressure balance within the foamed particle cells and achieving a high expansion ratio. be done. The mechanism of action of causing gas not contained in the resin to contribute to foaming cannot be easily inferred from the extrusion foaming techniques described in Patent Documents 1, 2, and 3.

また本発明の様に、発泡性樹脂粒子から発泡体を得るためには、上述の様に空気や水蒸
気などを加熱媒体として用いて、発泡性樹脂粒子を低温から高温へ温度上昇させ、ガラス
状態からゴム状態へ変化させる過程で発泡が実施されるため、完全溶融したゴム状態で発
泡させる押出発泡法と発泡時の樹脂粘度は必ずしも一致しないと推測される。以上の観点
からも、押出発泡法の技術が発泡性樹脂粒子の発泡に適用可能かどうかは当業者にとって
も容易に類推し難いものである。
In addition, in order to obtain a foam from foamable resin particles as in the present invention, air or steam is used as a heating medium to raise the temperature of the foamable resin particles from a low temperature to a high temperature as described above, and the foamed resin particles are heated to a glass state. Since foaming is carried out during the process of changing from a rubber state to a rubber state, it is assumed that the resin viscosity at the time of foaming does not necessarily match the extrusion foaming method in which foaming is performed in a completely molten rubber state. From the above points of view, it is difficult even for those skilled in the art to easily guess whether the extrusion foaming technique is applicable to foaming expandable resin particles.

(塩素化塩化ビニル系樹脂発泡成形体及びその製造方法)
得られた塩素化塩化ビニル系樹脂発泡粒子は、従来公知の成形機を用い、例えば水蒸気
によって成形(例えば型内成形)されて塩素化塩化ビニル系樹脂発泡成形体が作製される
。使用される金型の形状により、複雑な形の型物成形体やブロック状の成形体を得ること
ができる。
(Chlorinated vinyl chloride resin foam molded product and its manufacturing method)
The obtained chlorinated vinyl chloride resin foam particles are molded (for example, in-mold molding) using a conventionally known molding machine, for example, with water vapor to produce a chlorinated vinyl chloride resin foam molded article. Depending on the shape of the mold used, it is possible to obtain complex-shaped molded products or block-shaped molded products.

(平均セル径)
本発明に係る塩素化塩化ビニル系樹脂発泡粒子及びその塩素化塩化ビニル系樹脂発泡成
形体は、平均セル径が好ましくは70~1000μm、より好ましくは90~500μm
、さらに好ましくは100~400μmである。平均セル径が前述の範囲にあることによ
って、断熱性のより高い塩素化塩化ビニル系樹脂発泡成形体となる。平均セル径が70μ
m以上であると、発泡倍率の高倍化が容易となる傾向にあり、また、1000μm以下で
あると、熱伝導率が増加、即ち断熱性能が悪化するのを避けることができる。ここでいう
、平均セル径は後述の測定方法により求められる。
(Average cell diameter)
The chlorinated vinyl chloride resin foam particles and the chlorinated vinyl chloride resin foam molded articles according to the present invention preferably have an average cell diameter of 70 to 1000 μm, more preferably 90 to 500 μm.
, more preferably 100 to 400 μm. By having an average cell diameter within the above-mentioned range, a chlorinated vinyl chloride resin foam molded product having higher heat insulation properties can be obtained. Average cell diameter is 70μ
m or more, it tends to be easy to increase the expansion ratio, and if it is 1000 μm or less, it is possible to avoid an increase in thermal conductivity, that is, a deterioration in heat insulation performance. The average cell diameter here is determined by the measurement method described below.

(独立気泡率)
本発明に係る塩素化塩化ビニル系樹脂発泡粒子及びその塩素化塩化ビニル系樹脂発泡成形
体は、独立気泡率が好ましくは70%以上、より好ましくは80%以上、更に好ましくは
90%以上である。独立気泡率が前述の範囲にあることによって、成形時にも発泡粒子が
2次発泡しやすく、発泡粒子の成形性が良くなり、得られる発泡成形体の表面性等が良化
する等の効果を奏する。また、独立気泡率が前述の範囲にあることによって、発泡成形体
の圧縮強度等の強度を高くできる傾向にある。
(closed cell ratio)
The chlorinated vinyl chloride resin foam particles and the chlorinated vinyl chloride resin foam molded articles according to the present invention preferably have a closed cell ratio of 70% or more, more preferably 80% or more, and still more preferably 90% or more. . When the closed cell ratio is within the above range, the foamed particles are likely to undergo secondary foaming during molding, the moldability of the foamed particles is improved, and the surface properties of the resulting foamed molded product are improved. play. Further, by having the closed cell ratio within the above-mentioned range, the compressive strength and other strengths of the foamed molded product tend to be increased.

(発泡成形体の用途)
本発明の発泡性塩素化塩化ビニル系樹脂粒子を用いて成形される発泡成形体は、高発泡
倍率及び高独立気泡率であり、難燃性能に優れる。従って、例えば、建築用断熱材、天井
材、金属サンドイッチパネルの芯材、食品容器箱、保冷箱、緩衝材、農水産箱、浴室用断
熱材及び貯湯タンク断熱材のような各種用途に好適である。
(Applications of foam molded products)
A foam molded article formed using the expandable chlorinated vinyl chloride resin particles of the present invention has a high expansion ratio and a high closed cell ratio, and has excellent flame retardant performance. Therefore, it is suitable for various uses such as building insulation materials, ceiling materials, core materials for metal sandwich panels, food container boxes, cold storage boxes, cushioning materials, agricultural and fishery boxes, bathroom insulation materials, and hot water storage tank insulation materials. be.

本発明の一実施形態は前述した各実施形態に限定されるものではなく、請求項に示した
範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜
組み合わせて得られる実施形態についても本発明の一実施形態の技術的範囲に含まれる。
One embodiment of the present invention is not limited to each of the embodiments described above, and various changes can be made within the scope of the claims, and technical means disclosed in different embodiments may be combined as appropriate. The obtained embodiment is also included in the technical scope of one embodiment of the present invention.

以下、実施例及び比較例に基づいて本発明の一実施形態を具体的に説明するが、本発明
はこれらに限定されるものではない。
なお、以下の実施例及び比較例における測定方法及び評価方法は、以下のとおりである
Hereinafter, one embodiment of the present invention will be specifically described based on Examples and Comparative Examples, but the present invention is not limited thereto.
Note that the measurement methods and evaluation methods in the following Examples and Comparative Examples are as follows.

