JPS5949243A - Chlorinated vinylchloride-based resin expansion molded product and manufacture of the same - Google Patents

Chlorinated vinylchloride-based resin expansion molded product and manufacture of the same

Info

Publication number
JPS5949243A
JPS5949243A JP57161369A JP16136982A JPS5949243A JP S5949243 A JPS5949243 A JP S5949243A JP 57161369 A JP57161369 A JP 57161369A JP 16136982 A JP16136982 A JP 16136982A JP S5949243 A JPS5949243 A JP S5949243A
Authority
JP
Japan
Prior art keywords
resin
vinyl chloride
acrylic
weight
styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57161369A
Other languages
Japanese (ja)
Inventor
Kiyoshi Imada
今田 潔
Michinori Tsuchida
土田 道則
Kichiji Eikuchi
吉次 栄口
Osamu Matsumoto
修 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP57161369A priority Critical patent/JPS5949243A/en
Priority to EP83107861A priority patent/EP0103733A3/en
Priority to CA000434304A priority patent/CA1210900A/en
Publication of JPS5949243A publication Critical patent/JPS5949243A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain titled product of great expansion ratio with fine uniform cell structure and high closed-cell content, also having high heat-resistant temperature, by blending a chlorinated vinyl chloride-based resin with an acrylic and/or styrene resin(s) followed by expansion molding. CONSTITUTION:A resin composition comprising (A) 100pts.wt. of a chlorinated vinyl chloride-based resin and (B) 0.5-30pts.wt. of an acrylic and/or styrene resin(s) is incorporated with (C) >=0.01pts.wt. of a heat-decomposable foaming agent and/or high-melting point pulverized substance followed by feeding to an extruder to carry out a kneading under molten state while injecting a valatile organic foaming agent of a boiling point <=90 deg.C and then subjecting to expansion molding to obtain the objective product. This product will have the following characteristics : (1) density: 0.1g/ml or less (2) closed-cell content : >=70% (3) heat-resistant temperature : >=75 deg.C. The chlorine content of the component (A) is pref. 60-75wt%.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は塩素化塩化ビニル系樹脂を主体とする樹脂組成
物を発泡成形してなる樹脂発泡成形体およびその製造方
法に関するものであり、特には耐熱性、断熱保温性にす
ぐれ、均一微細なセル構造を有する高発泡倍率の樹脂発
泡成形体の提供を目的とする。 従来、塩化ビニル系樹脂発泡成形体としては、(1)塩
化ビニル系重合体に分解によりガス体となるいわゆる分
解へり発泡剤を添加混合した組成物を加熱発泡成形した
もの、(2)塩イヒピニル系重合体と可塑剤とを混合し
てペースト状(プラスチゾル)としたものな機械的に発
泡させ成形するか、または該プラスチゾルに分解型発泡
剤を添加した組成物を加熱ゲルイヒ発泡成形したものな
どが知られている。そしてその製造方法としても例えば
(3)塩化ビニル系重合体に分解型発泡剤を添加混合し
た組成物を押出成形あるいは射出成形の手段で加熱発泡
成形する方法、あるいは(4)その組成物を分解型発泡
剤の分解温度以下で予めロール成形したのち、加熱して
発泡成形体とする方法、さらにまた(5)その組成物(
必要に応じてさらに揮発性有機発泡剤、膨潤性を有する
有機溶剤および軟化剤を使用)を金型中に充填し、これ
全加圧加熱して発泡させる方法などが知られている。 しかし、このような従来の塩イヒビニル系樹脂発泡成形
体は、発泡体のセル構造の微細均一性において劣るもの
であり、したがって消泡倍率が高くt
The present invention relates to a resin foam molded product formed by foam molding a resin composition mainly composed of chlorinated vinyl chloride resin, and a method for producing the same. The purpose of the present invention is to provide a resin foam molded product having a high expansion ratio and having a structure. Conventionally, vinyl chloride resin foam moldings have been produced by heating and foaming (1) a composition prepared by adding and mixing a vinyl chloride polymer with a so-called decomposed foaming agent that becomes a gas when decomposed, and (2) polyvinyl chloride. A paste (plastisol) made by mixing a polymer and a plasticizer is mechanically foamed and molded, or a composition prepared by adding a decomposable foaming agent to the plastisol is heated and foam-molded. It has been known. Examples of manufacturing methods include (3) heating and foaming a composition prepared by adding and mixing a decomposable blowing agent to a vinyl chloride polymer using extrusion molding or injection molding, or (4) decomposing the composition. A method of forming a foamed product by pre-roll-forming at a temperature below the decomposition temperature of the mold blowing agent and then heating, and (5) a composition thereof (
A known method is to fill a mold with a volatile organic blowing agent, a swelling organic solvent, and a softener (if necessary), and then pressurize and heat the entire mold to foam the mold. However, such conventional chloride vinyl resin foam moldings are inferior in the fine uniformity of the cell structure of the foam, and therefore have a high defoaming ratio and t.

