KR20090042160A - 왕복동식 압축기 - Google Patents

왕복동식 압축기 Download PDF

Info

Publication number
KR20090042160A
KR20090042160A KR1020080102213A KR20080102213A KR20090042160A KR 20090042160 A KR20090042160 A KR 20090042160A KR 1020080102213 A KR1020080102213 A KR 1020080102213A KR 20080102213 A KR20080102213 A KR 20080102213A KR 20090042160 A KR20090042160 A KR 20090042160A
Authority
KR
South Korea
Prior art keywords
piston
reciprocating
stroke
reciprocating compressor
operating frequency
Prior art date
Application number
KR1020080102213A
Other languages
English (en)
Other versions
KR100963742B1 (ko
Inventor
강양준
박찬갑
전영환
강경석
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US12/739,065 priority Critical patent/US8894380B2/en
Priority to PCT/KR2008/006195 priority patent/WO2009054654A2/en
Priority to EP08842366.0A priority patent/EP2215361B1/en
Priority to ES08842366.0T priority patent/ES2456268T3/es
Priority to CN2008801132782A priority patent/CN101835980B/zh
Publication of KR20090042160A publication Critical patent/KR20090042160A/ko
Application granted granted Critical
Publication of KR100963742B1 publication Critical patent/KR100963742B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • F04B17/04Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors using solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • F04B35/045Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric using solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/12Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by varying the length of stroke of the working members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/16Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by adjusting the capacity of dead spaces of working chambers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/032Reciprocating, oscillating or vibrating motors

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

본 발명은 기계 스프링 및 가스 스프링에 의해 탄성 지지된 피스톤이 실린더 내부에서 직선 왕복 운동하면서 냉매를 압축시키는 왕복동식 압축기에 관한 것으로서, 특히 부하가 변동되더라도 전압을 대칭적으로 인가하여 피스톤을 상사점 운전시키는 동시에 공진 운전되도록 하는 왕복동식 압축기에 관한 것이다.
본 발명에 따른 왕복동식 압축기는 부하가 변동되더라도 전압을 대칭적으로 인가하여 피스톤을 상사점 운전시키는 동시에 공진 운전시키도록 하되, 부하 변동에 따라 가스 스프링의 영향으로 인한 피스톤의 밀림 정도를 고려하여 기계 스프링의 탄성 계수가 설정되고, 필요 냉력 조건에 대응하도록 피스톤의 스트로크를 유지시키는 피스톤의 초기치가 설정된다. 따라서, 비대칭적인 전압 인가로 발생한 전력 낭비를 줄일 뿐 아니라 비대칭적인 전압 인가를 위한 튜닝 작업을 생략할 수 있어 번거로움을 줄일 수 있으며, 나아가 모든 부하 조건에서 피스톤을 상사점 운전시키는 동시에 공진 운전시킴으로 운전 효율을 보다 높일 수 있다.