(発泡性塩素化塩化ビニル系樹脂粒子に含まれる発泡剤量の測定)
発泡性塩素化塩化ビニル系樹脂粒子の重量W(g)を測定し、150℃のオーブンで
30分加熱し、その後、デシケータ内にて室温で30分冷却し、再度重量W(g)を測
定した。この加熱前後の重量差(W-W)を発泡性塩素化塩化ビニル系樹脂粒子中の
発泡剤含有量とした。
発泡剤含有量(重量%)=(W-W)/W×100
(Measurement of the amount of blowing agent contained in expandable chlorinated vinyl chloride resin particles)
The weight W 1 (g) of the expandable chlorinated vinyl chloride resin particles was measured, heated in an oven at 150°C for 30 minutes, then cooled at room temperature in a desiccator for 30 minutes, and the weight W 2 (g) was measured. The difference in weight before and after heating (W 1 −W 2 ) was defined as the blowing agent content in the expandable chlorinated vinyl chloride resin particles.
Foaming agent content (wt%) = (W 1 - W 2 )/W 1 ×100

(塩素化塩化ビニル系樹脂粒子及び発泡性塩素化塩化ビニル系樹脂粒子の粒重量の測定

0.01mgまで測定できる電子天秤を用いて、ランダムにサンプリングした塩素化塩
化ビニル系樹脂粒子及び発泡性塩素化塩化ビニル系樹脂粒子100粒の重量を測定し、以
下の式で粒重量を算出した。
粒重量(mg)=[粒子100粒の重量(mg)]/100
(Measurement of particle weight of chlorinated vinyl chloride resin particles and expandable chlorinated vinyl chloride resin particles)
Using an electronic balance that can measure up to 0.01 mg, the weight of 100 randomly sampled chlorinated vinyl chloride resin particles and expandable chlorinated vinyl chloride resin particles was measured, and the particle weight was calculated using the following formula. .
Particle weight (mg) = [Weight of 100 particles (mg)]/100

(発泡性塩素化塩化ビニル系樹脂粒子の真密度)
重量W(kg)の発泡性塩素化塩化ビニル系樹脂粒子を、エタノールの入ったメスシリ
ンダー内に沈め、メスシリンダーの液面上昇分(水没法)から体積V(m)を求め、以
下の式で算出した。
発泡性塩素化塩化ビニル系樹脂粒子の真密度=W/V(kg/m
(True density of expandable chlorinated vinyl chloride resin particles)
Submerge expandable chlorinated vinyl chloride resin particles with a weight W (kg) into a graduated cylinder containing ethanol, calculate the volume V (m 3 ) from the rise in the liquid level in the graduated cylinder (submersion method), and calculate the following: It was calculated using the formula.
True density of expandable chlorinated vinyl chloride resin particles = W/V (kg/m 3 )

(発泡性塩素化塩化ビニル系樹脂粒子の発泡性評価)
発泡粒子の最小真密度の評価を下記の3つの加熱雰囲気下で実施した。
(Evaluation of foamability of foamable chlorinated vinyl chloride resin particles)
Evaluation of the minimum true density of expanded particles was carried out under the following three heating atmospheres.

<加熱空気雰囲気下での発泡評価>
発泡性塩素化塩化ビニル系樹脂粒子を130℃に加熱したオーブン(アズワン株式会社
製、強制対流定温乾燥器SOFW-600)に投入し、温度130℃の加熱空気雰囲気下
で加熱時間を変更して発泡させ、各加熱時間毎の発泡粒子を得た。加熱時間はオーブン投
入後30秒、60秒、90秒の様に30秒間隔で変更し、加熱過多による発泡粒子の収縮
(発泡粒子真密度の増加)が確認されるまで加熱した。得られた加熱時間毎の発泡粒子の
真密度を測定し、これらのうち最も低い密度を塩素化塩化ビニル系樹脂発泡粒子の最小真
密度とした。
<Foaming evaluation under heated air atmosphere>
Expandable chlorinated vinyl chloride resin particles were placed in an oven heated to 130°C (forced convection constant temperature dryer SOFW-600, manufactured by As One Co., Ltd.), and the heating time was varied in a heated air atmosphere at a temperature of 130°C. Foaming was performed to obtain foamed particles for each heating time. The heating time was changed at 30 second intervals such as 30 seconds, 60 seconds, and 90 seconds after the oven was put in the oven, and heating was continued until shrinkage of the foamed particles (increase in the true density of the foamed particles) due to excessive heating was confirmed. The true density of the foamed particles obtained for each heating time was measured, and the lowest density among them was taken as the minimum true density of the chlorinated vinyl chloride resin foamed particles.

<過熱水蒸気雰囲気下での発泡評価>
発泡性塩素化塩化ビニル系樹脂粒子を120℃に加熱したウォーターオーブン(SHA
RP株式会社製、ヘルシオAX-CA300-B)に投入し、温度120℃の過熱水蒸気
雰囲気下で加熱時間を変更して発泡させ、各加熱時間毎の発泡粒子を得た。加熱時間はウ
ォーターオーブン投入後30秒、60秒、90秒の様に30秒間隔で変更し、加熱過多に
よる発泡粒子の収縮(発泡粒子真密度の増加)が確認されるまで加熱した。得られた加熱
時間毎の発泡粒子の真密度を測定し、これらのうち最も低い密度を塩素化塩化ビニル系樹
脂発泡粒子の最小真密度とした。
<Foaming evaluation under superheated steam atmosphere>
Expandable chlorinated vinyl chloride resin particles were heated to 120°C in a water oven (SHA
The mixture was placed in a Healsio AX-CA300-B (manufactured by RP Corporation) and foamed under a superheated steam atmosphere at a temperature of 120° C. while changing the heating time to obtain foamed particles for each heating time. The heating time was changed at 30 second intervals such as 30 seconds, 60 seconds, and 90 seconds after the water oven was placed, and heating was continued until shrinkage of the expanded particles (increase in the true density of the expanded particles) due to excessive heating was confirmed. The true density of the foamed particles obtained for each heating time was measured, and the lowest density among them was taken as the minimum true density of the chlorinated vinyl chloride resin foamed particles.

<水蒸気雰囲気下での発泡評価>
発泡性塩素化塩化ビニル系樹脂粒子を予備発泡機(大開工業株式会社製)に投入し、0
.2MPaの水蒸気を予備発泡機に導入し、予備発泡機内部の温度90~120℃の条件
で、発泡させ発泡粒子を得た。発泡性塩素化塩化ビニル系樹脂粒子の予備発泡機への投入
量を1500g、1000g、750g、600g、500g、400gの条件で発泡さ
せ、各投入量毎の発泡粒子の真密度を測定し、これらのうち最も低い真密度を塩素化塩化
ビニル系樹脂発泡粒子の最小真密度とした。投入量の減量は発泡粒子の収縮(発泡粒子真
密度の増加)が確認されるまで実施した。
<Foaming evaluation under water vapor atmosphere>
The foamable chlorinated vinyl chloride resin particles were put into a pre-foaming machine (manufactured by Daikai Kogyo Co., Ltd.) and
.. Steam of 2 MPa was introduced into the pre-foaming machine, and foaming was carried out at a temperature of 90 to 120°C inside the pre-foaming machine to obtain expanded particles. The amount of foamable chlorinated vinyl chloride resin particles charged into a pre-foaming machine was foamed under the conditions of 1500 g, 1000 g, 750 g, 600 g, 500 g, and 400 g, and the true density of the expanded particles for each input amount was measured. The lowest true density among them was defined as the minimum true density of the expanded chlorinated vinyl chloride resin particles. The input amount was reduced until shrinkage of the foamed particles (increase in the true density of the foamed particles) was confirmed.