【いという欠点が
あるほか、耐熱骨に劣る不利がある。例えば60℃付近
の温度雰囲気にt「ると耐熱性がないためにその発泡成
形体は寸法変化、即くずれ?起こすので、断熱ト5、保
温材等として使用する場合、温度が60℃イ1近にまで
ヒ昇することがない出所に限定される致命的欠点があっ
た。 しかして、本発明者らは先に、塩イ1′ビニル系重合体
に熱安定剤と共にタルクなどの核形成剤、アクリル系樹
脂、アゾシカ−ボンアミド系化合物などの分解型発泡割
等ケ配合した樹脂組成物を押出機に供給L7、この押出
機内で加熱ゲルイrされた詳樹脂組成物中に沸点90’
C以下の有体溶剤系発泡剤例えばプロパン、ブタン、ペ
ンタン、塩化メチル、トリクロロフルオロメタン、ジク
ロロテトラフルオロエタンなどを圧入し、押出発泡成形
させる方法を折案じた(特開昭55−149328号公
卯参照)。この方法により得られる発泡体はセル構造の
微細均一性、高発泡倍率の虚ですぐれているが、1ti
4熱性に劣る欠点は前記と同様であ1)、この点のd◇
良が曽く望まilていた。 本発明者ら■このようカー技術的課題にがんがゐ鋭意回
置の結果、塩素化増化ビニル系樹脂とアクリル系h’r
’ #!および/またはスチレン系樹脂とを主成分とす
る樹脂組成物を発泡成形してなる樹脂発泡成形体II、
従犯の塩イヒビニル系格(脂発泡成形体に比べ而・1熱
:幅用がjF:l <、またセル桿l造すなわちセルの
141−・微細性に才ぐわ、密度が小さくすなわち発泡
倍率が人キく、独立気泡率がきわめて高いものであ2)
ことを確認して本発明を完成した。 本発明1才かかる曜〃h発泡成形体の製造方法も提供す
るもので、これは塩素化塩イ[ビニル系樹脂〔1>J下
これを(イ)成分と称する)100ffl晴部に、熱分
解型発泡剤および/または高融点微粉末状物質〔以下こ
れを(ロ)成分と称するl t3.0.1中16部胸上
、粘よびアクリル系棒F脂および/またはスチレン系樹
脂〔以下こilをCハ)「成分と称する]05・〜30
重量部、ケ配合してなる持1脂組成物な押出機に(Jl
:給し、沸点90℃以下の揮発性有機発泡剤を11人し
ながら溶融渭練したのち、押出発泡成形を完了させるこ
とを特徴とするものである。 以下本発明の詳細な説明する。 本発明に使用する(イ)成分は、塩素イヒ塩イ[ビニル
系樹脂であり、こねを用いることにより耐熱性にすぐれ
た発泡成形体を得ることができる。塩素イ[塩化ビニル
系樹脂としては各種塩化ビニル系樹脂を塩素4Pシたも
のが使用さtする。この塩素化される塩化ビニル系樹脂
としてはポリ塩イしビニルのほか、旭マイ[ビニルを主
体と−する一11j車合体、グラフト共重合体も使用す
ることができ、この場合のコ千ツマ−としては酢酸ビニ
ル、塩化ビニリデン、アクリル酸およびそのエステル、
メタクリル酸およびそのエステル、アクリロニトリル、
メタクリロニトリル、マレイン酸およびそのエステルも
しくは無水物、フマル酸およびそのエステル、エチレン
、プロピレン等のオレフィン、ビニルエーテルなどが例
示され、これらは1種のみあるいは2種句上併用される
。 なお、この塩素イヒの方法は紫外線照射下での光塩素化
方法、塩素化合物(塩素イヒ剤)存在下での溶液塩素イ
[方法tcど従来公知の方法によればよい。 この塩累化塩化ビニル系樹・脂は塩素含有量60〜75
重量%のものであることが本発明の目的上好ましい。こ
の塩素含有量が少ないと耐熱性向上の効果が小さいが、
逆にあまりに高すぎると押圧等による成形温度が高くな
るため加工が困難になると共に、高温になることによる
熱安定性の問題が発生する。 っぎに、前記した(口)成分すなわち熱分解g7発泡剤
および高融点微粉状物質は発泡成形時に形成されるセル
構造を均一微細に調整するための作用をするもの(気泡
均一化助剤)であり、このうち熱分解型発泡剤としては
前記塙素化塩イビピニル系樹脂の成形温度よりも低い温
度で分解してガスを発生するものが好ましい。 このような分解型発泡剤としては、たとえばアゾジカル
ボンアミド、アゾビスイソブチロニトリル、ジアゾアミ
ノベンゼン、ジエチルアゾジカルボキシレート、ジイソ
プロピルアゾジカルボキシレート、ジアゾアミノベンゼ
ンなどのアゾ系発7Y)J剤、N、N’−t、/ニトロ
ソペンタメチレンテトラミン、N、N’−ジメチル−N
、N’−ジニトロソテレフタルアミドなどのニトロソ系
発泡剤、ベンゼンスルホニルヒドラジド、トルエンスル
ボニルヒドラジド、3.3′−ジスルホンヒドラジドフ
ェニルスルホン、トルエンジスルホニルヒドラゾン、チ
オビス(ベンゼンスルホニルヒドラジド)、トルエンス
ルホニルアジド、トルエンスルホニルセミカルバジド、
4.4’−オキシビス(ベンゼンスルホニルヒVうi)
ド)などのスルホニルヒドラジド系発泡剤あるいは重炭
酸す) IIウムなどがあげられる。 なお、上記熱分解型発泡剤にしゆう酸、くえん酸、酒石
酸、尿素、亜鉛化合物、銅化合物などの分解助剤を(J
l用して分解温度を調製し、塩化ビニル系重合体の成形
潤度Pi下で分解しガスを発生するようにすることが望
ましい。 また、高融点微粉状物賃としては塩素化塩化ビニル系撞
、1脂の溶融点(ゲル什点)以上の融点を有するもので
あわばよく、これには炭酸カルシウム、タルク、マイク
、セリサイト、硫酸バリウム、シリカ、煙霧刊シリカ、
酸イヒチタン、クレー、酸化アルミニウム、ベントナイ
ト、けいそう土、カーボンブラックあるいはさらに顔料
、高融点の熱安定剤および雛燃化剖が例示される。 以上例示した気泡均一化助剤は1種のみ?使用すること
に限られず、2種以上イ)(用することは何ら差支えな
い。 なお、(ロ)成分は溶融樹脂組成物にン竿合・分散後の
粒径が30μm以下好ましくは10μmPJ下の微粉状
物であることが好ましく、またこの使用量は上記(イ)
成分100重皐部上対して、001重量部以上特に00
5重量部VJ上用いることが望ましい。該粒子径が30
μn1以上であると、成形時における樹脂組成物の流動
性が悪くなり、表面光沢が低下し、また発泡模様が生じ
るほか、発泡気泡が不J=′−1−となる。また、この
使用it カ上記001重用部未満では、微細なセルあ
るいはJ−1−かセル構造を有する発泡成形体ゲ得るこ
とが困難である。熱分解型発泡剤115軍例部以上使用
しても上記した効果の顕著な向上はみられないので、こ
の成分の使用量は(イ)成分100重川都鳥たり5市川
部以下で使用することが望ましく、また高融点微粉状物
質は20重量部以上使用しても、セルの均−微細化等の
効果の著しい向上はみられない。しかし、充Jbi剤、
難燃化、複合化等の目的でさらに増曜して使用すること
は何ら差支えない。 本発明においては前記(八)成分すなわちアクリル糸a
lIliiおよびスチレン系樹脂を前記(イ)成分およ
び(ロ)成分と共に混合使用することが望ましく、これ
によねば(イ)成分のゲル化を促進し、あるいはfil
AI整し、樹脂の溶融粘度を上昇ないしは適度の粘度に
調整し、高温時における気孔の合一ないし一11生成し
たセルの収縮を防ぐので、発心時の分解ガスを8.1脂
中に゛イhやかに保持しく外部への逸散を防1トする)
、目的とする良好な高発泡体が得ら第1る。この(ハ)
成分はとくに前記した(口)成分とイ」1用することに
より著しい効果を示し、結果として外観、のすぐ才また
均一微細なセル構造を有する収縮の全く無い高発泡成形
体を得ることができる。 上記効果を達成するためには(ハ)成分としてのアクリ
ル系樹脂は、(イ)成分のゲル化をy′1−に促進し適
度に樹脂粘度を上げ、ゴム弾性を与え、かつ塩素化塩化
ビニル系樹脂の高温時の引張り強さあるいは伸び率など
を向上し得るもの、すなわち0.1fiL/100−ク
ロロホルム溶液として20℃で測定した還元粘度が3.
0dt/I−u上のものであることが好ましく、また使
用する塩素化塩化ビニル系樹脂の重合度より大きく、か
っ相溶性の良好な高重合度のアクリル系樹脂を!5ρ択
使用することが望ましい。 このような目的で使用される望ましいアクリル系樹脂と
しては、メタクリル酸メチル重合体またはメタクリル酸
メチルを主体とする共重合体たとえばメタクリル酸メチ
ルとアクリル酸エステルからなる共重合体およびこねら
と共重合nJ能なjlj、94体との共重合体があげら
れる。 上記したアクリル酸エステルとしては、アクリル酸メチ
ル、アクリル酸エチル、アクリル酸n −ブチル、アク
リル酸イソブチル、アクリル酸2−エチルヘキシルなど
が例示され、またそれらと共重合可能な単量体としては
、スチレン、不飽和ニトリル、ビニルニスオル、メタク
リル酸エチル、メタクリル酸n−ブチル、メタクリル酸
2−エチルヘキンルなどのメタクリル酸メチル以外のメ
タクリル酸エステルなどが例示される。 アクリル系重合体の還元粘度(分子量)は、重合操作中
公知の適当な手段、例えは重合温度、触媒用および連鎖
移動剤の濃度等により調整することがでをる。一般的に
は重合調度の低下、触媒濃度の低下、連鎖移動剤の濃度
の低下により分子量の大きなものな作ることができる。 なお、」述のアクリル系樹脂として、乳化重合品を使用
することにより、前述した効果のほかにこの組成物を押
出機を用いて成形する際の食いこみがよくなり、原料供
給口における閉塞などが起こら1′、安定し゛C原料を
供給することが可能となり、かつ押出機のH力、トルク
、押出晴が一定し安定して発泡製品を得ることがで身る
。 マタ、スチレン系樹脂は前述のアクリル糸#*’ 脂と
同様に、(イ)成分との相溶性が長幼で樹脂組成物の加
熱溶融時に樹脂の溶融粘度な上げ、ゴム弾性を与え、か
っ塩累化塩化ビニル系樹脂の高温時の引張り強さあるい
は伸び率を向上させ、発泡時における気孔の合一ないし
一担生成したセルの収縮を防ぐことにより、発泡時の分
解ガスを樹脂中にすみやかに保持しC外部への焙・訃を
l+/、7 II−、する)、目的とする良好な高発泡
成形体を1昇るために使用されるものであり、こflも
また前記した(口)成分と併用することにより名しい効
果を示し、結果として外観のすぐわだ均一微細なセル構
造を有する著しくかさ比重の小さt「高発泡成形体を・
得ることができる。 上記スチレン系樹脂としては、スチレンを主成分とし、
アクリロニトリルおよび/またはこtlらと共重合i’
J t4fな申頃体との共重合体が望ましく、0.19
−/100IIILクロロホルム溶液として20℃にて
測定した還元粘度が3.0dt/y−以上であり、(イ
)成分との相溶性が良好な高重合度のスチレン系樹脂が
望ましい。 十紀J(−重合可能な中殴体としては、アクリル酸メチ
ル、アクリル酸エチル、アクリル酸n−ブチル、アクリ
ル酸イソブチル、アクリル酸2−エチルヘキシルなどの
アクリルエステル、メタクリル酸メチル、メタクリル酸
エチル、メタクリル酸n−ブチル、メタクリル酸?−エ
チルヘキシルなどのメタクリル酸エステル、マレイン酸
、フマル酸もしくはそれらのエステルまたは無水マレイ
ン酸などが例示さ」する。 なお、スチレン系樹脂は使用される塩イビビニル系重合
体の重合度が高ければそれに応じより高重合度のも°の
を使用することが望ましい。 上記スチレン果樹り旨は、従来公知の重合方法により製
造されるものでよいが、(イ)成分への分散性の向上お
よびより高重合19のスチレン系樹脂を得るという観点
からは乳(11重合法により製造されるものが好適とさ
れる。 (ハ)成分としてのアクリル系樹脂および/またはスチ
レン系樹脂の使用!1番−J十記の(イ)成分100重
量部に対して05〜30重量部、好ましくは3〜20重
傷部の範囲とすることが望ましい。この使用隼が05重
…部未満では前記したような効果が得られず、他方30
畢晴部以上使用しても多用添加による特別の効果は得ら
il、f、塩素化1フ1.1化ビニル系樹脂が木来有す
る昨燃性などがかえって低下するようになる。なお、(
ハ)成分としてアクリル系樹脂お」:びスチレン系イ寺
1脂は各々単独または併用してもよい。 上記した(イ)〜(ハ)成分からなる樹II+=? 、
111成物には、さらに必要に応じ彷来塩イ1テビニル
系樹脂に添加される各種添加剤を加えることは#支えな
いが。 そtlらは本発明の目的ないし効果を損わない範囲にと
どめるべへである。 J>1上述べた(イ)〜(ハ)成分、さらに必憚に応じ
加えらねる添加fill成分からなる樹脂組成物を押出
機に供給1〜、沸虎90℃レノ下の揮発性有機発泡剤を
用人しt「がら溶融混練したのち、押出発泡成形を行う
ことにより、セル構造が微細灼−でかつ高発泡倍率であ
る発泡成形体が連続的にイバコストで得らオ]る。より
具体的に述べると、本発明が押供する樹脂9泡成形体は
、密□□□か011/−以下(特には0.06 f /
 *(D;J下)というまわめて高発泡倍率のもの75
あると共にセル構造が微細蜘−で独立旬泊率70(Aレ
ノヒ(特には75%以t)を有するものである。ぞして
さらに耐熱温度75℃VJ士c′■「には80°C以ト
)というすぐれた耐熱性を備すたもの7′あるので、こ
のものは従来の塩イヒビニル果樹脂イー泡成形体では使
用することかできなかった比較的混用が上る地所の断熱
オ、保温材等として好適に使用することかでキ、ま7ζ
呼燃牲(:もすぐわているという利点を有する。 上記樹脂発泡成形体を製造するために使用するn11斉
90℃pJ下の揮発性有機発泡剤1は、脂肪族炭化水素
または脂肪族ハロゲンイヒ炭イし水素から逆折さ第1た
ものであることが望ましく、具体的にはフロパン、ブタ
ン、イ、ツブタン、ペンタン、ネオヘンタン、n−へキ
チン、イソヘキサン、n−へブタン、石油エーテル、塩
什メチル、塩イ1メヂレン、クロロホルム、四環イ]′
炭素、塩41′エヂル、塩化エチリデン、トリクロロエ
チレン、1.2−ジクロロエタン、トリクロロフルオロ
メタン、ジクロロフルオロメタン、プロモト1ノフルメ
ロメタン、テトラフルメロメタン、ジクロロフルオロメ
タン、クロロトリフルオロメタン、トリフルオロメタン
、トリクロロトリフルオロエタン、シクロロブドラフル
