KR20080095268A - 무선국, 상기 무선국의 무선 전송 방법 및 상기 무선국을 이용한 무선 전송 시스템 - Google Patents

무선국, 상기 무선국의 무선 전송 방법 및 상기 무선국을 이용한 무선 전송 시스템 Download PDF

Info

Publication number
KR20080095268A
KR20080095268A KR1020087021104A KR20087021104A KR20080095268A KR 20080095268 A KR20080095268 A KR 20080095268A KR 1020087021104 A KR1020087021104 A KR 1020087021104A KR 20087021104 A KR20087021104 A KR 20087021104A KR 20080095268 A KR20080095268 A KR 20080095268A
Authority
KR
South Korea
Prior art keywords
station
transmission
packet
transmission parameter
relay
Prior art date
Application number
KR1020087021104A
Other languages
English (en)
Inventor
겐지 미야나가
히토시 다카이
히데키 나카하라
히데토시 야마사키
Original Assignee
파나소닉 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 파나소닉 주식회사 filed Critical 파나소닉 주식회사
Publication of KR20080095268A publication Critical patent/KR20080095268A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • H04B7/2606Arrangements for base station coverage control, e.g. by using relays in tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/026Co-operative diversity, e.g. using fixed or mobile stations as relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15592Adapting at the relay station communication parameters for supporting cooperative relaying, i.e. transmission of the same data via direct - and relayed path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Relay Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

본 발명은 무선국, 상기 무선국의 무선 전송 방법 및 상기 무선국을 이용한 무선 전송 시스템에 관한 것으로서, 본 발명에 따른 무선국은 서로 다른 전송로를 구성하는 복수의 중계국을 통해 송신국으로부터 송신된 패킷을 수신국에 전송하는 무선 전송 시스템에 있어서 중계국으로서 이용되는 무선국으로서, 송신국으로부터 송신된 패킷을 수신하고, 또한 송신국으로부터 송신된 패킷에 기초하여 다른 중계국으로부터 송신된 패킷,으로서 무선 전송 시스템에 있어서 패스 다이버시티 효과를 얻기 위한 송신 매개변수를 이용하여 자국보다 먼저 송신된 패킷을 수신하는 수신부와, 수신부에서 수신된 다른 중계국으로부터의 패킷에 기초하여 상기 다른 중계국이 이용한 송신 매개변수를 추정하는 송신 매개변수 추정부와, 송신 매개변수 추정부에서 추정된 다른 중계국이 이용한 송신 매개변수와는 다른 송신 매개변수를 선택하는 송신 매개변수 선택부와, 수신부에서 수신된 송신국으로부터의 패킷을 송신 매개변수 선택부에서 선택된 송신 매개변수를 이용하여 수신국에 송신하는 송신부를 구비하는 것을 특징으로 한다.