尚、発泡粒子の真密度は、重量W(kg)の発泡粒子を、エタノールの入ったメスシリ
ンダー内に沈め、メスシリンダーの液面上昇分(水没法)から体積V(m)を求め、以
下の式で算出した。
発泡粒子の真密度=W/V(kg/m
The true density of the foamed particles is determined by submerging the foamed particles with a weight W (kg) into a graduated cylinder containing ethanol, and calculating the volume V (m 3 ) from the rise in the liquid level of the graduated cylinder (submersion method). It was calculated using the following formula.
True density of expanded particles = W/V (kg/m 3 )

(塩素化塩化ビニル系樹脂発泡粒子及び塩素化塩化ビニル発泡成形体の独立気泡率の測
定)
発泡粒子及び発泡成形体の試験片を、ASTM D2856に記載の方法に準拠し、エ
アピクノメータ(東京サイエンス株式会社製空気比較式比重計モデル1000)を用いて
、試験片の体積Vc(cm)を測定した。次に測定後の同じ試験片をエタノールの入っ
たメスシリンダー内に沈め、メスシリンダーの液面上昇分(水没法)から体積Va(cm
)を求め、下記の式に従って独立気泡率(%)を算出した。
独立気泡率(%)=(Vc/Va)×100
(Measurement of closed cell ratio of chlorinated vinyl chloride resin foam particles and chlorinated vinyl chloride foam molded product)
Test pieces of expanded particles and foamed molded products were measured using an air pycnometer (air comparison hydrometer model 1000 manufactured by Tokyo Science Co., Ltd.) in accordance with the method described in ASTM D2856 to determine the volume of the test piece Vc (cm 3 ). ) was measured. Next, the same test piece after measurement is submerged in a graduated cylinder containing ethanol, and the volume Va (cm
3 ), and the closed cell ratio (%) was calculated according to the following formula.
Closed cell ratio (%) = (Vc/Va) x 100

(塩素化塩化ビニル系樹脂発泡粒子及び塩素化塩化ビニル発泡成形体の平均セル径の測
定)
塩素化塩化ビニル系樹脂発泡粒子及び塩素化塩化ビニル発泡成形体の中心をカミソリで
切削し、光学顕微鏡で断面を観察した。断面の1000μm×1000μm四方の範囲内
に存在するセル数を計測し、下記式(面積平均径)で測定した値を平均セル径とした。各
サンプル5個の平均セル径を測定し、その平均を水準の平均セル径とした。
平均セル径(μm)=2×[1000μm×1000μm/(セル数×π)]1/2
(Measurement of average cell diameter of chlorinated vinyl chloride resin foam particles and chlorinated vinyl chloride foam molded product)
The centers of the chlorinated vinyl chloride resin foam particles and the chlorinated vinyl chloride foam molded articles were cut with a razor, and the cross sections were observed with an optical microscope. The number of cells existing within a 1000 μm x 1000 μm square area of the cross section was measured, and the value measured using the following formula (area average diameter) was defined as the average cell diameter. The average cell diameter of five samples of each sample was measured, and the average was taken as the standard average cell diameter.
Average cell diameter (μm) = 2×[1000 μm×1000 μm/(number of cells×π)] 1/2 .

(発泡成形体の密度測定)
発泡成形体の縦寸法X(mm)、横寸法Y(mm)、及び厚み寸法Z(mm)をノギス
で計測し、発泡成形体の重量W(g)を電子天秤にて測定し、下記式から求めた。
発泡成形体の密度(kg/m) = W /(X×Y×Z)×10
(Density measurement of foam molded product)
The vertical dimension X (mm), the lateral dimension Y (mm), and the thickness dimension Z (mm) of the foam molded product were measured with a caliper, and the weight W (g) of the foam molded product was measured with an electronic balance, and the following formula was obtained. I asked for it from
Density of foam molded product (kg/m 3 ) = W / (X×Y×Z)×10 6

(発泡成形体の表面性)
得られた発泡成形体の表面性を下記判断指標で評価した。
◎;成形体表面の発泡粒子間の隙間が殆ど無い
○;成形体表面の発泡粒子間の隙間がやや観察される
△;成形体表面の発泡粒子間の隙間がかなり観察される
(Surface properties of foam molded product)
The surface properties of the obtained foamed molded products were evaluated using the following criteria.
◎: There are almost no gaps between the foam particles on the surface of the molded product. ○: Some gaps between the foam particles on the surface of the molded product are observed. △; There are considerable gaps between the foam particles on the surface of the molded product.

以下に、実施例及び比較例で用いた原材料を示す。
(塩素化塩化ビニル系樹脂)
(A-1)塩素化塩化ビニル樹脂[(株)カネカ製、H716S、平均重合度600,塩
素含有量67.6重量%]
(塩化ビニル系樹脂)
(A-2)塩化ビニル樹脂[(株)カネカ製、平均重合度600、塩素含有量56.8重
量%]
(アクリル系樹脂)
(B)アクリル系樹脂[(株)カネカ製、カネエースPA-40]
(発泡剤)
(C-1)ノルマルペンタン[富士フィルム和光純薬(株)製]
(C-2)アセトン[富士フィルム和光純薬(株)製]
The raw materials used in Examples and Comparative Examples are shown below.
(Chlorinated vinyl chloride resin)
(A-1) Chlorinated vinyl chloride resin [manufactured by Kaneka Corporation, H716S, average degree of polymerization 600, chlorine content 67.6% by weight]
(vinyl chloride resin)
(A-2) Vinyl chloride resin [manufactured by Kaneka Corporation, average degree of polymerization 600, chlorine content 56.8% by weight]
(acrylic resin)
(B) Acrylic resin [manufactured by Kaneka Corporation, Kane Ace PA-40]
(foaming agent)
(C-1) Normal pentane [manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.]
(C-2) Acetone [manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.]

(実施例1)
[塩素化塩化ビニル系樹脂粒子の作製]
塩素化塩化ビニル樹脂(A-1)100重量部に対し、アクリル系樹脂(B)を5重量
部、更にブチル錫メルカプト系安定剤5重量部、滑剤(エステルワックス、ポリエチレン
ワックス)3重量部、塩素含有量35重量%の塩素化ポリエチレン5重量部を加え、この
配合物をハンドブレンドにてブレンドし均一な配合物を得た。
このブレンド配合物を、8インチのロールにより195℃で5分間混練し、得たシート
状の組成物をカッターにて裁断し、粒重量6mgの塩素化塩化ビニル系樹脂粒子を得た。
(Example 1)
[Preparation of chlorinated vinyl chloride resin particles]
For 100 parts by weight of chlorinated vinyl chloride resin (A-1), 5 parts by weight of acrylic resin (B), further 5 parts by weight of butyltin mercapto stabilizer, 3 parts by weight of lubricant (ester wax, polyethylene wax), 5 parts by weight of chlorinated polyethylene having a chlorine content of 35% by weight was added, and the mixture was hand blended to obtain a homogeneous mixture.
This blend was kneaded for 5 minutes at 195° C. using an 8-inch roll, and the resulting sheet-like composition was cut with a cutter to obtain chlorinated vinyl chloride resin particles having a particle weight of 6 mg.