オロエタン、ジブロモデトラフルオロエタン、クロロペ
ンタフルオロエタン、ヘキサフルオロエタン、クロロジ
フルオロエタン、ジフルオロエタン、メチルエーテル、
エチルエーテル7+、トカ例示される。こtLらはその
使用に当って1種類に限定されるものではなく、2種辺
」二乞同時に使用してもよい。またさらに上記の沸点9
0℃以下の揮発性有機発泡剤を均一に樹脂組成物中に溶
融分散させ高発泡倍率の発泡成形体を製造するために、
塩化ビニル系樹脂と相溶性を有する芳香族炭イヒ水素、
芳、香族ハロゲン(l炭イビ水素、エステル、ケトン化
合物等の溶印1を併用しくイ)成分との相溶性を向上さ
せることも有効である。 揮発性有機発/j′!剤の使用用は目的とする発泡成形
体の密1寡゛により調整才i1ば」:<、】〜30重量
96程度使用することが望ましい。 押出発泡try形の具体的方法は、一般にはまずスーパ
ーミキサーなどの混合機を用いて、予め原料樹脂組成物
をUM脚し、これを押出機に供給し、ついでこの押出機
内で加熱された樹脂組成物中に、前記した揮発性有機発
泡剤の所定1ケシリンダ−途中よりn・入し、このFト
入された有機発泡剤令・シリンダー内の溶融沖練ゾーン
で樹脂組成物中にJ!:1−分散(溶解分バ◆)させ、
その後発泡に適した温度にまで樹脂組成物な均−冷却し
、大気中または減圧部へ押出すことによI)発泡成形さ
せるという方法により実施さiする。 有機発泡剤の圧入時期は、有機発泡剤の樹脂組成物供給
口へのパックおよびそわによる樹脂組成物の喰い込みの
悪化をおこさせない時期であればいつでもよいが、特に
は押出機内における加熱された粒(脂組酸物が半ゲル化
状態ないしは完全ゲル化状態のときとすることがよく、
このい宇れの状態のときにも樹脂組成物中に有機発泡剤
が容易に均一分散され、結果として均−t
[In addition to the disadvantage of being ugly, it also has the disadvantage of being inferior to heat-resistant bones. For example, when placed in an atmosphere with a temperature of around 60°C, the foamed molded product will change dimensions and easily shift due to its lack of heat resistance. However, the inventors of the present invention have previously applied nucleating agents such as talc to a 1'vinyl salt polymer along with a heat stabilizer. A resin composition containing decomposable foaming agents such as acrylic resin, azocica-bonamide compound, etc. is fed to an extruder L7, and the resin composition heated and gelled in this extruder has a boiling point of 90'.
A method of extrusion foaming by press-injecting a solid solvent-based blowing agent of C or lower, such as propane, butane, pentane, methyl chloride, trichlorofluoromethane, dichlorotetrafluoroethane, etc., was devised (Japanese Patent Laid-Open No. 149328/1983). (See Rabbit). The foam obtained by this method is excellent in the fine uniformity of the cell structure and the high expansion ratio.
4) The disadvantage of poor heat resistance is the same as above 1), and d◇ in this point
Ryo was very hopeful. As a result of the inventors' intensive efforts to address these car technical issues, we developed a chlorinated reinforced vinyl resin and an acrylic resin.
'#! and/or a styrene-based resin as a main component.
Accompanying salts are vinyl-based (compared to fat foam moldings). 1 heat: Width is jF:l <, and cell wall structure, i.e., cell 141-, is excellent in fineness, has a small density, and has a low foaming ratio. It is very sensitive and has an extremely high closed cell ratio 2)
After confirming this, the present invention was completed. The present invention also provides a method for producing a foamed molded product, which takes one year to prepare, by adding 100 ffl of chlorinated salt (vinyl resin [1>J, hereinafter referred to as component (a)) to heat Degradable foaming agent and/or high melting point fine powder substance [hereinafter referred to as component (B)] 16 parts in t3.0.1 Upper chest, viscous, acrylic stick F fat and/or styrene resin [hereinafter referred to as component (B) This is called C) "component" 05.~30
Parts by weight, 1 fat composition made by blending into an extruder (Jl
: A volatile organic blowing agent having a boiling point of 90° C. or lower is melted and kneaded with 11 persons, and then extrusion foam molding is completed. The present invention will be explained in detail below. The component (a) used in the present invention is a chlorinated salt (vinyl resin), and by kneading it, a foamed molded product with excellent heat resistance can be obtained. Chlorine [Various vinyl chloride resins containing 4P chlorine are used as vinyl chloride resins. As the vinyl chloride resin to be chlorinated, in addition to polyvinyl chloride, Asahi Mai [111J car polymer and graft copolymers mainly composed of vinyl] can also be used. - vinyl acetate, vinylidene chloride, acrylic acid and its esters,
Methacrylic acid and its esters, acrylonitrile,
Examples include methacrylonitrile, maleic acid and its esters or anhydrides, fumaric acid and its esters, olefins such as ethylene and propylene, and vinyl ethers, and these may be used alone or in combination. The method for chlorination may be any conventionally known method such as photochlorination under ultraviolet irradiation or solution chlorination in the presence of a chlorine compound (chlorine chlorination agent). This salt-accumulated vinyl chloride resin/resin has a chlorine content of 60 to 75
% by weight is preferred for the purposes of the present invention. If the chlorine content is low, the effect of improving heat resistance will be small;
On the other hand, if the temperature is too high, the molding temperature due to pressing or the like will become high, making processing difficult, and problems with thermal stability will occur due to the high temperature. Second, the above-mentioned components, namely the pyrolytic G7 blowing agent and the high melting point fine powder substance, act to adjust the cell structure formed during foam molding to be uniform and fine (cell homogenization aid). Among these, the thermally decomposable blowing agent is preferably one that decomposes to generate gas at a temperature lower than the molding temperature of the ibipinyl chloride resin. Examples of such decomposable blowing agents include azo-based 7Y) J agents such as azodicarbonamide, azobisisobutyronitrile, diazoaminobenzene, diethyl azodicarboxylate, diisopropylazodicarboxylate, and diazoaminobenzene. , N, N'-t, /nitrosopentamethylenetetramine, N, N'-dimethyl-N
, nitroso-based blowing agents such as N'-dinitrosoterephthalamide, benzenesulfonyl hydrazide, toluenesulfonylhydrazide, 3,3'-disulfonehydrazide phenylsulfone, toluene disulfonylhydrazone, thiobis(benzenesulfonylhydrazide), toluenesulfonyl azide, toluenesulfonyl semicarbazide,
4.4'-oxybis(benzenesulfonyl)
Examples include sulfonyl hydrazide blowing agents such as (d) or bicarbonate (d). In addition, decomposition aids such as citric acid, citric acid, tartaric acid, urea, zinc compounds, and copper compounds are added to the above thermally decomposable foaming agent (J
