KR20090032171A - 디스플레이 장치 및 빔 정렬 보상 방법 - Google Patents

디스플레이 장치 및 빔 정렬 보상 방법 Download PDF

Info

Publication number
KR20090032171A
KR20090032171A KR1020070097154A KR20070097154A KR20090032171A KR 20090032171 A KR20090032171 A KR 20090032171A KR 1020070097154 A KR1020070097154 A KR 1020070097154A KR 20070097154 A KR20070097154 A KR 20070097154A KR 20090032171 A KR20090032171 A KR 20090032171A
Authority
KR
South Korea
Prior art keywords
image
timing
light
scanner
image data
Prior art date
Application number
KR1020070097154A
Other languages
English (en)
Inventor
여인재
한규범
Original Assignee
삼성전기주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전기주식회사 filed Critical 삼성전기주식회사
Priority to KR1020070097154A priority Critical patent/KR20090032171A/ko
Priority to US12/208,306 priority patent/US20090085829A1/en
Publication of KR20090032171A publication Critical patent/KR20090032171A/ko

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/02Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes by tracing or scanning a light beam on a screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0242Compensation of deficiencies in the appearance of colours

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

1차원 회절형 광변조기 상에 조사되는 빔 정렬의 불일치가 보상된 디스플레이 장치에 관한 것이다. 보다 상세하게는, 서로 다른 파장을 가지는 조명광을 조사하는 복수의 단색광원; 상기 조명광을 순차적으로 입사받고, 제어 신호에 따라 변조하는 광변조기; 상기 변조된 조명광을 순차적으로 디스플레이 화면 상에 스캔하는 스캐너; 및 영상 신호를 입력받고, 상기 영상 신호에 상응하여 상기 단색광원, 상기 광변조기, 상기 스캐너를 제어하는 제어 신호를 출력하는 제어부를 포함하되, 상기 제어부는 상기 변조된 조명광이 상기 디스플레이 화면 상에 스캔된 단색 스캔 영상의 위치가 서로 일치하도록 상기 단색 광원의 온오프 타이밍과 상기 광변조기의 영상 데이터 타이밍을 제어하는 것을 특징으로 하는 1 패널 디스플레이 장치에 관한 것이다. 디지털적으로 색별 광원의 빔 정렬 불일치를 보상하여 스크린 상에 구현되는 컬러 영상의 각 단색 영상의 위치가 서로 일치하게 되는 효과가 있다.
광변조기, 스캔, 빔, 정렬, 보상