Description

왕복동식 압축기{RECIPROCATING COMPRESSOR}
본 발명은 기계 스프링 및 가스 스프링에 의해 탄성 지지된 피스톤이 실린더 내부에서 직선 왕복 운동하면서 냉매를 압축시키는 왕복동식 압축기에 관한 것으로서, 특히 부하가 변동되더라도 전압을 대칭적으로 인가하여 피스톤을 상사점 운전시키는 동시에 공진 운전되도록 하는 왕복동식 압축기에 관한 것이다.
일반적으로 압축기(Compressor)는 전기모터나 터빈 등의 동력발생장치로부터 동력을 전달받아 냉매 또는 그 밖의 다양한 작동가스를 압축시켜 압력을 높여주는 기계장치로써, 냉장고와 에어컨 등과 같은 가전기기 또는 산업전반에 걸쳐 널리 사용되고 있다.
이러한 압축기를 크게 분류하면, 피스톤(Piston)과 실린더(Cylinder) 사이에 작동가스가 흡,토출되는 압축공간이 형성되도록 하여 피스톤이 실린더 내부에서 직선 왕복 운동하면서 냉매를 압축시키는 왕복동식 압축기(Reciprocating compressor)와, 편심 회전되는 롤러(Roller)와 실린더(Cylinder) 사이에 작동가스가 흡,토출되는 압축공간이 형성되도록 하여 롤러가 실린더 내벽을 따라 편심 회전되면서 냉매를 압축시키는 회전식 압축기(Rotary compressor)와, 선회 스크 롤(Orbiting scroll)과 고정 스크롤(Fixed scroll) 사이에 작동가스가 흡, 토출되는 압축공간이 형성되도록 하여 선회 스크롤이 고정 스크롤을 따라 회전되면서 냉매를 압축시키는 스크롤식 압축기(Scrool compressor)로 나뉘어진다.
최근에는 왕복동식 압축기 중에서 특히 피스톤이 왕복 직선 운동하는구동모터에 직접 연결되도록 하여 운동전환에 의한 기계적인 손실이 없어 압축효율을 향상시킬 뿐 아니라 구조가 간단한 리니어 압축기가 많이 개발되고 있다.
도 1은 일반적인 왕복동식 압축기가 도시된 측단면도이다. 왕복동식 압축기는 밀폐용기(2) 일측에 냉매가 유,출입되는 유입관(2a) 및 유출관(2b)이 설치되고, 밀폐용기(2) 내측에 실린더(4)가 고정되도록 설치되며, 실린더(4) 내부의 압축공간(P)으로 흡입된 냉매를 압축시킬 수 있도록 실린더(4) 내부에 피스톤(6)이 왕복 직선 운동 가능하게 설치되는 동시에 피스톤(6)의 운동 방향에 탄성 지지되도록 각종 스프링이 설치되고, 피스톤(6)은 직선 왕복 구동력을 발생시키는 리니어 모터(10)와 연결되도록 설치된다.
아울러, 압축공간(P)과 접하고 있는 피스톤(6)의 일단에 흡입밸브(22)가 설치되고, 압축공간(P)과 접하고 있는 실린더(4)의 일단에 토출밸브 어셈블리(24)가 설치되며, 흡입밸브(22) 및 토출밸브 어셈블리(24)는 각각 압축공간(P) 내부의 압력에 따라 개폐되도록 자동적으로 조절된다.
여기서, 밀폐용기(2)는 내부가 밀폐되도록 상,하부 쉘이 서로 결합되도록 구성되되, 밀폐용기(2)의 일측에 냉매가 유입되는 유입관(2a) 및 냉매가 유출되는 유출관(2b)이 설치된다. 또한, 실린더(4) 내측에 피스톤(6)이 왕복 직선 운동 가능 하게 운동방향으로 탄성 지지되도록 설치됨과 아울러 실린더(4) 외측에 리니어 모터(10)가 프레임(18)에 의해 서로 조립되어 조립체를 구성하고, 이러한 조립체가 상기 밀폐용기(2) 내측 바닥면에 지지 스프링(29)에 의해 탄성 지지되도록 설치된다.
아울러, 밀폐용기(2) 내부 바닥면에는 소정의 오일이 담겨지고, 조립체 하단에는 오일을 펌핑하는 오일공급장치(30)가 설치됨과 아울러 조립체 하측 프레임(18) 내부에는 오일을 피스톤(6)과 실린더(4) 사이로 공급될 수 있도록 오일공급관(18a)이 형성되며, 이에 따라 오일공급장치(30)는 피스톤(6)의 왕복 직선 운동함에 따라 발생되는 진동에 의해 작동되어 오일을 펌핑하고, 이러한 오일은 오일공급관(18a)을 따라 피스톤(6)과 실린더(4) 사이의 간극으로 공급되어 냉각 및 윤활 작용을 하도록 한다.
다음, 실린더(4)는 피스톤(6)이 왕복 직선 운동할 수 있도록 중공 형상으로 형성됨과 아울러 일측에 압축공간(P)이 형성되고, 유입관(2a) 내측에 일단이 근접하게 위치된 상태에서 유입관(2a)과 동일 직선상에 설치되는 것이 바람직하다.
물론, 실린더(4)는 유입관(2a)과 근접한 일단 내부에 상기 피스톤(6)이 왕복 직선 운동 가능하게 설치되고, 유입관(2a)과 반대방향 측 일단에 상기 토출밸브 어셈블리(24)가 설치된다.
이때, 토출밸브 어셈블리(24)는 실린더(4)의 일단 측에 소정의 토출공간을 형성하도록 설치되는 토출커버(24a)와, 실린더(4)의 압축공간(P) 측 일단을 개폐하도록 설치되는 토출밸브(24b)와, 토출커버(24a)와 토출밸브(24b) 사이에 축방향으 로 탄성력을 부여하는 일종의 코일 스프링인 밸브 스프링(24c)으로 이루어지되, 실린더(4)의 일단 내둘레에 오링(R)이 끼움되도록 설치되어 상기 토출밸브(24a)가 실린더(4) 일단을 밀착되도록 한다.
아울러, 토출커버(24a)의 일측과 유출관(2b) 사이에는 굴곡지게 형성된 루프 파이프(28)가 연결 설치되는데, 루프 파이프(28)는 압축된 냉매가 외부로 토출될 수 있도록 안내할 뿐 아니라 실린더(4), 피스톤(6), 리니어 모터(10)의 상호 작용에 의한 진동이 밀폐용기(2) 전체로 전달되는 것을 완충시켜 준다.
따라서, 피스톤(6)이 실린더(4) 내부에서 왕복 직선 운동함에 따라 상기 압축공간(P)의 압력이 소정의 토출압력 이상이 되면, 밸브 스프링(24c)이 압축되어 토출밸브(24b)를 개방시키고, 냉매가 압축공간(P)으로부터 토출된 다음, 루프 파이프(28) 및 유출관(2b)을 따라 완전히 외부로 토출된다.
다음, 피스톤(6)은 유입관(2a)으로부터 유입된 냉매가 유동될 수 있도록 냉매유로(6a)가 중앙에 형성되고, 유입관(2a)과 근접한 일단이 연결부재(17)에 의해 리니어 모터(10)가 직접 연결되도록 설치됨과 아울러 유입관(2a)과 반대방향 측 일단에 흡입밸브(22)가 설치되며, 피스톤(6)의 운동방향으로 탄성 지지되도록 설치된다.
이때, 흡입밸브(22)는 박판 형상으로 중앙부분이 피스톤(6)의 냉매유로(6a)를 개폐시키도록 중앙부분이 일부 절개되도록 형성되고, 일측이 피스톤(6a)의 일단에 스크류에 의해 고정되도록 설치된다.
따라서, 피스톤(6)이 실린더(4) 내부에서 왕복 직선 운동함에 따라 압축공 간(P)의 압력이 토출압력보다 더 낮은 소정의 흡입압력 이하가 되면, 흡입밸브(22)가 개방되어 냉매가 압축공간(P)으로 흡입되고, 압축공간(P)의 압력이 소정의 흡입압력 이상이 되면, 흡입밸브(22)가 닫힌 상태에서 압축공간(P)의 냉매가 압축된다.
이때, 피스톤(6)은 운동방향으로 탄성 지지되도록 설치되는데, 구체적으로 유입관(2a)과 근접한 피스톤(6)의 일단에 반경방향으로 돌출된 피스톤 플랜지(6b)가 코일 스프링 등과 같은 기계 스프링(8a,8b)에 의해 피스톤(6)의 운동방향으로 탄성 지지되고, 유입관(2a)과 반대방향 측 압축공간(P)에 포함된 냉매가 자체 탄성력에 의해 가스 스프링으로 작용하여 피스톤(6)을 탄성 지지하게 된다.
이때, 기계 스프링(8a,8b)은 부하와 상관없이 일정한 기계 스프링 상수(Km)를 가지되, 기계 스프링(8a,8b)은 상기 피스톤 플랜지(6b)를 기준으로 상기 리니어 모터(10)에 고정되는 소정의 지지프레임(26)과 실린더(4)에 각각 축방향으로 나란하게 설치되는 것이 바람직하며, 지지프레임(26)에 지지되는 기계 스프링(8a)과 실린더(4)에 설치되는 기계 스프링(8a)이 동일한 기계 스프링 상수(Km)를 가지도록 구성되는 것이 바람직하다.
다음, 리니어 모터(10)는 복수개의 라미네이션(12a)이 원주방향으로 적층되도록 구성되어 프레임(18)에 의해 실린더(4) 외측에 고정되도록 설치되는 이너 스테이터(12)와, 코일이 감겨지도록 구성된 코일 권선체(14a) 주변에 복수개의 라미네이션(14b)이 원주방향으로 적층되도록 구성되어 프레임(18)에 의해 실린더(4) 외측에 이너 스테이터(12)와 소정의 간극을 두고 설치되는 아웃터 스테이터(14)와, 이너 스테이터(12)와 아웃터 스테이터(14) 사이의 간극에 위치되어 피스톤(6)과 연결부재(17)에 의해 연결되도록 설치되는 영구자석(16)으로 이루어지되, 상기 코일 권선체(14a)는 상기 이너 스테이터(12) 외측에 고정되도록 설치될 수도 있다.
따라서, 리니어 모터(10)에서 코일 권선체(14a)에 전류가 인가됨에 따라 전자기력이 발생되고, 이와 같은 전자기력과 영구자석(16)의 상호작용에 의해 영구자석(16)이 왕복 직선 운동하게 되고, 영구자석(16)과 연결된 피스톤(6)이 상기 실린더(4) 내부에서 왕복 직선 운동하게 된다.
이와 같은 왕복동식 압축기는 공진 상태로 운전하기 위하여 운전 주파수를 공진 주파수에 맞추도록 제어하되, 공진 주파수는