It is preferable to adjust the decomposition temperature by using a polyvinyl chloride polymer so that the vinyl chloride polymer decomposes under the molding moisture level Pi and generates gas. In addition, the fine powder with a high melting point may be anything that has a melting point higher than the melting point (gel point) of chlorinated vinyl chloride, 1 fat, and examples include calcium carbonate, talc, mica, sericite, etc. , barium sulfate, silica, smoke silica,
Examples include acid titanium, clay, aluminum oxide, bentonite, diatomaceous earth, carbon black or even pigments, high melting point heat stabilizers and pyrotechnics. Is there only one type of bubble homogenization aid listed above? It is not limited to use, and there is no problem in using two or more of them. Note that the component (b) has a particle size of 30 μm or less after being combined and dispersed in the molten resin composition, preferably 10 μm under PJ. It is preferable that it is a fine powder, and the amount used is according to (a) above.
001 parts by weight or more, especially 00 parts by weight, per 100 parts by weight of the component.
It is desirable to use 5 parts by weight of VJ. The particle size is 30
If μn is greater than 1, the fluidity of the resin composition during molding will be poor, the surface gloss will be reduced, a foam pattern will be produced, and the foamed cells will be J='-1-. Further, if the amount used is less than 001, it is difficult to obtain a foam molded product having a fine cell or J-1 cell structure. Even if pyrolytic foaming agent 115 units or more is used, no significant improvement in the above-mentioned effects is observed, so the amount of this component to be used should be (a) less than 100 parts of component 100 parts or 5 parts of ichikawa parts. is desirable, and even if the high melting point fine powder substance is used in an amount of 20 parts by weight or more, no significant improvement in the effects such as uniformity and fineness of cells is observed. However, the charging Jbi agent,
There is no problem in using it further for the purpose of flame retardancy, compounding, etc. In the present invention, the above (8) component, that is, acrylic yarn a
It is desirable to mix and use lIlii and styrene resin together with the above components (a) and (b), as this will promote the gelation of component (a) or
AI adjustment increases the melt viscosity of the resin or adjusts it to an appropriate viscosity, and prevents coalescence of pores and shrinkage of cells generated at high temperatures, so decomposition gas at the time of core generation is absorbed into the resin. (Hold it quickly and prevent it from escaping to the outside.)
First, the desired high-foaming material can be obtained. This (ha)
Particularly, the use of the above-mentioned components and A'1 shows a remarkable effect, and as a result, a highly foamed molded product with an excellent appearance, a uniform fine cell structure, and no shrinkage can be obtained. . In order to achieve the above effect, the acrylic resin as the component (c) should promote the gelation of the component (a) to y'1-, appropriately increase the resin viscosity, impart rubber elasticity, and chlorinate. Things that can improve the tensile strength or elongation rate at high temperatures of vinyl resins, that is, the reduced viscosity measured at 20°C as a 0.1 fiL/100-chloroform solution is 3.
It is preferable that the acrylic resin has a polymerization degree of 0 dt/Iu or more, and has a higher degree of polymerization than the chlorinated vinyl chloride resin used, and has good compatibility! It is desirable to use 5ρ selections. Desirable acrylic resins used for this purpose include methyl methacrylate polymers or copolymers mainly composed of methyl methacrylate, such as copolymers consisting of methyl methacrylate and acrylic esters, and copolymers with kneads. A copolymer with nJ-capable jlj, 94 is mentioned. Examples of the above-mentioned acrylic esters include methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, and 2-ethylhexyl acrylate, and monomers copolymerizable with them include styrene. , unsaturated nitrile, vinyl nitrile, ethyl methacrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate, and other methacrylic acid esters other than methyl methacrylate. The reduced viscosity (molecular weight) of the acrylic polymer can be adjusted by known appropriate means during the polymerization operation, such as polymerization temperature, concentration of catalyst and chain transfer agent, etc. In general, products with large molecular weights can be produced by lowering the polymerization preparation, lowering the catalyst concentration, and lowering the chain transfer agent concentration. In addition, by using an emulsion polymerized product as the acrylic resin mentioned above, in addition to the above-mentioned effects, it also improves the penetration when molding this composition using an extruder, and prevents blockages in the raw material supply port. 1', it is possible to stably supply the C raw material, and the H force, torque, and extrusion speed of the extruder are constant, making it possible to stably obtain a foamed product. Similarly to the above-mentioned acrylic yarn #*' resin, styrene resin has a long compatibility with component (a), and when the resin composition is heated and melted, it increases the melt viscosity of the resin, gives rubber elasticity, and protects the resin. By improving the tensile strength or elongation rate of cumulative vinyl chloride resin at high temperatures and preventing the coalescence of pores or shrinkage of the cells that are formed during foaming, we can quickly absorb decomposed gases during foaming into the resin. It is used to raise the desired high-foamed molded product by holding it at a temperature of 100 mm and roasting it to the outside (l+/, 7 II-, ) shows a remarkable effect when used in combination with the above ingredients, resulting in a highly foamed molded product with an extremely low bulk specific gravity that has a uniform, fine cell structure and a uniform appearance.