Description

디스플레이 장치 및 빔 정렬 보상 방법{Display apparatus and method for compensating beam align}
본 발명은 디스플레이 장치에 관한 것으로, 보다 상세하게는 1차원 회절형 광변조기 상에 조사되는 빔 정렬의 불일치가 보상된 디스플레이 장치에 관한 것이다.
일반적으로, 광신호 처리는 많은 데이터 양과 실시간 처리가 불가능한 기존의 디지털 정보처리와는 달리 고속성과 병렬처리 능력, 대용량의 정보처리의 장점을 지니고 있으며, 공간 광변조이론을 이용하여 이진위상 필터 설계 및 제작, 광논리게이트, 광증폭기, 광소자, 광변조기에의 적용 등의 연구가 진행되고 있다. 이 중에서 광변조기는 광메모리, 광디스플레이, 프린터, 광인터커넥션, 그리고 홀로그램 등의 분야에 사용되며, 이를 이용한 광빔 스캐닝 장치의 연구 개발이 진행되어 오고 있다.
이러한 광빔 스캐닝 장치는 화상 형성장치 예를 들면, 레이저 프린터, LED 프린터, 전자 사진 복사기, 워드 프로세서 및 프로젝터 등에서 광빔을 스캐닝하여 광빔을 감광매체에 스폿(spot)시켜 화상 이미지를 결상시키는 역할을 한다.
최근에는 프로젝션(Projection) 텔레비젼 등이 개발됨에 따라 영상 디스플레이에 빔을 주사하는 수단으로서 광빔 스캐닝 장치가 이용되고 있다.
디스플레이의 일종인 스캐닝 디스플레이 장치에 사용되는 1차원 회절형 광변조기(one dimensional diffraction type optical modulator)는 일렬로 배열된 복수의 마이크로 미러로 구성되어 선형 영상에 상응하는 변조광을 출력한다. 이때 한 픽셀의 광강도를 표현하기 위해서 마이크로 미러는 구동 신호(예를 들어, 구동 전압)에 상응하여 그 변위가 바뀜으로써 변조광의 광량을 변화시킨다. 이러한 변조광이 스캐너를 통해 스크린 상에 스캔되어 2차원 또는 3차원의 디스플레이 화면을 구현한다.
즉, 1차원 회절형 광변조기 상에 광원으로부터 조명광이 라인 빔 형태로 조사된다. 컬러 디스플레이 화면의 구현을 위해 1차원 회절형 광변조기 상에 각 색별 조명광이 조사된다. 1차원 회절형 광변조기에 조명광이 입사되는 위치가 색별로 일치하지 않게 되는 경우, 즉 빔 정렬에 오차가 있는 경우에는 최종적으로 스크린 상에서 색별로 서로 다른 위치에 디스플레이 화면을 구현하게 된다.
광변조기 상에서 허용가능한 빔 정렬 불일치 오차는 통상적으로 10㎛ 미만이다. 따라서, 단색광원으로부터의 조명광을, 광 모듈 조립시 매우 정밀하게 일치시켜야 하며 이는 조립상 매우 어려운 공정이다. 그리고 단색광원으로부터 조명광의 빔 정렬이 불일치되어 틀어지는 경우에는 조립된 완제품이 불량이 되어 실패 비 용(failure cost)을 증가시키고 조립 장비의 높은 정밀도를 요구하며 조립 시간을 증가시키는 요인이 된다.
본 발명은 디지털적으로 단색광원의 빔 정렬 불일치를 보상할 수 있는 방법 및 이를 적용한 디스플레이 장치를 제공한다.
본 발명의 일 측면에 따르면, 서로 다른 파장을 가지는 조명광을 조사하는 복수의 단색광원; 상기 조명광을 순차적으로 입사받고, 제어 신호에 따라 변조하는 광변조기; 상기 변조된 조명광을 순차적으로 디스플레이 화면 상에 스캔하는 스캐너; 및 영상 신호를 입력받고, 상기 영상 신호에 상응하여 상기 단색광원, 상기 광변조기, 상기 스캐너를 제어하는 제어 신호를 출력하는 제어부를 포함하되, 상기 제어부는 상기 변조된 조명광이 상기 디스플레이 화면 상에 스캔된 단색 스캔 영상의 위치가 서로 일치하도록 상기 단색 광원의 온오프 타이밍과 상기 광변조기의 영상 데이터 타이밍을 제어하는 것을 특징으로 하는 1 패널 디스플레이 장치가 제공된다.
상기 온오프 타이밍과 상기 영상 데이터 타이밍은 동기화되어 있을 수 있다.
상기 스캐너는 단방향 또는 양방향 회전할 수 있다.
스캔 방향이 일측에서 타측이며, 상기 제어부는 상기 단색 스캔 영상이 상기 일측으로 편이된 경우 상기 온오프 타이밍과 상기 영상 데이터 타이밍이 늦도록 제어하고, 상기 단색 스캔 영상이 상기 타측으로 편이된 경우 상기 온오프 타이밍과 상기 영상 데이터 타이밍이 빠르도록 제어할 수 있다.
그리고 상기 단색 스캔 영상은 영상 정보가 표현되는 프레임 영역과, 상기 프레임 영역의 양측에 상기 스캐너의 기계적 구동 특성에 따른 오버 스캔 영역을 포함할 수 있다. 여기서, 상기 제어부는 상기 단색 스캔 영상의 편이 정도에 따라 상기 프레임 영역의 양측에 구비된 상기 오버 스캔 영역의 크기를 가변시킬 수 있다.
본 발명의 다른 측면에 따르면, 서로 다른 파장을 가지는 조명광을 조사하는 복수의 단색광원; 상기 조명광을 입사받고, 제어 신호에 따라 변조하는 복수의 광변조기; 상기 변조된 조명광을 합성하는 색합성광학계; 상기 색합성광학계에서 합성된 광을 디스플레이 화면 상에 스캔하는 스캐너; 및 영상 신호를 입력받고, 상기 영상 신호에 상응하여 상기 복수의 단색광원, 상기 복수의 광변조기, 상기 스캐너를 제어하는 제어 신호를 출력하는 제어부를 포함하되, 상기 제어부는 상기 변조된 조명광이 상기 디스플레이 화면 상에 스캔된 단색 스캔 영상의 위치가 서로 일치하도록 상기 단색 광원의 온오프 타이밍과 상기 광변조기의 영상 데이터 타이밍을 제어하는 것을 특징으로 하는 다 패널 디스플레이 장치가 제공된다.
본 발명의 또 다른 측면에 따르면, 복수의 단색광원으로부터 순차적으로 조사되고 광변조기에 의해 변조된 조명광이 디스플레이 화면 상에 스캔되는 디스플레이 장치에서의 빔 정렬을 보상하는 방법에 있어서, 상기 디스플레이 화면에 구현된 단색 스캔 영상의 편이 정도를 판단하는 단계; 및 상기 단색 스캔 영상의 스캔 방향과 상기 편이 정도를 기초로 하여 상기 단색 스캔 영상의 프레임 영상 출력 타이밍을 결정하는 단계를 포함하는 빔 정렬 보상 방법이 제공된다. .
상기 결정 단계는 스캔 방향이 일측에서 타측이며, 상기 단색 스캔 영상이 상기 일측으로 편이된 경우 상기 단색광원의 온오프 타이밍과 상기 광변조기의 영상 데이터 타이밍이 늦도록 제어하고, 상기 단색 스캔 영상이 상기 타측으로 편이된 경우 상기 온오프 타이밍과 상기 영상 데이터 타이밍이 빠르도록 제어할 수 있다.
한편, 빔 정렬 보상 방법은 컴퓨터에 의하여 수행될 수 있으며, 컴퓨터에서 실행하기 위한 프로그램을 기록하는 컴퓨터 판독 가능한 기록매체에 기록될 수 있다.
전술한 것 외의 다른 측면, 특징, 이점이 이하의 도면, 특허청구범위 및 발명의 상세한 설명으로부터 명확해질 것이다.
본 발명에 따른 빔 정렬 불일치 보상 방법 및 이를 적용한 디스플레이 장치는 디지털적으로 단색광원의 빔 정렬 불일치를 보상하여 스크린 상에 구현되는 컬러 영상의 각 단색 영상의 위치가 서로 일치하게 되어 광모듈 조립시 조립 정밀도를 높이지 않아도 되도록 한다. 그리고 광 모듈의 제작에 있어서 실패 비용과 조립 시간을 낮추고, 조립 장비의 정밀도를 완화시켜 양산성을 높이는 효과가 있다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
도 1은 본 발명의 일 실시예에 따른 1 패널(panel) 디스플레이 장치의 구성도이다. 1 패널 디스플레이 장치의 XY 평면 상에서의 배치(100a)와 YZ 평면 상에서의 배치(100b)가 도시되어 있다. 그리고 광원(110)(적색광원(110R), 녹색광원(110G), 청색광원(110B)), 미러(115G), 제1 다이크로익 미러(115R), 제2 다이크로익 미러(115B), 조명광학계(120), 광변조기(130), 이미징광학계(140), 스캐너(150), 디스플레이 화면(160), 제어부(170)가 도시되어 있다. 여기서, 패널이라 함은 조명광을 변조하는 광변조기(130)를 의미하며, 광변조기(130)가 1개 있으므로 1 패널 타입에 해당한다.
광원(110)은 광을 조사한다. 광원(110)은 레이저, LED, 레이저 다이오드 등일 수 있다.
일 실시예에 따르면, 광원(110)은 백색광을 조사한다. 이 경우 색분리부(미도시)를 두어 백색광을 소정 조건에 따라 적색광, 녹색광, 청색광으로 분리한다.
다른 실시예에 따르면, 광원(110)은 도 1에 도시된 것과 같이 적색광원(110R), 청색광원(110B), 녹색광원(110G)을 구분되어 빛의 삼원색인 적색광, 청색광, 녹색광을 조사한다. 여기서, 적색, 녹색, 청색은 하나의 실시예에 불과하며, 색광의 조합으로 다양한 컬러의 표현이 가능하다면 다른 색광의 조합도 가능하다.
광원(110)과 광변조기(130) 사이에 조명광학계(120)가 위치한다. 조명광학계(120)는 광원(110)에서 조사된 광의 방향을 조정하여 광변조기(130)에 광이 집중되도록 한다.
광원(110)이 도시된 것과 같이 적색광원(110R), 청색광원(110B), 녹색광 원(110G)으로 이루어진 경우, 각각의 단색광원들로부터 조사된 조명광들이 동일한 광경로를 따라 조명광학계(120)이 입사될 수 있도록 하기 위해서 단색광원 후단에 광경로를 변경시키는 미러(115G)와, 특정 파장의 광은 반사시키고 나머지 파장의 광은 통과시키는 다이크로익 미러(115R, 115B)가 구비된다.