Figure 112008072445284-PAT00001
로 정의된다. 여기서, km은 기계 스프링의 탄성 계수이고, kg는 가스 스프링의 탄성 계수이며, m은 왕복 직선 운동하는 피스톤 및 이와 연결된 부재의 질량을 나타낸다. 따라서, 공진 주파수는 상수인 기계 스프링의 탄성 계수 이외에도 부하에 따라 가변되는 가스 스프링의 탄성 계수의 영향을 받기 때문에 종래의 왕복동식 압축기는 저부하 조건을 기준으로 운전 주파수를 손쉽게 공진 주파수에 맞추기 위하여 가스 스프링의 탄성 계수를 무시할 수 있을 정도로 가스 스프링의 탄성 계수에 비해 상대적으로 크게 기계 스프링의 탄성 계수를 설정하였다.
또한, 냉각 장치 등에 쓰이는 왕복동식 압축기는 부하에 대응하는 필요한 냉력에 따라 유량(flow rate)을 조절하도록 제어하되, 압축기의 유량(Flow rate)은 Q = C × (A × S × f)로 정의된다. 여기서, C는 비례상수이고, A는 피스톤의 단면 적, S는 피스톤의 왕복하는 거리인 피스톤의 스트로크, f는 피스톤의 운전 주파수를 나타낸다. 따라서, 종래의 왕복동식 압축기는 부하에 대응하는 냉력에 맞도록 유량을 조절하기 위하여, 운전 주파수를 공진 주파수에 맞추도록 접근하면서 피스톤의 스트로크(stroke) S를 증가시키도록 제어하였다. 이때, 공진 조건에서 피스톤의 헤드가 실린더의 일면에 일치하는 상사점 운전하면, 입력 전압이 변함에 따라 가스 스프링의 비선형적인 점프 현상이 발생되어 과도하게 스트로크가 변동되는 불안정 현상이 발생되는데, 이와 같은 불안정 현상을 이용하여 공진 상태에서 상사점 운전하는 운전 주파수가 결정된다.
상기와 같은 종래의 왕복동식 압축기는 저부하 조건을 기준으로 공진 운전이 이루어지도록 제어하기 위하여 가스 스프링의 탄성 계수에 비해 기계 스프링의 탄성 계수가 과도하게 크게 설정되기 때문에 과부하 조건에서 피스톤의 밀림량이 작아서, 운전 주파수를 공진 주파수에 맞추어 피스톤을 상사점 운전시키더라도 충분한 피스톤의 스트로크를 내지 못하는 문제점이 있다. 따라서, 종래의 왕복동식 압축기는 공진 상태에서 이뤄지는 상사점 운전 대신에 비대칭적인 로직(Logic)을 사용하여 인위적으로 피스톤의 스트로크를 증가시켜서 운전하도록 제어하였는데, 하기에서 자세하게 설명될 것이다.
도 2는 기존에 부하 조건에서 왕복동식 압축기가 동작되던 방법을 설명하는 도면이다. 도 1 및 도 2를 참고하여 리니어 모터(14)의 코일 권선체(14a)에 전원이 인가되지 않을 뿐 아니라 어떠한 외력도 없는 경우, 압축공간(P)을 이루는 실린 더(4)의 일면과 피스톤(6)의 헤드 사이의 거리(이하, 피스톤의 초기치)를 xi로 한다.
저부하 조건이면, 주변 온도가 비교적 낮기 때문에 실린더(4)의 압축공간(P)에 있는 냉매의 부피 역시 비교적 작아 냉매에 의한 피스톤(6)의 밀림량이 존재하지 않아 피스톤(6)의 초기치(xi)가 일정하게 유지된다.
따라서, 저부하 조건인 경우, 피스톤(6)의 헤드가 초기치(xi)에 있는 때를 기준으로 상사점(Top dead center : TDC) 운전하도록 피스톤(6)의 스트로크를 유지하기 위하여 전압이 대칭적인 크기로 공급된다. 즉, 피스톤(6)의 헤드가 실린더(4)의 일면으로부터 초기치(xi)보다 가까이 있으면, 피스톤(6)의 헤드가 실린더(4)의 일면과 맞닿도록 하는 크기의 전압이 공급된다. 또한, 피스톤(6)의 헤드가 실린더(4)의 일면으로부터 초기치(xi)보다 멀리 있으면, 피스톤(6)의 헤드가 실린더(4)의 일면으로부터 초기치(xi)보다 가까이 있을 때와 대칭적으로 크기의 전압이 공급된다.
과부하 조건이면, 주변 온도가 비교적 높기 때문에 실린더(4)의 압축공간(P)에 있는 냉매의 부피 역시 비교적 커서 냉매에 의한 피스톤(6)의 밀림량이 존재하여 피스톤(6)의 초기치(xi)가 피스톤(4)의 밀림량 만큼 밀리도록 변동된다.
따라서, 고부하 조건인 경우, 피스톤(6)의 헤드가 초기치(xi)에 있는 때를 기준으로 상사점(TDC) 운전하도록 피스톤(6)의 스트로크를 유지하기 위하여 전압이 비대칭적인 크기로 공급된다. 즉, 피스톤(6)의 헤드가 실린더(4)의 일면으로부터 초기치(xi)보다 가까이 있으면, 저부하 상태와 같은 크기의 전압이 공급되지만, 피스톤(6)의 헤드가 실린더(4)의 일면으로부터 초기치(xi)보다 멀리 있으면, 저부하 상태에 비해 β(β > 1)배만큼 더 큰 전압이 공급된다. 물론, 과부하 조건에서 비대칭적으로 전압을 인가하면, 실린더(4)의 일면과 피스톤(6)의 헤드 사이의 거리가 초기치(xi)보다 멀리 떨어질 때에 피스톤(6)이 이동하는 거리가 저부하 상태에서 피스톤(6)이 이동하는 거리에 비해 β배만큼 증가한다는 것은 당업자에게 명백하다. 이와 같이, 부하에 따라 피스톤(6)의 스트로크를 조절하는 것을 통해 유량을 조절하였다.
상기와 같은 종래의 왕복동식 압축기는 인위적으로 피스톤의 스트로크를 증가시키기 위하여 비대칭 로직을 사용하되, 스위치가 항상 온 상태를 유지하여 전류가 흐르도록 하기 때문에 직류 전류에 의한 손실이 항상 발생하고, 나아가 이러한 압축기가 사용되는 제품이 오프 상태에서도 압축기 측의 스위치가 온 상태를 유지해야 함으로 효율을 떨어뜨리는 문제점이 있다.
또한, 종래의 왕복동식 압축기는 공진 상태에서 상사점 운전으로 인한 불안정 현상이 발생하지 않을 뿐 아니라 피스톤을 상사점 운전할 수 없기 때문에 비대칭이 적용되는 부하 조건에서 일일이 변위 센서(LVDT)를 통하여 피스톤의 스트로크를 측정하고, 부하 조건에서 충분한 냉력을 낼 수 있는 피스톤의 스트로크를 유지하도록 공급 전압의 비대칭률 β을 설정하되, 이와 같은 튜닝 작업이 복잡할 뿐 아 니라 번거로운 문제점이 있다.
이에 따라, 본 발명은 스프링의 탄성 계수 또는 초기치를 선정하여, 가스가 가하는 힘에 의해 피스톤이 밀리는 것을 통해, 대칭적인 전압 입력에 의해서도 스트로크(stroke) S를 증가시키고, 이를 통해 필요한 유량으로 조절하는 왕복동식 압축기를 제공하는 것을 목적으로 한다.
또한, 본 발명은 코일에 인가하는 대칭적인 전원의 주파수가 기계공진주파수와 같도록 제어하고, 피스톤이 상사점 운동하도록 제어하여, 냉장고의 모든 부하 영역에서 실사용 소전이 이루어지도록 하는 왕복동식 압축기를 제공하는 것을 목적으로 한다.
본 발명의 일 형태에서는 밀폐 용기; 밀폐 용기 내측에 설치된 실린더; 실린더 내부에서 왕복 직선 운동하면서 냉매를 압축시키는 피스톤; 피스톤을 왕복 직선 구동시키는 리니어 모터; 리니어 모터에 대칭적인 전압을 인가하는 제어부; 밀폐 용기 내부에 채워진 냉매 가스에 의해 피스톤을 운동 방향으로 탄성 지지하는 가스 스프링; 그리고, 피스톤을 운동 방향으로 탄성 지지하되, 부하 조건이 가변되더라도 피스톤이 상사점(Top dead center) 운전하는 동시에 공진 운전하도록 하는 탄성 계수를 가진 기계 스프링;을 포함하는 것을 특징으로 하는 왕복동식 압축기를 제공한다.
또한, 본 발명에서, 기계 스프링의 탄성 계수는 부하 조건에 따라 피스톤의 밀림 정도를 고려하여 피스톤이 중심점을 기준으로 대칭 왕복 운동하도록 설정된 것을 특징으로 한다.
또한, 본 발명에서, 피스톤의 초기치는 부하 조건에 따라 피스톤의 밀림 정도를 고려하여 피스톤이 중심점을 기준으로 대칭 왕복 운동하도록 설정된 것을 특징으로 한다.
또한, 본 발명에서, 기계 스프링의 탄성 계수 및 피스톤의 초기치는 최대 부하 조건을 기준으로 설정되는 것을 특징으로 한다.
또한, 본 발명에서, 제어부는 피스톤(x)의 위치에 따라 가변되는 역기전력(E)의 위상 및 전류(i)의 위상 차이가 최소가 되도록 운전주파수(f) 및 입력 전압(V)을 조절하는 것을 특징으로 한다.
또한, 본 발명에서, 제어부는 부하 조건에 따라 결정된 필요 냉력에 따른 피스톤의 스트로크(S) 및 운전주파수(f) 맵(Map)이 세팅되고, 상기 맵을 기준으로 필요 냉력에 따른 피스톤의 스트로크(S) 및 운전주파수(f)로 운전되도록 전압을 인가하는 것을 특징으로 한다.
한편, 본 발명에서 다른 일 형태에서는 밀폐 용기; 밀폐 용기 내측에 설치된 실린더; 실린더 내부에서 왕복 직선 운동하면서 냉매를 압축시키는 피스톤; 피스톤을 왕복 직선 구동시키는 리니어 모터; 리니어 모터에 대칭적인 전압을 인가하는 제어부; 밀폐 용기 내부에 채워진 냉매 가스에 의해 피스톤을 운동 방향으로 탄성 지지하는 가스 스프링; 그리고, 피스톤을 운동 방향으로 탄성 지지하되, 부하 조건이 가변되더라도 피스톤이 중심점에 대하여 대칭 왕복 운동을 수행하도록 하는 피 스톤의 밀림 정도에 대응하는 탄성 계수를 가진 기계 스프링;을 포함하는 것을 특징으로 하는 왕복동식 압축기를 제공한다.
또한, 본 발명에서, 피스톤의 초기치는 왕복동식 압축기의 필요 냉력 조건에 대응하도록, 피스톤의 스트로크를 유지시키는 크기로 설정된 것을 특징으로 한다.
