KR20080085484A - 보론계 화합물을 포함하는 고온 연료전지용 고분자 전해질및 이를 포함하는 고분자 전해질 연료전지 - Google Patents

보론계 화합물을 포함하는 고온 연료전지용 고분자 전해질및 이를 포함하는 고분자 전해질 연료전지 Download PDF

Info

Publication number
KR20080085484A
KR20080085484A KR1020070027092A KR20070027092A KR20080085484A KR 20080085484 A KR20080085484 A KR 20080085484A KR 1020070027092 A KR1020070027092 A KR 1020070027092A KR 20070027092 A KR20070027092 A KR 20070027092A KR 20080085484 A KR20080085484 A KR 20080085484A
Authority
KR
South Korea
Prior art keywords
polymer electrolyte
fuel cell
high temperature
temperature fuel
polymer
Prior art date
Application number
KR1020070027092A
Other languages
English (en)
Inventor
권낙현
황인철
박정기
김완근
정호영
성경아
조기윤
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020070027092A priority Critical patent/KR20080085484A/ko
Publication of KR20080085484A publication Critical patent/KR20080085484A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

본 발명은 보론계 화합물, 고분자 매트릭스, 및 음이온계 화합물을 포함하는 고온 연료전지용 고분자 전해질 및 이를 포함하는 고분자 전해질 연료전지에 관한 것이다.
연료전지, 보론계 화합물, 고분자 전해질, 무가습 고온막