도 1에 도시된 미러(115G)는 녹색광을 소정 각도로 반사시키며, 제1 다이크로익 미러(115R)는 적색광을 통과시키고 청색광과 녹색광을 소정 각도로 반사시키며, 제2 다이크로익 미러(115B)는 녹색광을 통과시키고 청색광을 소정 각도로 반사시킨다. 각각의 단색광원들이 배치되는 구조에 따라 미러와 다이크로익 미러의 특성은 변경될 수 있다.
광변조기(130)는 제어부(170)로부터의 제어 신호에 따라 광원(110)으로부터 조사된 조명광을 변조한 변조광을 출력한다. 광변조기(130)는 병렬로 배치된 복수의 마이크로 미러로 구성되며, 디스플레이 화면(160)에 구현되는 일 영상 프레임에서 수직 라인 또는 수평 라인에 해당하는 선형 영상에 대응된다. 즉, 광변조기(130)는 제어 신호에 따라 선형 영상의 각 픽셀에 해당하는 각 마이크로 미러의 변위를 변화시켜 각 픽셀마다 다양한 광량을 가지는 변조광을 출력한다.
마이크로 미러의 수는 선형 영상을 구성하는 픽셀의 수 이상이다. 하나의 마이크로 미러가 하나의 픽셀을 표현하거나 혹은 복수의 인접한 마이크로 미러들이 하나의 픽셀을 표현할 수 있다. 변조광은 추후 디스플레이 화면(160)에 구현될 선형 영상의 영상 정보(즉, 선형 영상을 구성하는 각 픽셀의 휘도값)가 반영된 라인빔(line beam)이며, 0차 회절광 또는 +n차 회절광, -n차 회절광(n은 자연수)일 수 있다.
구동 회로가 더 구비되어 제어부(170)로부터의 제어 신호에 상응하는 구동 신호(예를 들어, 구동 전압 또는 구동 전류 등)를 광변조기(130)의 각 마이크로 미러에 제공하여 변위를 변화시키도록 할 수도 있다.
광변조기(130)로부터 출력된 변조광은 이미징광학계(140)를 거쳐 스캐너(150)로 입사된다. 이미징광학계(140)는 하나 이상의 렌즈를 포함할 수 있으며, 필요에 따라 광변조기(130)의 크기와 스캐너(150)의 크기 비에 따라 배율을 조절하여 변조광을 전달한다. 또한, 이미징광학계(140)는 광변조기(130)로부터 출력되는 복수의 회절차수의 회절광 중 어느 하나의 회절광을 입력받는다.
스캐너(150)는 선형 영상에 상응하는 변조광을 반사시켜 디스플레이 화면(160) 상에 투사한다. 제어부(170)로부터의 제어 신호에 따라 스캐너(150)는 회전하며, 시간에 따라 변조광이 반사되어 디스플레이 화면(160) 상에 투사되는 위치를 변경시켜 소정 시간 동안 복수의 선형 영상이 투사되어 전체적으로 하나의 2차원 영상 또는 3차원 영상이 디스플레이되도록 한다. 스캐너(150)는 단방향 회전을 하는 폴리곤 미러(polygon mirror) 또는 회전바(rotating bar)이거나 양방향 회전을 하는 갈바노 미러(galvano mirror) 등일 수 있다.
제어부(170)는 입력되는 영상 정보에 따라 광원(110), 광변조기(130), 스캐너(150)를 제어하는 제어 신호를 생성하여 출력한다. 2차원 영상 또는 3차원 영상에 관한 영상 정보를 복수의 선형 영상에 관한 정보로 구분하고, 각각의 선형 영상에 관한 정보에 대하여 스캐너(150)의 구동각을 제어하여 디스플레이 화면(160) 상 에서 해당 선형 영상에 상응하는 위치에 광변조기(130)에 의해 변조된 변조광이 투사되도록 한다.
본 발명에 적용되는 광변조기(130)는 다음과 같다. 광변조기(130)는 광의 온오프를 제어하는 방식으로 또는 반사/회절을 이용하는 방식으로 광을 변조시킨다. 반사/회절을 이용하는 방식은 정전 방식과 압전 방식으로 나뉠 수 있으며, 이하에서는 압전 방식을 중심으로 설명하지만, 정전 방식에도 동일한 내용이 적용가능하다.
오픈 홀 구조의 광변조기에 포함되는 마이크로 미러가 도 2 및 3에 도시되어 있다. 도 2는 마이크로 미러를 복수 개 포함하는 광변조기의 입체사시도이고, 도 3는 도 2에 도시된 마이크로 미러를 복수 개 포함하는 광변조기의 평면도이다. 본 실시예에서는 하나의 마이크로 미러가 하나의 픽셀을 담당하는 것으로 가정한다.
광변조기(130)는 다수의 마이크로 미러(200-1, 200-2, … 200-m, 이하 200이라 통칭함)가 일렬로 배열되어 있으며, 각 마이크로 미러(200)는 기판(210), 절연층(220), 희생층(230), 리본 구조물(240) 및 압전체(250)를 포함한다.
기판(210) 상에 절연층(220)이 적층되어 있으며, 리본 구조물(240)이 절연층(220)과 일정 간격으로 이격되도록 하는 희생층(230)이 존재한다. 리본 구조물(240)은 입사된 조명광에 대하여 간섭을 일으켜서 신호를 광변조하는 역할을 한다. 리본 구조물(240)의 형태는 중심부에 복수의 오픈홀(240b)을 구비할 수도 있다. 여기서, 오픈홀(240b)은 마이크로 미러(200)의 길이 방향으로 긴 직사각형 형 태를 가진 것으로 도시되어 있으나, 원형, 타원형 등 다양한 형태가 가능하며, 또한 마이크로 미러(200)의 폭 방향으로 긴 직사각형 형태의 오픈홀 다수개가 평행 배열될 수도 있다.
또한, 압전체(250)는 하부 전극(252), 압전층(254), 상부 전극(256)으로 구성되며, 상부 및 하부 전극간의 전압차에 의해 발생하는 상하 또는 좌우 방향의 수축 또는 팽창 정도에 따라 리본 구조물(240)이 상하로 움직이도록 제어한다. 여기서, 반사층(220a)은 리본 구조물(240)에 형성된 오픈홀(240b)에 대응하여 형성되거나, 절연층(220) 전체에 형성될 수 있다.
예를 들면, 빛의 파장이 λ인 경우, 리본 구조물(240)에 형성된 상부 반사층(240a)과 절연층(220)에 형성된 하부 반사층(220a) 간의 간격이(2ℓ)λ/4(ℓ은 자연수)가 되도록 하는 제1 전압이 압전체(250)에 인가된다. 이 경우 0차 회절광의 경우 상부 반사층(240a)으로부터 반사된 광과 하부 반사층(220a)으로부터 반사된 광 사이의 전체 경로차는 ℓλ와 같아서 보강 간섭을 하여 변조광은 최대 휘도(즉, 최대 광량)를 가진다. 여기서, +1차 및 -1차 회절광의 경우 광은 상쇄 간섭에 의해 최소 휘도(즉, 최소 광량)를 가진다.
또한, 리본 구조물(240)에 형성된 상부 반사층(240a)과 절연층(220)에 형성된 하부 반사층(220a) 간의 간격이 (2ℓ+1)λ/4(ℓ은 자연수)가 되도록 하는 제2 전압이 압전체(250)에 인가된다. 이 경우 0차 회절광의 경우 상부 반사층(240a)으로부터 반사된 광과 하부 반사층(220a)으로부터 반사된 광 사이의 전체 경로차는 (2ℓ+1)λ/2와 같아서 상쇄 간섭을 하여 변조광은 최소 휘도(즉, 최소 광량)를 가 진다. 여기서, +1차 및 -1차 회절광의 경우 보강 간섭에 의해 광은 최대 휘도(즉, 최대 광량)를 가진다.
이러한 간섭의 결과, 마이크로 미러는 회절광의 광량을 조절하여 하나의 픽셀에 대한 신호를 빛에 실을 수 있다. 이상에서는, 리본 구조물(240)과 절연층(220) 간의 간격이 (2ℓ)λ/4 또는 (2ℓ+1)λ/4인 경우를 설명하였다. 하지만, 리본 구조물(240)과 절연층(220) 간의 간격을 조절하여 입사된 조명광이 회절, 반사됨으로써 간섭되는 광의 휘도를 조절할 수 있다. 0차 회절광, +n차 회절광, -n차 회절광(n은 자연수) 등이 변조광에 해당한다.
광변조기(130)는 제1 픽셀(pixel #1), 제2 픽셀(pixel #2), …, 제m 픽셀(pixel #m)을 각각 담당하는 m개의 마이크로 미러(200-1, 200-2, …, 200-m)로 구성된다. 광변조기(130)는 수직 라인(여기서, 수직 라인은 m개의 픽셀로 구성되는 것으로 가정함)의 선형 영상에 대한 영상 정보를 담당하며, 각 마이크로 미러(200-1, 200-2, …, 200-m)는 수직 라인을 구성하는 m개의 픽셀 중 하나씩의 픽셀을 담당한다. 따라서, 각각의 마이크로 미러에서 반사 및/또는 회절된 광은 이후 스캐너(150)에 의해 스크린에 2차원 또는 3차원 영상으로 투사된다.
도 2 및 3에 도시된 것과 같이 오픈홀이 구비되어 있어 하나의 마이크로 미러가 하나의 픽셀을 담당하게 되는 오픈홀 구조의 광변조기를 중심으로 설명하였지만, 이 외에도 다수의 마이크로 미러가 하나의 픽셀을 담당할 수도 있다. 또는 마이크로 미러에 오픈홀이 구비되어 있지 않고, 다수의 마이크로 미러 중 홀수번째 미러와 짝수번째 미러의 높이차에 따른 반사광의 경로차를 이용할 수도 있다. 이외 에도 다양한 형태의 광변조기가 본 발명에 적용가능함을 당업자는 이해해야 할 것이다.
도 4는 광변조기 상에 입사되는 조명광들의 빔 정렬이 불일치하는 경우를 나타낸 도면이고, 도 5는 조명광의 빔 정렬이 색별로 불일치함에 의한 영상 왜곡을 나타낸 도면이며, 도 6은 각 조명광의 빔 정렬이 색별로 불일치한 디스플레이 장치의 구성도이다.
광변조기(130)에는 제1 마이크로 미러(200-1)부터 제m 마이크로 미러(200-m)까지 m개의 마이크로 미러가 평행하게 배열되어 있다. 이러한 광변조기(130) 상에 적색광(400R)과, 녹색광(400G)과, 청색광(400B)이 입사된 후 상술한 것과 같은 각 마이크로 미러의 구동에 따라 선형 영상에 해당하는 영상 정보를 실은 회절광으로 출력된다.