[発泡性塩素化塩化ビニル系樹脂粒子の作製]
得られた塩素化塩化ビニル系樹脂粒子100重量部に対して、発泡剤(C-1)100
重量部を容積100ccの耐圧容器に入れ密封した後、オイルバスにて120℃の条件で
4時間加熱し、耐圧容器を冷却し、耐圧容器から発泡性塩素化塩化ビニル系樹脂粒子を取
出した。発泡性塩素化塩化ビニル粒子の発泡剤含有量は12重量%、真密度は1290k
g/mであった。
[Preparation of expandable chlorinated vinyl chloride resin particles]
100 parts by weight of the blowing agent (C-1) was added to 100 parts by weight of the obtained chlorinated vinyl chloride resin particles.
The weight part was placed in a pressure-resistant container with a volume of 100 cc and sealed, and then heated in an oil bath at 120° C. for 4 hours, the pressure-resistant container was cooled, and the expandable chlorinated vinyl chloride resin particles were taken out from the pressure-resistant container. The foaming agent content of the expandable chlorinated vinyl chloride particles is 12% by weight, and the true density is 1290k.
g/ m3 .

[塩素化塩化ビニル系樹脂発泡粒子の作製]
得られた発泡性塩素化塩化ビニル系樹脂粒子を10℃で7日保管した後、上述の<加熱
空気雰囲気下での発泡評価>にて発泡評価を実施した結果、発泡粒子の最小真密度は52
kg/m、その際の発泡粒子の独立気泡率は100%であった。
[Preparation of expanded chlorinated vinyl chloride resin particles]
After storing the obtained expandable chlorinated vinyl chloride resin particles at 10°C for 7 days, foaming evaluation was carried out using the above-mentioned <Foaming evaluation under heated air atmosphere>. As a result, the minimum true density of the expanded particles was 52
kg/m 3 , and the closed cell ratio of the expanded particles at that time was 100%.

(実施例2)
実施例1における[塩素化塩化ビニル系樹脂粒子の作製]において、アクリル系樹脂(
B)を13重量部に変更した以外は実施例1と同様の操作を行い、発泡粒子を得た。結果
を表1に示す。
(Example 2)
In [Preparation of chlorinated vinyl chloride resin particles] in Example 1, acrylic resin (
Expanded particles were obtained by carrying out the same operation as in Example 1 except that B) was changed to 13 parts by weight. The results are shown in Table 1.

(実施例3)
実施例1における[塩素化塩化ビニル系樹脂粒子の作製]において、アクリル系樹脂(
B)を20重量部に変更した以外は実施例1と同様の操作を行い、発泡粒子を得た。結果
を表1に示す。
(Example 3)
In [Preparation of chlorinated vinyl chloride resin particles] in Example 1, acrylic resin (
Expanded particles were obtained by carrying out the same operation as in Example 1 except that B) was changed to 20 parts by weight. The results are shown in Table 1.

(実施例4)
実施例1における[塩素化塩化ビニル系樹脂発泡粒子の作製]において、アクリル系樹
脂(B)を30重量部に変更した以外は実施例1と同様の操作を行い、発泡粒子を得た。
結果を表1に示す。
(Example 4)
In [Preparation of expanded chlorinated vinyl chloride resin particles] in Example 1, the same operation as in Example 1 was performed except that the acrylic resin (B) was changed to 30 parts by weight to obtain expanded particles.
The results are shown in Table 1.

(比較例1)
実施例1における[塩素化塩化ビニル系樹脂粒子の作製]において、アクリル系樹脂(
B)を添加しなかった以外は実施例1と同様の操作を行い、発泡粒子を得た。結果を表1
に示す。
(Comparative example 1)
In [Preparation of chlorinated vinyl chloride resin particles] in Example 1, acrylic resin (
Expanded particles were obtained by carrying out the same operation as in Example 1 except that B) was not added. Table 1 shows the results.
Shown below.

(比較例2)
実施例1における[塩素化塩化ビニル系樹脂粒子の作製]において、塩素化塩化ビニル
樹脂(A-1)100重量部の代わりに塩化ビニル系樹脂(A-2)100重量部を使用
したこと以外は実施例2と同様の操作を行ったが、全く発泡せず、発泡粒子は得られなか
った。結果を表1に示す。
(Comparative example 2)
Except that in [Preparation of chlorinated vinyl chloride resin particles] in Example 1, 100 parts by weight of vinyl chloride resin (A-2) was used instead of 100 parts by weight of chlorinated vinyl chloride resin (A-1). The same operation as in Example 2 was carried out, but no foaming occurred and no foamed particles were obtained. The results are shown in Table 1.

(実施例5)
[塩素化塩化ビニル系樹脂粒子の作製]
塩素化塩化ビニル樹脂(A-1)100重量部に対し、アクリル系樹脂(B)を13重
量部、更にブチル錫メルカプト系安定剤5重量部、滑剤(エステルワックス、ポリエチレ
ンワックス)3重量部、塩素含有量35重量%の塩素化ポリエチレン5重量部を加え、こ
の配合物をブレンドし均一な配合物を得た後、同方向噛み合い二軸押出機にで上記配合比
率のペレットを得た。
得られたペレットを、φ26mm同方向噛み合い二軸押出機にて吐出量8kg/hrの
条件で溶融混練し、押出機先端に取り付けられた直径1.7mmの小穴が13個設けられ
たダイスを通じてストランド状とし、水槽で冷却固化させた後、ストランドカッターで裁
断し、塩素化塩化ビニル系樹脂粒子を得た。得られた塩化ビニル系樹脂粒子の粒重量は6
mgであった。
(Example 5)
[Preparation of chlorinated vinyl chloride resin particles]
For 100 parts by weight of chlorinated vinyl chloride resin (A-1), 13 parts by weight of acrylic resin (B), further 5 parts by weight of butyltin mercapto stabilizer, 3 parts by weight of lubricant (ester wax, polyethylene wax), 5 parts by weight of chlorinated polyethylene with a chlorine content of 35% by weight was added, and this mixture was blended to obtain a uniform mixture, which was then passed through a co-intermeshing twin-screw extruder to obtain pellets having the above blending ratio.
The obtained pellets were melt-kneaded in a φ26 mm co-intermeshing twin-screw extruder at a discharge rate of 8 kg/hr, and strands were passed through a die equipped with 13 small holes with a diameter of 1.7 mm attached to the tip of the extruder. After cooling and solidifying in a water tank, the mixture was cut with a strand cutter to obtain chlorinated vinyl chloride resin particles. The particle weight of the obtained vinyl chloride resin particles was 6
It was mg.