Obtainable. The above styrene resin has styrene as its main component,
Copolymerization with acrylonitrile and/or these tl'
A copolymer with J t4f is desirable, and 0.19
-/100IIIL It is desirable to use a styrenic resin with a high degree of polymerization, which has a reduced viscosity measured as a chloroform solution at 20°C of 3.0 dt/y- or more and has good compatibility with component (a). Toki J (-Polymerizable intermediates include acrylic esters such as methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, and 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, Examples include methacrylic acid esters such as n-butyl methacrylate and ethylhexyl methacrylate, maleic acid, fumaric acid or their esters, and maleic anhydride. If the degree of polymerization of the polymer is high, it is desirable to use a polymer with a higher degree of polymerization.The above styrene resin may be manufactured by a conventionally known polymerization method, but in component (a) From the viewpoint of improving the dispersibility of 19 and obtaining a styrenic resin with a higher polymerization rate, those produced by the 11 polymerization method are preferred. (C) Acrylic resin and/or styrene resin as a component Use of resin! It is desirable to use resin in a range of 05 to 30 parts by weight, preferably 3 to 20 parts by weight, per 100 parts by weight of component (a) of No. 1-J. If it is less than 30, the above-mentioned effect cannot be obtained;
Even if it is used in more than a bare area, no special effect can be obtained due to heavy addition, but the flammability, etc. which the chlorinated 1-fluoride vinyl chloride-1. In addition,(
c) As ingredients, acrylic resin, styrene resin, and styrene resin may be used alone or in combination. Tree II+=? consisting of the above components (a) to (c)? ,
However, it is not supported to further add various additives that are added to the tevinyl resin to the 111 product as necessary. These should be kept within a range that does not impair the purpose or effect of the present invention. J>1 A resin composition consisting of the above-mentioned components (A) to (C) and additional fill components that may be added as necessary is fed to an extruder.1~ Volatile organic foaming at a boiling temperature of 90℃ After the agent is melted and kneaded, extrusion foam molding is performed to continuously obtain a foamed molded product with a fine cell structure and a high expansion ratio at a low cost. Specifically speaking, the resin 9 foam molded product provided by the present invention has a density of □□□ or 011/- or less (particularly 0.06 f/
* (D; J lower) with high expansion ratio 75
At the same time, it has a fine cell structure and an independent heat retention rate of 70 (particularly 75% or more).It also has a heat resistance temperature of 75°C and 80°C. As there is a product 7' with excellent heat resistance, it can be used as a heat insulation product in areas where conventional salt-based vinyl fruit resin e-foam moldings cannot be used, but where mixed use is relatively common. It is suitable for use as a heat insulating material, etc.
Volatile organic blowing agent 1 at 90°C pJ used for producing the above resin foam molding is an aliphatic hydrocarbon or an aliphatic halogen gas. Preferably, it is the first substance that can be reversely refracted from carboxyhydrogen, specifically, furopane, butane, dibutane, pentane, neohentane, n-hexitine, isohexane, n-hebutane, petroleum ether, and salt. Methyl, 1-methylene salt, chloroform, tetracyclic]'
Carbon, salt 41'ethyl, ethylidene chloride, trichloroethylene, 1,2-dichloroethane, trichlorofluoromethane, dichlorofluoromethane, promotofluoromethane, tetrafluoromethane, dichlorofluoromethane, chlorotrifluoromethane, trifluoromethane, trichlorotrifluoroethane , cyclobutrafluoroethane, dibromodetrafluoroethane, chloropentafluoroethane, hexafluoroethane, chlorodifluoroethane, difluoroethane, methyl ether,
Ethyl ether 7+ is exemplified by Toca. The use of these materials is not limited to one type, but two types may be used at the same time. Furthermore, the above boiling point 9
In order to produce a foam molded product with a high expansion ratio by uniformly melting and dispersing a volatile organic blowing agent at 0°C or lower in a resin composition,
Aromatic hydrocarbons that are compatible with vinyl chloride resins,
It is also effective to improve the compatibility with the aromatic and aromatic halogen (a) components such as halogen, ester, and ketone compounds. Volatile organic emissions/j′! The amount of the agent to be used can be adjusted depending on the density of the desired foamed molded product. The specific method for extrusion foam try-type is generally to first mix the raw resin composition in advance using a mixer such as a super mixer, feed this into an extruder, and then add the heated resin in the extruder. A predetermined portion of the volatile organic blowing agent mentioned above is introduced into the resin composition from the middle of the cylinder, and the organic blowing agent is melted into the resin composition in the melting zone in the cylinder. :1-Disperse (dissolved content ◆),
Thereafter, the resin composition is uniformly cooled to a temperature suitable for foaming, and extruded into the atmosphere or into a vacuum section to carry out foam molding. The organic blowing agent may be press-injected at any time as long as the organic blowing agent is not packed into the resin composition supply port and the resin composition is not chewed into the resin composition due to wrinkles, but it is especially important to inject the organic blowing agent into the resin composition supply port when the resin composition is heated in the extruder. Granules (often when the fatty acids are in a semi-gelled state or completely gelled state,
Even in this state of confusion, the organic blowing agent is easily and uniformly dispersed in the resin composition, resulting in a uniform