이 경우 도 4에 도시된 것과 같이 적색광(400R)과, 녹색광(400G)과, 청색광(400B)이 광변조기(130) 상에 서로 일치되도록 입사되지 않음으로 인한 결과가 도 5에 도시되어 있다.
본 실시예에서는 적색, 녹색, 청색 순으로 광변조기(130)에 입사되는 것으로 가정한다. 광변조기(130)로부터 출력되는 변조된 적색광은 스캐너(150)에 의해 적색영상(500R)을 구현한다. 그리고 광변조기(130)로부터 출력되는 변조된 녹색광은 스캐너(150)에 의해 녹색영상(500G)을 구현한다. 광변조기(130)로부터 출력되는 변조된 청색광은 스캐너(150)에 의해 청색영상(500B)을 구현한다.
여기서, 광변조기(130) 상에 조명광들이 입사 위치가 불일치함으로 인해 디스플레이 화면(160) 상에서 가장 좌측의 수직 라인이 표시되어야 하는 기준선이 P0인 경우, 적색영상(500R)은 P1만큼 우측으로 치우져서 표시되고, 녹색영상(500G)은 P2만큼 우측으로 치우져서 표시된다. 이로 인해 디스플레이 화면(160)에 구현하고자 하였던 목표 컬러 영상(510)과 비교할 때 왜곡된 컬러 영상(520)이 구현되는 문제점이 있다.
도 6을 참조하면, 광변조기(130) 상의 A 지점에서 적색광, 녹색광, 청색광 중 적어도 하나가 빔 정렬이 불일치함으로 인해 스캐너(150)를 거쳐 디스플레이 화면(160)으로 투사되는 경로 상에서 적색영상(600R), 녹색영상(600G), 청색영상(600B) 중 적어도 하나가 기준선을 중심으로 시프트(shift)되어 왜곡된 컬러 영상(520)이 구현된다. 이러한 문제점을 해결하기 위해 종래에는 기구적으로 광원(110)으로부터 광변조기(130)로의 빔 정렬이 일치하도록 조정하였으나, 본 발명에서는 제어부(170)에서 디지털적으로 해결하고자 한다.
본 발명에서 디스플레이 장치는 1차원의 선형 영상을 스캔하여 2차원 또는 3차원 영상을 구현한다. 선형 영상은 수직 라인이며, 스캔은 좌우 방향으로 이루어지는 것으로 가정한다. 스캔시 가감속을 위해 일정량만큼 오버 스캔(over-scan)한다. 이러한 오버 스캔 구간을 이용하여 각 색별 광원의 온오프 타이밍 및 데이터 스트림의 출력 시간을 조정한다.
좌에서 우로 스캔하는 영상이 우측으로 편이되어 있는 경우 광원 및 데이터 스트림의 타이밍을 편이된 양이 보상될 만큼 빠르게 출력한다. 좌에서 우로 스캔하는 영상이 좌측으로 편이되어 있는 경우 광원 및 데이터 스트림의 타이밍을 편이된 양이 보상될 만큼 늦게 출력한다.
또한, 우에서 좌로 스캔하는 영상이 우측으로 편이되어 있는 경우 광원 및 데이터 스트림의 타이밍을 편이된 양이 보상될 만큼 늦게 출력한다. 우에서 좌로 스캔하는 영상이 좌측으로 편이되어 있는 경우 광원 및 데이터 스트림의 타이밍을 편이된 양이 보상될 만큼 빠르게 출력한다.
상술한 것과 같은 광원 및 데이터 스트림의 타이밍을 제어하기 위한 구성이 도 7에 도시되어 있다. 도 7은 본 발명의 일 실시예에 따른 1 패널 디스플레이 장치의 제어부(170)의 블록도이다. 광원(110), 광변조기(130), 스캐너(150), 광원 타이밍 제어 모듈(710), 광원 출력 제어 모듈(715), 영상 데이터 버퍼(720), 영상 데이터 타이밍 제어 모듈(725), 스캐너 제어 모듈(730)이 도시되어 있다.
제어부(170)는 타이밍 신호와 데이터 스트림을 입력받는다. 타이밍 신호는 빔 정렬이 제대로 된 경우 입력된 데이터 스트림이 디스플레이 화면(160) 상에 원하는 위치에 정상적으로 표시될 수 있도록 하는 광원 타이밍, 영상 데이터 타이밍, 스캐너 구동각 타이밍에 관한 정보를 포함한다. 데이터 스트림은 디스플레이 화면에 구현하고자 하는 컬러 영상 프레임에 대한 영상 정보를 포함한다. 일반적으로 제1 수평 라인에서 마지막 수평 라인의 순으로 데이터가 입력되며, 영상 데이터 버퍼(720)는 입력된 컬러 영상 프레임에 대한 영상 정보를 임시로 저장하고, 수직 라인 단위로 영상 데이터 스트림을 구분하여 출력한다.
광원 타이밍 제어 모듈(710)은 입력된 타이밍 신호와, 상술한 것과 같은 편이 정보를 이용하여 각 단색광원의 온오프 타이밍을 제어하는 광원 타이밍 신호를 생성한다. 그리고 광원 출력 제어 모듈(715)은 각 단색광원의 출력을 제어한다.
영상 데이터 타이밍 제어 모듈(725)은 입력된 타이밍 신호와, 상술한 것과 같은 편이 정보를 이용하여 수직 라인 단위로 구분된 영상 데이터 타이밍, 즉 광변조기(130)에서의 변조 타이밍을 제어한다.
여기서, 광원 온오프 타이밍과 영상 데이터 타이밍은 동기화되는 것이 바람직하다.
스캐너 제어 모듈(730)은 입력된 타이밍 신호에 따라 스캐너(150)가 미리 설정된 구동각과 구동속도를 가지며 단방향 또는 양방향 회전하도록 제어한다.
이하에서는 도 8 및 9를 참조하여 단방향 스캔의 경우 빔 정렬 보상 방법에 대하여, 도 10 및 11을 참조하여 양방향 스캔의 경우 빔 정렬 보상 방법에 대하여 설명하기로 한다.
도 8에는 본 발명의 일 실시예에 따른 1 패널 디스플레이 장치에서의 단방향 스캔의 경우 빔 정렬 보상 전과 보상 후의 스캔 영상이 도시되어 있다. 그리고 도 9에는 스캐너 구동 신호에 따른 빔 정렬 보상 전과 보상 후의 영상 데이터 출력 타이밍과 광원 온오프 타이밍 신호가 도시되어 있다.
빔 정렬의 기준이 되는 기준 스캔 영상(800)은 색별 스캔 영상의 편이 정보를 제공한다. 적색, 녹색, 청색 순으로 스캔되며, 좌에서 우로 스캔되는 것을 가정한다. 단색 스캔 영상은 영상 정보가 표현되는 프레임 영역과, 프레임 영역의 양측 에 스캐너의 기계적 구동 특성에 따른 오버 스캔 영역을 포함한다.
적색 스캔 영상(810R)은 좌측 오버 스캔 영역(ER1), 프레임 영역(IR), 우측 오버 스캔 영역(ER2)을 포함한다. 프레임 영역(IR)은 기준 스캔 영상(800)을 기준으로 우측으로 편이되어 있다. 이 경우 빔 정렬 보상을 위해서는 프레임 영역(IR)이 AR만큼 빠르게 출력되어야 한다.
녹색 스캔 영상(810G)은 좌측 오버 스캔 영역(EG1), 프레임 영역(IG), 우측 오버 스캔 영역(EG2)을 포함한다. 프레임 영역(IG)은 기준 스캔 영상(800)을 기준으로 좌측으로 편이되어 있다. 이 경우 빔 정렬 보상을 위해서는 프레임 영역(IG)이 AG만큼 늦게 출력되어야 한다.
청색 스캔 영상(810B)은 좌측 오버 스캔 영역(EB1), 프레임 영역(IB), 우측 오버 스캔 영역(EB2)을 포함한다. 프레임 영역(IB)은 기준 스캔 영상(800) 내에 정상적으로 포함되어 있다. 이는 청색광원으로부터 조사되는 청색광은 광변조기 상에 빔 정렬이 제대로 되어 있음을 나타낸다.
즉, 단색 스캔 영상의 편이 정도에 따라 프레임 영역의 양측에 구비된 오버 스캔 영역의 크기를 가변시킴으로써 빔 정렬을 보상한다.
적색 스캔 영상(810R), 녹색 스캔 영상(810G), 청색 스캔 영상(810B)이 한번씩 스캔됨에 따라 하나의 컬러 영상 프레임이 완성되며, 이후 다시 적색 스캔 영상(820R)이 스캔되어 다음 컬러 영상 프레임을 구현하게 된다.
도 9를 참조하면, 스캐너 구동 신호(910)에 따라 일정 시간이 지연된 후 스캐너의 실제 구동(920)이 이루어진다. 스캐너가 1회 구동하는 경우 스캔 시작 지점 와 스캔 종료 지점에서 스캐너의 가감속을 위한 오버 스캔 영역이 존재한다.
빔 정렬 보상 전의 기준 영상 데이터 출력과 각 단색광원들의 기준 광원 온오프 신호는 스캐너의 실제 구동(920) 그래프의 중심에 위치한다. 여기서, 기준 영상 데이터 출력이 적색인 경우 적색광원만이 온되고, 녹색인 경우 녹색광원만이 온되며, 청색인 경우 청색광원만이 온된다.
여기서, 좌에서 우로 스캔하는 경우를 가정할 때 도 8에 도시된 것과 같이 적색 스캔 영상(810R)은 우측으로 편이되어 있는 바, 보상 영상 데이터 출력 시점은 기준 영상 데이터 출력 시점보다 빠르며(930R 참조), 적색광원의 온 신호 역시 기준 신호보다 빠르게 출력된다(931R 참조). 그리고 녹색 스캔 영상(810G)은 좌측으로 편이되어 있는 바, 보상 영상 데이터 출력 시점은 기준 영상 데이터 출력 시점보다 늦으며(930G 참조), 녹색광원의 온 신호 역시 기준 신호보다 늦게 출력된다(931G 참조). 청색 스캔 영상(810B)은 편이되지 않았으므로, 보상 영상 데이터 출력 시점이 기준 영상 데이터 출력 시점과 동일하며(930B 참조), 청색광원의 온 신호 역시 기준 신호와 동일하게 출력된다(931B 참조).
이후 다음 프레임에서도 적색 스캔 영상(820R)은 우측으로 편이되어 있는 바, 보상 영상 데이터 출력 시점은 기준 영상 데이터 출력 시점보다 빠르며(935R 참조), 적색광원의 온 신호 역시 기준 신호보다 빠르게 출력된다(936R 참조).