또한, 본 발명에서, 피스톤의 초기치와 피스톤의 스트로크는 최대 냉력 조건에서 피스톤의 밀림 정도를 고려하여 설정된 것을 특징으로 한다.
또한, 본 발명에서, 제어부는 피스톤을 왕복동식 압축기의 필요 냉력 조건 및 피스톤의 스트로크에 대응하는 운전주파수로 공진 운전시키는 것을 특징으로 한다.
또한, 본 발명에서, 제어부는 피스톤을 상사점 운동시키는 것을 특징으로 한다.
또한, 본 발명에서, 제어부는 피스톤(x)의 위치에 따라 가변되는 역기전력(E)의 위상 및 전류(i)의 위상 차이가 최소가 되도록 운전주파수(f) 및 입력 전압(V)을 조절하는 것을 특징으로 한다.
또한, 본 발명에서, 제어부는 부하 조건에 따라 결정된 필요 냉력에 따른 피스톤의 스트로크(S) 및 운전주파수(f) 맵(Map)이 세팅되고, 상기 맵을 기준으로 필요 냉력에 따른 피스톤의 스트로크(S) 및 운전주파수(f)로 운전되도록 전압을 인가하는 것을 특징으로 한다.
본 발명은 스프링의 탄성 계수 또는 초기치를 선정하여, 가스가 가하는 힘에 의해 피스톤이 밀리는 것을 통해, 대칭적인 전압 입력에 의해서도 스트로크(stroke)를 증가시키고, 이를 통해 필요한 유량으로 조절하는 효과가 있다.
또한, 본 발명은 코일에 인가하는 대칭적인 전원의 운전주파수가 공진주파수와 같도록 제어하고, 피스톤이 상사점 운동하도록 제어하여, 냉장고의 모든 부하 영역에서 실사용 소전이 이루어지도록 하고, 보다 단순한 제어를 통하여 필요한 냉력을 제공할 수 있는 효과가 있다.
이하에서, 본 발명인 왕복동식 압축기는 도면과 실시예와 함께 설명된다.
도 3은 본 발명인 왕복동식 압축기의 피스톤의 동작 및 수학적인 모델링을 예시하는 도면이다. 여기서, α는 외력이 작용하지 않는 상태에서 코일부(도 1에서 14a)에 대칭적인 전압 인가로 인하여 피스톤(도 1에서 6)이 한쪽 방향으로 이동하는 거리, δ는 압축되는 냉매의 힘으로 인해 피스톤(도 1에서 6)이 밀려나는 거리를 나타낸다. 도 3의 위쪽은 피스톤의 움직임을 간략히 나타낸 것이다. 본 발명에서 외력이 가해지기 전의 상태에서 전압을 대칭적으로 코일부(도 1에서 14a)에 인가되면, 피스톤(도 1에서 6)이 움직이고, 피스톤의 스트로크(stroke)는 α + δ + α = 2α + δ가 된다. 종래 기술에서 전압을 비대칭적으로 가하는 경우에는 피스톤의 스트로크(stroke)가 α + δ + α×β = α(1+ β)+ δ가 되는데, β 는 과부하 조건에서 비대칭 전압을 코일부(도 1에서 14a)에 인가함에 따라 피스톤의 스트로크를 인위적으로 변경시키면서 발생되는 비대칭률을 나타낸다. 이때, 본 발명에서 대칭적인 전압을 인가하는 경우(β=1) 피스톤의 스트로크가 종래 기술에 따라 비대칭적인 전압을 인가하는 경우(β>1) 피스톤의 스트로크와 동일하다는 조건을 적용하면, 2α1 + δ1 = α2(1+ β)+ δ2 가 되고, 발명에서 피스톤의 밀림량인 δ1 = α2(1+ β) - 2α1 + δ2의 값을 가지면, 본 발명에서 대칭적인 전압을 인가하더라도 기존의 비대칭적으로 전압을 인가하여 피스톤의 스트로크를 조절하는 것과 같은 효과를 낼 수 있다는 것이 명백하다.
피스톤의 운동을 수학적으로 하기에서 기술한다. 실린더(도 1에서 4)에서부터 피스톤(도 1에서 6)의 헤드까지의 변위를 x라고 하면, 다음과 같은 식이 성립한다.
Figure 112008072445284-PAT00002
여기서, xi는 피스톤의 초기치, F(i)는 외력, ΔP ·As는 냉매가 가하는 힘이다. x(t)를 xm + u(t)로 가정하고 수학식 1a에 대입하면,
Figure 112008072445284-PAT00003
수학식 1a에서 cx와 수학식 1b에서 cf는 동일하다.
여기서, 수학식 1b를 AC 성분과 DC 성분으로 각각 분리하면,
Figure 112008072445284-PAT00004
Figure 112008072445284-PAT00005
로 된다. 냉각 장치의 냉각 사이클에 포함된 압축기를 기준으로, ΔP는 압축기에서 토출되는 냉매의 토출압과 압축기로 흡입되는 냉매의 흡입압의 차이로, 냉력이 클수록 ΔP가 크도록 제어된다. 따라서, 요구되는 냉력에 따라 xm - xi가 자동으로 조절된다. 이때, xm - xi가 δ와 같은 의미이다. 따라서, 요구하는 냉력이 커짐에 따라, 스트로크도 따라서 증가한다.
여기서, 수학식 2에서 DC 성분을 기준으로 δ에 대해 정리하면,
Figure 112008072445284-PAT00006
가 된다. 이때, δ1가 α2(1+ β) - 2α1 + δ2의 값을 가지면, 기존의 비대칭적으로 전압을 인가하여 스트로크를 조절하는 것과 같은 효과를 낼 수 있다는 것은 앞에서 설명하였다. 따라서, 코일부(도 1에서 14a)에 대칭적인 전압을 인가하더라도 기계 스프링의 탄성 계수 km을 작게 하여 피스톤의 밀림량 δ를 증가시키면, 과부하 조건 하에서 종래에 비대칭적인 전압을 가하여 피스톤의 스트로크를 증가시킨 것과 동일한 효과를 낼 수 있다.
과부하 조건에서 냉력(Qe)는 다음과 같이 표현된다.
Figure 112008072445284-PAT00007
여기서, η은 비례상수이고, S는 스트로크(stroke), f는 운전주파수를 뜻한다.
필요한 냉력이 클수록 스트로크의 길이가 커질 필요가 있으므로, 전체 냉력 조건에서 스트로크가 피스톤이 왕복할 수 있는 최대값보다 크면 된다. 즉, 왕복동식 압축기가 낼 수 있는 최대 유량을 내는 데에 필요한 스트로크는 초기치의 2배와 상기와 같은 냉매의 유량으로 인해 피스톤이 밀리는 거리의 합보다 작은 것이 바람직하다. 이와 같은 조건을 만족하기 위해서는
Figure 112008072445284-PAT00008
를 만족하면 된다. 이하, 수학식 5를 최대 부하 조건에서 필요 냉력 조건인 최대 냉력 조건으로 부르기로 한다. 여기서, G(km,As,ΔP) 은 피스톤이 밀리는 거리인 δ로써, 수학식 4를 참조하여 As×ΔP/km이며, η은 비례상수이고, S는 스트로크(stroke)이며, f는 운전주파수를 뜻한다는 것은 위에서 설명되었다. Qmax는 최대 냉력을 뜻한다. 수학식 5를 만족한다는 것은 왕복동식 압축기에서 필요한 냉력이 변함으로 인해 피스톤의 스트로크 S가 바뀌고, 바뀐 스트로크로 인해 필요한 유량을 낼 수 있음을 의미한다.
따라서, 수학식 5를 만족하는 기계 스프링의 탄성 계수 km과 피스톤의 초기치 xi = α를 선정할 필요가 있다. 이때, 피스톤(도 1에서 6)의 헤드가 실린더(도 1에서 4)의 일면과 맞닿도록 움직이는 상사점 운전하면, 피스톤의 초기치인 xi는 외력이 가해지지 않은 상태에서 코일부(도 1에서 14a)에 대칭적인 전압이 가해짐에 따라 피스톤의 한쪽 방향으로 이동 거리인 α와 동일한 것으로 볼 수 있다. 따라서, 수학식 5에서 기계 스프링의 탄성 계수(km)과 피스톤의 초기치(α)를 선정하면, 과부하 조건 하에서 피스톤의 최대 스트로크(S)가 결정된다.
한편, 공진 상태에서 운전되는 것이 효율이 가장 높기 때문에 운전 주파수(f)는 기계적인 공진 주파수(fm)와 같은 조건 즉,
Figure 112008072445284-PAT00009
를 만족해야 한다. 또한, 운전 주파수(f)는 수학식 4에 표기된 과부하 상태의 냉력 조건인 Qe = n·S·f 도 만족해야 한다. 이와 같은 조건을 모두 만족하기 위하여
Figure 112008072445284-PAT00010
를 만족하면 된다. 즉, 운전 주파수(f)는 기계 스프링의 탄성 계수(km)와 가 스 스프링의 탄성 계수(kg)에 의해 결정되되, 가스 스프링의 탄성 계수(kg)는 냉매 가스가 가하는 힘을 기계적인 스프링이 가하는 힘으로 간주하여 탄성 계수로 나타낸 것이며, 이를 구하는 것은 하기에서 자세하게 설명될 것이다.
도 4a는 입력 전압에 변화에 따른 피스톤의 변위를 설명하는 도면이다. Y축에서의 거리는 압축공간(도 1에서 P)을 이루는 실린더(도 1에서 4)의 일면과 피스톤(도 1에서 6)의 헤드 사이의 거리를 말한다. 피스톤(도 1에서 6)이 왕복 직선 운동하는 동안, 실린더(도 1에서 4)의 일면과 피스톤(도 1에서 6)의 헤드 사이의 거리가 가장 가까운 지점을 상사점(또는 상사부), 실린더(도 1에서 4)의 일면과 피스톤(도 1에서 6)의 헤드 사이의 거리가 가장 먼 지점을 하사점(또는 하사부)이라 한다.
왕복동식 압축기의 작동 상태를 도 1 및 도 4a를 참조하여 살펴보면, 피스톤(6)은 압축공간(P)을 이루는 실린더(4)의 일면으로부터 멀어졌다가 가까워지는 과정 즉, 상사점과 하사점 사이를 왕복 직선 운동하게 된다.