Description

무선국, 상기 무선국의 무선 전송 방법 및 상기 무선국을 이용한 무선 전송 시스템{RADIO STATION, RADIO TRANSMISSION METHOD OF THE RADIO STATION, AND RADIO TRANSMISSION SYSTEM USING THE RADIO STATION}
본 발명은 무선국, 상기 무선국의 무선 전송 방법 및 상기 무선국을 이용한 무선 전송 시스템에 관한 것으로서, 보다 특정적으로는 내(耐) 멀티패스성을 갖는 변복조 방식을 이용하여 패킷을 전송하는 무선국, 상기 무선국의 무선 전송 방법 및 상기 무선국을 이용한 무선 전송 시스템에 관한 것이다.
일반적으로 무선 통신에서는 송신국으로부터 송신된 전파가 복수의 전송로(멀티패스)를 경유하여 수신국에 도래함으로써 수신국에서 복수의 패스 웨이브릿(wavelet)이 다른 시간에 수신되는 상황이 발생한다. 이와 같은 상황에 의해 수신국에서는 멀티 패스 페이징이 생긴다. 이 때문에 종래의 무선 통신에서는 멀티 패스 페이징에 의한 전송 특성의 열화를 방지하기 위해 내 멀티패스성을 갖는 변복조 방식이 이용되고 있다.
내 멀티패스성을 갖는 변복조 방식에는, 예를 들면 스펙트럼 확산 방식이나 직교 주파수 분할 다중 방식(OFDM; Orthogonal Frequency Division Multiplexing), 내 멀티패스 변조 방식 등이 있다. 직교 주파수 분할 다중 방식은 패킷을 넓은 대역에 걸쳐 배치된 다수의 서브 캐리어에 분산시켜 전송하는 방식이다. 내 멀티패스 변조 방식은 전송 심볼내에 위상 용장(冗長)이나 진폭 용장을 더해 내 멀티패스성을 발휘시키는 방식이다. 또한, 통상의 싱글 캐리어 변조 방식을 이용하여 무선 통신한 경우에도 수신국에서 등화기를 이용함으로써 내 멀티패스성이 발휘된다.
스펙트럼 확산 방식에는 또한 직접 확산 방식(DSSS;Direct Sequence Spread Spectrum)이나 주파수 호핑 방식(FHSS; Frequency Hopping Spread Spectrum), 타임 호핑 방식(THSS; Time Hopping Spread Spectrum) 등이 있다. 직접 확산 방식은 확산 전의 패킷보다 넓은 대역의 확산 부호를 패킷에 곱해 전송하는 방식이다. 주파수 호핑 방식은 패킷의 전송 주파수를 넓은 대역에 걸쳐 홉시켜 전송하는 방식이다. 타임 호핑 방식은 패킷을 대역이 넓은 인펄스 신호로 확산시켜 전송하는 방식이다.
내 멀티패스 변조 방식에는 또한 볼록 형상의 위상 용장을 더하는 PSK-VP(Phase Shift Keying with Varied Phase) 방식 (예를 들면 비특허 문헌 1), 진폭 용장을 더하는 PSK-RZ(Return to Zero Phase Shift Keying) 방식(예를 들면 비특허문헌 2), DSK(Double Shift Keying) 방식(예를 들면 비특허 문헌 3) 등이 잇다. 싱글 캐리어 변조 방식에는 예를 들면, PSK(Phase Shift Keying) 방식이나 QAM(Quadranture Amplitude Modulation) 방식 등이 있다.
이와 같은 내 멀티패스성을 갖는 변복조 방식을 이용하여 통신함으로써 멀티 패스 페이징에 의한 전송 특성의 열화를 방지할 수 있다.
또한, 최근 복수의 무선국이 서로 패킷을 중계함으로써 무선 전송을 실시하는 무선 전송 시스템(멀티홉 시스템)의 연구가 진행되고 있다. 종래, 이 연구에 있어서 내 멀티패스성을 갖는 변복조 방식을 이용한 기술이 제안되어 있다(예를 들면, 특허문헌 1 등). 이하, 도 20을 참조하여 종래의 무선 전송 시스템(9)에 대해 설명한다. 도 20은 종래의 무선 전송 시스템(9)의 구성을 도시한 도면이다. 도 20에 있어서, 무선 전송 시스템(9)은 송신국(91), 중계국(921~924) 및 수신국(93)에 의해 구성된다. 송신국(91)은 최초로 패킷을 송신하는 무선국이다. 각 중계국(921~924)은 송신국(91)이 송신한 패킷을 수신국(93)까지 중계하는 무선국이다. 수신국(93)은 송신국(91)이 송신한 패킷의 최종적인 송신처의 무선국이다. 각 무선국은 내 멀티패스성을 갖는 변복조 방식으로서 OFDM 방식을 이용하고 있다. 패킷은 점선 화살표가 나타내는 바와 같이, 송신국(91)으로부터 송신된다. 송신국(91)으로부터 송신된 패킷은 각 중계국(921~924)에서 각각 수신된다. 각 중계국(921~924)은 실선 화살표가 나타내는 바와 같이, 수신한 패킷을 동시에 송신한다. 각 중계국(921~924)으로부터 송신된 패킷은 수신국(93)에서 수신된다. 이와 같이 종래의 무선 전송 시스템(9)에서는 각 중계국(921~924)이 패킷을 동시에 송신함으로써 패킷 전송에 요하는 시간을 단축하고 있다. 여기서 종래의 무선 전송 시스템(9)에 이용되는 각 무선국은 내 멀티패스성을 갖는 변복조 방식으로서 OFDM 방식을 이용하고 있다. 이 때문에 수신국(93)에서 각 중계국(921~924)으로부터 동시 에 송신된 각 패킷의 도래 시간에 차가 생겨도 멀티 패스 페이징에 의한 전송 특성의 열화를 방지할 수 있다.
특허문헌 1: 일본 공개특허공보 제2000-115181호
비특허문헌 1: H.Takai, 「BER Performance of Anti-Multipath Modulation Scheme PSK-VP and its Optimum Phase-Waveform」, IEEE, Trans.Veh.Technol., Vol.VT-42, 1993년 11월, p625-639
비특허문헌 2: S.Ariyavisitakul, S.Yoshida, F.Ikegami, K.Tanaka,
T.Takeuchi, 「A Power-efficient linear digital modulator and its application to an anti-multipath modulation PSK-RZ scheme)」, Proceedings of IEEE Vehicular Technology Conference 1987), 1987년 6월, p66-71
비특허문헌 3: S.Ariyavisitakul, S.Yoshida, F.Ikegami, T.Takeuchi, 「A Novel Anti-Multipath Modulation Technique DSK)」, IEEE Trans.Communication, Vol.COM-35, No.12, 1987년 12월, p1252-1264
(발명의 개시)
(발명이 해결하려고 하는 과제)
여기서, 멀티 패스를 구성하는 복수의 패스 웨이브릿이 수신국에 도래하는 각 시간의 차(이하, 도래 시간차라고 함)가 적도의 차인 경우에는 수신국에서 다이버시티(diversity) 수신이 이루어지게 된다. 이 다이버시티 수신이 이루어짐으로써 전송 특성이 더 개선된다. 이하, 이 다이버시티 수신에 의한 효과를 패스 다이버시티 효과라고 한다. 또한, 내 멀티패스성을 갖는 변복조 방식으로서 예를 들면 OFDM 방식을 이용한 경우, 패킷에 설정한 가이드 구간에서 패스 웨이브릿 성분이 흡수되므로 도래 시간차의 상한은 가이드 구간 길이가 된다. 또한, 도래 시간차의 하한은 복수의 서브 캐리어를 포함하는 주파수 대역폭의 역수 정도의 시간이 된다.
그러나, 종래의 무선 전송 시스템(9)에서는 패킷의 전송 효율을 향상시키는 것만을 목적으로 하여 제안된 기술이고, 패스 다이버시티 효과를 얻는 것에 대해서는 전혀 고려되지 않았다. 따라서, 각 무선국의 설치 상황에 따라서는 패스 다이버시티 효과가 얻어지지 않는 문제가 있었다. 이하, 패스 다이버시티 효과가 얻어지지 않는 설치 상황에 대해 고려한다.
패스 다이버시티 효과가 얻어지지 않는 설치 상황으로서는 수신국(93)으로부터 거의 동일한 거리만큼 떨어진 위치에 각 중계국(921~924)이 설치되어 있는 상황을 생각할 수 있다. 이 설치 상황에서는 각 중계국(921~924)으로부터 동시에 송신된 각 패킷의 도래 시간에 차가 생겨도 각 패킷의 도래 시간 차가 복수의 서브 캐리어를 포함하는 주파수 대역폭의 역수 정도의 시간 보다도 짧아지는 경우가 있다. 즉, 각 패킷의 도래 시간차가 패스 다이버시티 효과가 얻어지는 도래 시간차의 하한 보다 짧아지는 경우가 있다. 따라서, 이 경우에는 패스 다이버시티 효과가 얻어지지 않는다.
또한, 수신국(93)으로부터 거의 동일한 거리만큼의 위치에 각 중계국(921~924)이 설치되어 있는 상황에 있어서, 각 중계국(921~924)으로부터 송신된 각 패킷이 수신국(93)에서 동시에 수신되어도 각 패킷이 서로 역위상의 관계가 되는 경우가 있다. 예를 들면, 수신국(93)에서 중계국(921)으로부터 송신된 패킷과 중계국(922)으로부터 송신된 패킷이 역위상으로 동시에 수신되고, 또한 중계국(923)으로부터 송신된 패킷과 중계국(924)으로부터 송신된 패킷이 역위상으로 동시에 수신되는 경우이다. 이 경우, 각 패킷의 도래 시간차가 0이 되고, 멀티 패스 페이징에 의한 전송 특성의 열화는 생기지 않지만, 패스 다이버시티 효과도 얻어지지 않는다. 또한, 중계국(921)으로부터 송신된 패킷과 중계국(922)으로부터 송신된 패킷이 서로 부정하고, 또한 중계국(923)으로부터 송신된 패킷과 중계국(924)으로부터 송신된 패킷이 서로 부정하므로 수신국(93)에서 패킷을 바르게 복조할 수도 없다.
이와 같이, 종래의 무선 전송 시스템(9)에서는 각 무선국의 설치 상황에 따라서는 패스 다이버시티 효과가 얻어지지 않는 문제가 있고, 또한 수신국(93)에서 패킷을 바르게 복조할 수 없는 문제도 있었다.
따라서, 본 발명의 목적은 무선 전송 시스템에 이용되는 무선국으로서, 설치 상황에 관계없이 패스 다이버시티 효과를 발휘시키는 것이 가능한 무선국, 상기 무선국의 무선 전송 방법 및 상기 무선국을 이용한 무선 전송 시스템을 제공할 수 있다.
(과제를 해결하기 위한 수단)
본 발명은 무선국에 관한 것으로서, 상기 과제를 해결하기 위해 본 발명에 따른 무선국은 서로 다른 전송로를 구성하는 복수의 중계국을 통해 송신국으로부터 송신된 패킷을 수신국에 전송하는 무선 전송 시스템에서, 중계국으로 이용되는 무선국으로서, 송신국으로부터 송신된 패킷을 수신하고, 또한 송신국으로부터 송신된 패킷에 기초하여 다른 중계국으로부터 송신된 패킷으로서, 무선 전송 시스템에서 패스 다이버시티 효과를 얻기 위한 송신 매개변수를 이용하여 자국(自局)보다 먼저 송신된 패킷을 수신하는 수신부와, 수신부에서 수신된 다른 중계국으로부터의 패킷에 기초하여 상기 다른 중계국이 이용한 송신 매개변수를 추정하는 송신 매개변수 추정부와, 송신 매개변수 추정부에서 추정된 다른 중계국이 이용한 송신 매개변수와는 다른 송신 매개변수를 선택하는 송신 매개변수 선택부와, 수신부에서 수신된 송신국으로부터의 패킷을 송신 매개변수 선택부에서 선택된 송신 매개변수를 이용하여 수신국에 송신하는 송신부를 구비한다.
또한, 상기 송신 매개변수 추정부는 실시형태에서의 심볼 파형/지연량 추정부(28)에 상당하고, 상기 송신 매개변수 선택부는 실시형태에서의 심볼 파형/지연량 선택부(29)에 상당한다. 또한, 상기 송신부는 실시형태의 송신 패킷 처리부(27), 송신 타이밍 제어부(30), 변조부(31), RF부(22) 및 안테나(21)에 상당한다. 또한, 상기 수신부는 실시형태에서의 복조부(23), RF부(22) 및 안테나(21)에 상당한다.
본 발명에 의하면 송신 매개변수 선택부는 다른 중계국이 이용한 송신 매개변수와는 다른 송신 매개변수를 선택하고, 송신부는 선택한 송신 매개변수를 이용하여 송신국으로부터의 패킷을 송신한다. 이에 의해 무선 전송 시스템에서 패스 다이버시티 효과가 얻어지게 된다. 이와 같이 본 발명에 의하면 중계국이 다른 중계국과는 다른 송신 매개변수를 이용하여 패킷을 송신하여 각 중계국이 수신국으로부터 거의 동일한 거리만큼 떨어진 위치에 설치되어 있는 상황이라도 패스 다이버시티 효과를 얻을 수 있다. 즉, 본 발명에 의하면 설치 상황에 관계없이 패스 다이버시티 효과를 얻을 수 있다.
보다 바람직하게는 송신 매개변수 선택부에는 서로 다른 복수의 송신 매개변수가 미리 기억되어 있고, 송신 매개변수 선택부는 미리 기억된 복수의 송신 매개변수중에서 송신 매개변수 추정부에서 추정된 다른 중계국이 이용한 송신 매개변수와는 다른 송신 매개변수를 선택하면 좋다.
보다 바람직하게는 수신부는 복수의 다른 중계국으로부터 각각 송신된 패킷을 수신하고, 송신 매개변수 추정부는 각 다른 중계국으로부터의 패킷에 기초하여 각 다른 중계국이 이용한 송신 매개변수를 각각 추정하고, 송신 매개변수 선택부에는 서로 다른 복수의 송신 매개변수가 미리 기억되어 있고, 송신 매개변수 선택부는 복수의 송신 매개변수 전부가 송신 매개변수 추정부에서 추정된 각 송신 매개변수중 어느 하나에 해당하는 경우, 송신 매개변수의 선택 처리를 중지하고, 송신부는 송신 매개변수 선택부에서 송신 매개변수의 선택 처리가 중지된 경우, 수신국에 송신하는 처리를 실시하지 않으면 좋다. 이에 의해 필요 이상의 패킷을 수신국에 송신하지 않고 해결되어 무선 전송 시스템에서 소비 전력을 저감할 수 있다.
보다 바람직하게는 패킷의 선두 부분에는 프리앰블이 포함되어 있고, 프리앰블의 길이를 나타내는 프리앰블 길이 정보로서, 서로 다른 길이를 나타내는 복수의 프리앰블 길이 정보가 미리 기억되어 있고, 상기 복수의 프리앰블 길이 정보중에서 1 개의 프리앰블 길이 정보를 랜덤하게 선택하는 프리앰블 선택부를 추가로 구비하고, 송신부는 송신국으로부터의 패킷을 프리앰블 선택부가 선택한 프리앰블 길이 정보가 나타내는 길이에 따른 타이밍으로 송신하면 좋다. 이에 의해 복수의 중계국으로부터 각각 송신되는 타이밍이 다른 타이밍이 되는 경우가 생기므로 중계국은 자국보다도 먼저 송신된 다른 중계국의 패킷에 기초하여 다른 중계국이 이용한 송신 매개변수를 추정할 수 있다.
또한 복수의 프리앰블 길이 정보가 나타내는 각 길이는 소정 범위 내의 어느 하나의 길이이면 좋다. 이에 의해 필요 이상으로 용장한 프리앰블을 포함한 패킷을 송신하지 않고 해결된다. 또한 프리앰블 길이 정보의 수는 송신 매개변수의 종류 수와 동일한 수, 또는 송신 매개변수의 종류 수보다도 많으면 좋다. 이에 의해 패스 다이버시티 효과를 더 높일 수 있다.
또한, 보다 바람직하게는 패킷의 선두 부분에는 프리앰블이 포함되어 있고, 프리앰블의 데이터 열로서, 서로 다른 복수의 데이터 열이 미리 기억되어 있으며, 상기 복수의 데이터 열중에서 1 개의 데이터 열을 선택하는 프리앰블 선택부를 추가로 구비하고, 송신부는 송신국으로부터의 패킷에 포함되는 프리앰블을 프리앰블 선택부가 선택한 데이터 열을 갖는 프리앰블로 교체하고, 상기 프리앰블을 교체한 송신국으로부터의 패킷을 송신 매개변수 선택부에서 선택된 송신 매개변수를 이용하여 수신국에 송신하면 좋다. 이에 의해 패스 다이버시티 효과를 더 높일 수 있다.
또한, 보다 바람직하게는 송신 매개변수는 송신부로부터 송신되는 패킷 수신국에 수신되는 타이밍을 지연시키기 위한 지연량 및 송신부가 송신국으로부터의 패킷을 변조하기 위한 심볼 파형 중 적어도 한쪽으로 구성되면 좋다.
또한, 보다 바람직하게는 송신 매개변수 추정부는 수신부에서 수신된 다른 중계국으로부터의 패킷이 나타내는 파형과 소정의 파형의 상관을 얻게 함으로써 다른 중계국이 이용한 송신 매개변수를 추정하면 좋다. 파형으로 상관을 얻게 함으로써 수신부에서 수신된 복수의 패킷이 중첩한 경우에도 각각에 대한 송신 매개변수를 바르게 추정할 수 있다.
또한, 보다 바람직하게는 송신 매개변수는 송신부가 송신국으로부터의 패킷을 변조하기 위한 심볼 파형으로 구성되어 있고, 송신 매개변수 추정부는 수신부에서 수신된 다른 중계국으로부터의 패킷의 파형과 소정의 파형의 상관을 얻게 한 결과를 나타내는 상관 신호를 생성하고, 상기 상관 신호에 소정의 임계값 이상의 피크가 출력된 경우, 다른 중계국이 이용한 심볼 파형이 소정의 파형을 따르는 심볼 파형이라고 추정하면 좋다.
또한, 보다 바람직하게는 송신 매개변수는 송신부로부터 송신되는 패킷이 수신국에 수신되는 타이밍을 지연시키기 위한 지연량으로 구성되어 있고, 송신 매개변수 추정부는 수신부에서 수신된 다른 중계국으로부터의 패킷의 파형과 소정의 파형과의 상관을 얻게 한 결과를 나타내는 상관 신호를 생성하고, 상기 상관 신호에 소정의 임계값 이상의 피크가 출력되는 타이밍에 기초하여 다른 중계국이 이용한 지연량을 추정하면 좋다.
또한, 보다 바람직하게는 송신 매개변수는 송신부로부터 송신되는 패킷이 수신국에 수신되는 타이밍을 지연시키기 위한 지연량 및 송신부가 송신국으로부터의 패킷을 변조하기 위한 심볼 파형으로 구성되어 있고, 송신 매개변수 추정부는 수신부에서 수신된 다른 중계국으로부터의 패킷의 파형과 소정의 파형과의 상관을 얻게 한 결과를 나타내는 상관 신호를 생성하고, 상기 상관 신호에 소정의 임계값 이상의 피크가 출력된 경우, 다른 중계국이 이용한 심볼 파형이 소정의 파형에 따른 심볼 파형이라고 추정하고, 또한 피크가 출력되는 타이밍에 기초하여 다른 중계국이 이용한 지연량을 추정하면 좋다.
또한, 본 발명은 무선 전송 시스템에도 관한 것으로서, 상기 과제를 해결하기 위해 본 발명에 따른 무선 전송 시스템은 서로 다른 전송로를 구성하는 복수의 중계국을 통해 송신국으로부터 송신된 패킷을 수신국에 전송하는 무선 전송 시스템에 패킷을 송신하는 송신국과, 서로 다른 전송로를 구성하고, 송신국으로부터의 패킷을 중계하여 수신국에 송신하는 복수의 중계국과, 복수의 중계국으로부터 각각 송신된 패킷을 수신하는 수신국을 구비하고, 중계국의 각각은 송신국으로부터 송신된 패킷을 수신하고, 또한 송신국으로부터 송신된 패킷에 기초하여 다른 중계국으로부터 송신된 패킷으로서, 무선 전송 시스템에서 패스 다이버시티 효과를 얻기 위한 송신 매개변수를 이용하여 자국보다 먼저 송신된 패킷을 수신하는 제 1 수신부와, 제 1 수신부에서 수신된 다른 중계국으로부터의 패킷에 기초하여 상기 다른 중계국이 이용한 송신 매개변수를 추정하는 제 1 송신 매개변수 추정부와, 제 1 송신 매개변수 추정부에서 추정된 다른 중계국이 이용한 송신 매개변수와는 다른 송신 매개변수를 선택하는 제 1 송신 매개변수 선택부와, 제 1 수신부에서 수신된 송신국으로부터의 패킷을 제 1 송신 매개변수 선택부에서 선택된 송신 매개변수를 이용하여 수신국에 송신하는 제 1 송신부를 갖는다.
보다 바람직하게는 송신국은 자국으로부터 송신된 패킷에 기초하여 복수의 중계국 중 적어도 하나의 중계국으로부터 송신된 패킷으로서, 송신 매개변수를 이용한 자국보다 먼저 송신된 패킷을 수신하는 제 2 수신부와, 제 2 수신부에서 수신된 중계국으로부터의 패킷에 기초하여 상기 중계국이 이용한 송신 매개변수를 추정하는 제 2 송신 매개변수 추정부와, 제 2 송신 매개변수 추정부에서 추정된 중계국이 이용한 송신 매개변수와는 다른 송신 매개변수를 선택하는 제 2 송신 매개변수 선택부와, 자국으로부터 송신해야 하는 패킷을 제 2 송신 매개변수 선택부에서 선택된 송신 매개변수를 이용하여 수신국에 송신하는 제 2 송신부를 가지면 좋다.
또한, 제 1 송신 매개변수 선택부에는 서로 다른 복수의 송신 매개변수가 미리 기억되어 있고, 제 1 송신 매개변수 선택부는 미리 기억된 복수의 송신 매개변수중에서 제 1 송신 매개변수 추정부에서 추정된 다른 중계국이 이용한 송신 매개변수와는 다른 송신 매개변수를 선택하고, 제 2 송신 매개변수 선택부에는 제 1 송신 매개변수 선택부에 미리 기억된 복수의 송신 매개변수와는 다른 송신 매개변수로서, 서로 다른 복수의 송신 매개변수가 미리 기억되어 있고, 제 2 송신 매개변수 선택부는 미리 기억된 복수의 송신 매개변수중에서 제 2 송신 매개변수 추정부에서 추정된 중계국이 이용한 송신 매개변수와는 다른 송신 매개변수를 선택하면 좋다.
또한, 보다 바람직하게는 제 1 송신 매개변수 선택부에는 서로 다른 복수의 송신 매개변수가 미리 기억되어 있고, 제 1 송신 매개변수 선택부는 미리 기억된 복수의 송신 매개변수중에서 제 1 송신 매개변수 추정부에서 추정된 다른 중계국이 이용한 송신 매개변수와는 다른 송신 매개변수를 선택하고, 송신국에는 제 1 송신 매개변수 선택부에 미리 기억된 복수의 송신 매개변수와는 다른 소정의 송신 매개변수가 미리 기억되어 있고, 송신국은 복수의 중계국에서 이용된 패킷을 송신한 후, 자국으로부터 송신해야 하는 패킷을 미리 기억된 소정의 송신 매개변수를 이용하여 수신국에 추가로 송신하면 좋다.
또한, 본 발명은 무선 전송 방법에도 관한 것으로서, 상기 과제를 해결하기 위해 본 발명에 따른 무선 전송 방법은 서로 다른 전송로를 구성하는 복수의 중계국을 통해 송신국으로부터 송신된 패킷을 수신국에 전송하는 무선 전송 시스템에 서 중계국으로서 이용되는 무선국이 실시하는 무선 전송 방법으로서, 송신국으로부터 송신된 패킷을 수신하고, 또한 송신국으로부터 송신된 패킷에 기초하여 다른 중계국으로부터 송신된 패킷으로서, 무선 전송 시스템에서 패스 다이버시티 효과를 얻기 위한 송신 매개변수를 이용하여 자국보다 먼저 송신된 패킷을 수신하는 수신 단계와, 수신 단계에서 수신된 다른 중계국으로부터의 패킷에 기초하여 상기 다른 중계국이 이용한 송신 매개변수를 추정하는 송신 매개변수 추정 단계와, 송신 매개변수 추정 단계에서 추정된 다른 중계국이 이용한 송신 매개변수와는 다른 송신 매개변수를 선택하는 송신 매개변수 선택 단계와, 수신 단계에서 수신된 송신국으로부터의 패킷을 송신 매개변수 선택 단계에서 선택된 송신 매개변수를 이용하여 수신국에 송신하는 송신 단계를 포함한다.
(발명의 효과)
본 발명에 의하면 설치 상황에 관계없이 패스 다이버시티 효과를 발휘시키는 것이 가능한 무선국, 상기 무선국의 무선 전송 방법 및 상기 무선국을 이용한 무선 전송 시스템을 제공할 수 있다.
도 1은 제 1 실시형태에 따른 무선 전송 시스템(1)의 구성을 도시한 도면,
도 2는 패킷의 구성예를 도시한 도면,
도 3은 제 1 실시형태에 따른 무선국의 구성을 도시한 블럭도,
도 4는 심볼 파형/지연량 추정부(28)의 상세한 구성을 도시한 블럭도,
도 5는 (E)의 시스템을 적용한 경우의 변조부(31)의 구성을 도시한 도면,
도 6은 (E)의 시스템을 적용한 경우의 복조부(23)의 구성을 도시한 도면,
도 7은 제 1 실시형태에 따른 무선국의 동작을 나타내는 플로우차트,
도 8은 제 1 실시형태에 따른 무선국의 동작을 나타내는 플로우차트,
도 9는 제 1 실시형태에 따른 각 중계국(121~124)의 처리의 개요를 도시한 도면,
도 10은 패스 다이버시티 효과가 얻어지는 확률의 계산 결과를 도시한 도면,
도 11은 송신 매개변수와 프리앰블 파형을 1 대 1로 대응시키는 경우의 심볼 파형/지연량 추정부(28a)의 구성을 도시한 블럭도,
도 12는 제 2 실시형태에 따른 무선 전송 시스템(2)의 구성을 도시한 도면,
도 13은 제 2 실시형태에 따른 송신국(11a) 및 각 중계국(121~124)의 처리의 개요를 도시한 도면,
도 14는 제 3 실시형태에 따른 무선국의 구성을 도시한 도면,
도 15는 제 4 실시형태에 따른 무선국의 동작을 나타내는 플로우차트,
도 16은 제 4 실시형태에 따른 송신국(11) 및 각 중계국(121~124)의 처리의 개요를 도시한 도면,
도 17은 (F)의 시스템을 적용한 경우의 변조부(31)의 구성을 도시한 도면,
도 18은 (F)의 시스템을 적용한 경우의 심볼 파형의 위상 천이의 일례를 도시한 도면,
도 19는 (F)에 도시한 패스 다이버시티의 시스템을 이용한 경우의 복조부(23)의 구성을 도시한 블럭도, 및
도 20은 종래의 무선 전송 시스템(9)의 구성을 도시한 도면이다.
*부호의 설명
11, 11a : 송신국
121, 122, 123, 124 : 중계국
13 : 수신국
23 : 복조부
24 : 자국앞 패킷 판정부
25 : 자국앞 패킷 처리부
26 : 프리앰블 선택부
27 : 송신 패킷 처리부
28 : 심볼 파형/지연량 추정부
29 : 심볼 파형/지연량 선택부
30 : 송신 타이밍 제어부
31 : 변조부
32 : 어드레스 판정
231a, 231b : 상관부
232a : 확산 부호 S1 유지부
232b : 확산 부호 S2 유지부
233a, 233b : 검파부
234a, 234b : 진폭/위상 검출부
235 : 합성부
236 : 판정부
237 : 지연 검파부
238 : 검파후 필터
239 : 데이터 판정부
281a~281d : 상관부
282a : 참조 파형 R1 유지부
282b : 참조 파형 R2 유지부
282c : 참조 파형 RA 유지부
282d : 참조 파형 RB 유지부
282e : 참조 파형 RC 유지부
282f : 참조 파형 RD 유지부
283c : 타이밍 판정부
311 : 1차 변조부
312 : 판독 제어부
313 : 파형 출력부
314 : 2차 변조부
315 : 확산 부호 제어부
316 : 확산부
317 : D/A 변환기
318a : 파형 1 생성부
318b : 파형 2 생성부
319 : 셀렉터
(발명을 실시하기 위한 가장 좋은 형태)
이하, 본 발명의 각 실시형태에 대해 도면을 참조하면서 설명한다.