【セル構造を
有する高発泡倍率の成形体が得らtする。 以上述べた不発明の方法にしたがって押出し発泡成形す
ることにより、板状%シート状、棒状、チューブ状等各
種形状の均一微細なセル構造を有する高発泡倍率のI6
,1脂発泡成形体を連続的に低コストで1μν造するこ
とかで六る。 っ〜に、具体的実施例をあげる。ただし、以下の記載に
おい゛(I44. (二部とあるのはいずれも重惰部を
示したものである。。 例 1 (実験A]〜13) 第1表に示す種類の塩素イヒ塩化ビニル重合体((: 
]、 −P V C) の100部に、鉛系安定剤4部
、ステア1!ン酸力ルシウム1部、および同表に示才押
類および…の気泡均一化助剤、アクリル系樹脂またはス
チレン系樹脂をヘンシェルミキサーで混合した。 〔気泡L1−化助剤] タルク:土産カオリン(株)製、平均粒子径1〜3μm 臼鉛華O:白石カルシウム(株)製、炭酸カルシウム、
平均粒子径OO2〜 0.03μm CM:三協化成(株)製セルマイク】33、アゾシカ−
ボンアミド系化合物、分 解温度130〜180℃ PTS:パラトルエンスルホニルヒドラジド、分解温度
110℃ 〔アクリル系樹脂またはスチレン系樹脂〕b−t:メタ
クリル酸メチル90重量%アゲIJ/14ブチル10小
順%からなる共重合体、還元粘度9.5 dt/f S−]:スチレン70重量%アクリロニド「Jル30重
悼%からなる共重合体、還 元粘度12dt/7 上記で得た混合物(樹脂組成物)を下記に示すような構
成からなる2台の連結された抑場成形機を用いて押出発
泡成形し、得られた発泡成形体について発泡体の密度(
y−/d)、セル状態、独立気泡率(%)、耐熱温度(
℃)を調べた。結果は第1表に示すとおりであった。 〔押出機の構成〕 第1段押出機は口径20mm、L/D=25でシリンダ
ーにはホッパー側から300 mmのところに発泡剤注
入口が設けられており、ここから2連式プランジャーポ
ンプで発泡剤をロー人できる機構にt「つている。 この第1段押出機の先端に連結されている第2段押出機
は[J径25mm、L/D=28でこの先端には直径]
0關ランド] OOmmの丸ダイスが取付けである。 〔押u’+発泡成形の条件〕 (11第1段押出機 r)シリンダー各部(ホッパー側からC3〜C3)の温
度: e、= ] 40〜1fi0.C2=160〜180C
3= 170〜190℃ 19回転数:(iorpm (2)第2段押出機 0シリンダ一各部およびダイス温度: C,=1.40〜100 、 C2= 120〜140
C3=110〜】30.ダイス温度= 120〜140℃ 0回転数:25〜30rpm (3)第1段押出機のシリンダ一部で圧入才る発泡剤の
種類お上、び圧入帽: 塩化メチルートリクロロフルオ[Jメタン(50:50
重量比)混合物を原料樹脂組成物に対して13〜16重
量%になるように2連式プランジャーポンプで圧入 〔発泡成形体の物性測定条件] セル状態:肉眼観察により下記の判定基準で評価した。 A:セル直径が300μm以下の均一 微細なセル構造である B:セル直径が300−1000μm の均一なセル構造である c : 3T’均セル径が1001000a上で均一性
に劣るセル構造である 独立気泡率(%):ペツクマン社の空気比較式比重1i
930型を用いて測定した。 試験片は20m+nX 20mmX 40mmに切り出
し、発泡体試験片の真の体積( ΔV:独やしたセルにより構成されて いZ)体積)を上記の比重R1により空気置換法により
求め、次式、により計算[。 た。 V:試験片の見かけの体積 W:試験片の車量 △V:試験片の空気比較式比重針によ り測定した真の体積 α:試験片を構成するプラスチックの密度耐熱温度c℃
):丸ダイスより押出発泡成形された発泡成形体を20
mmX20mmX100+nmに切り出した試験片につ
いて。 60℃から100℃までの5℃間隔の 各温度で24時間放置することによっ てその試験片の寸法変化を測定しく各 温度で試験片そわぞれ3個について行 い平均値ケ求める)、その寸法変化が 】%を越えない最高加熱変形温度をも って耐熱温度(℃)と17だ。 例2 (実験1613〜22) 塩累化塩化ビニル重合体(塩素含冶量67重量%、平均
重合度670)100部、粉末すす系安定剤2部、ステ
アリン酸カルシウム1部および第2表に示す種類、網の
気泡均−化助削、アクリル系またはスチレン糸樹脂をヘ
ンシェルミキサーで沖合して得た原料樹脂組成物を使用
し、前例と同様の押出機で押出発泡成形した(押出条件
は前例に準じる)。ただし、発泡剤の種類および汗入相
(原料樹脂組成物に対する重相%)は第2表に示すとお
0とした。。 〔発泡剤] ’I”0Fk4 :  トリクロロフルオロメタンD(
”FFi::  ジクロロブトラツルオロエタンtSO
:イソオクタン 1)(jl’M: ジクロロフルオロメタン’rctt
’h::  テトラクロロジフルオロエタン〔ア17 
リル系樹脂またはスチレン系樹脂〕E−2:メタクリル
酎メチル80重瞬%アクリル酸エチル20重量%からな
る共重 合体、還元粘度2dl−/l− 8−2:スチレン70@m%アクリUニトリル30重旬
%からなる共…合体、還元 粘度2dt/y− 得られた発泡体の物性は第2表に示すとおりであった。 例3 (実験7623〜34) 本例では下記のような2台の連結された押出機を用いた
。 第1の押出機は口径50院、L/D=30であり、押出
機のシリンダーにはホッパーから100cmのところに
発泡剤注入孔が設けられており、ここから定流量圧入ポ
ンプで発泡剤を圧入する機構としである。 上記押用も艷の先端部に口径50關、L/D=30の第
2の押出機を連結し、この第2の押出機の先端に5mm
X400mmの仮作成用ダイスを取りつける。。 〔原車8I樹脂組成物〕 塩素化塩化ビニル重合体(塩素含有量66重量%、平均
重合1!j760)100部、鉛系安定剤4部、ステア
リン酸カルシウム1部、タルク1部、CM(セルマイク
133)を0.5部および下記のアクリル系またはスチ
レン系樹脂をヘンシェルミキサーで滑合した。 E−3:メタクリル酸メチル重合体、還元粘度4、Od
t/f E−4:メタクリル酸メチル70重岱%アクリル酸ブチ
ル30重量%からなるJ↓−重合体、還元粘度8.5c
lt/j7− E−5:メタクリル酸メチル80重侘%アクリル酸ブチ
ル20@雫%からなる共重合 体、還元粘度13.5 dt/f E−6:メタクリル酸メチル70重量%アクリル酸ブチ
ル10重昂努、メタクリル酸ブチル20重量%からなる
共重合体、還 元粘度10.5 dt/f S−3:スチレン70重量%アクリロニトリル30重量
%からなる共重合体、還元粘 度4.5 dt / Jil− 8−4:スチレン系樹脂m%アクリロニトリル30重置
%からなる共重合体、還元粘 1質lO,Odl−/ ? S−5:メチ2フフ2重量%アクリロニトリル28重堅
%よりなる共重合体、還元粘度14.6dt/7 〔発泡剤の種類およびH入量〕 トリクロロフルオロメタン−塩化メチル(80/20 
)混合発泡剤を原料樹脂組成物に対して15重11%に
なるように注入孔に定流量圧入ポンプにより圧入する。 〔押出温度条件〕 第1段押出機(シリンダ一温度ホッパー側から)C,=
]5r)  、  c4= 180  、  O:4=
190  。 04== ] ROoC 第2段押出機(シリンダニ温度 第1段押出機の連結側
から) ”l +  ”2 +  ”3−→表に示すとおりDl
(ダイス温度)−憂表に示すとおり第2段押出機ヘッド
の樹脂温度(ダイス入口部)T4−一→表に示すとおI
) 以上の条件で第1段の押出機60rpm(押出量40〜
45 Kl/ hr )で運転し、押出し発泡成形して
得た板状発泡体について、密度(f /d )、セル状
態、独立気泡率(%)、耐熱温度を測定した。ただし、
耐熱温度測定のための試験片の寸法は20m+nX 1
00mmX ] O13mmとした。 結果は第3表に示すとおりであった。
[A molded article with a cell structure and a high expansion ratio is obtained. By extrusion foam molding according to the uninvented method described above, I6 with a high expansion ratio having a uniform fine cell structure in various shapes such as plate-shaped, sheet-shaped, rod-shaped, and tube-shaped
, it is possible to continuously produce 1 μν of 1-lipid foam molded products at low cost. Here are some specific examples. However, in the following description: Polymer ((:
], -PVC), 4 parts of lead-based stabilizer, 1 stair! 1 part of lucium chloride, a foam homogenizing agent shown in the same table, and an acrylic resin or a styrene resin were mixed in a Henschel mixer. [Bubble L1-forming aid] Talc: Manufactured by Dousan Kaolin Co., Ltd., average particle size 1 to 3 μm. Mill lead flower O: Manufactured by Shiraishi Calcium Co., Ltd., calcium carbonate
Average particle size OO2 ~ 0.03 μm CM: Sankyo Kasei Co., Ltd. Cellmic] 33, Azoshika
Bonamide compound, decomposition temperature 130-180°C PTS: para-toluenesulfonyl hydrazide, decomposition temperature 110°C [Acrylic resin or styrene resin] b-t: Methyl methacrylate 90% by weight Age IJ/14 Butyl 10% in order Copolymer consisting of 70% by weight of styrene, reduced viscosity 9.5 dt/f S-: Copolymer consisting of 30% styrene, reduced viscosity 12 dt/7 (resin composition) is extruded and foam-molded using two connected compression molding machines having the configuration shown below, and the density of the foam (
y-/d), cell state, closed cell ratio (%), heat resistance temperature (
℃) was investigated. The results were as shown in Table 1. [Extruder configuration] The first stage extruder has a diameter of 20 mm, L/D = 25, and the cylinder has a blowing agent inlet 300 mm from the hopper side, from which a double plunger pump is connected. The blowing agent is connected to the mechanism that can be used. The second stage extruder connected to the tip of this first stage extruder has a diameter of [J diameter 25 mm, L/D = 28, and this tip has a diameter]
0mm land] OOmm round die is installed. [Conditions for press u' + foam molding] (11 1st stage extruder r) Temperature of each part of the cylinder (C3 to C3 from the hopper side): e, = ] 40 to 1fi0. C2=160~180C
3 = 170-190°C 19 Rotation speed: (iorpm (2) 2nd stage extruder 0 cylinder 1 each part and die temperature: C, = 1.40-100, C2 = 120-140
C3=110~]30. Die temperature = 120-140℃ Zero rotation speed: 25-30 rpm (3) Type of blowing agent press-fitted in a part of the cylinder of the first stage extruder Top and press-fit cap: Methyl chloride-trichlorofluoro [Jmethane 50:50
Weight ratio) The mixture was press-injected using a double plunger pump at a concentration of 13 to 16% by weight based on the raw resin composition [Measurement conditions for physical properties of foamed molded product] Cell condition: Evaluated by visual observation according to the following criteria did. A: Uniform fine cell structure with a cell diameter of 300 μm or less B: Uniform cell structure with a cell diameter of 300-1000 μm C: Independent cell structure with a 3T' average cell diameter of 1001000 a and poor uniformity Bubble rate (%): Petskuman air comparison formula specific gravity 1i
Measurement was performed using Model 930. The test piece was cut out to a size of 20 m + n x 20 mm x 40 mm, and the true volume of the foam test piece (ΔV: volume composed of independent cells) was determined by the air displacement method using the above specific gravity R1, and calculated using the following formula [ . Ta. V: Apparent volume of the test piece W: Vehicle volume of the test piece △V: True volume of the test piece measured with an air comparison type specific gravity needle α: Density heat resistance temperature of the plastic constituting the test piece c°C
): 20 pieces of foam molded product extruded from a round die.
Regarding the test piece cut out to mmX20mmX100+nm. Measure the dimensional change of the test piece by leaving it for 24 hours at each temperature at 5°C intervals from 60°C to 100°C. The heat resistance temperature (℃) is 17 with a maximum heating deformation temperature that does not exceed 17%. Example 2 (Experiments 1613-22) 100 parts of salt-accumulated vinyl chloride polymer (chlorine content: 67% by weight, average degree of polymerization: 670), 2 parts of powdered soot stabilizer, 1 part of calcium stearate and shown in Table 2. Using a raw material resin composition obtained by using a Henschel mixer with a mesh cell bubble equalization aid, acrylic or styrene thread resin, extrusion foam molding was carried out using the same extruder as in the previous example (the extrusion conditions were as in the previous example). ). However, the type of blowing agent and the perspiration phase (% of heavy phase relative to the raw resin composition) were set to 0 as shown in Table 2. . [Blowing agent] 'I''0Fk4: Trichlorofluoromethane D (
”FFi:: Dichlorobutratuluoroethane tSO
:isooctane 1) (jl'M: dichlorofluoromethane'rctt
'h:: Tetrachlorodifluoroethane [A17
[Ryl-based resin or styrene-based resin] E-2: Copolymer consisting of methacrylic alcohol, methyl 80% ethyl acrylate, 20% by weight, reduced viscosity 2 dl-/l- 8-2: Styrene 70@m% acrylic U nitrile Co-coalescence consisting of 30% polyester, reduced viscosity 2 dt/y- The physical properties of the obtained foam were as shown in Table 2. Example 3 (Experiments 7623-34) Two connected extruders as described below were used in this example. The first extruder has a diameter of 50 mm and L/D = 30, and the cylinder of the extruder is equipped with a blowing agent injection hole 100 cm from the hopper, from which the blowing agent is injected using a constant flow injection pump. This is a press-fitting mechanism. For the above extrusion, a second extruder with a diameter of 50 mm and L/D = 30 is connected to the tip of the bar, and a 5 mm extruder is connected to the tip of the second extruder.
Attach a temporary production die of x400mm. . [Original vehicle 8I resin composition] 100 parts of chlorinated vinyl chloride polymer (chlorine content: 66% by weight, average polymerization: 1!j760), 4 parts of lead-based stabilizer, 1 part of calcium stearate, 1 part of talc, CM (Cellmic) 133) and the following acrylic or styrene resin were mixed together using a Henschel mixer. E-3: Methyl methacrylate polymer, reduced viscosity 4, Od
t/f E-4: J↓-polymer consisting of 70% by weight of methyl methacrylate and 30% by weight of butyl acrylate, reduced viscosity: 8.5c
lt/j7- E-5: Copolymer consisting of methyl methacrylate 80% by weight butyl acrylate 20@drop%, reduced viscosity 13.5 dt/f E-6: Methyl methacrylate 70% by weight butyl acrylate 10 Copolymer consisting of 20% by weight of butyl methacrylate, reduced viscosity 10.5 dt/f S-3: Copolymer consisting of 70% by weight styrene, 30% by weight acrylonitrile, reduced viscosity 4.5 dt/Jil- 8-4: Copolymer consisting of styrene resin m% acrylonitrile 30%, reduced viscosity lO, Odl-/? S-5: Copolymer consisting of methoxy 2 fufu 2% by weight acrylonitrile 28% by weight, reduced viscosity 14.6 dt/7 [Type of blowing agent and amount of H] Trichlorofluoromethane - methyl chloride (80/20
) A mixed blowing agent is pressurized into the injection hole using a constant flow injection pump so that the amount of the mixed blowing agent is 15% by weight and 11% based on the raw resin composition. [Extrusion temperature conditions] 1st stage extruder (from cylinder temperature hopper side) C, =
]5r), c4=180, O:4=
190. 04== ] ROoC 2nd stage extruder (cylinder temperature from the connection side of the 1st stage extruder) "l + "2 + "3-→Dl as shown in the table
(Dice temperature) - Resin temperature of the second stage extruder head (dice inlet) as shown in the table T4-1 → I as shown in the table
) Under the above conditions, the first stage extruder was set at 60 rpm (extrusion amount: 40~
The density (f/d), cell state, closed cell ratio (%), and heat resistance temperature were measured for the plate-shaped foam obtained by extrusion foaming and operating at 45 Kl/hr). however,
The dimensions of the test piece for measuring the heat resistance temperature are 20m+nX 1
00mmX]O13mm. The results were as shown in Table 3.