보다 상세하게, 위치 1 내지 위치 3과 같이 전압이 변함에 따라, 피스톤(6)이 압축공간(P)을 이루는 실린더(4)의 일면으로부터 서서히 멀어지면서 Y축 거리가 멀어지게 된다. 이때, 위치 3과 같이 피스톤(6)이 압축공간(P)을 이루는 실린더(4)의 일면으로부터 충분히 멀어져 압축공간(P) 내부의 압력이 일정한 토출압 이하가 되면, 토출밸브 어셈블리(24)가 닫히게 된다. 이후, 압축공간(P)이 토출밸브 어셈블리(24)에 의해 닫힌 상태에서 위치 3 내지 위치 4와 같이 피스톤(6)이 압축공 간(P)을 이루는 실린더(4)의 일면으로부터 급격히 멀어지면서 Y축 거리가 급격하게 멀어지게 된다.
이후, 위치 4 내지 위치 11과 같이 전압이 변함에 따라, 피스톤(6)이 압축공간(P)을 이루는 실린더(4)의 일면으로부터 서서히 멀어졌다가 가까워지면서 Y축 거리가 가장 멀어졌다가 다시 가까워지게 된다. 이때, 위치 4 내지 위치 6 사이에서 압축공간(P) 내부의 압력이 일정한 흡입압 이하가 되면, 흡입밸브(22)가 열린 상태에서 냉매가 압축공간(P)으로 흡입되고, 위치 7 내지 위치 11 사이에서 압축공간(P) 내부의 압력이 일정한 흡입압 이상이 되면, 흡입밸브(22)가 닫힌 상태에서 냉매가 압축공간(P)에서 압축된다.
또한, 위치 11과 같이 피스톤(6)이 압축공간(P)을 이루는 실린더(4)의 일면과 충분히 가까워져 압축공간(P) 내부의 압력이 토출압 이상이 되면, 토출밸브 어셈블리(24)가 열리게 되고, 압축공간(P)에서 압축된 냉매가 외부로 토출된다. 이후, 압축공간(P)이 토출밸브 어셈블리(24)에 의해 열린 상태에서 위치 11 내지 위치 12와 같이 피스톤(6)이 압축공간(P)을 이루는 실린더(4)의 일면으로부터 급격히 가까워지면서 Y축 거리가 급격하게 가까워지게 되고, 위치 12 내지 위치 13과 같이 전압이 변함에 따라, 피스톤(6)이 압축공간(P)을 이루는 실린더(4)의 일면으로부터 서서히 가까워져 Y축 거리가 가장 가까워진다.
이와 같이, 냉매가 자체 탄성력에 의해 가스 스프링으로 작용한다. 즉, 토출밸브 어셈블리(24)의 개폐 등으로 인해 냉매 가스(기체)가 가하는 힘이 비선형적으로 바뀌고, 이로 인해 피스톤(6)이 압축공간(P)을 이루는 실린더(4)의 일면 사이의 거리 즉, 위치 3 내지 위치 4, 위치 11 내지 위치 12와 같이 Y축의 거리가 급격하게 바뀌는 구간이 있다. 이러한 현상을 점프(Jump) 현상이라고 하며, 이런 점프 현산은 가스 스프링의 탄성 계수(kg)를 구하는 데에 장애가 될 수 있다. 이러한 가스 스프링의 탄성 계수(kg)를 구하는 방법은 아래에 설명될 것이다.
도 4b는 피스톤의 위치에 따른 기체가 가하는 힘을 나타내는 도면이다. 위에서 설명되었던 기계 스프링은 코일 스프링들로 구성됨에 따라 기계 스프링의 탄성 계수(km)가 일정하고, 기계 스프링이 압축공간에 가하는 힘 즉, 기계 스프링의 탄성력(F)은 피스톤의 초기치로부터 변위(x)에 비례하는 것이 일반적이다. 반면, 가스 스프링은 냉매 가스로 구성됨에 따라 가스 스프링의 탄성 계수(kg)가 압력/온도 등의 조건에 따라 가변하고, 가스 스프링이 압축공간에 가하는 힘 즉, 가스 스프링의 탄성력(Fc(t))은 비선형적으로 변한다. 이때, 가스 스프링의 탄성력(Fc(t))은 도 4b에 도시된 바와 같이 하사점에서 멀어질수록 증가하는 반면, 일정값(ΔP ·As) 이상에서는 증가하지 않는다. 따라서, 가스 스프링의 탄성 계수(kg)는 비선형적인 가스 스프링의 탄성력(Fc(t))에 의해 구해질 수 있되, 묘사함수(describing function)라는 방법을 도입할 필요가 있다.
묘사함수(describing function)라는 방법은 비선형 제어를 분석하기 위해 근사시키는 방법으로써, 특정한 파형(예를 들어 사인파)을 입력신호로 가하면, 특정한 입력 파형의 주기를 기본 진동주기로 하는 특정한 파형이 나오고, 다만 진폭과 위상이 달라진다. 이러한 출력 중 주기가 같은 기본파만 보면, 그 진폭과 위상 차이를 통해 묘사함수(describing function)로 나타낼 수 있다.
묘사함수(describing function)를 통해 냉매 가스가 가하는 힘 Fc(t)를 가스 스프링이 가하는 힘으로 보고, 그 가스 스프링의 탄성 계수(kg)를 구하면,
Figure 112008072445284-PAT00011
가 된다.
가스 스프링의 탄성 계수를 나타내는 수학식 7을 상기에서 설명한 바와 같이 공진 상태에서 과부하 냉력 조건을 만족하는 운전 주파수를 나타내는 수학식 6에 대입하면,
Figure 112008072445284-PAT00012
가 된다. 여기서, 가스 스프링의 탄성 계수(kg)는 시간에 따라 변하는 값이기 때문에 가스 스프링의 탄성 계수(kg)에 따라 가변되는 공진 주파수(fm)도 마찬가지로 시간에 따라 변한다. 이때, 공진 상태에서 효율이 가장 높은 조건을 만족하도 록 운전 주파수(f)는 공진 주파수(fm)와 일치시키되, 제어부는 코일부(도 1에서 14a)에 인가되는 전원을 제어하여 운전 주파수(f)가 시간에 따라 가변되는 공진 주파수(fm)를 추정 및 추적하도록 한다.
도 5는 왕복동식 압축기의 운전 주파수를 공진 주파수로 운전하기 위한 회로도의 예시이다. 수학식 8에서 기술된 운전 주파수(f)로 동작하기 위해서 코일부(14a, 도 1의 코일 권선체와 동일)에 인가되는 전원을 제어할 필요가 있다. 제어부(미도시)는 코일부(14a)에 인가되는 전원을 제어하며, 바람직하게는 인버터부(S1 내지 S4)를 포함한다.
구체적으로, 인버터 회로 중 풀-브릿지(Full-bridge) 방식을 통해서 제어하는 경우를 살펴보면, 전압이 V인 직류 전원(15)이 인버터부(S1 내지 S4)에 의해 제어되어 전원을 코일부(14a)에 공급한다. 이때, 인버터부(S1 내지 S4)는 직류 전원(15)으로부터 전원 또는 전압을 인가받고, 지령치(drive)에 따라 원하는 주파수 및 크기를 가지는 교류 전압을 코일부(14a)에 인가한다. 특히, 수학식 5인
Figure 112008072445284-PAT00013
를 만족하는 기계 스프링의 탄성 계수(km) 및 피스톤의 초기치(α)가 선정되면, 수학식 8인
Figure 112008072445284-PAT00014
를 만족하는 운전 주파수(f)가 공진 주파수(fm)와 일치하도록 정해지고, 제어부는 코일부(14a)에 인가되는 전원을 제어하는 것을 통해, 코일부(14a)에 인가되는 전원도 시간에 따라 변동이 가능한 공진 주파수(fm)를 추적 또는 추정하도록 제어된다.
물론, 본 발명의 왕복동식 압축기는 리니어 모터(도 1에서 10)를 채용하되, 리니어 모터(도 1에서 10)의 설계시에 고려한 부하 하에서 기계 스프링의 탄성 계수(km) 및 가스 스프링의 탄성 계수(kg)가 일정한 값인 상수(Km,Kg)로 결정된다. 따라서, 본 발명의 왕복동식 압축기는 운전주파수(f)를 이러한 기계 스프링의 상수(Km) 및 가스 스프링의 상수(Kg)에 의해 산출되는 공진주파수(fm)에 일치하도록 제어하면, 공진으로 인해 효율을 높일 수 있어 바람직하다.
그런데, 본 발명의 왕복동식 압축기는 실제로 부하가 가변됨에 따라 냉매 가스인 가스 스프링의 탄성 계수(kg) 및 이를 고려하여 산출된 공진주파수(fm)가 변경된다. 따라서, 본 발명의 왕복동식 압축기에서, 코일부(도 1에서 14a)에 인가되는 전원의 주파수 또는 운전주파수(f)는 부하에 따라 변동되는 공진주파수(fm)에 따라 바뀌는 것이 바람직하다.
다시 말하면, 본 발명의 왕복동식 압축기가 채용된 냉장고 등과 같은 냉동 시스템은 설계시 부하 조건에 맞는 최대 냉력이 결정되고, 본 발명의 왕복동식 압축기는 최대 냉력에 대응하는 피스톤의 스트로크(S) 및 운전주파수(f)가 결정되면, 필요 냉력에 따른 피스톤의 스트로크(S) 및 운전주파수(f)를 나타내는 맵(Map)이 적당하게 작성되어 기입력된다. 따라서, 본 발명의 압축기는 냉동 시스템의 부하 조건에 따라 이런 맵을 기준으로 설정된 피스톤의 스트로크(S) 및 운전주파수(f)로 운전되고, 작동 중에 하기에서 설명될 위상 반전이 일어나도록 운전주파수(f)를 조절하여 공진 상태에서 상사점 운전될 수 있도록 한다. 물론, 왕복동식 압축기의 운전주파수(f)는 상대적으로 저부하 조건에서 고부하 조건으로 갈수록 증가하게 되고, 피스톤의 스트로크(S)도 운전주파수(f)와 마찬가지로 상대적으로 저부하 조건에서 고부하 조건으로 갈수록 밀림량이 증가하여 기계적으로 증가하게 된다.
본 발명의 왕복동식 압축기에서, 공진 운전하도록 운전주파수(f)가 공진주파수(fm)를 추정하도록 제어하는 방법을 살펴보면, 진동 시스템에서 자유도에 따라 공진주파수(fm)에서 일어나는 현상을 통하여 공진주파수(fm)를 추정하도록 제어할 수 있다.