또한, 이하의 각 실시형태에서는 본 발명에 따른 무선 전송 시스템이 내 멀티패스성을 갖는 변복조 방식을 이용하여 패킷을 송수신하는 복수의 무선국에 의해 구성되는 경우에 대해 설명한다. 여기서 복수의 무선국 중, 최초로 패킷을 송신하는 무선국을 송신국이라고 한다. 또한, 송신국이 송신한 패킷의 최종적인 송신처인 무선국을 수신국이라고 한다. 또한, 송신국 또는 수신국의 통신 영역내에 설치된 무선국이고, 송신국이 송신한 패킷을 수신국까지 중계하는 무선국을 중계국이라고 한다.
본 발명에 따른 무선 전송 시스템의 예로서는, (A) 송신국에서 스펙트럼 확산 방식(예를 들면, DSSS 방식, FHSS 방식, THSS 방식 등)을 이용하여 패킷이 변조되고, 수신국에서 스펙트럼 확산 방식을 이용하여 패킷이 복조되는 시스템, (B) 송신국에서 OFDM 방식을 이용하여 패킷이 변조되고, 수신국에서 OFDM 방식을 이용하 여 패킷이 복조되는 시스템, (C) 송신국에서 심볼내에 용장 파형을 갖는 내 멀티패스 변조 방식(예를 들면, PSK-VP 방식, PSK-RZ 방식, DSK 방식 등)을 이용하여 패킷이 변조되고, 수신국에서 내 멀티패스 변조 방식에 대응하는 복조 방식을 이용하여 패킷이 복조되는 시스템, (D) 송신국에서 싱글 캐리어 변조 방식(예를 들면, PSK 방식, QAM 방식 등)을 이용하여 패킷이 변조되고, 수신국에서 탭을 가진 지연선을 이용한 등화기를 이용하여 패킷이 복조되는 시스템 등이 있다.
또한, 본 발명에 따른 무선 전송 시스템의 예로서는, 상기 (A) 및 (C)의 시스템의 원리를 응용한 시스템도 생각할 수 있다. 구체적으로는 상기 (A)의 시스템을 응용한 것으로서, (E) 복수의 송신국 중에는 다른 확산 부호(심볼 파형)로 확산하는 송신국이 포함되어 있고, 수신국에서 RAKE 수신을 실시하는, 즉 수신국에서 복수의 확산 부호에 대응하는 역확산을 실시한 후, 각각의 확산 부호를 포함하여 패스 웨이브릿의 합성을 실시하고, 패킷을 복조하는 시스템을 생각할 수 있다. 또한, 상기 (C)의 시스템을 응용한 것으로서, (F) 복수의 송신국중에는 다른 용장 파형(위상 용장 파형이나 진폭 용장 파형 등의 심볼 파형)을 더하는 송신국이 포함되어 있고, 수신국에서 내 멀티패스 변조 방식에 대응하는 복조 방식을 이용하여 각각의 용장 파형도 포함하여 패스의 합성을 자동적으로 실시하여 패킷을 복조하는 시스템을 생각할 수 있다.
상기 (A)~(F)의 시스템에서는 복수의 무선국이 다른 지연량을 패킷에 부가하여 송신하여 패스 다이버시티 효과가 얻어진다. 이 중 상기 (E) 및 (F)의 시스템 에서는 서로 상관이 낮은 복수의 다른 심볼 파형을 더 이용하여 보다 높은 패스 다이버시티 효과가 얻어진다. 또한, 상기 (E) 및 (F)의 시스템에서는 지연량을 부가하지 않아도 송신측의 복수의 송신국이 서로 상관이 낮은 심볼 파형으로 데이터 변조된 패킷을 송신하여 패스 다이버시티 효과가 얻어진다.
또한, 지연량 및 심볼 파형은 패킷을 송신할 때 이용되는 매개변수이고, 무선 전송 시스템에서 패스 다이버시티 효과를 얻기 위한 매개변수이다. 이하, 지연량 및 심볼 파형 등의 매개변수를 송신 매개변수라고 한다.
또한, 본 발명에 따른 무선 전송 시스템은 상기 (A)~(F)의 예에 한정되지 않고, 장래 출현하는 시스템도 본 발명의 범위에 포함된다.
또한, 이하의 각 실시형태에서는 패스 다이버시티 효과가 얻어지는 도래 시간차의 하한을 지연 분해능이라고 하고, 상한을 지연 상한이라고 한다. 도래 시간차의 지연 분해능 및 지연 상한은 무선국에 이용되는 변복조 방식의 원리상 정해지는 경우나 변복조 방식의 매개변수나 실장(實裝)상의 제약 때문에 정해지는 경우가 있다. 상기 (A) 및 (E)의 시스템에서는 지연 분해능은 확산 부호의 1칩 길이에 상당하게 된다. 또한 지연 상한은 확산 부호 길이 미만의 시간에 상당하게 된다.
상기 (B)의 시스템에서는 지연 상한은 가이드 구간이 나타내는 시간에 상당하고, 지연 분해능은 복수의 서브 캐리어를 포함하는 주파수 대역폭의 역수 정도의 시간에 상당하게 된다. OFDM 방식을 이용한 경우, 각 패스 웨이브릿의 도래 시간차가 가이드 구간 내이면 심볼간 간섭이 생기지 않는 효과가 있다. 또한, OFDM 방 식에서는 통상 복수의 서브 캐리어에 걸쳐 오류 정정 처리가 실시된다. 오류 정정 처리에 의해 일부의 서브 캐리어에 있어서 멀티 패스 페이징에 의한 오류가 생겨도 수신 신호를 정확히 복조할 수 있다. 이와 같이 OFDM 방식을 이용한 경우, 가이드 구간에 의한 효과와 넓은 주파수대에 걸쳐 신호를 산재시켜 회수하는 것에 의한 주파수 다이버시티 효과에 의해 패스 다이버시티 효과가 얻어진다.
상기 (C) 및 (F)의 시스템에서는 지연 분해능은 심볼 길이의 수분의 1 정도에 상당하고, 지연 상한은 1 심볼 길이 미만의 시간에 상당하게 된다. 상기 (D)의 시스템에서는 지연 분해능은 1 심볼 길이에 상당하고, 지연 상한은 탭의 수에 의해 정해지는 시간에 상당하게 된다.
(제 1 실시형태)
이하, 본 발명의 제 1 실시형태에 따른 무선 전송 시스템(1)에 대해 설명한다. 우선, 도 1을 참조하여 제 1 실시형태에 따른 무선 전송 시스템(1)의 구성에 대해 설명한다. 도 1은 제 1 실시형태에 따른 무선 전송 시스템(1)의 구성을 도시한 도면이다. 또한, 본 실시형태에서는 일례로서 무선 전송 시스템(1)이 상기 (E)의 시스템인 경우에 대해 설명한다. 상기 (E)의 시스템은 스펙트럼 확산 방식의 하나인 DSSS 방식의 원리를 이용한 시스템이다. 또한, 상기 (E)의 시스템에서는 송신 매개변수로서 심볼 파형(확산 부호) 및 지연량을 이용할 수 있다. 또한, 이하의 설명에서는 각 무선국간의 패킷의 운반 시간은 도래 시간차의 지연 분해능에 대해 충분히 작고 무시할 수 있는 것으로 한다.
도 1에 있어서, 무선 전송 시스템(1)은 송신국(11), 각 중계국(121~124), 수신국(13)에 의해 구성된다. 송신국(11), 각 중계국(121~124) 및 수신국(13)은 공통 구성을 갖고 있다. 송신국(11), 각 중계국(121~124) 및 수신국(13)의 구성에 대해서는 후술한다. 도 1에 있어서, 점선 화살표는 송신국(11)이 송신한 패킷이 각 중계국(121~124)에서 수신되는 것을 도시하고 있다. 또한, 실선 화살표는 각 중계국(121~124)이 송신한 각 패킷이 수신국(13)에서 각각 수신되는 것을 도시하고 있다. 구체적으로 말하면 송신국(11)은 도 1의 점선 화살표가 나타내는 바와 같이, 송신해야 하는 패킷을 송신 패킷으로서 송신한다. 각 중계국(121~124)은 송신국(11)으로부터 송신된 송신 패킷을 각각 수신한다. 각 중계국(121~124)은 송신국(11)으로부터 송신 패킷을 수신하면, 수신한 송신 패킷과 동일한 패킷을 중계 패킷으로서 생성한다. 각 중계국(121~124)은 도 1의 실선 화살표가 나타내는 바와 같이, 생성한 중계 패킷을 송신한다. 수신국(13)은 각 중계국(121~124)으로부터 송신된 각 중계 패킷을 수신한다. 이와 같이 송신국(11)으로부터 송신된 패킷은 최종적인 송신처인 수신국(13)에 도착하기까지 각 중계국(121~124)을 통해 무선 전송되어 간다. 즉, 패킷은 멀티홉 전송된다.
또한, 도 1에 있어서, 무선 전송 시스템(1)은 4 개의 중계국으로 구성되어 있지만, 중계국의 수는 이에 한정되지 않는다. 무선 전송 시스템(1)은 3 개 이하, 또는 5 개 이상의 중계국으로 구성되어 있어도 좋다.
계속해서 도 2를 참조하여 패킷의 구성에 대해 설명한다. 도 2는 패킷의 구 성예를 도시한 도면이다. 도 2에 있어서, 각 패킷(P1~P4)은 프리앰블(PR1~PR4), 유니크 워드(UW), 송신원 어드레스, 수신처 어드레스, 정보 데이터 및 CRC로 구성된다.
프리앰블(PR1~PR4)은 소정의 데이터 열(「1010…」이나 「1100…」등)이 반복 배치된 정보이다. 또한, 여기서는 프리앰블(PR1~PR4)의 데이터 열은 동일한 데이터 열이라고 한다. 즉, 여기서는 프리앰블(PR1~PR4)의 데이터 열은 1 종류라고 한다. 프리앰블(PR1~PR4)은 일반적으로 AGC(Automatic Gain Control)에 의한 이득의 제어나 클럭의 재생, 주파수의 보정 등을 위해 이용된다. 또한, 프리앰블(PR1~PR4)은 타국이 선택한 송신 매개변수를 추정하기 위해서도 이용된다. 프리앰블(PR1)은 패킷(P1)의 선두 부분에 포함되어 있다. 프리앰블(PR2)은 패킷(P2)의 선두 부분에 포함되어 있다. 프리앰블(PR3)은 패킷(P3)의 선두 부분에 포함되어 있다. 프리앰블(PR3)은 패킷(P3)의 선두 부분에 포함되어 있다. 프리앰블(PR4)은 패킷(P4)의 선두 부분에 포함되어 있다. 또한, 프리앰블(PR1~PR4)은 길이가 서로 다르다. 도 2의 예에서는 프리앰블(PR1)의 길이가 가장 짧고, 프리앰블(PR4)의 길이가 가장 길다.
유니크 워드(UW)는 패킷 종별의 판정이나 패킷의 동기를 위해 이용되는 정보이다. 송신원 어드레스는 패킷의 송신원인 송신국(11)의 어드레스이다. 수신처 어드레스는 패킷의 최종적인 송신처인 수신국(13)의 어드레스이다. 정보 데이터는 송신국(11)으로부터 수신국(13)에 송신해야 하는 데이터의 본체이다. CRC는 CRC(Cyclic Redundancy Check) 부호이다. CRC는 오류 검출을 위해 이용된다. 유니크 워드(UW) 이후의 데이터는 각 패킷(P1~P4) 전부에서 동일하다.
계속해서 도 3을 참조하여 제 1 실시형태에 따른 무선국의 구성에 대해 설명한다. 도 3은 제 1 실시형태에 따른 무선국의 구성을 도시한 블럭도이다. 여기서, 송신국(11), 각 중계국(121~124) 및 수신국(13)은 각각 다른 처리를 실시하지만, 각각의 구성은 동일한 구성이고, 도 3에 도시한 구성이 된다.
도 3에 있어서, 본 실시형태에 따른 무선국은 안테나(21), RF부(22), 복조부(23), 자국앞 패킷 판정부(24), 자국앞 패킷 처리부(25), 프리앰블 선택부(26), 송신 패킷 처리부(27), 심볼 파형/지연량 추정부(28), 심볼 파형/지연량 선택부(29), 송신 타이밍 제어부(30) 및 변조부(31)에 의해 구성된다.
RF부(22)는 안테나(21)가 수신한 RF(Radio Frequency)대의 신호를 베이스 밴드 신호로 주파수 변환하고, 수신 베이스밴드 신호로서 출력한다. 또한, RF부(22)는 변조부(31)로부터 출력된 변조 베이스밴드 신호를 RF대의 신호로 주파수 변환하여 안테나(21)에 출력한다. RF부(22)로부터 출력된 RF대의 신호는 안테나(21)로부터 송신된다. 복조부(23)는 RF부(22)로부터 출력된 수신 베이스밴드 신호를 디지털 데이터로 복조하여 복조 데이터로서 출력한다.
자국앞 패킷 판정부(24)는 복조부(23)로부터 출력된 복조 데이터로부터 유니크 워드를 검출하면 패킷을 수신했다고 판정한다. 또한, 자국앞 패킷 판정부(24)는 복조 데이터로부터 검출되는 CRC를 이용하여 수신한 패킷에 CRC 체크를 실시한 다. 패킷에 오차가 없는 경우, 자국앞 패킷 판정부(24)는 패킷의 수신이 완료된 것을 나타내는 수신 완료 신호를 생성한다. 수신 완료 신호는 송신 타이밍 제어부(30)에 출력된다. 또한, 자국앞 패킷 판정부(24)는 복조 데이터로부터 검출되는 수신처 어드레스를 이용하여 수신한 패킷이 자국앞인지 여부를 판정한다. 구체적으로는 자국앞 패킷 판정부(24)는 수신처 어드레스가 자국의 어드레스와 일치하는지 여부를 판정한다. 수신처 어드레스가 자국의 어드레스와 일치하는 경우, 자국앞 패킷 판정부(24)는 수신한 패킷이 자국앞의 패킷(이하, "자국앞 패킷"이라고 함)이라고 판정한다. 이 경우, 자국앞 패킷 판정부(24)는 자국앞 패킷을 자국앞 패킷 처리부(25)에 출력한다. 한편, 수신처 어드레스가 자국의 어드레스와 일치하지 않는 경우, 자국앞 패킷 판정부(24)는 수신한 패킷이 타국앞의 패킷(이하, "타국앞 패킷"이라고 함)이라고 판정한다. 이 경우, 자국앞 패킷 판정부(24)는 타국앞 패킷을 송신 패킷 처리부(27)에 출력한다. 자국앞 패킷 처리부(25)는 자국앞 패킷 판정부(24)로부터 출력된 자국앞 패킷에 대해 소정의 처리를 실시한다.
이와 같이 무선국에서 자국앞 패킷이 수신된 경우에 자국앞 패킷 판정부(24) 및 자국앞 패킷 처리부(25)에서 실시되는 일련의 처리는 무선국이 수신국(13)으로서 이용된 경우에 실시되는 처리이다. 또한, 후술하는 바와 같이 외부로부터 정보 데이터가 입력되고 나서 송신 패킷을 송신하기까지의 일련의 처리는 무선국이 송신국(11)으로서 이용된 경우에 실시되는 처리이다. 또한, 무선국에서 타국앞 패킷이 수신된 경우에 타국앞 패킷이 수신되고 나서 중계 패킷을 송신하기까지의 일련의 처리는 무선국이 각 중계국(121~124)으로서 이용된 경우에 실시되는 처리이다. 또한, 무선국이 중계국으로서 이용된 경우, 타국앞 패킷은 송신국(11)으로부터 송신된 송신 패킷이 된다.
프리앰블 선택부(26)에는 복수의 프리앰블의 길이에 관한 정보가 미리 설정되어 있다. 이하, 프리앰블의 길이를 "PR 길이"라고 한다. 복수의 PR 길이는 서로 길이가 다르다. 프리앰블 선택부(26)는 복수의 PR 길이중에서 1 개의 PR 길이를 랜덤하게 선택한다. 바꿔 말하면 프리앰블 선택부(26)는 복수의 PR 길이중에서 어느 PR 길이를 선택할지를 등확률로 선택한다. 프리앰블 선택부(26)는 선택한 PR 길이를 나타내는 프리앰블 신호를 생성하여 송신 패킷 처리부(27) 및 송신 타이밍 제어부(30)에 출력한다.
또한, 프리앰블 선택부(26)가 프리앰블 길이를 선택할 때, 반드시 복수의 PR 길이중에서 어느 PR 길이를 선택할지를 등확률로 선택할 필요는 없다. 다른 확률로 PR 길이를 선택하도록 해도 좋다. 단, 이하에서는 프리앰블 선택부(26)는 복수의 PR 길이중에서 어느 PR 길이를 선택할지를 등확률로 선택하는 것으로서 설명한다.
송신 패킷 처리부(27)는 외부에서 정보 데이터가 입력된 경우, 정보 데이터에 대해, 임의의 프리앰블, 유니크 워드, 송신원 어드레스, 수신처 어드레스 및 CRC를 부가하여 송신 패킷을 생성한다. 또한, 송신 패킷에 포함되는 수신처 어드레스는 도 2에서 설명한 바와 같이, 패킷의 최종적인 송신처인 수신국(13)의 어드 레스이다. 송신 패킷은 송신 패킷 처리부(27)에 보존된다. 송신 패킷 처리부(27)는 자국앞 패킷 판정부(24)로부터 입력된 타국앞 패킷인 송신 패킷에 포함되는 프리앰블을, 프리앰블 신호가 나타내는 PR 길이를 갖는 프리앰블로 교체한다. 즉, 송신 패킷 처리부(27)는 타국앞 패킷의 PR 길이를 프리앰블 신호가 나타내는 PR 길이로 바꾼다. 프리앰블이 교체된 패킷은 중계 패킷으로서 송신 패킷 처리부(27)에 보존된다.
심볼 파형/지연량 추정부(28)는 수신 베이스밴드 신호에 포함되는, 다른 무선국이 송신한 패킷의 프리앰블에 기초하여 다른 무선국이 선택한 심볼 파형과 지연량의 조합을 추정한다. 심볼 파형/지연량 추정부(28)는 자국앞 패킷 처리부(25)에서 수신 완료 신호가 출력된 타이밍에서 추정 종료 타이밍까지 추정 처리를 실시한다. 추정 종료 타이밍은 조합의 추정을 종료하는 타이밍이다. 심볼 파형/지연량 추정부(28)는 추정 종료 타이밍까지 추정 결과가 얻어진 경우, 추정한 조합을 나타내는 추정 결과 신호를 생성한다. 생성된 추정 결과 신호는 심볼 파형/지연량 선택부(29)에 출력된다. 심볼 파형/지연량 추정부(28)의 상세함에 대해서는 후술한다.
심볼 파형/지연량 선택부(29)에는 심볼 파형 및 지연량으로 이루어진 복수의 조합이 미리 기억되어 있다. 복수의 조합은 서로 다르다. 심볼 파형/지연량 선택부(29)는 추정 결과 신호가 얻어진 경우에는 추정 결과 신호가 나타내는 조합을 제외한 복수의 조합중에서 1 개의 조합을 랜덤하게 선택한다. 추정 결과 신호가 얻 어지지 않는 경우에는 심볼 파형/지연량 선택부(29)는 복수의 조합중에서 1 개의 조합을 랜덤하게 선택한다. 심볼 파형/지연량 결정부(49)는 선택한 조합의 심볼 파형을 나타내는 심볼 파형 신호를 생성한다. 심볼 파형 신호는 변조부(31)에 출력된다. 또한, 심볼 파형/지연량 선택부(29)는 선택한 조합의 지연량을 나타내는 지연량 신호를 생성한다. 지연량 신호는 송신 타이밍 제어부(30)에 출력된다.
송신 타이밍 제어부(30)는 자국앞 패킷 판정부(24)로부터 출력된 수신 완료 신호에 기초하여 기준 타이밍을 결정한다. 여기서 기준 타이밍이라고 하는 것은 중계 패킷의 송신이 개시하는 송신 개시 타이밍의 기준이 되는 타이밍을 말한다. 여기서는 일례로서 수신 완료 신호가 입력된 시점에서 소정의 대기 시간이 경과된 타이밍을 기준 타이밍으로 한다. 송신 타이밍 제어부(30)는 결정한 기준 타이밍과 심볼 파형/지연량 선택부(29)로부터 출력된 지연량 신호를 나타내는 지연량과, 프리앰플 선택부(26)로부터 출력된 프리앰블 신호가 나타내는 PR 길이와, 프리앰블 선택부(26)가 선택할 수 있는 복수의 PR 길이중 가장 짧은 PR 길이를 이용하여 송신 개시 타이밍을 결정한다. 송신 개시 타이밍은 지연량 신호가 나타내는 지연량만큼 기준 타이밍에서 지연시킨 타이밍에 대해 프리앰블 선택부(26)가 선택할 수 있는 가장 짧은 PR 길이와 프리앰블 신호가 나타내는 PR 길이와의 차분만큼 빠른 타이밍이다. 송신 타이밍 제어부(30)는 송신 개시 타이밍이 된 시점에서 송신 개시를 지시하기 위한 송신 개시 신호를 생성하고, 생성한 송신 개시 신호를 변조부(31)에 출력한다.
변조부(31)는 외부로부터의 정보 데이터에 기초한 송신 패킷에 대해서는 외부로부터의 지시에 기초한 타이밍에 따라서 송신 패킷 처리부(27)로부터 판독한다. 변조부(31)는 판독한 송신 패킷을 외부로부터의 지시에 기초한 심볼 파형에 따라서 변조하고, 변조 베이스밴드 신호로서 출력한다. 또한, 변조부(31)는 송신 개시 신호가 입력된 경우, 송신 패킷 처리부(27)로부터 중계 패킷을 판독한다. 변조부(31)는 판독한 중계 패킷을 심볼 파형 신호가 나타내는 심볼 파형에 따라서 변조하고, 변조 베이스밴드 신호로서 출력한다. 변조 베이스밴드 신호는 RF부(22)에서 RF대의 신호로 주파수 변환된 후, 안테나(21)로부터 송신된다.
계속해서 도 4를 참조하여 심볼 파형/지연량 추정부(28)에 대해 상세히 설명한다. 또한, 여기서는 송신 매개변수로서 심볼 파형과 지연량의 2 개의 매개변수를 이용하기로 한다. 또한, 심볼 파형이 w1과 w2의 2 종류가 있고, 지연량이 0과 T의 2 종류가 있다고 한다. 이 경우, 심볼 파형과 지연량의 조합은 2×2의 4 종류, 즉 송신 매개변수가 4 종류가 되고, 최대 유효 브랜치수는 4가 된다. 즉, 최대 4 브랜치의 패스 다이버시티 효과를 얻는 것이 가능하다. 또한, 최대 유효 브랜치수라는 것은 패스 다이버시티 효과에 기여할 수 있는 유효한 브랜치의 최대 수를 의미한다. 또한, 본 실시형태에서는 상기 (E)의 시스템을 적용하고 있으므로 각 지연량차(T-0=T)를 1칩 길이 이상, 또 확산 부호 길이 미만으로 한다.
도 4는 심볼 파형/지연량 추정부(28)의 상세한 구성을 도시한 블럭도이다. 도 4에 있어서, 심볼 파형/지연량 추정부(28)는 상관부(281a, 281b), 참조 파형 R1 유지부(282a), 참조 파형 R2 유지부(282b) 및 타이밍 판정부(283a, 283b)에 의해 구성된다.
참조 파형 R1 유지부(282a)는 심볼 파형(w1)으로 변조된 프리앰블 부분의 파형 데이터를 참조 파형 R1으로서 유지하고 있다. 참조 파형(282b)은 심볼 파형(w2)으로 변조된 프리앰블 부분의 파형 데이터를 참조 파형 R2로서 유지하고 있다. 수신 베이스밴드 신호는 상관부(281a, 281b)에 각각 입력된다. 상관부(281a)는 수신 베이스밴드 신호와, 참조 파형 R1 유지부에 유지되어 있는 참조 파형 R1과의 상호 상관을 갖는다. 상관부(281a)는 이 상관 결과와 소정의 임계값을 비교하여 피크를 검출하고, 상관 신호(c1)로서 출력한다. 심볼 파형(w1)으로 변조된 프리앰블을 포함하는 중계 패킷이 수신된 경우, 상관 신호(c1)로서 참조 파형(R1)의 길이와 같은 주기의 피크가 출력된다. 또한, 심볼 파형(w1)으로 변조된 프리앰블을 포함하는 중계 패킷이 다른 시간에 수치 중첩하여 수신된 경우, 상관 신호(c1)로서 각 중계 패킷에 대응하는 피크가 각각 중첩하여 출력된다. 심볼 파형(w1) 이외의 심볼 파형으로 변조된 프리앰블을 포함하는 중계 패킷이 수신된 경우, 상관 신호(c1)로서 노이즈와 같은 신호가 출력된다. 즉, 이 경우 피크는 출력되지 않는다. 마찬가지로 상관부(281b)는 수신 베이스밴드 신호와, 참조 파형 R2 유지부에 유지되어 있는 참조 파형 R2와의 상관을 갖고, 최종적으로 상관 신호(c2)를 출력한다.
타이밍 판정부(283a)는 상관 신호(c1)와 참조 타이밍을 비교하여 심볼 파 형(w1)으로 변조된 중계 패킷의 지연량을 추정한다. 여기서 참조 타이밍이라는 것은 자국앞 패킷 처리부(25)에서 수신 완료 신호가 출력된 타이밍을 트리거로 하여 참조 파형 R1 또는 R2와 동일한 주기로 카운트하는 카운터에 의해 생성되는 타이밍이다. 또한, 참조 파형 R1의 주기는 참조 파형 R2의 주기와 동일하다. 또한, 상술한 바와 같이 지연량은 2 가지 (0, T)만 이용되게 했다. 따라서 타이밍 판정부(283a)는 상관 신호(c1)에 포함되는 피크와 참조 타이밍을 비교하여 피크가 나타내는 지연량이 0인지 T인지를 판정한다. 보다 구체적인 판정 방법에 대해서는 후술한다. 타이밍 판정부(283a)는 지연량이 0이라고 판정한 경우, 그 판정 결과를 추정 결과 신호(d11)로서 생성하여 출력한다. 또한 타이밍 판정부(283a)는 지연량이 T라고 판정한 경우, 그 판정 결과를 추정 결과 신호(d12)로서 생성하여 출력한다.
또한, 추정 결과 신호(d11, d12)는 상관 신호(c1)에 포함되는 피크에 기초하여 판정된 결과를 나타내는 신호이다. 따라서, 예를 들면 추정 결과 신호(d11)가 출력된 경우, 수신 베이스밴드 신호에는 심볼 파형(w1)으로 변조되고, 또한 지연량이 0인 중계 패킷이 포함되어 있는 것을 알 수 있다. 또한, 추정 결과 신호(d12)가 출력된 경우, 수신 베이스밴드 신호에는 심볼 파형(w1)으로 변조되고, 또한 지연량이 T인 중계 패킷이 포함되어 있는 것을 알 수 있다.
마찬가지로 타이밍 판정부(283b)는 상관 신호(c2)와 참조 타이밍을 비교하여 심볼 파형(w2)으로 변조된 중계 패킷의 지연량을 추정한다. 구체적으로는 타이밍 판정부(283b)는 상관 신호(c2)에 포함되는 피크와 참조 타이밍을 비교하여 피크가 나타내는 지연량이 0인지 T인지를 판정한다. 타이밍 판정부(293b)는 지연량이 0이라고 판정한 경우, 그 판정 결과를 추정 결과 신호(d21)로서 생성하여 출력한다. 또한, 타이밍 판정부(283b)는 지연량이 T라고 판정한 경우, 그 판정 결과를 추정 결과 신호(d22)로서 생성하여 출력한다.
또한, 심볼 파형/지연량 추정부(28)는 자국앞 패킷 판정부(24)에서 수신 완료 신호가 출력된 타이밍에서 추정 종료 타이밍까지 추정 처리를 실시한다. 여기서 추정 종료 타이밍은 프리앰블 선택부(26)에 미리 설정된 가장 짧은 PR 길이와 프리앰블 선택부(26)가 선택한 PR 길이와의 시간차만큼 기준 타이밍보다도 빠른 타이밍이다. 여기서는 기준 타이밍은 가장 짧은 PR 길이이고, 또한 지연량(0)으로 중계 패킷을 송신하는 경우에 있어서 송신을 개시하는 타이밍으로 하고 있다. 심볼 파형/지연량 추정부(28)는 기준 타이밍이나 각 PR 길이를 송신 타이밍 제어부(30)로부터 판독함으로서 추정 종료 타이밍을 결정한다. 또한, 심볼 파형/지연량 추정부(28)는 수신 완료 신호가 출력된 타이밍을 송신 타이밍 제어부(30)로부터 판독함으로써 수신 완료 신호가 출력된 타이밍을 추정을 개시하는 타이밍으로 결정한다.
또한, 타이밍 판정부(283a, 283b)가 출력하는 추정 결과 신호의 수는 각각 무선 전송 시스템(1)에서 이용되는 지연량의 수에 상당한다. 따라서, 무선 전송 시스템(1)에서 지연량이 3 개 이용되는 경우, 타이밍 판정부(283a)가 출력하는 추 정 결과 신호의 수는 3 개가 되고, 타이밍 판정부(283b)가 출력하는 추정 결과 신호의 수도 3 개가 된다. 또한, 이 경우, 각 지연량 차를 1칩 길이 이상으로 하고, 또한 최대 지연량과 최소 지연량의 차를 확산 부호 길이 미만이 되도록 하면 좋다.
이와 같이 도 4에 도시한 심볼 파형/지연량 추정부(28)를 이용한 경우, 심볼 파형과 지연량의 추정을 파형 상관에 의해 실시하므로 복수의 중첩된 패킷 각각의 심볼 파형과 지연량을 추정할 수 있다. 또한, 파형 상관에 의해 심볼 파형과 지연량의 추정을 하는 경우, 추정하기 위해 필요한 수신 베이스밴드 신호의 프리앰블의 길이는 최저 1 심볼 길이 정도로 짧게 해결한다. 따라서, 도 2에 도시한 패킷(P1~P4)의 각 PR 길이의 차분을 짧게 할 수 있으므로 전송 효율을 저하시키지 않아도 좋은 효과가 있다. 또한, 도 4에 도시한 심볼 파형/지연량 추정부(28)는 심볼 파형이 2 종류 있는 경우에 대해 설명했지만, 3 종류 이상의 심볼 파형을 이용해도 좋다. 이 경우, 도 4에 도시한 심볼 파형/지연량 추정부(28)는 상관부, 참조 파형 유지부, 타이밍 판정부를 심볼 파형의 종류 수만큼 갖고 있으면 좋다.