도 10에는 본 발명의 일 실시예에 따른 1 패널 디스플레이 장치에서의 양방향 스캔의 경우 빔 정렬 보상 전과 보상 후의 스캔 영상이 도시되어 있다. 그리고 도 11에는 스캐너 구동 신호에 따른 빔 정렬 보상 전과 보상 후의 영상 데이터 출력 타이밍과 광원 온오프 타이밍 신호가 도시되어 있다.
빔 정렬의 기준이 되는 기준 스캔 영상(1000)은 색별 스캔 영상의 편이 정보를 제공한다. 적색, 녹색, 청색 순으로 스캔되며, 좌→우, 우→좌 순으로 스캔되는 것을 가정한다.
좌에서 우로 스캔되는 적색 스캔 영상(1010R)은 좌측 오버 스캔 영역(ER1), 프레임 영역(IR), 우측 오버 스캔 영역(ER2)을 포함한다. 프레임 영역(IR)은 기준 스캔 영상(1000)을 기준으로 우측으로 편이되어 있다. 이 경우 빔 정렬 보상을 위해서는 프레임 영역(IR)이 AR만큼 빠르게 출력되어야 한다.
우에서 좌로 스캔되는 녹색 스캔 영상(1010G)은 좌측 오버 스캔 영역(EG1), 프레임 영역(IG), 우측 오버 스캔 영역(EG2)을 포함한다. 프레임 영역(IG)은 기준 스캔 영상(1000)을 기준으로 좌측으로 편이되어 있다. 이 경우 빔 정렬 보상을 위해서는 프레임 영역(IG)이 AG만큼 빠르게 출력되어야 한다.
좌에서 우로 스캔되는 청색 스캔 영상(1010B)은 좌측 오버 스캔 영역(EB1), 프레임 영역(IB), 우측 오버 스캔 영역(EB2)을 포함한다. 프레임 영역(IB)은 기준 스캔 영상(1000) 내에 정상적으로 포함되어 있다. 이는 청색광원으로부터 조사되는 청색광은 광변조기 상에 빔 정렬이 제대로 되어 있음을 나타낸다.
적색 스캔 영상(1010R), 녹색 스캔 영상(1010G), 청색 스캔 영상(1010B)이 한번씩 스캔됨에 따라 하나의 컬러 영상 프레임이 완성되며, 이후 다시 적색 스캔 영상(1020R)이 스캔되어 다음 컬러 영상 프레임을 구현하게 된다.
다음 프레임의 적색 스캔 영상(1020R)은 우에서 좌로 스캔되며, 적색 스캔 영상(1020R)이 기준 스캔 영상(1000)을 기준으로 우측으로 편이되어 있다. 이 경우 이전 프레임과 다르게 빔 정렬 보상을 위해서는 프레임 영역(IR)이 AR만큼 늦게 출력되어야 한다. 이는 스캔 방향이 반대로 바뀌었기 때문이다.
도 11을 참조하면, 스캐너 구동 신호(1110)에 따라 일정 시간이 지연된 후 스캐너의 실제 구동(1120)이 이루어진다. 스캐너가 1회 구동하는 경우 스캔 시작 지점와 스캔 종료 지점에서 스캐너의 가감속을 위한 오버 스캔 영역이 존재한다.
빔 정렬 보상 전의 기준 영상 데이터 출력과 각 단색광원들의 기준 광원 온오프 신호는 스캐너의 실제 구동(1120) 그래프의 중심에 위치한다. 여기서, 기준 영상 데이터 출력이 적색인 경우 적색광원만이 온되고, 녹색인 경우 녹색광원만이 온되며, 청색인 경우 청색광원만이 온된다.
여기서, 도 10에 도시된 것과 같이 좌에서 우로 스캔되는 적색 스캔 영상(810R)은 우측으로 편이되어 있는 바, 보상 영상 데이터 출력 시점은 기준 영상 데이터 출력 시점보다 빠르며(1130R 참조), 적색광원의 온 신호 역시 기준 신호보다 빠르게 출력된다(1131R 참조).
그리고 우에서 좌로 스캔되는 녹색 스캔 영상(810G)은 좌측으로 편이되어 있는 바, 보상 영상 데이터 출력 시점은 기준 영상 데이터 출력 시점보다 빠르며(1130G 참조), 녹색광원의 온 신호 역시 기준 신호보다 빠르게 출력된다(1131G 참조).
그리고 좌에서 우로 스캔되는 청색 스캔 영상(810B)은 편이되지 않았으므로, 보상 영상 데이터 출력 시점이 기준 영상 데이터 출력 시점과 동일하며(1130B 참조), 청색광원의 온 신호 역시 기준 신호와 동일하게 출력된다(1131B 참조).
이후 다음 프레임에서 이전 프레임과 다르게 우에서 좌로 스캔되는 적색 스캔 영상(820R)은 우측으로 편이되어 있는 바, 보상 영상 데이터 출력 시점은 기준 영상 데이터 출력 시점보다 늦으며(1135R 참조), 적색광원의 온 신호 역시 기준 신호보다 늦게 출력된다(1136R 참조).
이상에서는 1 패널 디스플레이 장치에서의 빔 정렬 보상 방법에 대하여 설명하였으며, 이하에서는 3 패널 디스플레이 장치에서의 빔 정렬 보상 방법에 대하여 상세히 설명하기로 한다.
도 12는 본 발명의 다른 실시예에 따른 3 패널 디스플레이 장치의 구성도이다.
광원(110)(적색광원(110R), 녹색광원(110G), 청색광원(110B)), 3개의 조명광학계(120R, 120G, 120B), 3개의 광변조기(130R, 130G, 130B), 색합성광학계(1210), 이미징광학계(140), 스캐너(150), 디스플레이 화면(160), 제어부(170)가 도시되어 있다. 본 실시예의 이해와 설명의 편의를 위해 도 1에 도시된 1 패널 디스플레이 장치와 동일/유사한 기능을 하는 구성요소에 대해서는 상세한 설명을 생략하고 차이점을 중심으로 설명하기로 한다.
광변조기(130)가 1개 있는 1 패널 타입과 달리 3 패널 디스플레이 장치는 3개의 광변조기(130R, 130G, 130B)가 존재한다. 즉, 각 색상마다 광원(110), 조명광학계(120), 광변조기(130)가 별도로 구비된다.
1 패널 디스플레이 장치가 동시에 둘 이상의 색상에 대한 영상 정보를 표현하지 못하고, 적색, 녹색, 청색에 대해서 각각 순차적으로 한번씩 디스플레이 화면에 스캔 영상을 표시하여 시간 평균적으로 컬러 영상이 구현되도록 한다.
이에 비해 3 패널 디스플레이 장치는 동시에 3가지 색상에 대한 영상 정보를 표현할 수 있으며, 3개의 광변조기(130R, 130G, 130B)에서 변조된 각 단색광들은 색합성광학계(1210)에서 합성되며, 이미징광학계(140), 스캐너(150)를 거쳐 디스플레이 화면(160)에 스캔된다.
이러한 3 패널 디스플레이 장치에서도 각 광변조기(130R, 130G, 130B)로 입사되는 조명광들이 정렬되지 않는다면 색합성광학계(1210)에서 합성이 되지 않고, 최종적으로 디스플레이되는 컬러 영상이 왜곡되게 된다.
도 13에는 본 발명의 다른 실시예에 따른 3 패널 디스플레이 장치에서의 단방향 스캔시 빔 정렬 보상 전과 보상 후의 스캔 영상이 도시되어 있고, 도 14에는 스캐너 구동 신호에 따른 빔 정렬 보상 전과 보상 후의 영상 데이터 출력 타이밍과 광원 온오프 타이밍 신호가 도시되어 있다.
빔 정렬의 기준이 되는 기준 스캔 영상(1300)은 색별 스캔 영상의 편이 정보를 제공한다. 적색, 녹색, 청색은 동시에 스캔되며, 좌에서 우로 스캔되는 것을 가정한다.
적색 스캔 영상(1310R)은 좌측 오버 스캔 영역(ER1), 프레임 영역(IR), 우측 오버 스캔 영역(ER2)을 포함한다. 프레임 영역(IR)은 기준 스캔 영상(1300)을 기준으로 우측으로 편이되어 있다. 이 경우 빔 정렬 보상을 위해서는 프레임 영역(IR) 이 AR만큼 빠르게 출력되어야 한다.
녹색 스캔 영상(1310G)은 좌측 오버 스캔 영역(EG1), 프레임 영역(IG), 우측 오버 스캔 영역(EG2)을 포함한다. 프레임 영역(IG)은 기준 스캔 영상(1300)을 기준으로 좌측으로 편이되어 있다. 이 경우 빔 정렬 보상을 위해서는 프레임 영역(IG)이 AG만큼 늦게 출력되어야 한다.
청색 스캔 영상(1310B)은 좌측 오버 스캔 영역(EB1), 프레임 영역(IB), 우측 오버 스캔 영역(EB2)을 포함한다. 프레임 영역(IB)은 기준 스캔 영상(1300) 내에 정상적으로 포함되어 있다. 이는 청색광원으로부터 조사되는 청색광은 광변조기(130B) 상에 빔 정렬이 제대로 되어 있음을 나타낸다.
적색 스캔 영상(1310R), 녹색 스캔 영상(1310G), 청색 스캔 영상(1310B)이 동시에 스캔되어 하나의 컬러 영상 프레임이 완성된다.
도 14를 참조하면, 스캐너 구동 신호(1410)에 따라 일정 시간이 지연된 후 스캐너의 실제 구동(1420)이 이루어진다. 스캐너가 1회 구동하는 경우 스캔 시작 지점와 스캔 종료 지점에서 스캐너의 가감속을 위한 오버 스캔 영역이 존재한다.
빔 정렬 보상 전의 기준 영상 데이터 출력과 각 단색광원들의 기준 광원 온오프 신호는 스캐너의 실제 구동(1420) 그래프의 중심에 위치한다. 여기서, 기준 영상 데이터 출력이 적색인 경우 적색광원만이 온되고, 녹색인 경우 녹색광원만이 온되며, 청색인 경우 청색광원만이 온된다.
여기서, 좌에서 우로 스캔하는 경우를 가정할 때 도 13에 도시된 것과 같이 적색 스캔 영상(1310R)은 우측으로 편이되어 있는 바, 보상 영상 데이터 출력 시점 은 기준 영상 데이터 출력 시점보다 빠르며(1430R 참조), 적색광원의 온 신호 역시 기준 신호보다 빠르게 출력된다(1431R 참조). 그리고 녹색 스캔 영상(1310G)은 좌측으로 편이되어 있는 바, 보상 영상 데이터 출력 시점은 기준 영상 데이터 출력 시점보다 늦으며(1430G 참조), 녹색광원의 온 신호 역시 기준 신호보다 늦게 출력된다(1431G 참조). 청색 스캔 영상(1310B)은 편이되지 않았으므로, 보상 영상 데이터 출력 시점이 기준 영상 데이터 출력 시점과 동일하며(1430B 참조), 청색광원의 온 신호 역시 기준 신호와 동일하게 출력된다(1431B 참조).