보통, 1자유도를 가진 진동 시스템은 공진주파수에서 위상이 급격하게 바뀌는 반면, 2자유도를 가지는 시스템에서는 공진주파수에서 위상의 증감이 바뀐다. 그런데, 본 발명의 왕복동식 압축기는 실린더(도 1에서 4)와 피스톤(도 1에서 6)은 모두 고정되지 않고, 스프링 등 탄성부재를 통해 쉘(도 1에서 2)에 지지되기 때문에 본 발명의 왕복동식 압축기는 2 자유도를 가진 진동 시스템이다. 이와 같은 2 자유도를 가진 시스템은 전원이 코일부(도 1에서 14a)에 인가됨에 따라 피스톤(도 1에서 6)이 왕복 직선하되, 직선 왕복 운동하는 피스톤의 위치인 x, 전하인 Q 또는 전하의 미분값인 전류인 i가 변수가 되고, 두 개의 공진 주파수를 가지게 된다.
따라서, 본 발명의 왕복동식 압축기는 2 자유도를 가진 시스템으로써, 운전주파수가 낮은 주파수에서부터 높은 주파수로 전원을 인가함에 따라 다음과 같이 공진주파수에서 위상반전이 발생한다. 보다 상세하게, 운전주파수가 두 개의 공진주파수 중 작은 값의 공진주파수(이하, 첫번째 공진주파수)보다 낮은 주파수이면, 두 개의 변수(피스톤의 위치 x 및 전류 i)의 위상이 특별한 상관 관계를 갖지 않지만, 운전주파수가 첫번째 공진주파수보다 작더라도 첫번째 공진주파수에 근접하면, 두 개의 변수(피스톤의 위치 x 및 전류 i)의 위상의 차가 감소한다. 또한, 운전주파수가 첫번째 공진주파수보다 커지면, 피스톤의 위치 x 및 전류 i의 차이가 다시 커지게 된다. 즉, 2 자유도를 가진 진동 시스템인 본 발명의 왕복동식 압축기에서, 첫번째 공진주파수에서 피스톤의 위치 x 및 전류 i의 차이의 증감이 바뀌는 현상을 위상반전이라고 한다.
위에서 설명되었던 위상반전은 왕복동식 압축기에서 피스톤(도 1에서 6)의 헤드가 압축공간(도 1에서 P)을 이루는 실린더(도 1에서 4)의 일면과 닿을 때, 즉 상사점에서 가장 명확히 관찰된다. 따라서, 본 발명의 왕복동식 압축기에서, 두 개의 변수(피스톤의 위치 x 및 전류 i)의 위상의 차가 최소가 되도록 제어하면, 운전주파수(f)가 기계적인 공진주파수(fm)로 제어하는 것이고, 기계적인 공진주파수(fm)에서 발생하는 위상반전 현상이 가장 명확히 관찰되도록 제어하면, 피스톤(도 1에서 6)이 상사점 운전하도록 제어하는 것이다. 이때, 전원이 코일부(14a)에 인가됨에 따라 이너스테이터(도 1에서 12)와 아우터스테이터(도 1에서 14) 사이에서 전자 기력이 발생되고, 영구자석(도 1에서 16)이 이너스테이터(도 1에서 12)와 아우터스테이터(도 1에서 14) 사이에서 상호 전자기력에 의해 왕복 직선 운동하며, 영구자석(도 1에서 16)과 연결된 피스톤(도 1에서 6) 역시 왕복 직선 운동하기 때문에 피스톤(도 1에서 6)이 왕복 직선 운동하면서 역기전력이 발생되는데, 제어의 편의를 위해 피스톤의 위치 x 대신 역기전력 E를 통해 제어할 수 있다. 즉, 본 발명의 왕복동식 압축기에서, 전류 i와 역기전력 E의 위상 차가 가장 작은 지점을 찾고, 그것을 통해 상기와 같은 제어가 가능하되, 하기에서 자세하게 설명된다.
도 6a는 왕복동식 모터를 역기전력이 있는 R-L 회로로 모형화한 등가회로도이다. 이 등가회로도에서, 피스톤(6)의 움직임을 나타내는 이론적인 근거는
Figure 112008072445284-PAT00015
과 같은 미분방정식으로 설명된다. 여기서, R은 등가적 저항이고, L은 등가적 인덕턴스 계수이고, i는 모터에 흐르는 전류이고, V*은 인버터부의 출력 전압에 대응하는 전압 지령치이다. 상술된 변수들은 모두 측정이 가능하므로 역기전력 E의 산정이 가능하다.
또한, 피스톤(6)의 움직임을 나타내는 이론적인 근거의 경우,
Figure 112008072445284-PAT00016
같은 기계적 운동 방정식으로 설명된다. 여기서, x는 피스톤(6)의 변위이고, m은 피스톤(6)의 질량이고, C는 댐핑 계수이고, k는 등가적 스프링 상수이고, α는 역기전력 상수이다. 이와 같은 피스톤(6)의 운동 방정식을 복소수 형태로 변환하면,
Figure 112008072445284-PAT00017
와 같이 된다. 이때, ω는 진동수이다.
따라서, 본 발명인 왕복동식 압축기는 상기에서 설명한 바와 같이 2자유도를 가진 진동 시스템이기 때문에 전류 i 및 역기전력 E 의 위상 차가 최소일 때 즉, 0이 될 때에 공진 현상이 일어나서 효율을 극대화시킬 수 있다. 이론적으로,
Figure 112008072445284-PAT00018
식에서 분모에 있는 복소수 부분이 0이 되면, 전류 i 와 역기전력 E 의 위상 차를 최소화시켜 공진 현상이 일어나도록 할 수 있다.
그러나, 상술된 바와 같이, 등가적 스프링 상수(k)는 기계 스프링의 탄성 계수(km) 및 가스 스프링의 탄성 계수(kg)가 조합된 값이기 때문에 부하에 따라 변경된다. 따라서, 부하가 가변되더라도 운전주파수(f)를 가변하면서 전류 i 및 역기전력 E 의 위상차가 최소인 지점을 검출하고, 그 지점에서 운전주파수(f)를 유지하여 부하에 따라 가변되는 공진주파수(fm)를 추적할 수 있되, 하기에서 보다 자세하게 설명하도록 한다.
도 6b는 제어부가 전원을 공진주파수로 운전하도록 제어하는 방법을 설명하기 위한 도면이다. X축은 제어부에 의해 제어되는 지령치인 코일부(도 1에서 14a)에 가해지는 전압 Vm의 운전주파수 및 크기를 나타낸 것이고, Y축은 실질적으로 위에서 설명한 역기전력 E와 전류 i의 위상차를 나타내는 것이다. 이때, 역기전력 E와 전류 i의 위상 차인 y값은 코일부(도 1에서 14a)에 가해지는 전압 Vm의 운전주파수인 x값에 따라 바뀌게 되는데, 상기에서 설명한 바와 같이 y값이 가장 작은 지점에서 x값이 공진주파수(fm)와 같은 공진 상태를 나타난다.
보다 상세하게 운전주파수(f)가 공진주파수(fm)를 추종하는 제어 방법을 살펴보면, 리니어 모터(도 1에서 10)의 제어부는 인버터부에서 전압 지령치 V*에 따른 정현파 전압을 생성하는데, 우선 이 전압 지령치 V* 및 전류 i을 검출하고, 이를 통해 역기전력 E를 검출한다. 이후, 리니어 모터(도 1에서 10)의 제어부는 전류 i의 위상을 검출한 다음, 역기전력 E의 위상과 비교하여 전류 i 및 역기전력 E의 위상차를 구한다. 이후, 리니어 모터(도 1에서 10)의 제어부는 도 6b에 도시된 바와 같이 전류 i 및 역기전력 E의 위상차인 y값이 작도록 하는 즉, 전류 i의 위상과 역기전력 E의 위상이 근접하도록 하는 주파수 변화치(Δf)를 구하고, 이러한 주파수 변화치(Δf)를 생성하여 전압 지령치 V*를 보정하는 과정(화살표로 표시되었음)을 반복적으로 수행하여, y값이 가장 작도록 제어할 뿐 아니라 위상 반전이 명확하게 관찰되도록 제어할 수 있다.
이와 같은 제어 방법은 운전주파수(f)가 기계적인 공진주파수(fm)를 추정 또는 추적하고, 피스톤(도 1에서 6)의 상사점이 실린더(도 1에서 4)의 일면에 오도록 제어하는 것이다. 제어부가 상사점이 실린더(도 1에서 4)의 일면에 오도록 하는 것을 상사점을 검출한다고 하고, 상사점의 검출이 가능하면 효율이 향상된다. 따라서, 본 발명인 왕복동식 압축기는 압축과정에서 피스톤(도 1에서 6)을 상사점까지 운동(이하 상사점 운동)하도록 제어하는 것이 가능하다.
상술된 본 발명의 왕복동식 압축기의 제어 방법은 기계 스프링의 탄성 계 수(km) 및 가스 스프링의 탄성 계수(kg)가 조합된 기계적인 변수인 스프링 상수(k)를 정확하게 산정하여 기계적인 공진주파수(fm)를 추정하는 것이 아니고, 기계적인 진동 시스템을 등가화한 전기적인 모델에서 측정 가능한 변수(R, L, i, V*)를 사용하여 공진 상태에서 나타나는 위상 반전이 일어나도록 운전주파수(f)를 조절하기 때문에 손쉽게 공진 상태에서 상사점 운전하도록 하여 효율을 높일 수 있다. 따라서, 상술된 제어 방법으로 제어되는 실제 왕복동식 압축기를 제조할 때, 공진 운전되도록 하기 위하여 기구적인 정확도에 민감하지 않도록 설계할 수 있으며, 제조 과정에서 야기되는 기구적인 오차를 쉽게 극복할 수 있다.
이상에서, 본 발명은 본 발명의 실시예들 및 첨부도면에 기초하여 상세하게 설명되었다. 그러나, 이상의 실시예들 및 도면에 의해 본 발명의 범위가 제한되지는 않으며, 본 발명의 범위는 후술되는 청구범위에 기재된 내용에 의해서만 제한되어야 한다.
도 1은 일반적인 왕복동식 압축기가 도시된 측단면도이다.
도 2는 기존에 부하 조건에서 왕복동식 압축기가 동작되던 방법을 설명하는 도면이다.
도 3은 본 발명인 왕복동식 압축기의 피스톤의 동작 및 수학적인 모델링을 예시하는 도면이다.
도 4a는 입력 전압에 변화에 따른 피스톤의 변위를 설명하는 도면이다.
도 4b는 피스톤의 위치에 따른 기체가 가하는 힘을 나타내는 도면이다.
도 5는 기계공진주파수로 운전하기 위한 회로도의 예시이다.
도 6a는 왕복동식 모터를 역기전력이 있는 R-L 회로로 모형화할 때의 등가회로도이다.
도 6b는 제어부가 전원을 기계공진주파수로 운전하도록 제어하는 방법을 설명하기 위한 도면이다.