계속해서 도 5 및 도 6을 참조하여 변조부(31) 및 복조부(23)의 구성에 대해 상세히 설명한다. 본 실시형태에서는 무선 전송 시스템(1)으로서 상기 (E)에서 나타낸 시스템을 적용하기로 했다. 따라서 도 5에는 상기 (E)의 시스템을 적용한 경우의 변조부(31)의 구성을 도시한다. 도 6에는 상기 (E)의 시스템을 적용한 경우의 복조부(23)의 구성을 도시한다.
도 5에 있어서, 변조부(31)는 대략적으로 1차 변조부(311), 2차 변조부(314) 및 D/A 변환기(317)에 의해 구성된다. 1차 변조부(311)는 판독 제어부(312) 및 파형 출력부(313)에 의해 구성된다. 2차 변조부(314)는 확산 부호 제어부(315) 및 확산부(316)에 의해 구성된다.
판독 제어부(312)는 베이스 클럭으로 동작하는 카운터로 구성된다. 판독 제어부(312)는 송신 타이밍 제어부(30)로부터 송신 개시 신호가 입력되면, 카운터값에 기초하여 중계 패킷을 판독하기 위한 판독 클럭을 생성한다. 판독 제어부(312)는 생성한 판독 클럭을 송신 패킷 처리부(27)에 출력한다. 송신 패킷 처리부(27)는 입력된 판독 클럭에 따라서 중계 패킷을 판독하고, 변조부(31)의 판독 제어부(312)에 출력한다. 판독 제어부(312)는 송신 패킷 처리부(27)로부터 중계 패킷을 판독하면, 중계 패킷에 대해 필요에 따라서 차동 부호화를 실시한다. 그 후, 판독 제어부(312)는 파형 출력부(313)의 변조 파형의 데이터를 판독하기 위한 어드레스를 나타내는 어드레스 신호를 생성하고, 생성한 어드레스 신호를 파형 출력부(313)에 출력한다. 파형 출력부(313)는 파형 메모리를 갖고 있다. 파형 메모리에는 미리 변조 파형의 데이터가 저장되어 있다. 파형 출력부(313)는 어드레스 신호에 따른 변조 파형의 데이터를 파형 메모리로부터 판독하고, 판독한 변조 파형의 데이터를 1차 변조 신호로서 출력한다. 확산 부호 제어부(315)는 심볼 파형/지연량 선택부(29)로부터 출력된 심볼 파형 신호에 따른 확산 부호를 생성한다. 확산부(316)는 1차 변조 신호를 확산 부호 제어부(315)에서 생성된 확산 부호로 확산한다. D/A 변환기(317)는 확산된 1차 변조 신호를 디지털 신호에서 아날로그 신호로 변환하고, 변조 베이스밴드 신호로서 출력한다.
이상과 같이 도 5에 도시한 변조부(31)는 송신 개시 신호를 수취하면, 심볼 파형/지연량 선택부(29)에서 결정된 심볼 파형에 따른 확산 부호로 중계 패킷을 변조한다. 또한, 도 5에 도시한 변조부(31)는 심볼 파형/지연량 선택부(29)에서 결정된 지연량을 중계 패킷에 부가하여 송신할 수 있다. 또한, 변조 베이스밴드 신호를 출력하는 타이밍은 송신 개시 신호를 수취한 타이밍에 따라서 베이스 클럭 단위로 변화한다. 또한, 베이스 클럭은 통상 심볼 주파수(심볼 길이의 역수)의 수배에서 십수배의 주파수가 이용되는 것이 많다. 따라서, 변조부(31)는 심볼 길이의 수분의 1에서 십수분의 1의 단위로 변조 베이스밴드 신호를 출력하는 타이밍을 조정할 수 있다. 그 결과, 중계 패킷에 대해 심볼 파형/지연량 선택부(29)에서 결정된 지연량을 부가하여 송신할 수 있다.
또한, 외부로부터의 정보 데이터에 기초한 송신 패킷에 대해서는 변조부(31)는 외부로부터의 지시에 기초한 타이밍으로 송신 패킷 처리부(27)로부터 판독한다. 송신 패킷 처리부(27)는 판독한 송신 패킷을 외부로부터의 지시에 기초한 심볼 파형으로 변조하고, 변조 베이스밴드 신호로서 출력한다. 판독 제어부(312)는 외부로부터의 지시에 기초한 타이밍으로 카운터값에 기초하여 중계 패킷을 판독하기 위한 판독 클럭을 생성한다. 판독 제어부(312)는 생성한 판독 클럭을 송신 패킷 처리부(27)에 출력한다. 송신 패킷 처리부(27)는 입력된 판독 클럭에 따라서 송신 패킷을 판독하고, 변조부(31)의 판독 제어부(312)에 출력한다. 판독 제어부(312) 는 송신 패킷 처리부(27)로부터 송신 패킷을 판독하면, 송신 패킷에 대해 필요에 따라서 차동 부호화를 실시한다. 그 후, 판독 제어부(312)는 파형 출력부(313)의 변조 파형 데이터를 판독하기 위한 어드레스를 나타내는 어드레스 신호를 생성하고, 생성한 어드레스 신호를 파형 출력부(313)에 출력한다. 파형 출력부(313)는 어드레스 신호에 따른 변조 파형 데이터를 파형 메모리로부터 판독하고, 판독한 변조 파형 데이터를 1차 변조 신호로서 출력한다. 확산 부호 제어부(315)는 외부로부터의 지시에 기초한 심볼 파형에 따른 확산 부호를 생성한다. 확산부(316)는 1차 변조 신호를 확산 부호 제어부(315)에서 생성된 확산 부호로 확산한다. D/A 변환기(317)는 확산된 1차 변조 신호를 디지털 신호에서 아날로그 신호로 변환하고, 변조 베이스밴드 신호로서 출력한다.
도 6에 있어서, 복조부(23)는 상관부(231a, 231b), 확산 부호 S1 유지부(232a), 확산 부호 S2 유지부(232b), 검파부(233a, 233b), 진폭/위상 검출부(234a, 234b), 합성부(235) 및 판정부(236)에 의해 구성된다.
수신 베이스밴드 신호는 상관부(231a, 231b)에 각각 입력된다. 상관부(231a)는 수신 베이스밴드 신호와, 확산 부호 S1 유지부(232a)에 유지된 확산 부호 S1과의 상관을 갖게 하여 수신 베이스밴드 신호를 역확산한다. 역확산된 수신 베이스밴드 신호는 역확산 신호로서 검파부(233a)에 출력된다. 검파부(233a)는 상관부(231a)로부터 출력된 역확산 신호를 검파하고, 검파 신호를 생성한다. 진폭/위상 검출부(234a)는 검파부(233a)에서 생성된 검파 신호로 진폭과 위상을 검출하 고, 각각을 진폭 정보 및 위상 정보로서 출력한다. 마찬가지로 상관부(231b)는 수신 베이스밴드 신호와, 확산 부호 S2 유지부(232b)에 유지된 확산 부호 S2와의 상관을 갖게 하여 수신 베이스밴드 신호를 역확산한다. 역확산된 수신 베이스밴드 신호는 역확산 신호로서 검파부(233b)에 출력된다. 검파부(233b)는 상관부(231b)로부터 출력된 역확산 신호를 검파하여 검파 신호를 생성한다. 진폭/위상 검출부(234b)는 검파부(233b)에서 생성된 검파 신호로부터 진폭과 위상을 검출하고, 각각을 진폭 정보 및 위상 정보로서 출력한다.
합성부(235)는 검출부(234a, 234b)로부터 출력된 각 검파 신호를 각각의 진폭 정보와 위상 정보를 기초로 합성하고, 합성 신호를 생성한다. 판정부(236)는 합성 신호를 부호 판정한다. 판정부(236)에서 부호 판정된 신호는 복조 데이터로서 자국앞 패킷 판정부(24)에 출력된다.
이와 같이, 도 6에 도시한 복조부(23)는 수신 베이스밴드 신호와, 복수의 확산 부호의 각각과의 상관을 갖게 하여 각 무선국으로부터 송신된 패킷이 중첩된 신호(패스)를 분리, 합성할 수 있다. 이에 의해 패스 다이버시티 효과가 얻어진다. 또한, 도 6에 도시한 복조부(23)는 확산 부호가 2 종류 있는 경우에 대해 설명했지만, 3 종류 이상의 확산 부호를 이용해도 좋다. 이 경우, 도 6에 도시한 복조부(23)는 상관부, 확산 부호 유지부, 검파부, 및 진폭/위상 검출부를 심볼 파형의 종류 수만큼 갖고 있으면 좋다.
계속해서, 도 7 및 도 8을 참조하여 제 1 실시형태에 따른 무선국의 동작에 대해 설명한다. 도 7 및 도 8은 제 1 실시형태에 따른 무선국의 동작을 나타내는 플로우차트이다.
도 7에 있어서, 송신 패킷 처리부(27)는 외부로부터 정보 데이터가 입력되었는지 여부를 판단한다(단계(S11)). 정보 데이터가 입력되었다고 판단한 경우(단계(S11)에서 "예"), 송신 패킷 처리부(27)는 정보 데이터에 임의의 프리앰블 등을 부가하여 송신 패킷을 생성하고, 생성한 송신 패킷을 보존한다(단계(S12)). 단계(S12) 이후에 단계(S13)에서 변조부(31)는 송신 패킷 처리부(27)로부터 송신 패킷을 판독하고, 외부로부터의 지시에 기초한 심볼 파형으로 변조하여 변조 베이스밴드 신호로서 출력한다. 또한, 변조 베이스밴드 신호는 RF부(22)에서 RF대의 신호에 주파수 변환된 후, 안테나(21)로부터 송신된다. 이상의 단계(S11~S13)의 처리는 무선국이 송신국(11)으로서 이용되는 경우에 실시되는 처리이다.
한편, 정보 데이터가 입력되지 않았다고 판단된 경우(단계(S11)에서 "아니오")에 있어서, 다른 무선국으로부터 송신된 패킷이 안테나(21)로 수신되면, 복조부(23)는 수신된 패킷을 복조하여 복조 데이터를 출력한다(단계(S14)). 자국앞 패킷 판정부(24)는 복조 데이터로부터 검출되는 CRC를 이용하여 패킷의 수신이 완료되었는지 여부를 판정한다(단계(S15)). 패킷의 수신이 완료되었다고 판정한 경우(단계(S15)에서 "예"), 자국앞 패킷 판정부(24)는 복조 데이터로부터 검출되는 수신처 어드레스를 이용하여 수신된 패킷이 자국앞 패킷인지 여부를 판정한다(단계(S16)). 또한, 이 경우에 있어서 자국앞 패킷 판정부(24)는 패킷의 수신이 완료 된 것을 나타내는 수신 완료 신호를 송신 타이밍 제어부(30)에 출력한다. 수신된 패킷이 자국앞 패킷이라고 판단된 경우(단계(S16))에서 "예"), 자국앞 패킷 처리부(25)는 자국앞 패킷에 대해 소정의 처리를 실시한다(단계(S17)). 이상의 단계(S14~S17)의 처리는 무선국이 수신국(13)으로서 이용된 경우에 실시되는 처리이다. 한편, 수신된 패킷이 타국앞 패킷이라고 판단된 경우(단계(S16)에서 "아니오"), 처리는 A를 통해 도 8의 단계(S18)로 진행한다. 또한, 이 경우 타국앞이라는 것은 수신국(13) 앞을 의미하므로, 단계(S18) 이후의 처리는 무선국이 각 중계국(121~124)으로서 이용된 경우에만 실시되는 처리이다. 따라서, 이상의 단계(S14~S16, S18~S29)의 처리는 무선국이 각 중계국(121~124)으로서 이용된 경우에 실시되는 처리이다.
도 8에 있어서, 송신 타이밍 제어부(30)는 자국앞 패킷 판정부(24)로부터 출력된 수신 완료 신호에 기초하여 기준 타이밍을 결정한다(단계(S18)). 단계(S18) 이후에 프리앰블 선택부(26)는 미리 설정된 복수의 PR 길이중에서 1 개의 PR 길이를 랜덤하게 선택한다(단계(S19)). 단계(S19) 이후에 송신 패킷 처리부(27)는 타국앞 패킷인 송신 패킷에 포함되는 프리앰블을, 단계(S19)에서 선택된 PR 길이를 갖는 프리앰블로 교체하여 중계 패킷을 생성하고, 생성한 중계 패킷을 보존한다(단계(S20)). 단계(S20) 이후에 심볼 파형/지연량 선택부(29)는 단계(S20)에서 선택된 PR 길이가 가장 긴 PR 길이인지 여부를 판단한다(단계(S21)). 여기서, PR 길이가 가장 긴 경우, 송신 개시 타이밍이 각 중계국(121~124)중에서 가장 빠른 타이밍 이 된다. 즉, 가장 긴 PR 길이를 선택한 중계국은 최초로 중계 패킷을 송신한다. 따라서, 단계(S21)에서 PR 길이가 가장 긴 PR 길이라고 판단된 경우, 다른 중계국으로부터는 중계 패킷이 수신되지 않으므로 심볼 파형/지연량 추정부(28)는 다른 중계국이 선택한 심볼 파형 및 지연량의 추정 처리를 실시하지 않는다. 즉, 심볼 파형/지연량 추정부(28)로부터 추정 결과 신호가 얻어지지 않는다. 따라서, 이 경우, 심볼 파형/지연량 선택부(29)는 심볼 파형 및 지연량으로 이루어진 복수의 조합중에서 1 개의 조합을 랜덤하게 선택한다(단계(S22)). 한편, 단계(S21)에서 PR 길이가 가장 긴 PR 길이가 아니라고 판단된 경우, 다른 중계국으로부터는 중계 패킷이 수신될 가능성이 있으므로 심볼 파형/지연량 추정부(28)는 다른 중계국이 선택한 심볼 파형 및 지연량의 추정 처리를 실시한다. 즉, 심볼 파형/지연량 추정부(28)로부터 추정 결과 신호가 얻어질 가능성이 있다. 따라서, 이 경우 처리는 단계(S23)로 진행한다.
단계(S23)에서 심볼 파형/지연량 추정부(28)는 수신 베이스밴드 신호에 포함되는, 다른 중계국이 송신한 중계 패킷의 프리앰블에 기초하여 다른 중계국이 선택한 심볼 파형과 지연량을 추정한다. 단계(S230 이후에 심볼 파형/지연량 추정부(28)는 추정 종료 타이밍이 되었는지 여부를 판단한다(단계(S24)). 추정 종료 타이밍이 되었다고 판단된 경우(단계(S24)에서 "예"), 심볼 파형/지연량 추정부(28)는 추정 결과가 얻어졌는지 여부를 판단한다(단계(S25)). 즉, 심볼 파형/지연량 추정부(28)는 추정 결과 신호를 생성할 수 있는지 여부를 판단한다(단 계(S25)). 단계(S25)에서 추정 결과가 얻어진 경우, 심볼 파형/지연량 선택부(29)는 추정 결과 신호가 나타내는 다른 중계국이 선택한 조합을 제외한 복수의 조합 중에서 1 개의 조합을 랜덤하게 선택한다(단계(S26)). 또한, 심볼 파형 및 지연량의 조합은 다른 선택 가능한 조합이 복수 존재하는 경우, 심볼 파형/지연량 선택부(29)는 그 중에서 랜덤하게 1 개의 조합을 선택하면 좋다. 한편, 단계(S25)에서 추정 결과가 얻어지지 않은 경우, 처리는 단계(S22)로 진행한다. 단계(S22)에서 심볼 파형/지연량 선택부(29)는 심볼 파형 및 지연량의 조합을 랜덤하게 선택한다.
단계(S22) 및 단계(S26) 이후에 송신 타이밍 제어부(30)는 기준 타이밍과, 단계(S19)에서 선택된 PR 길이와, 단계(S22) 및 단계(S26)에서 선택된 지연량과, 프리앰블 선택부(26)가 선택할 수 있는 복수의 PR 길이 중 가장 짧은 PR 길이를 이용하여 송신 개시 타이밍을 결정한다(단계(S27)). 여기서, 송신 개시 타이밍은 상술한 바와 같이 선택한 지연량만큼 기준 타이밍에서 지연시킨 타이밍에 대해 프리앰블 선택부(26)가 선택할 수 있는 가장 짧은 PR 길이와 자국이 선택한 PR 길이의 차만큼 빠른 타이밍으로 했다. 이와 같은 송신 개시 타이밍을 결정하여 프리앰블 이후의 데이터에 대해 단계(S22) 또는 단계(S26)에서 선택된 지연량을 부가할 수 있다. 단계(S27) 이후에 송신 타이밍 제어부(30)는 송신 개시 타이밍이 되었는지 여부를 판단한다(단계(S28)). 단계(S28)에서 송신 개시 타이밍이 되었다고 판단된 경우, 변조부(31)는 단계(S20)에서 보존된 중계 패킷을 송신 패킷 처리부(27)로부터 판독하고, 단계(S22) 또는 단계(S26)에서 선택된 심볼 파형으로 변조하여 변조 베이스밴드 신호로서 출력한다. 변조 베이스밴드 신호는 RF부(22)에서 RF대의 신호로 주파수 변환된 후, 안테나(21)로부터 송신된다(단계(S29)).
이상의 단계에 의해 무선국이 중계국인 경우, 가장 긴 PR 길이를 선택한 중계국이 최초로 송신을 개시하고, 계속해서 긴 프리앰블을 선택한 중계국에서 차례로 송신을 개시해간다. 또한, 송신 개시 타이밍을 결정하여 프리앰블 이후의 데이터에 대해 선택 가능한 지연량을 부가할 수 있다. 이에 의해 수신국에서는 패스 다이버시티 효과가 얻어져 수신한 패킷을 오류 없이 복조할 수 있다. 또한, 가장 긴 PR 길이를 선택한 중계국은 최초로 중계 패킷을 송신하게 된다. 따라서 가장 긴 PR 길이 이외를 선택한 중계국은 다른 중계국이 최초로 송신한 중계 패킷의 프리앰블에 기초하여 다른 중계국이 선택하고 있는 심볼 파형 및 지연량의 조합을 추정할 수 있다. 이에 의해 가장 긴 PR 길이 이외를 선택한 중계국은 다른 중계국이 선택하고 있는 심볼 파형 및 지연량의 조합과는 다른 조합을 선택할 수 있다. 그 결과, 최대 유효 브랜치 수에 가까운 패스 다이버시티 효과가 얻어진다.
계속해서 도 9를 참조하여 제 1 실시형태에 따른 각 중계국(121~124)의 처리예에 대해 설명한다. 도 9는 제 1 실시형태에 따른 각 중계국(121~124)의 처리의 개요를 도시한 도면이다. 도 9에는 송신국(11)이 송신한 송신 패킷 및 각 중계국(121~124)이 송신한 중계 패킷의 타이밍과, 각 중계국(121~124)이 참조하는 참조 타이밍과, 각 중계국(122~124)의 상관 신호가 도시되어 있다. 도 9의 예에서는 중계국(121)이 가장 긴 PR 길이(도 2의 PR4의 길이에 상당)를 선택하고 있다. 중계 국(122)은 2 번째로 긴 PR 길이(도 2의 PR3의 길이에 상당)를 선택하고 있다. 중계국(123)은 3 번째로 긴 PR 길이(도 2의 PR2의 길이에 상당)를 선택하고 있다. 중계국(124)은 가장 짧은 PR 길이(도 2의 PR1의 길이에 상당)를 선택하고 있다. 또한, 도 9의 예에서는 송신 매개변수로서 2가지 심볼 파형(w1, w2)과, 2가지 지연량(O, T)으로부터 얻어지는 조합중에서 1 개의 조합이 선택된다고 한다. 여기서는 중계국(121)이 (심볼 파형(w1), 지연량(O))을 선택하고, 중계국(122)이 ((심볼 파형(w1), 지연량(T))을 선택하며, 중계국(123)이 (심볼 파형(w2), 지연량(O))을 선택하고, 중계국(124)이 (심볼 파형(w2), 지연량(T))을 선택하는 경우를 생각한다. 또한, 도 9의 예에서는 설명을 간단히 하기 위해 각 프리앰블(PR)에 해칭이 그려져 있다. 사선 형상의 해칭은 프리앰블이 심볼 파형(w1)으로 변조되어 있는 것을 나타내고 있다. 격자 형상의 해칭은 프리앰블이 심볼 파형(w2)으로 변조되어 있는 것을 나타내고 있다.
여기서 상술한 수신 완료 신호가 입력된 타이밍, 기준 타이밍, 추정 종료 타이밍, 송신 개시 타이밍 및 참조 타이밍에 대해, 도 9의 예를 이용하여 다시 한번 설명한다. 도 9에 도시한 t1은 수신 완료 신호가 입력된 타이밍, 즉 송신국(11)으로부터 송신된 송신 패킷의 수신이 완료된 타이밍이다. 또한, 도 9에 도시한 기준 타이밍은 수신 완료 신호가 입력된 시점(t1)에서 소정의 대기 시간이 경과된 타이밍이다. 또한, 도 9에 도시한 t2는 중계국(122)의 추정 종료 타이밍이다. t3은 중계국(123)의 추정 종료 타이밍이다. t4는 중계국(124)의 추정 종료 타이밍이다. 예를 들면, 추정 종료 타이밍(t2)은 중계국(122)이 선택할 수 있는 가장 짧은 PR 길이(중계국(124)의 PR 길이)와 중계국(122)이 선택한 PR 길이와의 시간차만큼 기준 타이밍 보다도 빠른 타이밍이다. 또한, 예를 들면 추정 종료 타이밍(t4)은 중계국(124)이 선택할 수 있는 가장 짧은 PR 길이(중계국(124)의 PR 길이)와 중계국(124)이 선택한 PR 길이와의 시간차 만큼 기준 타이밍 보다도 빠른 타이밍이다. 따라서, 추정 종료 타이밍(t4)은 기준 타이밍과 일치하게 된다. 이와 같이 추정 종료 타이밍은 선택한 PR 길이에 따라 바뀌는 타이밍이고, 선택한 PR 길이가 짧을수록 추정 종료 타이밍은 늦어진다.
또한, 도 9에 있어서, 각 중계 패킷의 선두 시간은 송신 개시 타이밍을 도시하고 있다. 여기서, 예를 들면 중계국(122)의 중계 패킷에는 지연량(T)이 부가되어 있다. 이 경우, 송신 개시 타이밍은 중계국(122)에서 선택된 지연량(T)만큼 기준 타이밍에서 지연시킨 타이밍에 대해, 중계국(122)에서 선택할 수 있는 가장 짧은 PR 길이(중계국(124)의 PR 길이)와 중계국(122)에서 선택된 PR 길이와의 차분만큼 빠른 타이밍이다. 따라서, 중계국(122)의 송신 개시 타이밍은 도 9에 도시한 추정 종료 타이밍(t2) 보다도 지연량(T)만큼 늦어진 타이밍이 된다. 또한, 예를 들면 중계국(124)에서는 지연량이 0이므로 중계국(124)의 중계 패킷에는 지연량이 부가되어 있지 않다. 이 경우, 송신 개시 타이밍은 도 9에 도시한 바와 같이 기준 타이밍과 일치하게 된다. 이와 같이 추정 종료 타이밍은 지연량이 0 및 T 중 어느 하나라도 송신 개시 타이밍보다 늦어지지 않는다. 이에 의해 추정 종료 타이밍까 지 심볼 파형 및 지연량의 추정이 종료함으로써 선택된 지연량을 부가한 송신을 정상으로 실시할 수 있다.
또한, 도 9에 도시한 참조 타이밍은 t1을 트리거로서 하여 참조 파형(R1) 또는 참조 파형(R2)과 동일한 주기로 카운트하는 카운터에 의해 생성되는 타이밍이다. 참조 타이밍은 각 중계국(121~124)에서 각각 생성된다. 또한, 송신국911)으로부터 각 중계국(121~124)까지의 운반 시간이 거의 동일하면, 각 중계국(121~124)이 생성하는 참조 타이밍은 거의 일치한다.
계속해서, 도 9의 예를 이용하여 각 중계국(121~124)이 어떻게 송신 매개변수의 추정을 실시할지에 대해 설명한다. 가장 긴 PR 길이를 선택한 중계국(121)은 도 9에 도시한 바와 같이 송신 개시 타이밍이 각 중계국(121~124) 중에서 가장 빠른 타이밍이 된다. 즉, 중계국(121)은 최초로 중계 패킷을 송신한다. 따라서, 중계국(121)은 다른 중계국(122~124)으로부터 중계 패킷을 수신할 수 없으므로 상관 신호(도 9에서는 도시하지 않음)에서도 피크가 생기지 않는다. 그 결과, 중계국(121)은 다른 중계국(122~124)이 선택한 심볼 파형 및 지연량을 추정할 수 없다. 이 때문에 중계국(121)은 심볼 파형 및 지연량으로 이루어진 복수의 조합 중에서 1 개의 조합을 랜덤하게 선택한다. 도 9에서는 중계국(121)은 (심볼 파형(w1), 지연량(O))을 선택하고 있다.
중계국(122)은 중계국(121)이 송신한 프리앰블을 수신한다. 중계국(122)은 수신한 중계국(121)의 프리앰블에 기초하여 심볼 파형과 지연량의 조합을 추정한 다. 중계국(122)은 t1에서 추정 종료 타이밍 t2까지 추정을 실시한다.
우선, 중계국(122)의 심볼 파형이 추정에 대해 설명한다. 도 9에 도시한 중계국(122)의 상관 신호(c1)는 심볼 파형(w1)으로 변조된 프리앰블에 대해 피크가 출력되는 신호이다. 중계국(122)이 상관 신호(c2)는 심볼 파형(w2)으로 변조된 프리앰블에 대해 피크가 출력되는 신호이다. 또한, 중계국(121)이 송신한 프리앰블은 심볼 파형(w1)으로 변조되어 있다. 여기서, 중계국(122)에서는 상관 신호(c1)만 피크가 출력된다. 이에 의해 중계국(122)은 중계국(121)이 선택한 심볼 파형(w1)이라고 추정할 수 있다.
여기서, 지연량의 추정 방법에 대해 상세히 설명한다. 상관 신호(c1, c2)의 피크가 출력되는 타이밍의 주기는 참조 파형 R1 또는 R2의 주기와 일치한다. 참조 파형 R1 또는 R2의 주기는 통상 송신 매개변수로서 선택 가능한 지연량보다도 커진다. 따라서, 상관 신호의 피크가 출력되는 타이밍의 주기도 송신 매개변수로서 선택 가능한 지연량 보다도 커진다. 예를 들면, 변복조 방식으로서 DSSS 방식을 이용한 경우, 송신 매개변수로서 선택 가능한 지연량은 확산 부호의 1 칩 이상의 길이, 또한 확산 부호 길이 미만의 길이이다. 한편, 참조 파형 R1 또는 R2의 1 주기는 통상 1 확산 부호 길이(1 심볼 길이) 이상이다. 여기서, 참조 파형 R1 또는 R2의 1 주기는 상관 신호의 피크가 출력되는 타이밍의 주기와 일치한다. 따라서, 상관 신호의 피크가 출력되는 타이밍의 주기는 1 확산 부호 길이(1 심볼 길이) 이상이 되고, 송신 매개변수로서 선택 가능한 지연량 보다도 커진다. 그 결과, 예를 들면 지연량으로서 0으로 송신된 중계 패킷을 수신한 경우의 피크가 출력되는 타이밍과, 지연량으로서 T로 송신된 패킷을 수신한 경우의 피크가 출력되는 타이밍을 비교할 때, 각 타이밍의 시간 차는 피크의 1 주기보다도 커지지 않는다. 이 때문에 각 타이밍의 시간차를 지연량(T)으로서 추정할 수 있다. 또한, 상관 신호의 피크가 나타내는 지연량이 1 종류 밖에 없는 경우, 지연량을 구하기 위한 타이밍이 필요해진다. 따라서, 도 9의 예에서는 참조 타이밍을 이용하고 있다. 또한, 도 9에 도시한 참조 타이밍은 지연량으로서 0으로 송신된 중계 패킷을 수신한 경우의 상관 신호의 피크가 동위상이 되도록 설정되어 있다. 따라서, 도 9의 예에서는 지연량이 0인 경우, 상관 신호의 피크가 출력되는 타이밍과, 참조 타이밍이 동일한 타이밍이 된다. 또한, 지연량이 T인 경우, 상관 신호의 피크가 출력되는 어느 하나의 타이밍과, 어느 하나의 타이밍보다도 빠르고, 또 가장 가까운 참조 타이밍의 시간차가 T가 된다. 또한, 도 9의 예에서는 참조 타이밍의 주기가 송신 매개변수로서 선택 가능한 최대 지연량(이 경우는 T)의 2배가 되도록 하고 있다. 이와 같이 하여 클럭의 지터 등의 원인에 의해 상관 신호의 피크의 타이밍이 흔들린 경우에도 지연량의 추정을 바르게 실시할 수 있다.
중계국(122)은 상기 추정 방법을 이용하여 상관 신호(c1, c2)를 기초로 지연량을 추정한다. 중계국(122)에 있어서, 상관 신호(c1)의 피크가 출력된 타이밍은 참조 타이밍과 동위상으로 되어 있다. 따라서, 중계국(122)은 중계국(121)이 선택한 지연량이 0인 것을 추정할 수 있다. 이상으로 중계국(122)은 중계국(121)에 의 해 선택된 조합이 (심볼 파형(w1), 지연량(0))이라고 추정할 수 있다. 그리고, 중계국(122)은 중계국(121)과는 다른 조합중에서 1 개의 조합을 랜덤하게 선택한다. 도 9의 예에서는 중계국(122)은 (심볼 파형(w1), 지연량(T))을 선택하고 있다.