도 15에는 본 발명의 다른 실시예에 따른 3 패널 디스플레이 장치에서의 양방향 스캔의 경우 빔 정렬 보상 전과 보상 후의 스캔 영상이 도시되어 있다. 그리고 도 16에는 스캐너 구동 신호에 따른 빔 정렬 보상 전과 보상 후의 영상 데이터 출력 타이밍과 광원 온오프 타이밍 신호가 도시되어 있다.
빔 정렬의 기준이 되는 기준 스캔 영상(1500-N, 1500-(N+1))은 프레임별로 색별 스캔 영상의 편이 정보를 제공한다. 적색, 녹색, 청색이 동시에 스캔되며, 각 프레임마다 좌→우, 우→좌 순으로 스캔되는 것을 가정한다.
N 번째 프레임에서는 좌에서 우로 스캔된다.
적색 스캔 영상(1510R)에서 프레임 영역(IR)은 기준 스캔 영상(1500-N)을 기준으로 우측으로 편이되어 있다. 이 경우 빔 정렬 보상을 위해서는 프레임 영역(IR)이 AR만큼 빠르게 출력되어야 한다.
녹색 스캔 영상(1510G)에서 프레임 영역(IG)은 기준 스캔 영상(1500-N)을 기준으로 좌측으로 편이되어 있다. 이 경우 빔 정렬 보상을 위해서는 프레임 영 역(IG)이 AG만큼 늦게 출력되어야 한다.
청색 스캔 영상(1510B)에서 프레임 영역(IB)은 기준 스캔 영상(1500-N) 내에 정상적으로 포함되어 있다. 이는 청색광원으로부터 조사되는 청색광은 광변조기(130B) 상에 빔 정렬이 제대로 되어 있음을 나타낸다.
적색 스캔 영상(1510R), 녹색 스캔 영상(1510G), 청색 스캔 영상(1510B)이 동시에 스캔됨에 따라 N 번째 컬러 영상 프레임이 완성된다.
N+1 번째 프레임에서는 우에서 좌로 스캔된다.
적색 스캔 영상(1520R)에서 프레임 영역(IR)은 기준 스캔 영상(1500-(N+1))을 기준으로 우측으로 편이되어 있다. 이 경우 빔 정렬 보상을 위해서는 프레임 영역(IR)이 AR만큼 늦게 출력되어야 한다. 이는 스캔 방향이 반대로 바뀌었기 때문이다.
녹색 스캔 영상(1520G)에서 프레임 영역(IG)은 기준 스캔 영상(1500-(N+1))을 기준으로 좌측으로 편이되어 있다. 이 경우 빔 정렬 보상을 위해서는 프레임 영역(IG)이 AG만큼 빠르게 출력되어야 한다. 이는 스캔 방향이 반대로 바뀌었기 때문이다.
청색 스캔 영상(1520B)에서 프레임 영역(IB)은 기준 스캔 영상(1500-(N+1)) 내에 정상적으로 포함되어 있다. 이는 청색광원으로부터 조사되는 청색광은 광변조기(130B) 상에 빔 정렬이 제대로 되어 있음을 나타낸다.
적색 스캔 영상(1520R), 녹색 스캔 영상(1520G), 청색 스캔 영상(1520B)이 동시에 스캔됨에 따라 N+1 번째 컬러 영상 프레임이 완성된다.
도 16을 참조하면, 스캐너 구동 신호(1610)에 따라 일정 시간이 지연된 후 스캐너의 실제 구동(1620)이 이루어진다. 스캐너가 1회 구동하는 경우 스캔 시작 지점와 스캔 종료 지점에서 스캐너의 가감속을 위한 오버 스캔 영역이 존재한다.
빔 정렬 보상 전의 기준 영상 데이터 출력과 각 단색광원들의 기준 광원 온오프 신호는 스캐너의 실제 구동(1620) 그래프의 중심에 위치한다. 여기서, 기준 영상 데이터 출력이 적색인 경우 적색광원만이 온되고, 녹색인 경우 녹색광원만이 온되며, 청색인 경우 청색광원만이 온된다.
여기서, 도 15에 도시된 것과 같이 N 번째 프레임(좌→우 스캔)의 적색 스캔 영상(1510R)은 우측으로 편이되어 있는 바, 보상 영상 데이터 출력 시점은 기준 영상 데이터 출력 시점보다 빠르며(1630R 참조), 적색광원의 온 신호 역시 기준 신호보다 빠르게 출력된다(1631R 참조). 그리고 녹색 스캔 영상(1510G)은 좌측으로 편이되어 있는 바, 보상 영상 데이터 출력 시점은 기준 영상 데이터 출력 시점보다 늦으며(1630G 참조), 녹색광원의 온 신호 역시 기준 신호보다 늦게 출력된다(1631G 참조). 그리고 청색 스캔 영상(1510B)은 편이되지 않았으므로, 보상 영상 데이터 출력 시점이 기준 영상 데이터 출력 시점과 동일하며(1630B 참조), 청색광원의 온 신호 역시 기준 신호와 동일하게 출력된다(1631B 참조).
N+1 번째 프레임(우→좌 스캔)의 적색 스캔 영상(1520R)은 우측으로 편이되어 있는 바, 보상 영상 데이터 출력 시점은 기준 영상 데이터 출력 시점보다 늦으며(1635R 참조), 적색광원의 온 신호 역시 기준 신호보다 늦게 출력된다(1636R 참조). 그리고 녹색 스캔 영상(1520G)은 좌측으로 편이되어 있는 바, 보상 영상 데이 터 출력 시점은 기준 영상 데이터 출력 시점보다 빠르며(1635G 참조), 녹색광원의 온 신호 역시 기준 신호보다 빠르게 출력된다(1636G 참조). 그리고 청색 스캔 영상(1520B)은 편이되지 않았으므로, 보상 영상 데이터 출력 시점이 기준 영상 데이터 출력 시점과 동일하며(1635B 참조), 청색광원의 온 신호 역시 기준 신호와 동일하게 출력된다(1636B 참조).
이상에서는 3 패널 디스플레이 장치에서의 빔 정렬 보상 방법에 대하여 설명하였다.
본 발명의 또 다른 실시예에 따르면 2 패널 디스플레이 장치에도 상술한 빔 정렬 보상 방법이 적용가능하다. 2 패널 디스플레이 장치의 경우 하나의 패널에는 1색의 조명광만이 입사되고, 다른 하나의 패널에는 다른 2색의 조명광이 입사된다. 따라서, 2색의 조명광이 입사되는 패널에는 상술한 1 패널 디스플레이 장치에서의 빔 정렬 보상 방법을 변형하여 적용하고, 2개의 패널에는 3 패널 디스플레이 장치에서의 빔 정렬 보상 방법을 변형하여 적용하면 된다.
한편, 본 발명에서 기준 스캔 영상은 디스플레이 화면 상에 그 위치가 미리 설정되어 있어 적색, 녹색, 청색에 의한 스캔 영상이 각각 기준 스캔 영상과 그 위치가 일치하도록 보상할 수 있다. 또는 적색, 녹색, 청색 중 어느 하나를 기준으로 하고 나머지 색들에 의한 스캔 영상을 기준이 되는 색에 의한 스캔 영상과 일치하도록 보상하는 것도 가능하다.
한편, 상술한 빔 정렬 보상 방법은 컴퓨터 프로그램으로 작성 가능하다. 상기 프로그램을 구성하는 코드들 및 코드 세그먼트들은 당해 분야의 컴퓨터 프로그 래머에 의하여 용이하게 추론될 수 있다. 또한, 상기 프로그램은 컴퓨터가 읽을 수 있는 정보저장매체(computer readable media)에 저장되고, 컴퓨터에 의하여 읽혀지고 실행됨으로써 문서 탐색 서비스 제공 방법을 구현한다. 상기 정보저장매체는 자기 기록매체, 광 기록매체, 및 캐리어 웨이브 매체를 포함한다.
상기에서는 본 발명에 대하여 그 실시예를 중심으로 설명하였지만, 해당 기술 분야에서 통상의 지식을 가진 자라면 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
도 1은 본 발명의 일 실시예에 따른 1 패널(panel) 디스플레이 장치의 구성도.
도 2는 마이크로 미러를 복수 개 포함하는 광변조기의 입체사시도.
도 3는 도 2에 도시된 마이크로 미러를 복수 개 포함하는 광변조기의 평면도.
도 4는 광변조기 상에 입사되는 조명광들의 빔 정렬이 불일치하는 경우를 나타낸 도면.
도 5는 조명광의 빔 정렬이 색별로 불일치함에 의한 영상 왜곡을 나타낸 도면.
도 6은 각 조명광의 빔 정렬이 색별로 불일치한 디스플레이 장치의 구성도.
도 7은 본 발명의 일 실시예에 따른 1 패널 디스플레이 장치의 제어부의 블록도.
도 8은 본 발명의 일 실시예에 따른 1 패널 디스플레이 장치에서의 단방향 스캔의 경우 빔 정렬 보상 전과 보상 후의 스캔 영상.
도 9는 스캐너 구동 신호에 따른 빔 정렬 보상 전과 보상 후의 영상 데이터 출력 타이밍과 광원 온오프 타이밍 신호.
도 10은 본 발명의 일 실시예에 따른 1 패널 디스플레이 장치에서의 양방향 스캔의 경우 빔 정렬 보상 전과 보상 후의 스캔 영상.
도 11은 스캐너 구동 신호에 따른 빔 정렬 보상 전과 보상 후의 영상 데이터 출력 타이밍과 광원 온오프 타이밍 신호.
도 12는 본 발명의 다른 실시예에 따른 3 패널 디스플레이 장치의 구성도.
도 13은 본 발명의 다른 실시예에 따른 3 패널 디스플레이 장치에서의 단방향 스캔시 빔 정렬 보상 전과 보상 후의 스캔 영상.
도 14에는 스캐너 구동 신호에 따른 빔 정렬 보상 전과 보상 후의 영상 데이터 출력 타이밍과 광원 온오프 타이밍 신호.
도 15는 본 발명의 다른 실시예에 따른 3 패널 디스플레이 장치에서의 양방향 스캔의 경우 빔 정렬 보상 전과 보상 후의 스캔 영상.
도 16은 스캐너 구동 신호에 따른 빔 정렬 보상 전과 보상 후의 영상 데이터 출력 타이밍과 광원 온오프 타이밍 신호.
<도면의 주요부분에 대한 부호의 설명>
110: 광원 110R: 적색광원
110G: 녹색광원 110B: 청색광원
120, 120R, 120G, 120B: 조명광학계
130, 130R, 130G, 130B: 광변조기
140: 이미징광학계 150: 스캐너
160: 디스플레이 화면 170: 제어부
1210: 색합성광학계