Claims (13)

  1. 밀폐 용기;
    밀폐 용기 내측에 설치된 실린더;
    실린더 내부에서 왕복 직선 운동하면서 냉매를 압축시키는 피스톤;
    피스톤을 왕복 직선 구동시키는 리니어 모터;
    리니어 모터에 대칭적인 전압을 인가하는 제어부;
    밀폐 용기 내부에 채워진 냉매 가스에 의해 피스톤을 운동 방향으로 탄성 지지하는 가스 스프링;
    피스톤을 운동 방향으로 탄성 지지하되, 부하 조건이 가변되더라도 피스톤이 상사점(Top dead center) 운전하는 동시에 공진 운전하도록 하는 탄성 계수를 가진 기계 스프링;을 포함하는 것을 특징으로 하는 왕복동식 압축기.
  2. 제1항에 있어서,
    기계 스프링의 탄성 계수는 부하 조건에 따라 피스톤의 밀림 정도를 고려하여 피스톤이 중심점을 기준으로 대칭 왕복 운동하도록 설정된 것을 특징으로 하는 왕복동식 압축기.
  3. 제1항에 있어서,
    피스톤의 초기치는 부하 조건에 따라 피스톤의 밀림 정도를 고려하여 피스톤이 중심점을 기준으로 대칭 왕복 운동하도록 설정된 것을 특징으로 하는 왕복동식 압축기.
  4. 제1항에 있어서,
    기계 스프링의 탄성 계수 및 피스톤의 초기치는 최대 부하 조건을 기준으로 설정되는 것을 특징으로 하는 왕복동식 압축기.
  5. 제1항에 있어서,
    제어부는 피스톤(x)의 위치에 따라 가변되는 역기전력(E)의 위상 및 전류(i)의 위상 차이가 최소가 되도록 운전주파수(f) 및 입력 전압(V)을 조절하는 것을 특징으로 하는 왕복동식 압축기.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서,
    제어부는 부하 조건에 따라 결정된 필요 냉력에 따른 피스톤의 스트로크(S) 및 운전주파수(f) 맵(Map)이 세팅되고, 상기 맵을 기준으로 필요 냉력에 따른 피스 톤의 스트로크(S) 및 운전주파수(f)로 운전되도록 전압을 인가하는 것을 특징으로 하는 왕복동식 압축기.
  7. 밀폐 용기;
    밀폐 용기 내측에 설치된 실린더;
    실린더 내부에서 왕복 직선 운동하면서 냉매를 압축시키는 피스톤;
    피스톤을 왕복 직선 구동시키는 리니어 모터;
    리니어 모터에 대칭적인 전압을 인가하는 제어부;
    밀폐 용기 내부에 채워진 냉매 가스에 의해 피스톤을 운동 방향으로 탄성 지지하는 가스 스프링;
    피스톤을 운동 방향으로 탄성 지지하되, 부하 조건이 가변되더라도 피스톤이 중심점에 대하여 대칭 왕복 운동을 수행하도록 하는 피스톤의 밀림 정도에 대응하는 탄성 계수를 가진 기계 스프링;을 포함하는 것을 특징으로 하는 왕복동식 압축기.
  8. 제7항에 있어서,
    피스톤의 초기치는 왕복동식 압축기의 필요 냉력 조건에 대응하도록, 피스톤의 스트로크를 유지시키는 크기로 설정된 것을 특징으로 하는 왕복동식 압축기.
  9. 제7항에 있어서,
    피스톤의 초기치와 피스톤의 스트로크는 최대 냉력 조건에서 피스톤의 밀림 정도를 고려하여 설정된 것을 특징으로 하는 왕복동식 압축기.
  10. 제7항에 있어서,
    제어부는 피스톤을 왕복동식 압축기의 필요 냉력 조건 및 피스톤의 스트로크에 대응하는 운전주파수로 공진 운전시키는 것을 특징으로 하는 왕복동식 압축기.
  11. 제7항 내지 제10항 중 어느 한 항에 있어서,
    제어부는 피스톤을 상사점 운동시키는 것을 특징으로 하는 왕복동식 압축기.
  12. 제11항에 있어서,
    제어부는 피스톤(x)의 위치에 따라 가변되는 역기전력(E)의 위상 및 전류(i)의 위상 차이가 최소가 되도록 운전주파수(f) 및 입력 전압(V)을 조절하는 것을 특징으로 하는 왕복동식 압축기.
  13. 제11항에 있어서,
    제어부는 부하 조건에 따라 결정된 필요 냉력에 따른 피스톤의 스트로크(S) 및 운전주파수(f) 맵(Map)이 세팅되고, 상기 맵을 기준으로 필요 냉력에 따른 피스톤의 스트로크(S) 및 운전주파수(f)로 운전되도록 전압을 인가하는 것을 특징으로 하는 왕복동식 압축기.
KR1020080102213A 2007-10-24 2008-10-17 왕복동식 압축기 KR100963742B1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/739,065 US8894380B2 (en) 2007-10-24 2008-10-20 Reciprocating compressor
PCT/KR2008/006195 WO2009054654A2 (en) 2007-10-24 2008-10-20 Reciprocating compressor
EP08842366.0A EP2215361B1 (en) 2007-10-24 2008-10-20 Reciprocating compressor
ES08842366.0T ES2456268T3 (es) 2007-10-24 2008-10-20 Compresor alternativo
CN2008801132782A CN101835980B (zh) 2007-10-24 2008-10-20 往复式压缩机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020070107339 2007-10-24
KR20070107339 2007-10-24