[発泡性塩素化塩化ビニル系樹脂粒子の作製]
容積6Lの撹拌装置付きオートクレーブ内に、得られた塩素化塩化ビニル系樹脂粒子1
00重量部に対して、発泡剤(C-1)100重量部を投入し、オートクレーブを密閉し
た。その後、1時間30分かけて120℃まで加温した後、そのまま24時間保持した。
次いで、室温まで冷却し、オートクレーブから発泡剤が含浸された樹脂粒子を取り出し
、発泡性塩素化塩化ビニル系樹脂粒子を得た。発泡性塩素化塩化ビニル粒子の発泡剤含有
量は12重量%、真密度は1280kg/mであった。
[Preparation of expandable chlorinated vinyl chloride resin particles]
The obtained chlorinated vinyl chloride resin particles 1 were placed in an autoclave with a volume of 6 L equipped with a stirring device.
00 parts by weight, 100 parts by weight of the blowing agent (C-1) was added, and the autoclave was sealed. Thereafter, it was heated to 120° C. over 1 hour and 30 minutes, and then kept as it was for 24 hours.
Next, the resin particles were cooled to room temperature, and the resin particles impregnated with the foaming agent were taken out from the autoclave to obtain expandable chlorinated vinyl chloride resin particles. The foaming agent content of the expandable chlorinated vinyl chloride particles was 12% by weight, and the true density was 1280 kg/m 3 .

[塩素化塩化ビニル系樹脂発泡粒子の作製]
(加熱空気雰囲気下での発泡評価)
得られた発泡性塩素化塩化ビニル系樹脂粒子を10℃で7日保管した後、上述の<加熱空
気雰囲気下での発泡評価>にて発泡評価を実施した結果、発泡粒子の最小真密度は48k
g/m、その際の発泡粒子の独立気泡率は95%であった。
[Preparation of expanded chlorinated vinyl chloride resin particles]
(Evaluation of foaming under heated air atmosphere)
After storing the obtained expandable chlorinated vinyl chloride resin particles at 10°C for 7 days, foaming evaluation was carried out using the above-mentioned <Foaming evaluation under heated air atmosphere>. As a result, the minimum true density of the expanded particles was 48k
g/m 3 , and the closed cell ratio of the expanded particles was 95%.

(過熱水蒸気雰囲気下での発泡評価)
得られた発泡性塩素化塩化ビニル系樹脂粒子を10℃で7日保管した後、上述の<過熱
水蒸気雰囲気下での発泡評価>にて発泡評価を実施した結果、発泡粒子の最小真密度は、
43kg/m、その際の発泡粒子の独立気泡率は86%であった。
(Evaluation of foaming under superheated steam atmosphere)
After storing the obtained expandable chlorinated vinyl chloride resin particles at 10°C for 7 days, foaming evaluation was performed using the above-mentioned <Foaming evaluation under superheated steam atmosphere>. As a result, the minimum true density of the expanded particles was ,
43 kg/m 3 , and the closed cell ratio of the expanded particles at that time was 86%.

(水蒸気雰囲気下での成形用発泡粒子の作製)
得られた発泡性塩素化塩化ビニル系樹脂粒子を10℃で7日保管した後、発泡性塩素化
塩化ビニル系樹脂粒子1500gを予備発泡機(大開工業株式会社製)に投入し、0.2
MPaの水蒸気を予備発泡機に導入し、予備発泡機内部の温度110℃の条件で発泡させ
、真密度93kg/m、独立気泡率96%、平均セル径320μmの発泡粒子を得た。
(Preparation of foamed particles for molding in a steam atmosphere)
After storing the obtained expandable chlorinated vinyl chloride resin particles at 10°C for 7 days, 1500 g of expandable chlorinated vinyl chloride resin particles were put into a pre-foaming machine (manufactured by Daikai Kogyo Co., Ltd.), and 0.2
Water vapor of MPa was introduced into a pre-foaming machine and foaming was carried out at a temperature inside the pre-foaming machine of 110°C to obtain expanded particles having a true density of 93 kg/m 3 , a closed cell ratio of 96%, and an average cell diameter of 320 μm.

[塩素化塩化ビニル系樹脂発泡成形体の作製]
上記水蒸気雰囲気下で得られた真密度93kg/mの発泡粒子を、発泡スチロール用
成形機に取り付けた縦400mm×横400mm×厚み25mmの型内成形用金型内に充
填して、0.12MPaの水蒸気を導入して型内発泡させた後、金型に水を20秒間噴霧
して冷却した。塩素化塩化ビニル系樹脂発泡成形体が金型を押す圧力が0.05MPa(
ゲージ圧力)なるまで塩素化塩化ビニル系樹脂発泡成形体を金型内に保持した後に、塩素
化塩化ビニル系樹脂発泡成形体を取り出して、直方体状の塩素化塩化ビニル系樹脂発泡成
形体を得た。成形体の密度は、62kg/m、独立気泡率は87%、成形体表面性は△
、平均セル径は360μmであった。結果及び評価結果を表2に示す。
[Preparation of chlorinated vinyl chloride resin foam molded product]
The foamed particles with a true density of 93 kg/m 3 obtained in the above steam atmosphere were filled into an in-mold mold of 400 mm long x 400 mm wide x 25 mm thick attached to a styrofoam molding machine, and the pressure was 0.12 MPa. After introducing water vapor to cause foaming in the mold, the mold was cooled by spraying water for 20 seconds. The pressure at which the chlorinated vinyl chloride resin foam molded product presses against the mold is 0.05 MPa (
After holding the chlorinated vinyl chloride resin foam molded product in the mold until the pressure reaches 100 mm (gauge pressure), the chlorinated vinyl chloride resin foam molded product is taken out to obtain a rectangular parallelepiped-shaped chlorinated vinyl chloride resin foam molded product. Ta. The density of the molded body is 62 kg/m 3 , the closed cell ratio is 87%, and the surface property of the molded body is △
, the average cell diameter was 360 μm. The results and evaluation results are shown in Table 2.