중계국(123)은 중계국(121, 122)이 송신한 프리앰블을 각각 수신한다. 중계국(123)은 수신한 중계국(121, 122)의 프리앰블에 기초하여 심볼 파형과 지연량의 조합을 추정한다. 중계국(122)은 t1에서 추정 종료 타이밍(t3)까지 추정을 실시한다. 도 9에서는 중계국(123)의 상관 신호(c1)에만 피크가 출력되어 있다. 이에 의해 중계국(123)은 중계국(121, 122)이 선택한 심볼 파형이 모두 w1이라고 추정할 수 있다. 또한, 중계국(123)의 상관 신호(c1)에는 참조 타이밍과 동위상의 피크(실선)가 출력되어 있다. 이에 의해 중계국(123)은 지연량(0)이 선택되어 있다고 추정할 수 있다. 또한, 중계국(123)의 상관 신호(c1)에는 참조 타이밍에 대해 T만큼 지연된 피크(점선)가 출력되어 있다. 이에 의해 중계국(123)은 지연량(T)이 선택되어 있다고 추정할 수 있다. 이상으로 중계국(123)은 중계국(121, 122)에 의해 선택된 조합이 (심볼 파형(w1), 지연량(0))과 (심볼 파형(w1), 지연량(T))이라고 추정할 수 있다. 그리고, 중계국(123)은 추정한 조합과는 다른 조합중에서 1 개의 조합을 랜덤하게 선택한다. 도 9의 예에서는 중계국(123)은 (심볼 파형(w2), 지연량(T))을 선택하고 있다.
중계국(124)은 중계국(121~123)이 송신한 프리앰블을 각각 수신한다. 중계국(124)은 수신한 중계국(121~123)의 프리앰블에 기초하여 심볼 파형과 지연량의 조합을 추정한다. 중계국(124)은 t1에서 추정 종료 타이밍 t4까지 추정을 실시한다. 도 9에서는 중계국(124)의 상관 신호(c1, c2)에 피크가 출력되어 있다. 이에 의해 중계국(124)은 중계국(121~123)이 선택한 심볼 파형이 w1과 w2라고 추정할 수 있다. 또한, 중계국(124)의 상관 신호(c1)에는 참조 타이밍과 동위상의 피크(실선)가 출력되어 있다. 이에 의해 중계국(124)은 심볼 파형(w1)에 있어서 지연량(O)이 선택되어 있다고 추정할 수 있다. 또한, 중계국(124)의 상관 신호(c1)에는 참조 타이밍에 대해 T만큼 지연된 피크(점선)가 출력되어 있다. 이에 의해 중계국(124)은 심볼 파형(w1)에 있어서, 지연량(T)이 선택되어 있다고 추정할 수 있다. 또한, 중계국(124)의 상관 신호(c2)에는 참조 타이밍에 대해 T만큼 지연된 피크(실선)가 출력되어 있다. 이에 의해 중계국(124)은 심볼 파형(w2)에 있어서, 지연량(T)이 선택되어 있다고 추정할 수 있다. 이상으로 중계국(124)은 중계국(121~123)에 의해 선택된 조합이 (심볼 파형(w1), 지연량(O)), (심볼 파형(w1), 지연량(T)), (심볼 파형(w2), 지연량(T))이라고 추정할 수 있다. 그리고, 중계국(124)은 추정한 조합과는 다른 조합(심볼 파형(w2), 지연량(O))을 선택한다.
이와 같이 각 중계국(121~124)이 서로 다른 프리앰블을 선택한 경우에는 각 중계국(121~124)은 서로 다른 조합을 선택할 수 있다. 이에 의해 확실히 4 브랜치의 패스 다이버시티 효과가 얻어진다. 또한, 만약에 도 9에서 중계국(123)과 중계국(124)이 동일한 길이의 프리앰블(예를 들면, 가장 짧은 프리앰블)을 선택한다고 한다. 이 경우, 중계국(123) 및 중계국(124)은 중계국(121) 및 중계국(122)이 선 택한 조합을 추정한다. 또한, 중계국(123) 및 중계국(124)은 추정한 조합과는 다른 조합중에서 랜덤하게 조합을 선택한다. 따라서, 중계국(123)과 중계국(124)이 동일한 길이의 프리앰블을 선택한 경우에도 4 브랜치의 패스 다이버시티 효과를 얻을 수 있는 가능성이 있다.
또한, 도 9의 예에서는 참조 타이밍을 이용하여 지연량을 추정했지만, 이에 한정되지 않는다. 지연량(O)인지 지연량(T)인지는 송신국으로부터의 패킷을 수신 완료한 타이밍(t1)과 상관 신호의 피크가 출력되는 타이밍과의 시간차를 측정하여 추정할 수 있다. 예를 들면 상관 신호의 피크가 출력되는 타이밍(t1)과의 시간차를 상기 상관 신호의 피크가 출력되는 타이밍의 주기로 나눈다. 이 나눈 결과 중, 나눠지지 않는 수(나머지)가 지연량에 따른 값이 된다. 따라서, 이 나머지를 구해 지연량을 추정할 수 있다.
또한, 도 9의 예에서는 참조 타이밍의 위상은 지연량(O)의 경우의 상관 신호와 동위상이 되도록 하고 있지만, 이에 한정되지 않는다. 각각의 지연량에 대해 상관 신호의 피크가 출력되는 타이밍과 참조 타이밍의 위상 관계를 미리 파악해두면 참조 타이밍의 위상은 지연량(O)의 경우의 상관 신호와 동위상으로 할 필요는 없다.
계속해서 도 10을 참조하여 패스 다이버시티 효과가 얻어질 확률의 계산 결과를 도시한다. 또한, 도 10에서 가장 좌측 열은 각 중계국(121~124)이 선택하는 각 PR 길이의 선택 패턴을, 8 가지의 경우로 나눈 열이다. (a)의 열은 (1)~(8)의 각 패턴이 될 확률을 구한 열이다. (b)~(e)의 각 열은 (1)~(8)의 각 패턴이 된 경우에 1~4 브랜치의 패스 다이버시티 효과가 얻어질 확률을 각각 구한 것이다. 가장 아래 행의 평균 확률은 (a)열과 (b)~(e)열의 확률을 곱해 평균화한 것이다. 또한, 도 10에서는 예를 들면 최대 유효 브랜치수가 4(예를 들면 2가지 심볼 파형과, 2가지 지연량으로부터 선택되는 경우의 최대 유효 브랜치 수), PR 길이가 4 종류, 중계국이 4국인 경우에 패스 다이버시티 효과가 얻어질 확률을 게산하고 있다.
(1)은 모든 중계국(121~124)이 동일한 PR 길이를 선택한 패턴을 나타낸다. 여기서 4 개의 국이 동일한 PR 길이를 선택하는 패턴은 4 가지이다. 또한, (1)에서 각 PR 길이는 동일한 길이이므로 각 중계국(121~124)은 중계 패킷을 동시에 송신한다. 이 때문에 각 중계국(121~124)은 송신 매개변수의 추정을 실시할 수 없으므로 랜덤하게 송신 매개변수의 조합을 결정한다. 따라서, 송신 매개변수의 조합의 선택 패턴에 대해 발생할 수 있는 패턴은 44 가지(256 가지)이다. 따라서, (1)이 될 확률은 (1)의 (a)란에 나타낸 바와 같이, 4/256(=1/64)가 된다. 또한 (1)의 경우에 있어서, (b)의 1 브랜치가 될 확률은 1/64이고, (c)의 2 브랜치가 될 확률은 21/64이고, (d)의 3 브랜치가 될 확률은 9/16이고, (e)의 4 브랜치가 될 확률은 3/23이다. 예를 들면, (b)에 있어서 1 종류의 송신 매개변수의 조합을 각 중계국(121~124)이 선택하는 패턴은 1 가지이고, 송신 매개변수가 4 개 있다. 따라서 (b)의 1 브랜치가 될 확률은 4/256(=1/64)가 된다. 또한, (c)에 있어서 2 종류의 송신 매개변수를 각 중계국(121~124)이 선택하는 패턴은 전부 14 가지이다. 따라서 (c)의 2 브랜치가 될 확률은 6×14/256=21/64가 된다.
(2)는 중계국(121~124) 중, 3 개의 국이 동일한 PR 길이(긴 PR)를 선택하고, 긴 PR 보다 짧은 PR 길이(짧은 PR)를 나머지 1 개의 국이 선택한 경우의 패턴을 나타낸다. (2)가 될 확률은 (2)의 (a)란에 나타낸 바와 같이 3/23이 된다. (2)의 경우, 짧은 PR을 선택한 1 개의 국이 다른 3 개의 국이 선택한 송신 매개변수를 추정할 수 있으므로, 반드시 2 브랜치 이상의 패스 다이버시티 효과가 얻어진다. 따라서, (b)의 1 브랜치가 될 확률은 0이고, (c)의 2 브랜치가 될 확률은 1/64이며, (d)의 3 브랜치가 될 확률은 9/16이고, (e)의 4 브랜치가 될 확률은 3/8이다.
(3)은 중계국(121~124) 중, 2 개의 국이 동일한 PR 길이(긴 PR)를 선택하고, 긴 PR 보다 짧은 PR 길이(짧은 PR)를 나머지 2 개의 국이 선택한 경우의 패턴을 나타낸다. (3)이 될 확률은 (3)의 (a)란에 나타낸 바와 같이 9/64가 된다. (3)의 경우, 짧은 PR을 선택한 2 개의 국이 다른 2 개의 국이 선택한 송신 매개변수를 추정할 수 있으므로, 반드시 2 브랜치 이상의 패스 다이버시티 효과가 얻어진다. 따라서, (b)의 1 브랜치가 될 확률은 0이고, (c)의 2 브랜치가 될 확률은 1/12이며, (d)의 3 브랜치가 될 확률은 13/24이고, (e)의 4 브랜치가 될 확률은 3/8이다.
(4)는 중계국(121~124) 중, 1 개의 국이 PR 길이(긴 PR)를 선택하고, 긴 PR보다 짧은 PR 길이(짧은 PR)를 나머지 3 개의 국이 선택한 경우의 패턴을 나타낸다. (4)가 될 확률은 (4)의 (a)란에 나타낸 바와 같이, 3/32가 된다. (4)의 경 우, 짧은 PR을 선택한 3 개의 국이 다른 1 개의 국이 선택한 송신 매개변수를 추정할 수 있으므로, 반드시 2 브랜치 이상의 패스 다이버시티 효과가 얻어진다. 따라서, (b)의 1 브랜치가 될 확률은 0이고, (c)의 2 브랜치가 될 확률은 1/9이며, (d)의 3 브랜치가 될 확률은 2/3이고, (e)의 4 브랜치가 될 확률은 2/9이다.
(5)는 중계국(121~124) 중, 2 개의 국이 동일한 PR 길이(긴 PR)를 선택하고, 다른 1 개의 국이 긴 PR 보다 짧은 PR 길이(중간 PR)를 선택하고, 나머지 1 개의 국이 중간 PR 보다 짧은 PR 길이(짧은 PR)를 선택한 경우의 패턴을 나타낸다. (5)가 될 확률은 (5)의 (a)란에 나타낸 바와 같이, 3/16이 된다. (5)의 경우, 중간 PR을 선택한 1 개의 국이 긴 PR을 선택한 2 개의 국의 송신 매개변수를 추정할 수 있다. 또한, 짧은 PR을 선택한 1 개의 국이 긴 PR을 선택한 2 개의 국과 중간 PR을 선택한 1 개의 국의 송신 매개변수를 추정할 수 있다. 이에 의해 (5)의 경우, 반드시 3 브랜치 이상의 패스 다이버시티 효과를 얻을 수 있다. 따라서, (b)의 1 브랜치가 될 확률은 0이고, (c)의 2 브랜치가 될 확률은 0이며, (d)의 3 브랜치가 될 확률은 1/4이고, (e)의 4 브랜치가 될 확률은 3/4이다.
(6)은 중계국(121~124) 중, 1 개의 국이 동일한 PR 길이(긴 PR)를 선택하고, 다른 2 개의 국이 긴 PR 보다 짧은 PR 길이(중간 PR)를 선택하며, 나머지 1 개의 국이 중간 PR 보다 짧은 PR 길이(짧은 PR)를 선택한 경우의 패턴을 나타낸다. (6)이 될 확률은 (6)의 (a)란에 나타낸 바와 같이 3/16이 된다. 또한, (6)의 경우, (b)의 1 브랜치가 될 확률은 0이고, (c)의 2 브랜치가 될 확률은 0이며, (d)의 3 브랜치가 될 확률은 1/3이고, (e)의 4 브랜치가 될 확률은 2/3이다. 또한, (7)은 중계국(121~124) 중, 1 개의 국이 동일한 PR 길이(긴 PR)를 선택하고, 다른 1 개의 국이 긴 PR 보다 짧은 PR 길이(중간 PR)를 선택하며, 나머지 2 개의 국이 중간 PR 보다 짧은 PR 길이(짧은 PR)를 선택한 경우의 패턴을 나타낸다. (7)이 될 확률은 (7)의 (a)란에 나타내는 바와 같이 3/16이 된다. 또한, (7)의 경우, (b)의 1 브랜치가 될 확률은 0이고, (c)의 2 브랜치가 될 확률은 0이며, (d)의 3 브랜치가 될 확률은 1/2이고, (e)의 4 브랜치가 될 확률은 1/2이다. 또한, (8)은 각 중계국(121~124)이 서로 다른 PR 길이를 선택한 패턴을 나타낸다. (8)이 될 확률은 (8)의 (a)란에 나타내는 바와 같이 3/32가 된다. (8)의 경우, 각 중계국(121~124)이 서로 다른 PR 길이를 선택하고 있으므로 반드시 4 브랜치 이상의 패스 다이버시티 효과가 얻어진다.
또한, 도 10에 도시한 평균 확률에 있어서, 예를 들면 최대 유효 브랜치 수와 동일한 4 브랜치의 패스 다이버시티 효과가 얻어질 확률은 「3461/6144=0.5633…」이 된다. 즉, 절반 이상의 확률로 최대 유효 브랜치 수와 동일한 패스 다이버시티 효과가 얻어지는 것을 알 수 있다. 또한, 2 브랜치 이상의 패스 다이버시티 효과가 얻어질 확률은 「407/12288+413/1024+3461/6144=0.9997…」로 높은 확률이 된다. 따라서, 본 실시형태에 따른 무선 전송 시스템(1)에서는 거의 확실히 2 브랜치 이상의 패스 다이버시티 효과가 얻어진다고 할 수 있다.
이상과 같이, 본 실시형태에서는 각 중계국(121~124)이 다른 길이의 PR 길이 를 선택하도록 처리를 실시하고 있다. 이에 의해 예를 들면 중계국(121)이 선택한 PR 길이가 중계국(122)이 선택한 PR 길이보다도 긴 경우, 중계국(122)은 중계 패킷을 송신하기까지 중계국(121)의 중계 패킷을 수신할 수 있다. 그리고, 중계국(122)은 중계국(121)의 중계 패킷의 프리앰블에 기초하여 중계국(121)이 선택한 심볼 파형과 지연량의 조합을 추정하고, 추정한 조합과는 다른 조합을 선택할 수 있다. 이에 의해, 본 실시형태에 의하면 각 중계국(121~124)이 서로 다른 심볼 파형과 지연량의 조합으로 중계 패킷을 송신할 확률을 높일 수 있다. 그 결과, 수신국(13)에서 패스 다이버시티 효과를 얻는 것이 가능해진다. 또한, 본 실시형태에 의하면 최대 유효 브랜치 수와 동일한 패스 다이버시티 효과를 얻을 가능성을 향상시킬 수 있고, 무선 전송 시스템(1)이 갖는 패스 다이버시티 효과를 최대한 발휘할 수 있다.
또한, 상술에서는 프리앰블 선택부(26)가 선택하는 PR 길이는 도 2에 도시한 바와 같이, 미리 정해진 4 종류의 길이(프리앰블(PR1~PR4의 길이))중에서 선택되도록 했지만, PR 길이의 종류는 4 종류에 한정되지 않는다. PR 길이의 종류는 3 종류 이하라도 좋고, 5 종류 이상이라도 좋다. 각 중계국(121~124)이 더 많은, 길이가 다른 PR 길이를 선택할 수 있도록 하여 각 중계국(121~124)이 선택하는 PR 길이가 서로 다를 확률이 높아진다. 이에 의해 다른 중계국이 선택한 송신 매개변수와 다른 송신 매개변수를 선택할 확률이 높아지고, 최대 유효 브랜치 수와 동일한 패스 다이버시티 효과를 얻을 가능성이 향상된다. 또한, 프리앰블 선택부(26)가 선 택하는 PR 길이를 매우 길게 하면, 정보 데이터가 아닌 프리앰블 부분이 증대하게 되므로 전송 효율이 저하한다. 따라서, PR 길이의 상한값은 적절한 길이로 설정하는 것이 좋다. 또한, 프리앰블 선택부(26)가 선택하는 PR 길이는 미리 정해진 범위내에서 랜덤하게 선택해도 좋다. 예를 들면, 최단의 PR 길이를 32 심볼 길이, 최장의 PR 길이를 64 심볼 길이로 한 경우, 프리앰블 선택부(26)는 심볼 길이 단위로 임의의 PR 길이(32, 33, 34, ~, 63, 64 중의 임의의 PR 길이)를 선택하게 된다.
또한, 상술에서는 프리앰블의 데이터 열이 1 종류라고 했다. 따라서, 상술에서는 1 종류의 프리앰블의 데이터 열을 2 종류의 심볼 파형(w1, w2)으로 변조하여 2 종류의 프리앰블의 파형이 얻어졌다. 즉, 심볼 파형의 종류 수와 프리앰블의 파형의 종류수가 1 대 1의 관계에 있었다. 이에 대해, 송신 매개변수의 종류 수와 프리앰블 파형의 종류 수를 1 대 1로 대응시켜도 좋다. 즉, 상술에서는 송신 매개변수가 4 종류((심볼 파형(w1), 지연량(0)), (심볼 파형(w1), 지연량(T)), (심볼 파형(w2), 지연량(O)), (심볼 파형(w2), 지연량(T))인 예를 나타냈지만, 각각의 송신 매개변수에 대해 4 종류의 프리앰블 파형을 대응시켜도 좋다. 프리앰블의 파형을 4 종류로 하는데에는 프리앰블의 데이터 열을 1 종류로 하고, 심볼 파형의 종류를 4 종류로 하는 방법과, 프리앰블의 데이터 열을 2 종류로 하고, 심볼 파형의 종류를 2 종류로 하는 방법이 있다. 예를 들면, 프리앰블의 데이터 열을 「1010…」과 「1100…」의 2 종류를 준비해두고, 각각의 데이터 열을 심볼 파형(w1, w2)으로 변조한다. 이에 의해 4 종류의 다른 프리앰블 파형을 생성할 수 있다. 여기서는 4 종류의 프리앰블 파형을 프리앰블 파형(pwA~pwD)으로 한다. 또한, 프리앰블파형(pwA, pwB)은 심볼 파형(w1)에 기초하여 파형으로 하고, 프리앰블 파형(pwC, pwD)은 심볼 파형(w2)에 기초한 파형으로 한다. 또한, 프리앰블의 데이터 열을 2 종류로 하는 경우, 프리앰블 선택부(26)가 PR 길이를 선택하고, 또한 프리앰블의 데이터 열에 대해서도 선택하도록 하면 좋다. 이 때, 송신 패킷 처리부(27)는 타국앞 패킷인 송신 패킷에 포함되는 프리앰블의 데이터 열을 프리앰블 선택부(26)가 선택한 데이터 열을 갖는 프리앰블로 바꿔 넣는다.
이와 같이 수득된 4 종류의 프리앰블 파형(pwA~pwD)을 각각 4 종류의 송신 매개변수(심볼 파형(w1), 지연량(O)), (심볼 파형(w1), 지연량(T)), (심볼 파형(w2), 지연량(O)), (심볼 파형(w2), 지연량(T))과 1 대 1로 대응한다. 예를 들면, 송신 매개변수로서 (심볼 파형(w1), 지연량(O))을 선택한 경우에는 프리앰블 파형(pwA)을 가진 프리앰블로 패킷을 생성하고, 프리앰블보다 뒷부분에 대해서는 심볼 파형(w1)으로 데이터를 변조한다.
여기서, 송신 매개변수와 프리앰블 파형을 1 대 1로 대응시키는 경우, 도 4에 도시한 심볼 파형/지연량 추정부(28)의 구성은 도 11에 도시한 심볼 파형/지연량 추정부(28a)의 구성이 된다. 도 11은 송신 매개변수와 프리앰블 파형을 1 대 1로 대응시키는 경우의 심볼 파형/지연량 추정부(28a)의 구성을 도시한 블럭도이다. 도 11에 있어서, 심볼 파형/지연량 추정부(28a)는 상관부(281a~281d), 참조 파형 RA 유지부(282c), 참조 파형 RB 유지부(282d), 참조 파형 RC 유지부(282e), 참조 파형 RD 유지부(282f) 및 타이밍 판정부(283c)에 의해 구성된다. 상관부(281a~281d)는 도 4에 도시한 상관부(281a, 281d)와 동일한 기능을 갖는다. 참조 파형 RA 유지부(282c)는 프리앰블 파형(pwA)의 파형 데이터를 참조 파형 RA로서 유지하고 있다. 참조 파형 RB 유지부(282d)는 프리 앰블 파형(pwB)의 파형 데이터를 참조 파형 RB로서 유지하고 있다. 참조 파형 RC 유지부(282e)는 프리 앰블 파형(pwC)의 파형 데이터를 참조 파형 RC로서 유지하고 있다. 참조 파형 RD 유지부(282f)는 프리 앰블파형(pwD)의 파형 데이터를 참조 파형 RD로서 유지하고 있다. 타이밍 판정부(283c)는 각 상관부(281a~281d)로부터 출력되는 상관 신호(c1~c4)를 기초로 추정 결과 신호를 출력한다. 어느 상관 신호(c1~c4)에 피크가 출력되었는지에 따라 어느 송신 매개변수가 다른 중계국에 선택되었는지를 판단할 수 있다.
상술한 바와 같이, 송신 매개변수 중 심볼 파형과, 프리 앰블 파형이 1 대 1에 대응하는 경우, 실질적으로는 2 개의 상관 신호(c1, c2) 각각에 대해 피크가 출력되었는지 여부와, 상관 신호(c1, c2)에 피크가 출력되는 타이밍에 의해 심볼 파형과 지연량을 추정했다. 이에 대해, 송신 매개변수와 프리 앰블파형이 1 대 1로 대응하는 경우, 4 개의 상관 신호(c1~c4) 각각에 피크가 출력되었는지 여부만으로 심볼 파형과 지연량을 추정할 수 있다. 이에 의해 2 개의 상관 신호(c1, c2)를 이용하여 추정하는 경우에 비해 추정의 정밀도를 올릴 수 있다.
(제 2 실시형태)
이하, 본 발명의 제 2 실시형태에 따른 무선 전송 시스템(2)에 대해 설명한 다. 제 1 실시형태에서는 송신국(11)이 최초로 송신 패킷을 송신한 후는 각 중계국(121~124)만이 중계 패킷을 송신했다. 이에 대해, 본 실시형태에서는 각 중계국(121~124)이 중계 패킷을 송신할 때, 송신국(11)도 중계 패킷을 송신하는 것을 특징으로 한다. 또한, 제 1 실시형태에 따른 송신국(11)과 구별하기 위해, 본 실시형태에 따른 송신국의 참조 부호를 "11a"로 하고 있다.
도 12는 제 2 실시형태에 따른 무선 전송 시스템(2)의 구성을 도시한 도면이다. 도 12에 도시한 무선 전송 시스템(2)의 구성은 도 1에 도시한 구성에 대해, 송신국(11)이 송신국(11a)으로 교체한 점에서 다른 구성이다. 그 이외의 구성에 대해서는 도 1에 도시한 구성과 동일하므로 도 1과 동일한 부호를 붙이고, 설명을 생략한다. 도 12에 있어서, 점선 화살표는 송신국(11a)이 1 회째에 송신한 송신 패킷이 각 중계국(121~124)에서 수신되는 것을 나타내고 있다. 또한, 실선 화살표는 각 중계국(121~124)이 중계 패킷을 송신하고, 또한 송신국(11a)도 중계 패킷을 재송하는 것을 나타내고 있다. 즉 송신국(11a)은 송신 패킷을 송신하는 경우와 중계 패킷을 송신하는 경우의 2 회, 송신 처리를 실시하고 있다.
송신국(11a)은 송신 패킷을 송신한 후, 중계 패킷을 송신하기 위한 기준 타이밍을 산출한다. 기준 타이밍은 송신 패킷을 송신한 타이밍으로, 각 중계국(121~124)까지의 운반 시간 및 소정의 대기 시간을 가산한 타이밍이 된다. 본 실시형태에서는 송신국(11a) 및 각 중계국(121~124) 사이의 운반 시간은 무시할 수 있을 정도로 작은 것으로서 설명한다. 따라서, 송신국(11a)은 송신 패킷을 송신한 타이밍으로부터 소정의 대기 시간 경과 후를 기준 타이밍으로서 산출한다. 또한, 소정의 대기 시간은 각 중계국(121~124)이 기준 타이밍을 결정하기 위한 소정 시간과 동일하게 한다. 송신국(11a)은 중계 패킷을 송신할 때, 각 중계국(121~124)과 마찬가지로 복수의 PR 길이중에서 1 개의 PR 길이를 랜덤하게 선택한다. 그리고, 송신국(11a)은 각 중계국(121~124)이 송신한 중계 패킷에 기초하여 각 중계국(121~124)이 선택한 심볼 파형과 지연량의 조합을 추정한다. 그리고, 송신국(11a)은 추정된 심볼 파형과 지연량의 조합과는 다른 조합을 선택한다.
도 13은 제 2 실시형태에 따른 송신국(11a) 및 각 중계국(121~124)의 처리의 개요를 도시한 도면이다. 도 9에 도시한 처리의 개요라는 것은 송신국(11a)이 중계 패킷을 송신하고 있는 점과, 참조 타이밍이나 각 상관 신호를 생략하고 있는 점만이 다르다. 따라서, 각 중계국(121~124)의 처리에 대해서는 설명을 생략한다. 도 13에 있어서, 송신국(11a)은 2 번째로 짧은 프리 앰블 길이를 선택하고 있다. 따라서, 송신국(11a)은 중계국(121)이 송신한 중계 패킷의 프리 앰블(PR) 부분에서 중계국(121)이 선택한 심볼 파형과 지연량의 조합을 추정한다. 그리고, 송신국(11a)은 중계국(121)과는 다른 심볼 파형과 지연량의 조합(도 13에서는 심볼 파형(w2), 지연량(O))을 선택하고, 선택한 조합에 기초하여 중계 패킷을 생성한다. 송신국(11a)은 자신이 결정한 재송신 개시 타이밍으로 생성한 중계 패킷을 송신한다. 재송신 개시 타이밍의 결정 방법은 각 중계국(121~124)의 송신 개시 타이밍과 동일한 방법을 이용한다.
이상과 같이, 본 실시형태에 의하면 각 중계국(121~124)이 중계 패킷을 송신할 때, 송신국(11a)도 중계 패킷을 송신한다. 이에 의해 중계 패킷을 송신하는 무선국의 수가 증가하게 되고, 보다 높은 확률로 패스 다이버시티 효과를 얻을 수 있다.
또한, 도 13에 있어서 중계국(124)은 가장 짧은 프리앰블 길이를 선택하고 있다. 따라서, 중계국(124)은 송신국(11a) 및 중계국(121~123)이 선택한 심볼 파형과 지연량의 조합을 추정한다. 이 때, 도 13에 도시한 바와 같이 송신국(11a) 및 중계국(121~123)에 의해 모든 심볼 파형과 지연량의 조합이 선택되어 있다. 따라서, 중계국(124)은 추정 처리에 의해 모든 심볼 파형과 지연량의 조합이 선택되어 있는 것을 인식한다. 이 때, 중계국(124)은 랜덤하게 심볼 파형과 지연량의 조합을 1 개 선택해도 좋다. 또는 중계국(124)은 모든 심볼 파형과 지연량의 조합이 선택되어 있는 것을 인식한 경우, 중계 패킷의 송신을 실시하도록 해도 좋다. 이 경우의 구체적인 처리로서는 중계국(124)에 있어서 심볼 파형/지연량 선택부(29)는 미리 기억된 복수의 조합의 전부가 심볼 파형/지연량 추정부(28)에서 추정된 조합의 어느 하나에 해당하는 경우, 선택 처리를 중지한다. 이 때, 심볼 파형/지연량 선택부(29)는 변조부(31)에 선택 중지 신호를 출력한다. 변조부(31)는 선택 중지 신호가 입력된 경우, 송신 타이밍 제어부(30)로부터 송신 개시 신호가 입력되어도 변조 처리를 실시하지 않도록 동작한다. 송신국(11a) 및 중계국(121~123) 4 개의 국에서 송신한 중계 패킷에 의해 이미 최대 유효 브랜치 수(=4)와 동일한 패스 다 이버시티 효과가 얻어지므로 중계국(124)이 중계 패킷을 송신하지 않아도 패스 다이버시티 효과의 크기에는 그다지 영향이 없다. 단, 중계국(124)이 중계 패킷을 송신하는 것으로 수신국(13)의 수신 전력은 증대된다. 이 때문에 중계국(124)이 중계 패킷을 송신하는 것으로 수신 전력의 증대에 의한 전송 특성이 개선되는 효과가 있다. 한편, 중계국(124)이 중계 패킷을 송신하는 것을 중지하는 경우, 중계국(124)의 소비 전력을 저감할 수 있는 효과가 있다.
(제 3 실시형태)