Claims (1)

【特許請求の範囲】 1、塩素化塩化ビニル系樹脂とアクリル系樹脂および/
またはスチレン系樹脂とを主成分とする樹脂組成物を発
泡成形してなる樹脂発泡成形体26  前記樹脂発泡成
形体が、密度o、i、r/−以下、独立気泡率70%以
上、耐熱温度75℃以上を有するものである特許請求の
範囲第1項記載の樹脂発泡成形体 3、前記塩素化塩化ビニル系樹脂が塩素含有敞60〜7
5重阻%のものである特許請求の範囲第1項記載の格1
脂発泡成形体 4、塩素化塩化ビニル系樹脂100重量部当りのアクリ
ル系樹脂および/またはスチレン系樹脂の配合割合を0
.5〜30重量部とする特許請求の範囲第1項記載の樹
脂発泡成形体 5、(イ)塩素化塩化ビニル系樹脂100亀!?を部、
(ロ)熱分解型発泡剤および、/または高融点微粉末状
物質0.011重部坊上、 (八)アクリル系樹脂および/またはスチレン系樹脂0
.5〜30重量部、 からなる樹脂組成物を押出機に供給し、沸点90℃以下
の揮発性有機発泡剤を[■・入しながら溶融混練したの
ち、押出発泡成形を完了させることを特徴とする塩化ビ
ニル系樹脂発泡成形体    ・の製造方法
[Claims] 1. Chlorinated vinyl chloride resin, acrylic resin and/or
or a resin foam molded article 26 formed by foam molding a resin composition containing a styrene-based resin as a main component. The resin foam molded article 3 according to claim 1 has a temperature of 75° C. or higher, and the chlorinated vinyl chloride resin has a chlorine content of 60 to 7.
Case 1 according to claim 1, which is quintuple blockage%
Resin foam molded product 4, the blending ratio of acrylic resin and/or styrene resin per 100 parts by weight of chlorinated vinyl chloride resin is 0.
.. 5 to 30 parts by weight of resin foam molded article 5 according to claim 1, (a) chlorinated vinyl chloride resin 100 parts! ? Department,
(b) Pyrolytic foaming agent and/or high melting point fine powder substance 0.011 times a day, (8) Acrylic resin and/or styrene resin 0
.. A resin composition consisting of 5 to 30 parts by weight is supplied to an extruder, and a volatile organic blowing agent having a boiling point of 90° C. or less is melt-kneaded while being added, and then extrusion foam molding is completed. Manufacturing method for polyvinyl chloride resin foam molded product
JP57161369A 1982-08-18 1982-09-16 Chlorinated vinylchloride-based resin expansion molded product and manufacture of the same Pending JPS5949243A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP57161369A JPS5949243A (en) 1982-09-16 1982-09-16 Chlorinated vinylchloride-based resin expansion molded product and manufacture of the same
EP83107861A EP0103733A3 (en) 1982-08-18 1983-08-09 A synthetic resin foamed body and a method for the preparation thereof
CA000434304A CA1210900A (en) 1982-08-18 1983-08-10 Synthetic resin foamed body and a method for the preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57161369A JPS5949243A (en) 1982-09-16 1982-09-16 Chlorinated vinylchloride-based resin expansion molded product and manufacture of the same