(実施例6)
[発泡性塩素化塩化ビニル系樹脂粒子の作製]
塩素化塩化ビニル樹脂(A-1)100重量部に対し、アクリル系樹脂(B)を13重
量部、更にブチル錫メルカプト系安定剤5重量部、滑剤(エステルワックス、ポリエチレ
ンワックス)3重量部、塩素含有量35重量%の塩素化ポリエチレン5重量部を加え、こ
の配合物をブレンドし均一な配合物を得た後、同方向噛み合い二軸押出機にて溶融混練し
、上記配合比率のペレットを得た。
得られたペレットを、φ40mm同方向噛み合い二軸押出機に40kg/hrのフィー
ド量で溶融混練した。
二軸押出機の途中から、前記樹脂組成物100重量部に対して、ノルマルペンタン(C
-1)9重量部とアセトン(C-2)4重量部を圧入した。その後、二軸押出機先端に取
り付けられた継続管、単軸押出機、ギアポンプ、ダイバータバルブを経て、樹脂温度17
0℃に冷却し、ダイバータバルブの下流に取り付けられた直径1.0mm、ランド長3.
5mmの小孔を30個有する230℃に設定したダイスから、吐出量45kg/hrで、
温度70℃及び1.3MPaの加圧循環水中に押出した。押出された溶融樹脂は、ダイス
に接触する回転カッターを用いて、切断・小粒化され、遠心脱水機に移送されて、粒重量
6mgの発泡性塩素化塩化ビニル系樹脂粒子を得た。発泡性塩素化塩化ビニル粒子の発泡
剤含有量は10重量%、真密度は1330kg/mであった。
(Example 6)
[Preparation of expandable chlorinated vinyl chloride resin particles]
For 100 parts by weight of chlorinated vinyl chloride resin (A-1), 13 parts by weight of acrylic resin (B), further 5 parts by weight of butyltin mercapto stabilizer, 3 parts by weight of lubricant (ester wax, polyethylene wax), After adding 5 parts by weight of chlorinated polyethylene with a chlorine content of 35% by weight and blending this mixture to obtain a uniform mixture, the mixture was melt-kneaded in a co-intermeshing twin-screw extruder to form pellets with the above blending ratio. Obtained.
The obtained pellets were melt-kneaded in a φ40 mm co-intermeshing twin-screw extruder at a feed rate of 40 kg/hr.
From the middle of the twin-screw extruder, normal pentane (C
-1) 9 parts by weight and 4 parts by weight of acetone (C-2) were press-fitted. After that, the resin passes through a continuation pipe attached to the tip of the twin-screw extruder, a single-screw extruder, a gear pump, and a diverter valve.
1.0 mm diameter, land length 3. cooled to 0°C and installed downstream of the diverter valve.
From a die set at 230°C with 30 small holes of 5 mm, at a discharge rate of 45 kg/hr,
It was extruded into pressurized circulating water at a temperature of 70° C. and 1.3 MPa. The extruded molten resin was cut into small particles using a rotating cutter in contact with a die, and transferred to a centrifugal dehydrator to obtain expandable chlorinated vinyl chloride resin particles having a particle weight of 6 mg. The foaming agent content of the expandable chlorinated vinyl chloride particles was 10% by weight, and the true density was 1330 kg/m 3 .

[塩素化塩化ビニル系樹脂発泡粒子の作製]
(水蒸気加熱雰囲気下での発泡評価)
得られた発泡性塩素化塩化ビニル系樹脂粒子を10℃で7日保管した後、発泡性塩素化
塩化ビニル系樹脂粒子を予備発泡機(大開工業株式会社製)に投入し、上述の<水蒸気雰
囲気下での発泡評価>にて発泡評価を実施した結果、最小真密度49kg/m、独立気
泡率78%、平均セル径400μmの発泡粒子を得た。発泡性塩素化塩化ビニル系樹脂粒
子の投入量と発泡粒子の真密度との関係性を図1に、発泡粒子の真密度と独立気泡率との
関係性を図2に示す。
[Preparation of expanded chlorinated vinyl chloride resin particles]
(Evaluation of foaming under steam heating atmosphere)
After storing the obtained expandable chlorinated vinyl chloride resin particles at 10°C for 7 days, the expandable chlorinated vinyl chloride resin particles were put into a pre-expanding machine (manufactured by Daikai Kogyo Co., Ltd.) and Foaming evaluation under atmosphere> As a result, foamed particles were obtained with a minimum true density of 49 kg/m 3 , a closed cell ratio of 78%, and an average cell diameter of 400 μm. FIG. 1 shows the relationship between the input amount of expandable chlorinated vinyl chloride resin particles and the true density of the expanded particles, and FIG. 2 shows the relationship between the true density of the expanded particles and the closed cell ratio.

(水蒸気雰囲気下での成形用発泡粒子の作製)
得られた発泡性塩素化塩化ビニル系樹脂粒子を10℃で7日保管した後、発泡性塩素化
塩化ビニル系樹脂粒子1500gを予備発泡機(大開工業株式会社製)に投入し、0.2
MPaの水蒸気を予備発泡機に導入し、予備発泡機内部の温度110℃の条件で発泡させ
、真密度110kg/m、独立気泡率97%、平均セル径350μmの発泡粒子を得た
(Preparation of foamed particles for molding in a steam atmosphere)
After storing the obtained expandable chlorinated vinyl chloride resin particles at 10°C for 7 days, 1500 g of expandable chlorinated vinyl chloride resin particles were put into a pre-foaming machine (manufactured by Daikai Kogyo Co., Ltd.), and 0.2
Water vapor of MPa was introduced into a pre-foaming machine, and foaming was carried out at a temperature inside the pre-foaming machine of 110°C to obtain expanded particles having a true density of 110 kg/m 3 , a closed cell ratio of 97%, and an average cell diameter of 350 μm.

[塩素化塩化ビニル系樹脂発泡成形体の作製]
上記水蒸気雰囲気下で得られた真密度110kg/mの発泡粒子を、発泡スチロール
用成形機に取り付けた型内成形用金型内に充填して、0.12MPaの水蒸気を導入して
型内発泡させた後、金型に水を20秒間噴霧して冷却した。塩素化塩化ビニル系樹脂発泡
成形体が金型を押す圧力が0.05MPa(ゲージ圧力)なるまで塩素化塩化ビニル系樹
脂発泡成形体を金型内に保持した後に、塩素化塩化ビニル系樹脂発泡成形体を取り出して
、直方体状の塩素化塩化ビニル系樹脂発泡成形体を得た。成形体の密度は、75kg/m
、独立気泡率は91%、平均セル径は400μm、成形体表面性は◎であった。結果及
び評価結果を表3に示す。
[Preparation of chlorinated vinyl chloride resin foam molded product]
The foamed particles with a true density of 110 kg/m 3 obtained in the above water vapor atmosphere are filled into an in-mold forming mold attached to a foamed polystyrene molding machine, and 0.12 MPa of water vapor is introduced to cause in-mold foaming. After that, the mold was cooled by spraying water for 20 seconds. After holding the chlorinated vinyl chloride resin foam molding in the mold until the pressure of the chlorinated vinyl chloride resin foam molding pressing against the mold reaches 0.05 MPa (gauge pressure), the chlorinated vinyl chloride resin foaming The molded product was taken out to obtain a rectangular parallelepiped-shaped chlorinated vinyl chloride resin foam molded product. The density of the molded body is 75 kg/m
3. The closed cell ratio was 91%, the average cell diameter was 400 μm, and the surface property of the molded product was ◎. The results and evaluation results are shown in Table 3.