이하, 본 발명의 제 3 실시형태에 따른 무선 전송 시스템(3)에 대해 설명한다. 제 2 실시형태에서는 송신국(11a)은 송신 패킷과 중계 패킷을 송신했다. 이에 대해, 본 실시형태에서는 송신국(11a)은 중계 패킷을 송신할 때, 각 중계국(121~124)이 선택할 수 있는 심볼 파형과 지연량의 조합과는 다른 심볼 파형과 지연량의 조합을 선택하여 중계 패킷을 송신하는 것을 특징으로 한다. 또한, 본 실시형태에 따른 무선 전송 시스템(3)의 구성은 제 2 실시형태와 동일하므로 도 12를 원용한다. 또한, 각 중계국(121~124) 및 수신국(13)의 동작은 제 1 실시형태와 동일하므로 설명을 생략한다.
송신국(11a)은 송신 패킷을 송신한 후, 재송신 개시 타이밍에 중계 패킷을 송신한다. 재송신 개시 타이밍은 기준 타이밍에서 선택한 지연량만큼 지연시킨 타이밍이다. 이 때, 송신국(11a)은 각 중계국(121~124)이 선택 가능한 심볼 파형과 지연량의 조합과는 다른 심볼 파형과 지연량의 조합을 선택하고, 선택한 조합에 기 초하여 중계 패킷을 생성한다. 송신국(11a)은 자신이 결정한 재송신 개시 타이밍에 생성한 중계 패킷을 송신한다.
여기서, 심볼 파형과 지연량의 조합이 2 종류의 심볼 파형(w1, w2)과, 2 종류의 지연량(O, T)으로 이루어진 경우를 예로 설명한다. 예를 들면, 송신국(11a)이 선택 가능한 심볼 파형과 지연량의 조합을 심볼 파형(w1)과 지연량(O)으로 설정해둔다. 또한, 각 중계국(121~124)이 선택 가능한 심볼 파형과 지연량의 조합을 심볼 파형(w1)과 지연량(T), 심볼 파형(w2)과 지연량(O), 심볼 파형(w2)과 지연량(T)의 3 개로 설정해둔다. 즉, 송신국(11a)에서는 심볼 파형(w1)과 지연량(O)의 조합이 선택되고, 각 중계국(121~124)에서는 심볼 파형(w1)과 지연량(T), 심볼 파형(w2)과 지연량(O), 심볼 파형(w2)과 지연량(T)의 3 개의 조합 중 적어도 하나가 선택되게 된다. 따라서, 본 실시형태에서는 확실히 2 브랜치의 패스 다이버시티 효과를 얻을 수 있다. 또한, 이 경우, 송신국(11a)에서는 미리 설정된 조합(심볼 파형(w1)과 지연량(O))을 이용하여 중계 패킷을 수신국(13)에 송신하게 된다. 즉, 이 경우 송신국(11a)에서는 각 중계국(121~124)이 선택한 조합을 추정할 필요가 없다. 또한, 송신국(11a)이 중계 패킷을 송신할 때에는 긴 프리앰블을 이용하여 송신할 필요가 없다. 이는 송신국(11a)이 선택한 심볼 파형과 지연량의 조합을 각 중계국(121~124)에 추정시킬 필요가 없기 때문이다. 따라서, 송신국(11a)은 가장 짧은 PR 길이를 선택해도 좋다. 이 경우, 송신국(11a)의 중계 패킷은 각 중계국(121~124)의 중계 패킷보다도 느린 타이밍으로 송신되게 된다. 이에 의해 각 중 계국(121~124)의 송신 매개변수의 추정에 미치는 영향을 적게 할 수 있다.
이상과 같이, 본 실시형태에서는 송신국(11a)이 중계 패킷을 송신하는 경우에 송신국(11a)이 선택할 수 있는 심볼 파형과 지연량의 조합과, 각 중계국(121~124)이 선택할 수 있는 심볼 파형과 지연량의 조합을 미리 나눈다. 이에 의해 본 실시형태에서는 확실히 2 브랜치의 패스 다이버시티 효과를 얻을 수 있다. 또한, 송신국(11a)이 선택할 수 있는 심볼 파형과 지연량의 조합을 1 개로 한정해두면 각 중계국(121~124)이 선택할 수 있는 송신 매개변수가 늘어나게 된다. 이에 의해 패스 다이버시티 효과가 얻어지는 확률을 더 높일 수 있다.
또한, 상술에서는 일례로서 송신국(11a)이 소정의 조합을 1 개 선택하는 경우를 설명했지만, 이에 한정되지 않는다. 예를 들면, 송신국(11a) 및 각 중계국(121~124)이 선택할 수 있는 심볼 파형과 지연량의 조합을 심볼 파형으로 나눠도 좋고, 지연량으로 나눠도 좋다. 전자의 경우, 송신국(11a)에서는 소정의 심볼 파형을 선택하고, 각 중계국(121~124)은 송신국(11a)이 선택하는 심볼 파형 이외의 심볼 파형을 선택하도록 설정해둔다. 또한, 지연량에 대해서는 송신국(11a) 및 각 중계국(121~124)은 어느것이나 선택할 수 있도록 설정해둔다. 이 경우, 송신국(11a)과 각 중계국(121~124)은 서로 동일한 지연량을 선택할 가능성은 있지만, 반드시 다른 심볼 파형을 선택할 수 있다. 이에 의해 확실히 2 브랜치의 패스 다이버시티 효과를 얻을 수 있다. 또한, 후자의 경우 송신국(11a)은 소정의 지연량을 선택하고, 각 중계국(121~124)은 송신국(11a)이 선택하는 지연량 이외의 지연량 을 선택하도록 설정해둔다. 또한, 심볼 파형에 대해서는 송신국(11a) 및 각 중계국(121~124)은 어느 것이나 선택할 수 있도록 설정해둔다. 이 경우, 송신국(11a)과 각 중계국(121~124)은 서로 동일한 심볼 파형을 선택할 가능성은 있지만, 반드시 다른 지연량을 선택할 수 있다. 이에 의해 확실히 2 브랜치의 패스 다이버시티 효과를 얻을 수 있다.
(제 4 실시형태)
이하, 본 발명의 제 4 실시형태에 따른 무선 전송 시스템(4)에 대해 설명한다. 제 1 실시형태에서는 각 중계국(121~124)은 다른 중계국으로부터 송신된 중계 패킷이 입력될 때마다 심볼 파형과 지연량의 조합을 추정했다. 이에 대해, 본 실시형태에서는 각 중계국(121~124)은 자국이 수신한 송신 패킷을 송신한 송신국(11)이 과거에 수신한 송신국과 동일한 경우, 추정을 실시하지 않고 그 때 선택한 심볼 파형과 지연량의 조합을 이용하는 것을 특징으로 한다.
도 14는 제 3 실시형태에 따른 무선국의 구성을 도시한 도면이다. 도 14에 도시한 무선국의 구성은 도 3에 도시한 무선국의 구성에 대해, 자국앞 패킷 판정부(24)가 어드레스 판정부(32)로 교체한 점에서 다른 구성이다. 그 이외의 구성에 대해서는 도 3에 도시한 구성과 동일하므로 도 3과 동일한 부호를 붙이고, 설명을 생략한다. 또한, 처리에 대해서는 심볼 파형/지연량 선택부(29) 및 프리앰블 선택부(26)의 처리가 도 3에 도시한 무선국의 처리와 다르다.
어드레스 판정부(32)는 도 1에 도시한 자국앞 패킷 판정부(24)의 처리뿐만 아니라 또한 수신중인 송신 패킷으로부터 송신원 어드레스를 검출한다. 그리고, 어드레스 판정부(32)는 검출한 송신원 어드레스를 심볼 파형/지연량 선택부(29)에 출력한다. 심볼 파형/지연량 선택부(29)에는 과거에 수신한 송신국(11)을 나타내는 송신원 어드레스와, 그 때 선택한 심볼 파형과 지연량의 조합이 대응된 대응 정보가 추가로 기억되어 있다. 심볼 파형/지연량 선택부(29)는 대응 정보를 참조하여 어드레스 판정부(32)에서 검출된 송신원 어드레스가 과거에 수신한 송신국(11)과 일치하는지 여부를 판단한다. 검출된 송신원 어드레스가 과거에 수신한 송신국(11)과 일치하는 경우, 심볼 파형/지연량 선택부(29)는 대응 정보를 참조하여 검출된 송신원 어드레스와 대응하는 심볼 파형과 지연량의 조합을 선택한다. 또한, 대응 정보는 과거에 수신한 송신국(11)을 나타내는 송신원 어드레스와, 그 때 선택한 심볼 파형과 지연량의 조합과의 대응을 적어도 하나 포함하는 정보이면 좋다. 또한, 심볼 파형/지연량 선택부(29)는 송신 패킷을 수신할 때마다 대응 정보를 갱신하도록 해도 좋다. 또한, 심볼 파형/지연량 선택부(29)는 제 1 실시형태의 심볼 파형/지연량 선택부(29)에 대해 대응 정보가 더 기억되는 점과, 대응 정보를 이용한 처리를 더 실시하는 점에서 다르다.
계속해서, 도 15를 참조하여 제 4 실시형태에 따른 무선국의 동작에 대해 설명한다. 도 15는 제 4 실시형태에 따른 무선국의 동작을 나타내는 플로우차트이다. 또한, 도 15에 도시한 A는 도 7에 도시한 A에 접속되는 것이다. 도 15에 도시한 A보다 전 처리는 도 7에 도시한 처리와 동일하다. 도 7에 있어서, 수신된 패 킷이 타국앞 패킷이라고 판단된 경우(단계(S16)에서 "아니오"), 처리는 A를 통해 도 15의 단계(S30)로 진행한다. 도 15에서, 심볼 파형/지연량 선택부(29)는 대응 정보를 참조하여 어드레스 판정부(32)에서 검출된 송신원 어드레스가 과거에 수신한 송신국(11)과 일치하는지 여부를 판단한다(단계(S30)). 검출된 송신원 어드레스가 과거에 중계한 송신국(11)과 일치하는 경우(단계(S30)에서 "예"), 심볼 파형/지연량 선택부(29)는 대응 정보를 참조하여 검출된 송신원 어드레스와 대응하는 심볼 파형과 지연량의 조합을 선택한다(단계(S31)). 단계(S31) 이후에 송신 타이밍 제어부(30)는 자국앞 패킷 판정부(24)로부터 출력된 수신 완료 신호에 기초하여 기준 타이밍을 결정한다(단계(S32)). 단계(S32) 이후에 프리앰블 선택부(26)는 소정의 PR 길이를 선택한다(단계(S33)). 단계(S33) 이후에 송신 패킷 처리부(27)는 타국앞 패킷인 송신 패킷에 포함되는 프리앰블을 단계(S33)에서 선택된 PR 길이를 갖는 프리앰블로 교체하여 중계 패킷을 생성하고, 생성한 중계 패킷을 보존한다(단계(S34)).
한편, 검출된 송신원 어드레스가 과거에 수신한 송신국(11)과 일치하지 않는 경우(단계(S30)에서 "아니오"), 처리는 단계(S18)로 진행한다. 단계(S18~S26)는 도 8에 도시한 단계(S18~S26)와 동일한 처리이므로 설명을 생략한다. 단계(S34) 이후에 송신 타이밍 제어부(30)는 기준 타이밍과, 단계(S33)에서 선택된 PR 길이와, 단계(S31, S22) 또는 단계(S26)에서 선택된 지연량과, 프리앰블 선택부(26)가 선택할 수 있는 복수의 PR 길이 중 가장 짧은 PR 길이를 이용하여 송신 개시 타이 밍을 결정한다(단계(S35)). 단계(S35) 이후에 송신 타이밍 제어부(30)는 송신 개시 타이밍이 되었는지 여부를 판단한다(단계(S36)). 단계(S36)에서 송신 개시 타이밍이 되었다고 판단된 경우, 변조부(31)는 단계(S20) 또는 단계(S34)에서 보존된 중계 패킷을 송신 패킷 처리부(27)로부터 판독하고, 단계(S31, S22) 또는 단계(S26)에서 선택된 심볼 파형으로 변조하여 변조 베이스밴드 신호로서 출력한다. 변조 베이스밴드 신호는 RF부(22)에서 RF대의 신호로 주파수 변환된 후, 안테나(21)로부터 송신된다(단계(S37)). 단계(S37) 이후에 심볼 파형/지연량 선택부(29)는 단계(S26)에서 선택된 심볼 파형 및 지연량을 기억한다(단계(S38)).
또한, 단계(S33)에서 선택된 소정의 PR 길이는 어느 길이라도 좋다. 예를 들면, 도 2에 도시한 프리앰블 길이중에서 가장 짧은 프리앰블 길이를 선택한 경우, 심볼 파형과 지연량의 조합을 추정하는 경우에 비해 송신국(11)으로부터 수신국(13)까지의 중계 시간을 단축할 수 있다.
계속해서 도 16을 참조하여 제 4 실시형태에 따른 송신국(11) 및 각 중계국(121~124)의 처리예에 대해 설명한다. 도 16은 제 4 실시형태에 따른 송신국(11) 및 각 중계국(121~124)의 처리의 개요를 도시한 도면이다. 도 16에 있어서, 송신 패킷(C1)은 송신국(11)으로부터 1 회째에 송신된 송신 패킷이다. 송신 패킷(C2)은 송신국(11)으로부터 2 회째에 송신된 송신 패킷이다. 여기서, 송신 패킷(C1)이 송신된 경우의 처리는 도 9에서 설명한 처리와 동일하므로 설명을 생략한다. 2회째에 송신국(11)으로부터 송신 패킷(C2)이 송신된 경우, 각 중계 국(121~124)은 전회 수신한 송신국(11)으로부터 송신 패킷이 송신된 것을 인식한다. 각 중계국(121~124)은 심볼 파형과 지연량의 조합의 추정을 실시하지 않고, 전회 선택한 조합에 따라서 중계 패킷을 송신한다. 도 16에서는 중계국(121)은 심볼 파형(w1)과 지연량(O)을 선택하고, 중계국(122)은 심볼 파형(w1)과 지연량(T)을 선택하며, 중계국(123)은 심볼 파형(w2)과 지연량(T)을 선택하고, 중계국(124)은 심볼 파형(w2)과 지연량(O)을 선택한다. 또한, 각 중계국(121~124)은 선택 가능한 PR 길이 중, 가장 짧은 PR 길이를 선택하고 있다.
이상과 같이 본 실시형태에 의하면 심볼 파형/지연량 선택부(29)에는 과거에 수신한 송신국(11)을 나타내는 송신원 어드레스와, 이 때 선택한 심볼 파형과 지연량의 조합이 대응된 대응 정보가 기억되어 있다. 이에 의해 각 중계국(121~124)은 자국이 수신한 송신 패킷을 송신한 송신국(11)이 과거에 수신한 송신국과 동일한 경우, 추정을 실시하지 않고 그 때 선택한 심볼 파형과 지연량의 조합을 이용할 수 있다.
또한, 상술한 각 실시형태에서는 송신 매개변수가 2 종류의 심볼 파형(심볼 파형(w1, w2))과 2 종류의 지연량(지연량(O, T))으로 구성되는 경우를 예로 들어 설명했지만, 이에 한정되지 않는다. 예를 들면, 송신 매개변수는 3 종류 이상의 심볼 파형과 3 종류 이상의 지연량으로 구성되어도 좋다. 일반적으로 송신 매개변수가 k 종류의 심볼 파형과, m 종류의 지연량으로 구성되는 경우에는 최대 유효 브랜치수는 (k×m)이 된다. 또한, 패스 다이버시티 효과를 얻기 위한 송신 매개변수 는 복수 종류의 심볼 파형과 1 종류의 지연량으로 구성되어도 좋다. 이 경우, 패스 다이버시티 효과를 얻기 위한 송신 매개변수는 복수 종류의 심볼 파형만이 된다. 또한, 패스 다이버시티 효과를 얻기 위한 송신 매개변수는 1 종류의 심볼 파형과 복수 종류의 지연량으로 구성되어도 좋다. 이 경우, 패스 다이버시티 효과를 얻기 위한 송신 매개변수는 복수 종류의 지연량만이 된다. 패스 다이버시티 효과를 얻기 위한 송신 매개변수로서 복수 종류의 심볼 파형을 이용하는 경우에는 서로 상관이 낮은 심볼 파형을 이용하면 좋다. 또한, 복수 종류의 지연량을 이용하는 경우에는 각 지연량의 차가 지연 분해능 이상이 되고, 또한 최대 지연량과 최소 지연량의 차가 지연 상한 이하가 되도록 지연량을 설정하면 좋다.
또한, 상술한 각 실시형태에서는 상기 (E)의 시스템을 적용한 경우를 예로 설명했지만, 그 이외의 시스템을 이용해도 좋다. 그 이외의 시스템을 적용하는 경우에는 적용하는 시스템에 따른 변조부(31)와 복조부(23)을 이용하면 좋다. 이 때문에 변조부(31)와 복조부(23) 이외의 구성은 도 3에 도시한 무선국의 구성을 그대로 원용할 수 있다. 예를 들면, 상기 (E)에 나타낸 시스템은 상기 (A)에 나타낸 스펙트럼 확산 방식의 하나인 DSSS 방식의 원리를 이용한 시스템이다. 이 때문에 DSSS 방식의 확산 방법 및 역확산 방법을 바꿔 동일한 스펙트럼 확산 방식인 FHSS 방식, THSS 방식으로도 적용하는 것이 가능하다.
또한, 송신 매개변수로서 지연량만을 이용하는 경우, 상기 (B)의 시스템을 적용하는 것도 가능하다. OFDM 방식을 이용하는 경우, 각 지연량 차를 복수의 서 브 캐리어를 포함하는 주파수 대역폭의 역수 이상으로 하고, 또한 최대 지연량과 최소 지연량의 차를 가이드 구간 길이 미만이 되도록 하면 좋다. 또한, 상기 (C)의 시스템을 적용하는 것도 가능하다. PSK-VP 방식, PSK-RZ 방식을 이용하는 경우, 각 지연량 차를 지연 분해능인 심볼 길이의 수분의 1 이상으로 하고, 또한 최대 지연량과 최소 지연량의 차를 1 심볼 길이 미만이 되도록 중계국이 선택할 수 있는 지연량을 설정하면 좋다. 또한, DSK 방식을 이용하는 경우, 각 지연량 차를 지연 분해능인 심볼 길이의 수분의 1 이상으로 하고, 또한 최대 지연량과 최소 지연량의 차를 0.5 심볼 길이 미만이 되도록 하면 좋다. 또한, 상기 (D)의 시스템을 적용하는 것도 가능하다. 등화기를 이용하는 경우, 각 지연량 차를 1 심볼 길이 이상으로 하고, 또한 최대 지연량과 최소 지연량의 차를 탭수로 정해지는 지연 상한 이하가 되도록 하면 좋다.
또한, 상기 (F)의 시스템을 적용하는 것도 가능하다. 상기 (F)의 시스템을 적용한 경우의 변조부(31)의 구성을 도 17에 도시한다. 도 17은 상기 (F)의 시스템에 적용한 경우의 변조부(31)의 상세한 구성을 도시한 블럭도이다. 도 17에 있어서, 변조부(31)는 판독 제어부(312), 파형 1 생성부(318a), 파형 2 생성부(318b), 셀렉터(319) 및 D/A 변환기(317)에 의해 구성된다. 또한, 파형 생성부의 수는 무선 전송 시스템에서 이용되는 심볼 파형의 수에 대응한다.
판독 제어부(312)는 베이스 클럭으로 동작하는 카운터로 구성되어 있다. 판독 제어부(312)는 송신 개시 신호를 수취하면 카운터 값에 기초하여 송신 패킷 또 는 중계 패킷을 판독하기 위한 데이터 판독 클럭을 생성한다. 판독 제어부(312)는 생성한 데이터 판독 클럭을 송신 패킷 처리부(28)로 건넨다. 송신 패킷 처리부(27)는 수취한 데이터 판독 클럭에 따라서 송신 패킷 또는 중계 패킷을 판독하여 변조부(31)의 판독 제어부(312)로 건넨다. 판독 제어부(312)는 송신 패킷 처리부(27)로부터 송신 패킷 또는 중계 패킷을 수취하면, 송신 패킷 또는 중계 패킷에 대해 차동 부호화를 실시한다. 그리고, 판독 제어부(312)는 파형 생성부의 데이터를 판독하기 위한 어드레스를 나타내는 어드레스 신호를 생성한다. 어드레스 신호는 파형 1 생성부(318a) 및 파형 2 생성부(318b)에 출력된다.
파형 1 생성부(318a) 및 파형 2 생성부(318b)는 송신 패킷 또는 중계 패킷에 따른 심볼 파형의 데이터를 입력된 어드레스 신호에 기초하여 파형 메모리로부터 판독한다. 이에 의해 파형 2 생성부(318a) 및 파형 2 생성부(318b)는 차동 부호화한 데이터에 대해 위상 변조한, 변조 베이스밴드 신호를 생성한다. 또한, 파형 1 생성부(318a) 및 파형 2 생성부(318b)의 파형 메모리에는 미리 각각 다른 심볼 파형의 데이터가 저장되어 있다. 파형 1 생성부(318a) 및 파형 2 생성부(318b)에 저장하는 심볼 파형의 데이터에 대해서는 이후에 상술한다. 셀렉터(319)는 심볼 파형/지연량 선택부(29)로부터 출력된 심볼 파형 선택 신호에 따라서 파형 1 생성부(318a) 및 파형 2 생성부(318b)가 출력하는 신호 중, 어느 하나를 선택하여 D/A 변환기(317)로 출력한다. D/A 변환기(317)는 셀렉터(319)로부터 출력되는 신호를 아날로그 신호로 변환하고, 변조 베이스밴드 신호로서 출력한다.
도 18은 파형 1 생성부(318a) 및 파형 2 생성부(318b)가 기억하는 심볼 파형의 위상 천이의 일례를 도시한 모식도이다. 예를 들면, 파형 1 생성부(318a)가 임의의 심볼로서 기억하는 심볼 파형(w1)의 위상 천이는 도 18의 실선으로 나타내는 바와 같이 된다. 1 심볼 길이(T)에 있어서, 심볼 파형(w1)의 위상 천이는 위상에 대해 시간 방향으로 증가 경향이 있다. 또한, 심볼 파형(w1)에 있어서, 위상의 시간 변화량은 음의 값이고, 또한 위상의 시간 변화량의 절대값은 심볼 파형의 전반은 감소 경향이 있고, 후반은 증가 경향이 있다. 또한, 예를 들면 파형 2 생성부(318b)가 임의의 심볼로서 기억하는 심볼 파형(w2)의 위상 천이는 도 18의 점선으로 나타내는 바와 같이 된다. 1 심볼 길이(T)에 있어서, 심볼 파형(w2)의 이상 천이는 위상에 대해 시간 방향으로 감소 경향에 있다. 또한, 위상의 시간 변화량은 양의 값이고, 또한 위상의 시간 변화량의 절대값은 심볼 파형의 전반은 감소 경향에 있고, 후반은 증가 경향에 있다. 또한, 파형 1 생성부(318a) 및 파형 2 생성부(318b)가 기억하는 심볼 파형으로서는 서로 상관이 낮은 심볼 파형이면 이 2 개에 한정되지 않는다. 또한, 파형 1 생성부(318a) 및 파형 2 생성부(318b)가 3 개 이상의 서로 상관이 낮은 심볼 파형을 기억하여 이용하는 것도 가능하다.
이상과 같이 도 17에 도시한 변조부(31)는 송신 개시 신호를 수취하고 나서 심볼 파형을 파형 메모리로부터 판독하기 위한 어드레스 신호를 생성한다. 이에 의해 변조 베이스밴드 신호를 출력하는 타이밍은 송신 개시 신호를 수취한 타이밍에 따라서 베이스 클럭 단위로 변화한다. 또한, 베이스 클럭은 통상 심볼 주파수 (심볼 길이의 역수)의 수배에서 수십배의 주파수가 이용되는 것이 많다. 따라서, 심볼 길이의 수분의 1에서 십수분의 1의 단위로 변조 베이스밴드 신호를 출력하는 타이밍을 조정할 수 있다. 또한, 도 17에 도시한 변조부(31)는 복수의 파형 생성부(파형 1 생성부(318a), 파형 2 생성부(318b))를 구비하여 심볼 파형 선택 신호에 따라서 원하는 심볼 파형으로 변조된 변조 베이스밴드 신호를 생성할 수 있다.
도 19는 상기 (F)에 나타낸 패스 다이버시티의 시스템을 이용한 경우의 복조부(23)의 구성을 도시한 블럭도이다. 도 19에 도시한 복조부(23)는 지연 검파부(237), 검파 후 필터(238) 및 데이터 판정부(239)에 의해 구성된다. 지연 검파부(237)는 수신 베이스밴드 신호를 지연 검파한다. 검파 후 필터(238)는 지연 검파한 신호를 합성하여 검파 신호를 출력한다. 데이터 판정부(239)는 검파 신호를 판정하여 복조 데이터를 출력한다. 복수의 송신국으로부터 서로 다른 위상 용장 파형으로 변조된 신호가 송신된 경우에 도 19에 도시한 복조부(23)로 복조하여 바르게 복조할 수 있는 이유를 이하에 설명한다. 수신국에는 복수의 다른 위상 용장 파형이 겹쳐진 신호가 입력된다. 이 때, 인접하는 심볼이라도 동일한 겹친 신호가 얻어지고, 인접하는 심볼간의 위상 관계는 유지된다. 이에 의해 이 신호에 대해 지연 검파를 실시하여 인접하는 심볼간의 위상차를 검출할 수 있다. 지연 검파 후의 신호는 다른 위상 용장 파형의 겹침에 의해 심볼 내에서 변동하고 있지만, 부호가 반전되지는 않는다. 따라서, 검파 후 필터(238)로 지연 검파 후의 신호를 합성하여 심볼내에서의 신호의 변동은 없어진다. 그 결과, 데이터 판정부(239)에서 극 성을 판정하여 복조할 수 있다. 이와 같이 도 19에 도시한 복조부(23)에 의해 다른 위상 용장 파형이 겹쳐진 신호를 바르게 복조할 수 있다.
또한, 페이징 환경하에서는 복수의 송신국으로부터 서로 다른 위상 용장 파형으로 변조된 신호가 각각 다른 페이징을 받아 수신된다. 동위상으로 겹쳐진 경우는 신호가 서로 강하고, 역위상으로 겹쳐진 경우에는 신호가 서로 약하므로 원래의 위상 용장 파형과는 전혀 다른 파형이 된다. 단, 다른 위상 용장이 가해진 파형이 겹치므로 1 심볼내 전체에서 역위상이 되어 신호가 서로 약해지지 않는다. 즉, 1 심볼내에 반드시 동위상 또는 동위상 부근이 되는 기간이 있다. 이에 의해 지연 검파에 의해 복조하여 바르게 복조할 수 있고, 패스 다이버시티 효과를 얻을 수 있다.
또한, 상술한 각 실시형태에서는 기준 타이밍은 패킷의 수신이 완료된 것을 나타내는 수신 완료 신호에 기초하여 결정되고 있지만, 기준 타이밍을 결정하는 방법은 이에 한정되지 않는다. 기준 타이밍은 예를 들면 패킷 중의 유니크 워드가 검출된 시점을 기준으로 하여 결정되어도 좋다. 또한, 무선국간에 동기를 취하기 위한 비콘(beacon)국이 존재할 경우에는 비콘국으로부터 송신되는 비콘에 기초하여 기준 타이밍이 결정되어도 좋다. 또한, GPS(Global Positioning System) 신호에 포함되는 시각 정보나 전파 시계로부터 얻어지는 시각 정보 등으로부터 기준 타이밍이 결정되어도 좋다.
또한, 상술한 각 실시형태에서는 송신 개시 타이밍은 송신 타이밍 제어 부(30)에 의해 결정되었다. 또한, 송신 타이밍 제어부(30)는 기준 타이밍, 선택한 PR 길이, 선택한 지연량에 기초하여 송신 개시 타이밍을 결정했다. 이 송신 개시 타이밍을 결정함으로써 각 무선국이 패킷을 송신하는 타이밍을 원하는 타이밍으로 설정할 수 있다. 그러나, 각 무선국이 송신하는 타이밍을 설정하는 방법은 이에 한정되지 않는다. 다른 방법으로서 예를 들면 변조부(31)가 출력하는 변조 베이스밴드 신호에 지연을 부가하여 각 무선국이 송신하는 타이밍을 설정해도 좋다.
또한, 상술한 각 실시형태에 따른 무선국을 구성하는 각 기능 블럭은 전형적으로는 집적 회로인 LSI로서 실현된다. 이들은 개별로 1 칩화되어도 좋고, 일부 또는 전부를 포함하도록 1 칩화되어도 좋다. 또한, 여기서는 LSI로 했지만, 집적도의 차이에 의해 IC, 시스템 LSI, 슈퍼 LSI, 울트라 LSI라고 호칭되는 것도 있다. 또한, 집적회로화의 수법은 LSI에 한정되지 않고, 전용 회로 또는 범용 프로세서로 실현해도 좋다. LSI 제조 후에 프로그램하는 것이 가능한 FPGA(Field Programmable Gate Array)나 LSI 내부의 회로 셀의 접속이나 설정을 재구성 가능한 리컨피규러블·프로세서를 이용해도 좋다. 또는 반도체 기술의 진보 또는 파생되는 다른 기술에 의해 LSI로 치환되는 집적 회로화의 기술(바이오 기술로의 적응 등)이 등장하면 당연히 그 기술을 이용하여 기능 블럭의 집적화를 실시해도 좋다.
본 발명은 무선 전송 시스템에 이용되는 무선국으로서, 설치 상황에 관계없이 패스 다이버시티 효과를 발휘시키는 것이 가능한 무선국, 상기 무선국의 무선 전송 방법 및 상기 무선국을 이용한 무선 전송 시스템 등으로서 유용하다.