Description

보론계 화합물을 포함하는 고온 연료전지용 고분자 전해질 및 이를 포함하는 고분자 전해질 연료전지{POLYMER ELECTROLYTE COMPRISING BORON COMPOUND FOR HIGH TEMPERATURE FUEL CELL AND POLYMER ELECTROLYTE FUEL CELL COMPRISING THE SAME}
도 1은 고분자 전해질 연료전지(PEMFC)의 구조 및 작동 원리의 개념을 도시한 것이다.
도 2는 음이온 고정화 물질의 기능 및 원리에 대한 개념을 도시한 것이다.
도 3은 비교예 및 실시예에 의해 제조된 고온용 고분자 전해질 막의 수소이온 전도도를 나타낸 그래프이다.
도 4는 비교예 및 실시예에 의해 제조된 고온용 고분자 전해질 막의 인산 용출을 시간에 따라 나타낸 그래프이다.
본 발명은 음이온 고정화 물질을 도입한 고온용 고분자 전해질 및 이를 포함하는 연료전지에 관한 것이다. 보다 상세하게는 종래의 고온 연료전지용 고분자 전해질에 도핑되는 음이온의 고정화 물질로서 보론계 화합물을 첨가함으로써, 전극 의 물에 의한 음이온의 용출을 억제시켜 연료전지의 전기화학적 안정성을 향상시키고, 수소 이온의 양이온 수율을 높여 연료전지의 성능을 향상시킬 수 있는 고온 연료전지용 고분자 전해질 및 이를 포함하는 연료전지의 제조 방법에 관한 것이다.
최근 유가의 급등과 기후변화협약에 따른 환경규제로 대체에너지의 중요성이 크게 부각되고 있는 현실에서 연료전지는 이에 대응할 수 있는 차세대 동력 에너지원으로 각광받고 있다. 이러한 연료전지의 종류로는 전해질 및 작동 온도에 따라 알칼리 연료전지(AFC), 인산형 연료전지 (PAFC), 용융탄산염 연료전지(MCFC), 고분자 전해질 막 연료전지(PEMFC), 고체 산화물 연료전지(SOFC) 등으로 나눌 수 있다.
이중, 고분자 전해질 막 연료전지(PEMFC)는 작동온도가 낮아 스타트-업(start-up)이 빠르고, 고체 전해질을 사용하여 제작이 용이하며, 고출력을 얻을 수 있기 때문에 자동차용 또는 가정용 분산 전원용 에너지원으로 각광 받고 있다.
고분자 전해질 막 연료전지(PEMFC)의 기본 원리는 도 1에 나타낸 바와 같이, 전해질을 사이에 두고 양극(anode)에서 수소가 산화되면서 발생한 수소 이온이 음극(cathode)에서 산소와 반응하여 물을 생성하면서 전기를 생성하게 된다. 현재 연료전지 고분자 전해질 막으로 가장 널리 사용되고 있는 것은 과불화술폰산 계열인 나피온(Nafion)이다.
그러나 나피온은 단가가 높고 80 ℃ 이상이 되면 막의 탈수로 인해 수소 이온 전도도가 감소되어 셀 성능이 현저히 저하된다. 따라서, 현재 가습 시스템을 이 용하는 PEMFC의 경우 낮은 작동 온도로 인하여 전극의 활성이 저하되고 일산화탄소(CO)에 의한 피독성도 심각하다. 또한, 막을 가습 하기 위하여 수 처리(water management)를 위한 부가적인 시설이 필요하며 이러한 시설로 인해 연료전지의 효율이 저하되고, 단가가 높아지기 때문에 연료전지의 상용화의 큰 걸림돌이 되고 있다.
이러한 관점에서 고온 무수의 상태에서도 수소 이온 전도도, 전기화학적 안정성 및 열적 안정성이 우수한 물질을 고분자 전해질로 이용하는 방안이 강구되었다. 그 중 가장 주목 받는 물질로서 폴리벤즈이미다졸(Polybenzimidazole)계 고분자 전해질에 도핑된 인산 (phosphric acid)을 이용하는 방법이었다(일본공개특허공보2000-195528). 그러나 이러한 방법은 인산이 양극에서 생성된 물에 의해 용출되는 문제와 그로 인해 전해질 막의 수소 이온 전도도가 감소하는 문제가 있다. 또한 고분자 전해질 막의 수소 이온 전도도를 유지하기 위해 산의 도핑량을 높일 수록 막의 기계적 물성이 저하되는 것도 큰 문제라 할 수 있다.
따라서, 본 발명은 종래기술의 상기와 같은 문제를 해결하기 위하여, 높은 음이온의 도핑량에서도 고분자 전해질 막의 기계적 강도를 유지할 뿐만 아니라 음이온의 용출이 억제되고 고분자 전해질 막의 수소 이온 전도도가 개선되는 고온 연료전지용 고분자 전해질과 이를 포함하는 연료전지를 제공하는 것을 목적으로 한다.
본 발명은 화학식 1 또는 화학식 2로 표시되는 보론계 화합물, 고분자 매트릭스, 및 음이온계 화합물을 포함하는 고온 연료전지용 고분자 전해질 및 이를 포함하는 연료전지에 관한 것이다.
Figure 112007022060551-PAT00001
상기 식에서 Y는 PO4 또는 N이다.
Figure 112007022060551-PAT00002
상기 식에서 Z은 Cl, I, Br, CH3O, CF3CH2O, C3F7CH2O, (CF3)2CHO, (CF3)2C(C6H5)O, (CF3)3CO, C6H5O, FC6H4O, F2C6H3O, F4C6HO, C6F5O, CF3C6H4O, (CF3)2C6H3O, 또는 C6F5이다.
본 발명은 종래의 고온 연료전지용 고분자 전해질에 도핑되는 음이온의 고정화 물질로서 보론계 화합물을 첨가하는 것을 특징으로 한다.
본 발명의 고분자 전해질은 전해질 총 중량에 대하여, 상기 화학식 1 또는 화학식 2로 표시되는 보론계 화합물 1~30중량%, 고분자 매트릭스 50~95 중량%, 및 음이온계 화합물 5~95중량%를 포함하는 것이 바람직하다.