Claims (19)

次の(A)~(C)を含有する、発泡性塩素化塩化ビニル系樹脂粒子:
(A)塩素化塩化ビニル系樹脂、
(B)アクリル系樹脂、および、
(C)発泡剤。
Expandable chlorinated vinyl chloride resin particles containing the following (A) to (C):
(A) Chlorinated vinyl chloride resin,
(B) acrylic resin, and
(C) Foaming agent.
前記(A)塩素化塩化ビニル系樹脂100重量部に対して、前記(B)アクリル系樹脂
が1~50重量部含有される、請求項1記載の発泡性塩素化塩化ビニル系樹脂粒子。
The expandable chlorinated vinyl chloride resin particles according to claim 1, wherein the (B) acrylic resin is contained in an amount of 1 to 50 parts by weight based on 100 parts by weight of the (A) chlorinated vinyl chloride resin.
前記(A)塩素化塩化ビニル系樹脂の塩素含有量が60重量%以上75重量%以下であ
る、請求項1または2記載の発泡性塩素化塩化ビニル系樹脂粒子。
The expandable chlorinated vinyl chloride resin particles according to claim 1 or 2, wherein the chlorine content of the (A) chlorinated vinyl chloride resin is 60% by weight or more and 75% by weight or less.
前記(A)塩素化塩化ビニル系樹脂の平均重合度が400以上1500以下である、請
求項1~3のいずれかに記載の発泡性塩素化塩化ビニル系樹脂粒子。
The expandable chlorinated vinyl chloride resin particles according to any one of claims 1 to 3, wherein the average degree of polymerization of the (A) chlorinated vinyl chloride resin is 400 or more and 1,500 or less.
前記(B)アクリル系樹脂が前記(A)塩素化塩化ビニル系樹脂の重量平均分子量より
も高い、請求項1~4のいずれかに記載の発泡性塩素化塩化ビニル系樹脂粒子。
The expandable chlorinated vinyl chloride resin particles according to any one of claims 1 to 4, wherein the (B) acrylic resin has a weight average molecular weight higher than the weight average molecular weight of the (A) chlorinated vinyl chloride resin.
前記(C)発泡剤が物理発泡剤である、請求項1~5のいずれかに記載の発泡性塩素化
塩化ビニル系樹脂粒子。
The expandable chlorinated vinyl chloride resin particles according to any one of claims 1 to 5, wherein the blowing agent (C) is a physical blowing agent.
前記(C)発泡剤が炭素数4~6の飽和炭化水素を含む、請求項6に記載の発泡性塩素
化塩化ビニル系樹脂粒子。
The expandable chlorinated vinyl chloride resin particles according to claim 6, wherein the blowing agent (C) contains a saturated hydrocarbon having 4 to 6 carbon atoms.
前記炭素数4~6の飽和炭化水素の少なくとも一種がペンタンである、請求項7記載の
発泡性塩素化塩化ビニル系樹脂粒子。
The expandable chlorinated vinyl chloride resin particles according to claim 7, wherein at least one of the saturated hydrocarbons having 4 to 6 carbon atoms is pentane.
前記(C)発泡剤がケトンを含む、請求項1~8のいずれかに記載の発泡性塩素化塩化
ビニル系樹脂粒子。
The expandable chlorinated vinyl chloride resin particles according to any one of claims 1 to 8, wherein the blowing agent (C) contains a ketone.
前記(C)発泡剤が発泡性塩素化塩化ビニル系樹脂粒子100重量%において1~40
重量%含有されている、請求項1~9のいずれかに記載の発泡性塩素化塩化ビニル系樹脂
粒子。
The foaming agent (C) is 1 to 40% based on 100% by weight of the foamable chlorinated vinyl chloride resin particles.
The expandable chlorinated vinyl chloride resin particles according to any one of claims 1 to 9, wherein the expandable chlorinated vinyl chloride resin particles contain % by weight.
塩素化ポリエチレンを含有する、請求項1~10のいずれかに記載の発泡性塩素化塩化
ビニル系樹脂粒子。
The expandable chlorinated vinyl chloride resin particles according to any one of claims 1 to 10, containing chlorinated polyethylene.
前記発泡性塩素化塩化ビニル系樹脂粒子の真密度が1200kg/m以上である、請
求項1~11のいずれかに記載の発泡性塩素化塩化ビニル系樹脂粒子。
The expandable chlorinated vinyl chloride resin particles according to any one of claims 1 to 11, wherein the expandable chlorinated vinyl chloride resin particles have a true density of 1200 kg/m 3 or more.
前記発泡性塩素化塩化ビニル系樹脂粒子の真密度が1300kg/m以上である、請
求項1~12のいずれかに記載の発泡性塩素化塩化ビニル系樹脂粒子。
The expandable chlorinated vinyl chloride resin particles according to any one of claims 1 to 12, wherein the expandable chlorinated vinyl chloride resin particles have a true density of 1300 kg/m 3 or more.
次の工程(I)~(III)を含む、発泡性塩素化塩化ビニル系樹脂粒子の製造方法:
(I)塩素化塩化ビニル系樹脂、アクリル系樹脂、および、発泡剤を含有する溶融混練物
を作製する工程
(II)前記溶融混練物を、小孔を有するダイスを通じて、加圧循環水内に押し出す工程
(III)前記押し出し直後の溶融混練物を切断すると共に、加圧循環水により冷却固化
する工程。
A method for producing expandable chlorinated vinyl chloride resin particles, including the following steps (I) to (III):
(I) Step of producing a melt-kneaded product containing a chlorinated vinyl chloride resin, an acrylic resin, and a blowing agent (II) The melt-kneaded product is passed through a die having small holes into pressurized circulating water. Extrusion step (III) A step of cutting the melt-kneaded material immediately after extrusion and cooling and solidifying it with pressurized circulating water.
請求項1~13のいずれかに記載の発泡性塩素化塩化ビニル系樹脂粒子、または、請求
項14で得られた発泡性塩素化塩化ビニル系樹脂粒子を予備発泡してなる塩素化塩化ビニ
ル系樹脂発泡粒子。
Chlorinated vinyl chloride resin particles obtained by pre-foaming the expandable chlorinated vinyl chloride resin particles according to any one of claims 1 to 13 or the expandable chlorinated vinyl chloride resin particles obtained in claim 14. Resin foam particles.
独立気泡率が70%以上である、請求項15に記載の塩素化塩化ビニル系樹脂発泡粒子
The expanded chlorinated vinyl chloride resin particles according to claim 15, having a closed cell ratio of 70% or more.
請求項15又は請求項16のいずれかに記載の塩素化塩化ビニル系樹脂発泡粒子を発泡
成形してなる塩素化塩化ビニル系樹脂発泡成形体。
A chlorinated vinyl chloride resin foam molded article obtained by foam molding the chlorinated vinyl chloride resin foam particles according to claim 15 or 16.
独立気泡率が70%以上である、請求項17に記載の塩素化塩化ビニル系樹脂発泡成形
体。
The chlorinated vinyl chloride resin foam molded article according to claim 17, having a closed cell ratio of 70% or more.
請求項15又は請求項16のいずれかに記載の塩素化塩化ビニル系樹脂発泡粒子を成形
する工程を含む、塩素化塩化ビニル系樹脂発泡成形体の製造方法。
A method for producing a chlorinated vinyl chloride resin foam molded article, comprising a step of molding the chlorinated vinyl chloride resin foam particles according to claim 15 or 16.
JP2023211503A 2019-03-29 2023-12-14 Expandable chlorinated vinyl chloride resin particles, expanded particles thereof, and chlorinated vinyl chloride resin foam molded articles using the same Pending JP2024015417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023211503A JP2024015417A (en) 2019-03-29 2023-12-14 Expandable chlorinated vinyl chloride resin particles, expanded particles thereof, and chlorinated vinyl chloride resin foam molded articles using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019068366A JP7405516B2 (en) 2019-03-29 2019-03-29 Expandable chlorinated vinyl chloride resin particles, expanded particles thereof, and chlorinated vinyl chloride resin foam molded articles using the same
JP2023211503A JP2024015417A (en) 2019-03-29 2023-12-14 Expandable chlorinated vinyl chloride resin particles, expanded particles thereof, and chlorinated vinyl chloride resin foam molded articles using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019068366A Division JP7405516B2 (en) 2019-03-29 2019-03-29 Expandable chlorinated vinyl chloride resin particles, expanded particles thereof, and chlorinated vinyl chloride resin foam molded articles using the same