Claims (17)

  1. 서로 다른 전송로를 구성하는 복수의 중계국을 통해 송신국으로부터 송신된 패킷을 수신국에 전송하는 무선 전송 시스템에서 중계국으로서 이용되는 무선국에 있어서,
    상기 송신국으로부터 송신된 패킷을 수신하고, 또한 상기 송신국으로부터 송신된 패킷에 기초하여 다른 중계국으로부터 송신된 패킷으로서, 상기 무선 전송 시스템에서 패스 다이버시티 효과를 얻기 위한 송신 매개변수를 이용하여 자국보다 먼저 송신된 패킷을 수신하는 수신부,
    상기 수신부에서 수신된 다른 중계국으로부터의 패킷에 기초하여 상기 다른 중계국이 이용한 송신 매개변수를 추정하는 송신 매개변수 추정부,
    상기 송신 매개변수 추정부에서 추정된 다른 중계국이 이용한 송신 매개변수와는 다른 송신 매개변수를 선택하는 송신 매개변수 선택부, 및
    상기 수신부에서 수신된 송신국으로부터의 패킷을 상기 송신 매개변수 선택부에서 선택된 송신 매개변수를 이용하여 상기 수신국에 송신하는 송신부를 구비하는 것을 특징으로 하는 무선국.
  2. 제 1 항에 있어서,
    상기 송신 매개변수 선택부에는 서로 다른 복수의 송신 매개변수가 미리 기 억되어 있고,
    상기 송신 매개변수 선택부는 미리 기억된 상기 복수의 송신 매개변수 중에서 상기 송신 매개변수 추정부에서 추정된 다른 중계국이 이용한 송신 매개변수와는 다른 송신 매개변수를 선택하는 것을 특징으로 하는 무선국.
  3. 제 1 항에 있어서,
    상기 수신부는 복수의 상기 다른 중계국으로부터 각각 송신된 패킷을 수신하고,
    상기 송신 매개변수 추정부는 각 상기 다른 중계국으로부터의 패킷에 기초하여 각 상기 다른 중계국이 이용한 송신 매개변수를 각각 추정하고,
    상기 송신 매개변수 선택부에는 서로 다른 복수의 송신 매개변수가 미리 기억되어 있고,
    상기 송신 매개변수 선택부는 상기 복수의 송신 매개변수 전체가 상기 송신 매개변수 추정부에서 추정된 각 송신 매개변수 중 어느 하나에 해당하는 경우, 상기 송신 매개변수의 선택 처리를 중지하고,
    상기 송신부는 상기 송신 매개변수 선택부에서 송신 매개변수의 선택 처리가 중지된 경우, 상기 수신국에 송신하는 처리를 실시하지 않는 것을 특징으로 하는 무선국.
  4. 제 1 항에 있어서,
    상기 패킷의 선두 부분에는 프리앰블이 포함되어 있고,
    상기 프리앰블의 길이를 나타내는 프리앰블 길이 정보로서, 서로 다른 길이를 나타내는 복수의 프리앰블 길이 정보가 미리 기억되어 있고, 상기 복수의 프리앰블 길이 정보중에서 1 개의 프리앰블 길이 정보를 랜덤하게 선택하는 프리앰블 선택부를 추가로 구비하고,
    상기 송신부는 상기 송신국으로부터의 패킷을 상기 프리앰블 선택부가 선택한 프리앰블 길이 정보를 나타내는 길이에 따른 타이밍에 송신하는 것을 특징으로 하는 무선국.
  5. 제 4 항에 있어서,
    상기 복수의 프리앰블 길이 정보가 나타내는 각 길이는 소정 범위내중 어느 하나의 길이인 것을 특징으로 하는 무선국.
  6. 제 4 항에 있어서,
    상기 프리앰블 길이 정보의 수는 상기 송신 매개변수의 종류 수와 동수 또는 상기 송신 매개변수의 종류 수보다도 많은 것을 특징으로 하는 무선국.
  7. 제 1 항에 있어서,
    상기 패킷의 선두 부분에는 프리앰블이 포함되어 있고,
    상기 프리앰블의 데이터 열로서, 서로 다른 복수의 데이터 열이 미리 기억되어 있고, 상기 복수의 데이터 열중에서 1 개의 데이터 열을 선택하는 프리앰블 선택부를 추가로 구비하고,
    상기 송신부는 상기 송신국으로부터의 패킷에 포함되는 프리앰블을 상기 프리앰블 선택부가 선택한 데이터 열을 갖는 프리앰블로 대체하고, 상기 프리앰블을 대체한 상기 송신국으로부터의 패킷을 상기 송신 매개변수 선택부에서 선택된 송신 매개변수를 이용하여 상기 수신국에 송신하는 것을 특징으로 하는 무선국.
  8. 제 1 항에 있어서,
    상기 송신 매개변수는 상기 송신부로부터 송신되는 패킷이 상기 수신국에 수신되는 타이밍을 지연시키기 위한 지연량 및 상기 송신부가 상기 송신국으로부터의 패킷을 변조하기 위한 심볼 파형중 적어도 한쪽으로 구성되는 것을 특징으로 하는 무선국.
  9. 제 1 항에 있어서,
    상기 송신 매개변수 추정부는 상기 수신부에서 수신된 다른 중계국으로부터의 패킷이 나타내는 파형과 소정의 파형과의 상관을 얻게 하여 상기 다른 중계국이 이용한 송신 매개변수를 추정하는 것을 특징으로 하는 무선국.
  10. 제 9 항에 있어서,
    상기 송신 매개변수는 상기 송신부가 상기 송신국으로부터의 패킷을 변조하기 위한 심볼 파형으로 구성되어 있고,
    상기 송신 매개변수 추정부는 상기 수신부에서 수신된 다른 중계국으로부터의 패킷의 파형과 소정의 파형과의 상관을 얻게 한 결과를 나타내는 상관 신호를 생성하고, 상기 상관 신호에 소정의 임계값 이상의 피크가 출력된 경우, 상기 다른 중계국이 이용한 심볼 파형이 상기 소정의 파형에 따른 심볼 파형이라고 추정하는 것을 특징으로 하는 무선국.
  11. 제 9 항에 있어서,
    상기 송신 매개변수는 상기 송신부로부터 송신되는 패킷이 상기 수신국에 수신되는 타이밍을 지연시키기 위한 지연량으로 구성되어 있고,
    상기 송신 매개변수 추정부는 상기 수신부에서 수신된 다른 중계국으로부터의 패킷의 파형과 소정의 파형과의 상관을 얻게 한 결과를 나타내는 상관 신호를 생성하고, 상기 상관 신호에 소정의 임계값 이상의 피크가 출력되는 타이밍에 기초하여 상기 다른 중계국이 이용한 지연량을 추정하는 것을 특징으로 하는 무선국.
  12. 제 9 항에 있어서,
    상기 송신 매개변수는 상기 송신부로부터 송신되는 패킷이 상기 수신국에 수신되는 타이밍을 지연시키기 위한 지연량 및 상기 송신부가 상기 송신국으로부터의 패킷을 변조하기 위한 심볼 파형으로 구성되어 있고,
    상기 송신 매개변수 추정부는 상기 수신부에서 수신된 다른 중계국으로부터의 패킷의 파형과 소정의 파형과의 상관을 얻게 한 결과를 나타내는 상관 신호를 생성하고, 상기 상관 신호에 소정의 임계값 이상의 피크가 출력된 경우, 상기 다른 중계국이 이용한 심볼 파형이 상기 소정의 파형에 따른 심볼 파형이라고 추정하고, 또한 상기 피크가 출력되는 타이밍에 기초하여 상기 다른 중계국이 이용한 지연량을 추정하는 것을 특징으로 하는 무선국.
  13. 서로 다른 전송로를 구성하는 복수의 중계국을 통해 송신국으로부터 송신된 패킷을 수신국에 전송하는 무선 전송 시스템에 있어서,
    상기 패킷을 송신하는 상기 송신국,
    서로 다른 전송로를 구성하고, 상기 송신국으로부터의 패킷을 중계하여 상기 수신국에 송신하는 상기 복수의 중계국, 및
    상기 복수의 중계국으로부터 각각 송신된 패킷을 수신하는 상기 수신국을 구비하고,
    상기 중계국의 각각은,
    상기 송신국으로부터 송신된 패킷을 수신하고, 또한 상기 송신국으로부터 송 신된 패킷에 기초하여 다른 중계국으로부터 송신된 패킷으로서, 상기 무선 전송 시스템에서 패스 다이버시티 효과를 얻기 위한 송신 매개변수를 이용하여 자국보다 먼저 송신된 패킷을 수신하는 제 1 수신부,
    상기 제 1 수신부에서 수신된 다른 중계국으로부터의 패킷에 기초하여 상기 다른 중계국이 이용한 송신 매개변수를 추정하는 제 1 송신 매개변수 추정부,
    상기 제 1 송신 매개변수 추정부에서 추정된 다른 중계국이 이용한 송신 매개변수와는 다른 송신 매개변수를 선택하는 제 1 송신 매개변수 선택부, 및
    상기 제 1 수신부에서 수신된 송신국으로부터의 패킷을 상기 제 1 송신 매개변수 선택부에서 선택된 송신 매개변수를 이용하여 상기 수신국에 송신하는 제 1 송신부를 구비하는 것을 특징으로 하는 무선 전송 시스템.
  14. 제 13 항에 있어서,
    상기 송신국은,
    자국으로부터 송신된 패킷에 기초하여 상기 복수의 중계국 중 적어도 하나의 중계국으로부터 송신된 패킷으로서, 상기 송신 매개변수를 이용하여 자국보다 먼저 송신된 패킷을 수신하는 제 2 수신부,
    상기 제 2 수신부에서 수신된 중계국으로부터의 패킷에 기초하여 상기 중계국이 이용한 송신 매개변수를 추정하는 제 2 송신 매개변수 추정부,
    상기 제 2 송신 매개변수 추정부에서 추정된 중계국이 이용한 송신 매개변수 와는 다른 송신 매개변수를 선택하는 제 2 송신 매개변수 선택부, 및
    자국으로부터 송신해야 하는 패킷을 상기 제 2 송신 매개변수 선택부에서 선택된 송신 매개변수를 이용하여 상기 수신국에 송신하는 제 2 송신부를 구비하는 것을 특징으로 하는 무선 전송 시스템.
  15. 제 14 항에 있어서,
    상기 제 1 송신 매개변수 선택부에는 서로 다른 복수의 송신 매개변수가 미리 기억되어 있고,
    상기 제 1 송신 매개변수 선택부는 미리 기억된 상기 복수의 송신 매개변수중에서 상기 제 1 송신 매개변수 추정부에서 추정된 다른 중계국이 이용한 송신 매개변수와는 다른 송신 매개변수를 선택하고,
    상기 제 2 송신 매개변수 선택부에는 상기 제 1 송신 매개변수 선택부에 미리 기억된 복수의 송신 매개변수와는 다른 송신 매개변수로서, 서로 다른 복수의 송신 매개변수가 미리 기억되어 있고,
    상기 제 2 송신 매개변수 선택부는 미리 기억된 상기 복수의 송신 매개변수중에서 상기 제 2 송신 매개변수 추정부에서 추정된 중계국이 이용한 송신 매개변수와는 다른 송신 매개변수를 선택하는 것을 특징으로 하는 무선 전송 시스템.
  16. 제 13 항에 있어서,
    상기 제 1 송신 매개변수 선택부에는 서로 다른 복수의 송신 매개변수가 미리 기억되어 있고,
    상기 제 1 송신 매개변수 선택부는 미리 기억된 상기 복수의 송신 매개변수중에서 상기 제 1 송신 매개변수 추정부에서 추정된 다른 중계국이 이용한 송신 매개변수와는 다른 송신 매개변수를 선택하고,
    상기 송신국에는 상기 제 1 송신 매개변수 선택부에 미리 기억된 복수의 송신 매개변수와는 다른 소정의 송신 매개변수가 미리 기억되어 있고,
    상기 송신국은 상기 복수의 중계국에서 이용된 패킷을 송신한 후, 자국으로부터 송신해야 하는 패킷을 미리 기억된 상기 소정의 송신 매개변수를 이용하여 상기 수신국에 추가로 송신하는 것을 특징으로 하는 무선 전송 시스템.
  17. 서로 다른 전송로를 구성하는 복수의 중계국을 통해 송신국으로부터 송신된 패킷을 수신국에 전송하는 무선 전송 시스템에서, 중계국으로서 이용되는 무선국이 실시하는 무선 전송 방법에 있어서,
    상기 송신국으로부터 송신된 패킷을 수신하고, 또한 상기 송신국으로부터 송신된 패킷에 기초하여 다른 중계국으로부터 송신된 패킷으로서, 상기 무선 전송 시스템에서 패스 다이버시티 효과를 얻기 위한 송신 매개변수를 이용하여 자국보다 먼저 송신된 패킷을 수신하는 수신 단계,
    상기 수신 단계에서 수신된 다른 중계국으로부터의 패킷에 기초하여 상기 다 른 중계국이 이용한 송신 매개변수를 추정하는 송신 매개변수 추정 단계,
    상기 송신 매개변수 추정 단계에서 추정된 다른 중계국이 이용한 송신 매개변수와는 다른 송신 매개변수를 선택하는 송신 매개변수 선택 단계, 및
    상기 수신 단계에서 수신된 송신국으로부터의 패킷을 상기 송신 매개변수 선택 단계에서 선택된 송신 매개변수를 이용하여 상기 수신국에 송신하는 송신 단계를 포함하는 것을 특징으로 하는 무선 전송 방법.
KR1020087021104A 2006-02-01 2007-01-31 무선국, 상기 무선국의 무선 전송 방법 및 상기 무선국을 이용한 무선 전송 시스템 KR20080095268A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006024628 2006-02-01
JPJP-P-2006-00024628 2006-02-01