Claims (17)

  1. 서로 다른 파장을 가지는 조명광을 조사하는 복수의 단색광원;
    상기 조명광을 순차적으로 입사받고, 제어 신호에 따라 변조하는 광변조기;
    상기 변조된 조명광을 순차적으로 디스플레이 화면 상에 스캔하는 스캐너; 및
    영상 신호를 입력받고, 상기 영상 신호에 상응하여 상기 단색광원, 상기 광변조기, 상기 스캐너를 제어하는 제어 신호를 출력하는 제어부를 포함하되,
    상기 제어부는 상기 변조된 조명광이 상기 디스플레이 화면 상에 스캔된 단색 스캔 영상의 위치가 서로 일치하도록 상기 단색 광원의 온오프 타이밍과 상기 광변조기의 영상 데이터 타이밍을 제어하는 것을 특징으로 하는 1 패널 디스플레이 장치.
  2. 제1항에 있어서,
    상기 온오프 타이밍과 상기 영상 데이터 타이밍은 동기화된 것을 특징으로 하는 1 패널 디스플레이 장치.
  3. 제1항에 있어서,
    상기 스캐너는 단방향 회전하는 것을 특징으로 하는 1 패널 디스플레이 장치.
  4. 제1항에 있어서,
    상기 스캐너는 양방향 회전하는 것을 특징으로 하는 1 패널 디스플레이 장치.
  5. 제1항에 있어서,
    스캔 방향이 일측에서 타측이며,
    상기 제어부는 상기 단색 스캔 영상이 상기 일측으로 편이된 경우 상기 온오프 타이밍과 상기 영상 데이터 타이밍이 늦도록 제어하고, 상기 단색 스캔 영상이 상기 타측으로 편이된 경우 상기 온오프 타이밍과 상기 영상 데이터 타이밍이 빠르도록 제어하는 것을 특징으로 하는 1 패널 디스플레이 장치.
  6. 제1항에 있어서,
    상기 단색 스캔 영상은 영상 정보가 표현되는 프레임 영역과, 상기 프레임 영역의 양측에 상기 스캐너의 기계적 구동 특성에 따른 오버 스캔 영역을 포함하는 것을 특징으로 하는 1 패널 디스플레이 장치.
  7. 제6항에 있어서,
    상기 제어부는 상기 단색 스캔 영상의 편이 정도에 따라 상기 프레임 영역의 양측에 구비된 상기 오버 스캔 영역의 크기를 가변시키는 것을 특징으로 하는 1 패널 디스플레이 장치.
  8. 서로 다른 파장을 가지는 조명광을 조사하는 복수의 단색광원;
    상기 조명광을 입사받고, 제어 신호에 따라 변조하는 복수의 광변조기;
    상기 변조된 조명광을 합성하는 색합성광학계;
    상기 색합성광학계에서 합성된 광을 디스플레이 화면 상에 스캔하는 스캐너; 및
    영상 신호를 입력받고, 상기 영상 신호에 상응하여 상기 복수의 단색광원, 상기 복수의 광변조기, 상기 스캐너를 제어하는 제어 신호를 출력하는 제어부를 포함하되,
    상기 제어부는 상기 변조된 조명광이 상기 디스플레이 화면 상에 스캔된 단색 스캔 영상의 위치가 서로 일치하도록 상기 단색 광원의 온오프 타이밍과 상기 광변조기의 영상 데이터 타이밍을 제어하는 것을 특징으로 하는 다 패널 디스플레 이 장치.
  9. 제8항에 있어서,
    상기 온오프 타이밍과 상기 영상 데이터 타이밍은 동기화된 것을 특징으로 하는 다 패널 디스플레이 장치.
  10. 제8항에 있어서,
    상기 스캐너는 단방향 회전하는 것을 특징으로 하는 다 패널 디스플레이 장치.
  11. 제8항에 있어서,
    상기 스캐너는 양방향 회전하는 것을 특징으로 하는 다 패널 디스플레이 장치.
  12. 제8항에 있어서,
    스캔 방향이 일측에서 타측이며,
    상기 제어부는 상기 단색 스캔 영상이 상기 일측으로 편이된 경우 상기 온오프 타이밍과 상기 영상 데이터 타이밍이 늦도록 제어하고, 상기 단색 스캔 영상이 상기 타측으로 편이된 경우 상기 온오프 타이밍과 상기 영상 데이터 타이밍이 빠르도록 제어하는 것을 특징으로 하는 다 패널 디스플레이 장치.
  13. 제8항에 있어서,
    상기 단색 스캔 영상은 영상 정보가 표현되는 프레임 영역과, 상기 프레임 영역의 양측에 상기 스캐너의 기계적 구동 특성에 따른 오버 스캔 영역을 포함하는 것을 특징으로 하는 다 패널 디스플레이 장치.
  14. 제13항에 있어서,
    상기 제어부는 상기 단색 스캔 영상의 편이 정도에 따라 상기 프레임 영역의 양측에 구비된 상기 오버 스캔 영역의 크기를 가변시키는 것을 특징으로 하는 다 패널 디스플레이 장치.
  15. 복수의 단색광원으로부터 순차적으로 조사되고 광변조기에 의해 변조된 조명광이 디스플레이 화면 상에 스캔되는 디스플레이 장치에서의 빔 정렬을 보상하는 방법에 있어서,
    상기 디스플레이 화면에 구현된 단색 스캔 영상의 편이 정도를 판단하는 단계;
    상기 단색 스캔 영상의 스캔 방향과 상기 편이 정도를 기초로 하여 상기 단색 스캔 영상의 프레임 영상 출력 타이밍을 결정하는 단계를 포함하는 빔 정렬 보상 방법.
  16. 제15항에 있어서,
    상기 결정 단계는 스캔 방향이 일측에서 타측이며,
    상기 단색 스캔 영상이 상기 일측으로 편이된 경우 상기 단색광원의 온오프 타이밍과 상기 광변조기의 영상 데이터 타이밍이 늦도록 제어하고,
    상기 단색 스캔 영상이 상기 타측으로 편이된 경우 상기 온오프 타이밍과 상기 영상 데이터 타이밍이 빠르도록 제어하는 것을 특징으로 하는 빔 정렬 보상 방법.
  17. 제15항 또는 제16항 중 어느 한 항의 방법을 컴퓨터에서 실행하기 위한 프로그램을 기록하는 컴퓨터 판독 가능한 기록매체.
KR1020070097154A 2007-09-27 2007-09-27 디스플레이 장치 및 빔 정렬 보상 방법 KR20090032171A (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020070097154A KR20090032171A (ko) 2007-09-27 2007-09-27 디스플레이 장치 및 빔 정렬 보상 방법
US12/208,306 US20090085829A1 (en) 2007-09-27 2008-09-10 Display apparatus and method for compensating beam alignment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070097154A KR20090032171A (ko) 2007-09-27 2007-09-27 디스플레이 장치 및 빔 정렬 보상 방법