Publications (1)

Publication Number Publication Date
JP2024015417A true JP2024015417A (en) 2024-02-01

Family

ID=72715814

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019068366A Active JP7405516B2 (en) 2019-03-29 2019-03-29 Expandable chlorinated vinyl chloride resin particles, expanded particles thereof, and chlorinated vinyl chloride resin foam molded articles using the same
JP2023211503A Pending JP2024015417A (en) 2019-03-29 2023-12-14 Expandable chlorinated vinyl chloride resin particles, expanded particles thereof, and chlorinated vinyl chloride resin foam molded articles using the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019068366A Active JP7405516B2 (en) 2019-03-29 2019-03-29 Expandable chlorinated vinyl chloride resin particles, expanded particles thereof, and chlorinated vinyl chloride resin foam molded articles using the same

Country Status (1)

Country Link
JP (2) JP7405516B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021192365A1 (en) * 2020-03-24 2021-09-30

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5825340B2 (en) * 1976-05-08 1983-05-26 徳山積水工業株式会社 Method for producing chlorinated vinyl chloride resin foam
JPS57165430A (en) * 1981-04-06 1982-10-12 Kanegafuchi Chem Ind Co Ltd Production of chlorinated polyvinyl chloride resin foam
US4360602A (en) * 1981-09-14 1982-11-23 The B. F. Goodrich Company Foamed chlorinated polyvinyl chloride and compositions for making same
JPS58104929A (en) * 1981-12-18 1983-06-22 Mitsubishi Monsanto Chem Co Foamable chlorinated polyvinyl chloride composition
JPS5949243A (en) * 1982-09-16 1984-03-21 Shin Etsu Chem Co Ltd Chlorinated vinylchloride-based resin expansion molded product and manufacture of the same
JPS5933334A (en) * 1982-08-18 1984-02-23 Shin Etsu Chem Co Ltd Expanded resin molding and production thereof
US4537933A (en) * 1983-10-12 1985-08-27 Occidental Chemical Corporation Blends of polyolefin graft polymers and ASA polymers
JPH0610272B2 (en) * 1986-08-07 1994-02-09 鐘淵化学工業株式会社 Method for producing pre-expanded chlorinated vinyl chloride resin particles
JP3642097B2 (en) * 1996-02-09 2005-04-27 日本ゼオン株式会社 Vinyl chloride resin composition for foam molding
JPH11269295A (en) * 1998-03-24 1999-10-05 Tokuyama Sekisui Ind Corp Chlorinated vinyl chloride based resin composition for foaming
JP4799664B2 (en) * 2007-02-23 2011-10-26 積水化成品工業株式会社 Die for granulation, granulator, and method for producing expandable thermoplastic resin particles
JP5922462B2 (en) 2012-03-28 2016-05-24 株式会社ジェイエスピー Method for producing polystyrene resin extruded foam plate
JP6225048B2 (en) 2013-03-29 2017-11-01 積水化学工業株式会社 Rubber-based resin closed cell foam
JP2018127537A (en) * 2017-02-08 2018-08-16 株式会社カネカ Device for producing foamable thermoplastic resin particle, and method for producing foamable thermoplastic resin particle

Also Published As

Publication number Publication date
JP7405516B2 (en) 2023-12-26
JP2020164707A (en) 2020-10-08

Similar Documents

Publication Publication Date Title
JP6301760B2 (en) Method for producing crosslinked polyethylene resin expanded particles and method for producing crosslinked polyethylene resin particles
JP5873098B2 (en) Method for producing foamable thermoplastic beads with improved foamability
JP5410803B2 (en) Expandable thermoplastic resin particles and method for producing the same, pre-expanded particles and foamed molded body
EP2438111A1 (en) Infrared attenuated polymeric foam insulation with flame retardant performance
JP2024015417A (en) Expandable chlorinated vinyl chloride resin particles, expanded particles thereof, and chlorinated vinyl chloride resin foam molded articles using the same
JP2024015416A (en) Expandable chlorinated vinyl chloride resin particles, expanded particles thereof, and chlorinated vinyl chloride resin foam molded articles using the same
EA036425B1 (en) Combination of a mineral component with carbon black and its use for decreasing the thermal conductivity of vinyl aromatic polymer
JP2009256426A (en) Styrene-based resin extrusion foamed plate
US6342540B1 (en) Method for producing water expandable styrene polymers
JP6055687B2 (en) Flame-retardant styrenic resin particles, expandable particles, expanded particles and expanded molded articles
JP2013075941A (en) Foamable polystyrenic resin particle, production method thereof, foamed particle and foamed molding
KR100902786B1 (en) Expandable Polystyrene Using Recycled Styrene Resin and Method of Preparing the Same
JP2005015560A (en) Regenerated expandable styrenic resin particle and its manufacturing method
WO2021192365A1 (en) Foamable chlorinated vinyl chloride-based resin particles, foamed particles thereof, chlorinated vinyl chloride-based resin foam molded article, and method for producing foamable chlorinated vinyl chloride resin particles
JP2009173771A (en) Method for producing styrenic resin extruded foam
KR20090044686A (en) Method for manufacturing expandable polystyrene particles with excellent flame retardancy
JP2022055451A (en) Method for producing expandable vinyl chloride-based resin particle
JP3580317B2 (en) Method for producing flame-retardant expanded styrene resin molded article having voids
JP3462775B2 (en) Foam molding
JP2022055452A (en) Foamable vinyl chloride resin particle, foamed particle thereof, and vinyl chloride resin foamed molding including the same
JP2022055450A (en) Foamable vinyl chloride resin particle, foamed particle thereof, and foamed molding including the same
JP2022055453A (en) Foamable vinyl chloride-based resin particles, prefoamed particles, form molding, and method for producing foamable vinyl chloride based resin particles
JP7194535B2 (en) Expandable polystyrene resin particles, polystyrene resin pre-expanded particles, and polystyrene resin foam molding
JP7353779B2 (en) Styrenic resin flake foam and method for producing the same
JP2011094024A (en) Incombustible agent-containing expandable polystyrene resin particle and method for producing the same, incombustible polystyrene resin pre-expanded particle, and incombustible polystyrene resin expanded molded article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240124