Publications (2)

Publication Number Publication Date
KR20090042160A true KR20090042160A (ko) 2009-04-29
KR100963742B1 KR100963742B1 (ko) 2010-06-14

Family

ID=40765054

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080102213A KR100963742B1 (ko) 2007-10-24 2008-10-17 왕복동식 압축기

Country Status (6)

Country Link
US (1) US8894380B2 (ko)
EP (1) EP2215361B1 (ko)
KR (1) KR100963742B1 (ko)
CN (1) CN101835980B (ko)
ES (1) ES2456268T3 (ko)
WO (1) WO2009054654A2 (ko)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI1001388A2 (pt) * 2010-05-05 2011-12-27 Whirlpool Sa sistema de controle para pistço de compressor linear ressonante, mÉtodo de controle para pistço de compressor linear ressonante e compressor linear ressonante
US10307499B2 (en) 2011-09-22 2019-06-04 Bürkert Contromatic Corp. Devices, systems and methods for zone sterilization
US9855358B2 (en) 2011-09-22 2018-01-02 Bürkert Contromatic Corp. Devices, systems and methods for zone sterilization
US10814026B2 (en) 2011-09-22 2020-10-27 Bürkert Contromatic Corp. Devices, systems and methods for zone sterilization
KR101904870B1 (ko) * 2012-01-30 2018-10-08 엘지전자 주식회사 압축기 제어 장치와 방법, 및 이를 포함한 냉장고
JP5452659B2 (ja) 2012-05-16 2014-03-26 三菱電機株式会社 空気調和装置
ITCO20120028A1 (it) 2012-05-16 2013-11-17 Nuovo Pignone Srl Attuatore elettromagnetico per un compressore alternativo
ITCO20120027A1 (it) 2012-05-16 2013-11-17 Nuovo Pignone Srl Attuatore elettromagnetico e dispositivo di conservazione d¿inerzia per un compressore alternativo
DE102013109412A1 (de) * 2013-08-29 2015-03-05 Prominent Gmbh Verfahren zur Verbesserung von Dosierprofilen von Verdrängerpumpen
US9518572B2 (en) * 2014-02-10 2016-12-13 Haier Us Appliance Solutions, Inc. Linear compressor
US9429150B2 (en) * 2014-02-10 2016-08-30 Haier US Appliances Solutions, Inc. Linear compressor
US9322401B2 (en) * 2014-02-10 2016-04-26 General Electric Company Linear compressor
US9506460B2 (en) * 2014-02-10 2016-11-29 Haier Us Appliance Solutions, Inc. Linear compressor
KR102355136B1 (ko) * 2014-06-25 2022-01-26 엘지전자 주식회사 리니어 압축기, 리니어 압축기의 쉘, 리니어 압축기의 쉘 제작방법
KR102237723B1 (ko) * 2015-10-28 2021-04-08 엘지전자 주식회사 압축기 및 압축기의 제어 방법
KR20170049277A (ko) * 2015-10-28 2017-05-10 엘지전자 주식회사 압축기 및 압축기의 제어 방법
CN105958882B (zh) * 2016-06-02 2019-03-12 杭州西创科技有限公司 一种用于电子导纱的步进电机双闭环控制系统
RU2745598C2 (ru) * 2016-10-07 2021-03-29 Битцер Кюльмашиненбау Гмбх Полугерметичный компрессор холодильного агента
KR102023281B1 (ko) * 2018-06-08 2019-09-19 엘지전자 주식회사 왕복동식 압축기의 운전 제어 장치 및 방법
CN111752370A (zh) * 2019-03-26 2020-10-09 北京小米移动软件有限公司 马达的振动控制方法、装置、终端和存储介质

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5980211A (en) * 1996-04-22 1999-11-09 Sanyo Electric Co., Ltd. Circuit arrangement for driving a reciprocating piston in a cylinder of a linear compressor for generating compressed gas with a linear motor
KR100533041B1 (ko) * 2004-02-20 2005-12-05 엘지전자 주식회사 왕복동식 압축기의 운전제어장치 및 방법
WO2006025619A2 (en) * 2004-08-30 2006-03-09 Lg Electronics, Inc. Linear compressor
BRPI0419019A (pt) * 2004-08-30 2007-12-11 Lg Electronics Inc compressor linear
DE112004002959T5 (de) * 2004-08-30 2007-06-28 Lg Electronics Inc. Vorrichtung und Verfahren zum Steuern eines Linearkompressors
KR100690153B1 (ko) * 2004-10-01 2007-03-08 엘지전자 주식회사 리니어 압축기
KR100648787B1 (ko) * 2004-10-01 2006-11-23 엘지전자 주식회사 리니어 압축기
KR100652607B1 (ko) 2005-10-24 2006-12-01 엘지전자 주식회사 왕복동식 압축기의 운전 제어 장치 및 그 방법
US7859801B2 (en) * 2006-02-02 2010-12-28 Lg Electronics Inc. Control apparatus for linear compressor
KR100764315B1 (ko) 2006-04-06 2007-10-05 엘지전자 주식회사 리니어 압축기의 리니어 모터 설치구조
KR100690164B1 (ko) * 2006-06-13 2007-03-08 엘지전자 주식회사 리니어 압축기의 제어방법

Also Published As

Publication number Publication date
WO2009054654A3 (en) 2010-06-03
KR100963742B1 (ko) 2010-06-14
EP2215361A4 (en) 2011-03-16
ES2456268T3 (es) 2014-04-21
CN101835980A (zh) 2010-09-15
EP2215361B1 (en) 2014-01-15
EP2215361A2 (en) 2010-08-11
CN101835980B (zh) 2012-07-04
WO2009054654A2 (en) 2009-04-30
US20110058968A1 (en) 2011-03-10
US8894380B2 (en) 2014-11-25

Similar Documents

Publication Publication Date Title
KR100963742B1 (ko) 왕복동식 압축기
CN102741552B (zh) 线性压缩机
KR101507605B1 (ko) 리니어 압축기
JP4662991B2 (ja) リニア圧縮機
JP2005344708A (ja) 往復動圧縮機及びその駆動装置並びに制御方法
CN102575657B (zh) 线性压缩机
US9441621B2 (en) Machine including compressor controlling apparatus and method
US7816873B2 (en) Linear compressor
US9217429B2 (en) Linear compressor
KR101495185B1 (ko) 리니어 압축기의 제어 장치 및 제어 방법
KR101299548B1 (ko) 압축기 제어 장치 및 제어 방법
KR100690153B1 (ko) 리니어 압축기
KR101637441B1 (ko) 리니어 압축기의 제어 장치, 제어 방법, 및 이들을 구비한 냉동 시스템
KR101718020B1 (ko) 리니어 압축기의 제어 장치, 제어 방법, 및 이들을 구비한 냉장고
EP2503149B1 (en) Linear compressor
KR101379125B1 (ko) 왕복동식 압축기
KR20060025108A (ko) 리니어 압축기의 제어장치 및 제어방법
KR101521935B1 (ko) 리니어 압축기의 제어 장치 및 제어 방법
KR100756721B1 (ko) 리니어 압축기의 제어장치
KR20200054021A (ko) 왕복동식 압축기의 운전 제어 장치 및 방법

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130514

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140523

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150522

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160524

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170512

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180514

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190514

Year of fee payment: 10