Publications (1)

Publication Number Publication Date
KR20080095268A true KR20080095268A (ko) 2008-10-28

Family

ID=38327477

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020087021104A KR20080095268A (ko) 2006-02-01 2007-01-31 무선국, 상기 무선국의 무선 전송 방법 및 상기 무선국을 이용한 무선 전송 시스템

Country Status (6)

Country Link
US (1) US8050620B2 (ko)
EP (1) EP1986345A1 (ko)
JP (1) JP4906741B2 (ko)
KR (1) KR20080095268A (ko)
CN (1) CN101375528B (ko)
WO (1) WO2007088906A1 (ko)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114049A1 (ja) * 2006-03-29 2007-10-11 Matsushita Electric Industrial Co., Ltd. 無線伝送システム並びにそれに用いられる無線局及び方法
KR100943174B1 (ko) * 2007-11-30 2010-02-19 한국전자통신연구원 중계확률 기반의 무선 네트워크에서 메시지 전달 방법
JP2010252049A (ja) * 2009-04-15 2010-11-04 Sony Corp 通信装置及び通信方法、コンピューター・プログラム、並びに通信システム
WO2014132469A1 (ja) * 2013-02-27 2014-09-04 株式会社国際電気通信基礎技術研究所 端末装置、それと無線通信を行う無線装置およびそれらを備えた無線通信システム
JP6110185B2 (ja) * 2013-03-29 2017-04-05 日本信号株式会社 列車制御装置
KR20150083274A (ko) * 2014-01-09 2015-07-17 한국전자통신연구원 안테나들 사이의 거리를 줄이는 los mimo 시스템
US9936508B2 (en) 2015-03-13 2018-04-03 Qualcomm Incorporated Mechanisms for association request signaling between IoE devices
US10057352B2 (en) * 2015-03-13 2018-08-21 Qualcomm Incorporated Internet of everything device relay discovery and selection
US10645631B2 (en) 2016-06-09 2020-05-05 Qualcomm Incorporated Device detection in mixed static and mobile device networks
US10634763B2 (en) * 2016-11-18 2020-04-28 Samsung Electronics Co., Ltd. Apparatus, system and method of estimating a location of a station using orthogonal response signals
US11259322B2 (en) * 2019-08-15 2022-02-22 Charter Communications Operating, Llc Wireless network and efficient random access channel

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5377255A (en) * 1992-07-14 1994-12-27 Pcs Microcell International Inc. RF repeaters for time division duplex cordless telephone systems
US5987011A (en) * 1996-08-30 1999-11-16 Chai-Keong Toh Routing method for Ad-Hoc mobile networks
DE19737897C2 (de) * 1997-08-29 1999-07-22 Dirc Gmbh & Co Kg Datenübertragungssystem
JPH11298384A (ja) * 1998-04-15 1999-10-29 Matsushita Electric Ind Co Ltd アンテナダイバーシチ無線システム
JP2000115181A (ja) 1998-10-02 2000-04-21 Nippon Telegr & Teleph Corp <Ntt> 無線パケット通信装置
JP2004179801A (ja) * 2002-11-25 2004-06-24 Keio Gijuku Uwb中継装置及びuwb通信装置
PL1627511T3 (pl) * 2003-05-28 2008-07-31 Ericsson Telefon Ab L M Sposób i struktura bezprzewodowej sieci telekomunikacyjnej wykorzystującej przekazywanie kooperacyjne
US7684337B2 (en) * 2006-01-17 2010-03-23 Mitsubishi Electric Research Laboratories, Inc. Method and system for communicating in cooperative relay networks
EP1919101A3 (en) * 2006-11-02 2009-08-19 LG Telecom, Ltd. Small-sized radio frequency type repeater

Also Published As

Publication number Publication date
US20090036052A1 (en) 2009-02-05
EP1986345A1 (en) 2008-10-29
CN101375528B (zh) 2012-10-17
JPWO2007088906A1 (ja) 2009-06-25
CN101375528A (zh) 2009-02-25
US8050620B2 (en) 2011-11-01
WO2007088906A1 (ja) 2007-08-09
JP4906741B2 (ja) 2012-03-28

Similar Documents

Publication Publication Date Title
KR20080095268A (ko) 무선국, 상기 무선국의 무선 전송 방법 및 상기 무선국을 이용한 무선 전송 시스템
EP1790105B1 (en) Wireless transmission system and wireless transmission method and wireless station for use therein
US7756218B2 (en) Wireless transmission system and wireless transmission method and wireless station and transmitting station for use therein
EP1096698B1 (en) Reception apparatus and reception processing method
US8000377B2 (en) System and method for variable rate multiple access short message communications
US7738540B2 (en) Wireless transmission system, wireless station used therein and method used therefor
CN103036600B (zh) 通信系统
US6795488B1 (en) Spread spectrum communication apparatus
US8229015B2 (en) Wireless transmission system, wireless transmitting method, and wireless station and transmitting station used therein
KR20080016159A (ko) 통신 시스템에서의 셀 탐색 방법 및 장치
JP4531614B2 (ja) 送信装置及び受信装置
EP0553289A1 (en) Digital audio broadcasting system
US20090036114A1 (en) Multi-Hop Booster
EP1333598A2 (en) Bidirectional digital wireless communication system transmitting and receiving asymmetric frames
EP0719003A2 (en) Frequency hopped cellular mobile radio system combining OFDM and frequency hopping
US8451934B1 (en) Method and system for increasing throughput of a wireless channel using multipath transmission

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application