Publications (1)

Publication Number Publication Date
KR20090032171A true KR20090032171A (ko) 2009-04-01

Family

ID=40507634

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070097154A KR20090032171A (ko) 2007-09-27 2007-09-27 디스플레이 장치 및 빔 정렬 보상 방법

Country Status (2)

Country Link
US (1) US20090085829A1 (ko)
KR (1) KR20090032171A (ko)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6480634B1 (en) * 2000-05-18 2002-11-12 Silicon Light Machines Image projector including optical fiber which couples laser illumination to light modulator
US6611380B2 (en) * 2001-12-21 2003-08-26 Eastman Kodak Company System and method for calibration of display system with linear array modulator
TWI226940B (en) * 2002-10-01 2005-01-21 Sony Corp Optical scan device, image position calibration method, and image display device
US7411722B2 (en) * 2005-08-24 2008-08-12 Eastman Kodak Company Display system incorporating bilinear electromechanical grating device
KR100760299B1 (ko) * 2005-12-06 2007-09-19 삼성전자주식회사 프로젝션 시스템 및 그 제어방법
EP1860889B1 (en) * 2006-05-22 2014-12-31 Samsung Electronics Co., Ltd. Projection display system
KR100919537B1 (ko) * 2007-03-08 2009-10-01 삼성전기주식회사 스펙클을 저감하기 위한 복수의 광원을 구비하는 회절형광변조기를 이용한 디스플레이 장치
JP2009086366A (ja) * 2007-09-28 2009-04-23 Brother Ind Ltd 光走査装置、光走査型画像表示装置及び網膜走査型画像表示装置
JP5075595B2 (ja) * 2007-11-26 2012-11-21 株式会社東芝 表示装置及びそれを用いた移動体
JP2010032810A (ja) * 2008-07-29 2010-02-12 Sony Corp 光変調装置組立体及びこれを用いた画像形成装置とその駆動方法

Also Published As

Publication number Publication date
US20090085829A1 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
EP1860889B1 (en) Projection display system
US8096665B2 (en) Spatially offset multi-imager-panel architecture for projecting an image
US9703182B2 (en) Projection apparatus
US7891818B2 (en) System and method for aligning RGB light in a single modulator projector
KR20090039310A (ko) 디스플레이 장치 및 빔 틸트 보상 방법
US11022868B2 (en) Projector with laser and phosphor
JP5266740B2 (ja) プロジェクションシステム及びプロジェクタ
JP4102807B2 (ja) 表示パネルの照明光学系、およびその照明光学系を有するプロジェクタ
US6020940A (en) Liquid crystal projector and method of driving the projector
JP2004264776A (ja) プロジェクタ及び光学装置
EP2064582B1 (en) Projection display
KR100827983B1 (ko) 광원 출력 시간을 조정한 스캐닝 디스플레이 장치 및 그방법
JP2017129769A (ja) ホログラム記録装置
KR20090032171A (ko) 디스플레이 장치 및 빔 정렬 보상 방법
WO2020153026A1 (ja) 表示装置
JP2020154198A (ja) 光学モジュールおよびその制御方法、ならびに投射型表示装置
JP2006145933A (ja) 表示装置および画像処理装置および画像処理・表示システム
JP2008170760A (ja) プロジェクタ
JP2000039583A (ja) 投写型表示装置
JP5217207B2 (ja) プロジェクタ
KR20200063687A (ko) 스캐닝 프로젝터
JP4483284B2 (ja) 画像表示装置の製造方法及び画像表示装置の調整方法、並びに画像表示装置
KR20090034477A (ko) 회절형 광변조기의 보상 방법
JP2006259503A (ja) プロジェクタ
WO2018011942A1 (ja) プロジェクタおよびプロジェクタの制御方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application