Publications (1)

Publication Number Publication Date
JPS5949243A true JPS5949243A (en) 1984-03-21

Family

ID=15733772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57161369A Pending JPS5949243A (en) 1982-08-18 1982-09-16 Chlorinated vinylchloride-based resin expansion molded product and manufacture of the same

Country Status (1)

Country Link
JP (1) JPS5949243A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63147698A (en) * 1986-12-11 1988-06-20 大日本印刷株式会社 Transfer sheet and transfer method
JPH01103672A (en) * 1987-07-29 1989-04-20 Katayama Chem Works Co Ltd Sustained-release underwater antifouling agent
JP2020164706A (en) * 2019-03-29 2020-10-08 株式会社カネカ Foamable chlorinated vinyl chloride-based resin particle, foamed particle thereof, and chlorinated vinyl chloride-based resin foam molded body using the same
JP2020164707A (en) * 2019-03-29 2020-10-08 株式会社カネカ Foamable chlorinated vinyl chloride-based resin particle, foamed particle thereof, and chlorinated vinyl chloride-based resin foam molded body using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5731539A (en) * 1980-08-04 1982-02-20 Shin Etsu Chem Co Ltd Manufacture of vinyl chloride resin foamed molding
JPS5859233A (en) * 1981-09-14 1983-04-08 ザ・ビ−・エフ・グツドリツチ・カンパニ− Chlorinated polyvinyl chloride composition, foamed body and manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5731539A (en) * 1980-08-04 1982-02-20 Shin Etsu Chem Co Ltd Manufacture of vinyl chloride resin foamed molding
JPS5859233A (en) * 1981-09-14 1983-04-08 ザ・ビ−・エフ・グツドリツチ・カンパニ− Chlorinated polyvinyl chloride composition, foamed body and manufacture

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63147698A (en) * 1986-12-11 1988-06-20 大日本印刷株式会社 Transfer sheet and transfer method
JPH01103672A (en) * 1987-07-29 1989-04-20 Katayama Chem Works Co Ltd Sustained-release underwater antifouling agent
JP2020164706A (en) * 2019-03-29 2020-10-08 株式会社カネカ Foamable chlorinated vinyl chloride-based resin particle, foamed particle thereof, and chlorinated vinyl chloride-based resin foam molded body using the same
JP2020164707A (en) * 2019-03-29 2020-10-08 株式会社カネカ Foamable chlorinated vinyl chloride-based resin particle, foamed particle thereof, and chlorinated vinyl chloride-based resin foam molded body using the same

Similar Documents

Publication Publication Date Title
US5348984A (en) Expandable composition and process for extruded thermoplastic foams
EP1652876B1 (en) Polylactic acid resin foamed molding and process for manufacturing the same
US3491032A (en) High density polyolefin foams
US4402893A (en) Method for the preparation of a cellular foamed body of a vinyl chloride-based resin
ES2288935T3 (en) EXTRUDED FOAM PRODUCT WITH REDUCED SURFACE DEFECTS.
PT77393B (en) Process for the preparation of low density closed-cell foamed articles from ethylene copolymer/vinyl or vinylidene halide blends
JPS5949243A (en) Chlorinated vinylchloride-based resin expansion molded product and manufacture of the same
JPS6259643A (en) Expandable vinyl chloride resin particle for bead expansion molding
JPS6124974B2 (en)
JP2020050784A (en) Composite resin particle, expandable particle, expanded particle, and expanded molded body
JPS60163939A (en) Foamed vinyl chloride resin molding and its preparation
JPS5840986B2 (en) Method for producing polyvinyl chloride resin foam moldings
JPH0329102B2 (en)
JPS5933334A (en) Expanded resin molding and production thereof
JPS5841297B2 (en) Polymer compositions for open cell foams
CA1210900A (en) Synthetic resin foamed body and a method for the preparation thereof
JPS5840987B2 (en) Method for producing polyvinyl chloride resin foam moldings
JPH0670154B2 (en) Method for producing expandable vinyl chloride resin particles for bead foam molding
DE102004013237A1 (en) Blowing agent for the production of foamed halogen-containing organic plastics
KR830002456B1 (en) Method for manufacturing cell foam of vinyl chloride base resin
JPS60179429A (en) Vinyl chloride resin foam
KR20220074306A (en) Flexible polyurethane foam compositions comprising a heat release agent and a heat absorber, and manufacturing method of foam using the same
JPS59194820A (en) Preparation of open cell foam with skin
JPS6119329A (en) Continuous extruded foam and manufacture thereof
EP3473667A1 (en) Extrusion process for the preparation of alkali metal bicarbonate formulations using a functionalizing agent with a melting point lower than extrusion temperature