본 발명의 고분자 전해질에 상기 화학식 1 또는 화학식 2로 표시되는 보론계 화합물이 1중량% 미만으로 첨가되면 보론계 화합물이 음이온 고정화 물질의 역할을 충분히 수행하지 못해 음이온의 용출을 억제하지 못하고, 그 결과로 전기화학적 안정성을 향상시키기 어려우며, 또한 양이온 해리도를 높이기 어려워 전지의 성능을 향상시키기 어려운 문제가 있다. 그리고 30중량% 초과하여 첨가되면 고분자 매트릭스 내에서 불순물로 작용하여 이로 인해 이온전도도가 감소하고, 결국 연료전지의 성능도 떨어지는 문제가 있다.
본 발명의 고분자 전해질에 사용되는 고분자 매트릭스로는 예를 들면 PBI (Poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole]) 혹은 ABPBI (Poly(2,5-benzimidazole)) 과 같은 폴리벤즈이미다졸(polybenzimidazole), 폴리벤조티아졸(polybenzothiazole), 폴리벤조옥사졸(polybenzoxazole), 폴리이미드(polyimide), 폴리카보네이트(olycarbonate), 또는 이들의 2종 이상의 공중합체 또는 블렌드로 이루어지는 것을 들 수 있다. 또한 기계적물성을 확보하기 위한 다공성 매트릭스가 포함될 수 있다.
본 발명의 고분자 전해질에 사용되는 음이온계 화합물로는 인산, 아세트산, 질산, 황산, 개미산, 및 이들의 유도체로 이루어진 군으로부터 선택되는 1종 이상의 것이 사용될 수 있다.
특히, 열적안정성이 확보된 인산 또는 이의 유도체가 바람직하게 사용될 수 있다.
본 발명의 고분자 전해질은 전극으로의 산의 용출 억제하여 단위셀 계면의 전기 화학적 안정성을 유지하고, 고온의 무수 상태에서도 이온전도 특성, 계면 특성, 및 장기 안정성을 향상 시키는 특성을 갖는다.
이하에서 본 발명을 실시예, 시험예 등에 의하여 더욱 상세하게 설명한다. 그러나, 본 발명의 범위가 하기의 실시예 등에 의하여 한정되는 것은 아니다.
실시예 1: 고분자 전해질의 제조 및 이온전도도 측정  
고분자 전해질을 제조하기 위하여, 먼저, 3 구 반응기를 질소 분위기로 만들고 용매인 인산(polyphosphoric acid)에 3,4-디아미노벤조산(3,4-diaminobenzoic acid) 단량체를 용매대비 4.5중량%로 첨가한 후, 보론포스페이트(boron phosphate) 0.5중량%를 다시 첨가한 후, 200℃에서 중합하였다.
상기 합성물을 닥터블레이드를 이용해 유리판에 캐스팅한 후 대기 중에 36시간 이상 방치하면, 대기중의 수분과 반응하여 폴리인산(polyphosphoric acid)은 가수분해에 의해 인산(phosphoric acid)으로 바뀌게 된다.
제조된 고분자 전해질은 테프론 대칭전극 사이에 적층시켜 셀을 조립한 후, 교류 임피던스법을 이용하여 전해질의 저항을 측정한 후, 이를 이용해 이온전도도를 계산하였다. 이온전도도 값과 도핑률은 표1에 나타내었다.  
비교예 1: 고분자 전해질의 제조 및 이온전도도 측정  
음이온 고정화 물질을 포함하지 않는 고분자 전해질, 즉, 실시예 1의 제조 방법 중에서 첨가제만을 제외 시켜서 고분자 전해질을 제조하였다. 이온전도도 값과 도핑률을 하기 표1에 나타내었다.
  도핑률(mol) 특성화
이온전도도(150°C) BPO4 (중량%)
비교예 1 28.3 3.2×10-1 S/cm 0
실시예 1 20.7 4.8×10-1 S/cm 10
시험예 1: 고분자 전해질의 산의 용출 측정
상기 실시예 1및 비교예 2에서 제조된 고분자 전해질의 음이온 고정화 특성을 살펴보기 위해 시간에 따른 산의 용출 가속실험을 실행하였다. 상온에서 80ml 물에 일정시간을 담근 뒤 적정법에 의해 산의 용출 정도를 측정하여 도 4에 도시 하였다.
본 발명은 전극의 물에 의한 음이온의 용출을 억제시켜 연료전지의 전기화학적 안정성을 향상시키고, 수소 이온의 양이온 수율을 높여 연료전지의 성능을 향상시키는 고온 연료전지용 고분자 전해질과 이를 포함하는 연료전지를 제공한다.

Claims (7)

  1. 하기 화학식 1 또는 화학식 2로 표시되는 보론계 화합물, 고분자 매트릭스, 및 음이온계 화합물을 포함하는 고온용 연료전지 고분자 전해질:
    [화학식 1]
    Figure 112007022060551-PAT00003
    상기 식에서 Y는 PO4 또는 N이다.
    [화학식 2]
    Figure 112007022060551-PAT00004
    상기 식에서 Z은 Cl, I, Br, CH3O, CF3CH2O, C3F7CH2O, (CF3)2CHO, (CF3)2C(C6H5)O, (CF3)3CO, C6H5O, FC6H4O, F2C6H3O, F4C6HO, C6F5O, CF3C6H4O, (CF3)2C6H3O, 또는 C6F5이다.
  2. 청구항1에 있어서, 전해질 총 중량에 대하여, 상기 화학식 1 또는 화학식 2로 표시되는 보론계 화합물 1~30중량%, 상기 고분자 매트릭스 50~95 중량%, 및 음이온계 화합물 5~95중량%를 포함하는 것을 특징으로 하는 고온용 연료전지 고분자 전해질.
  3. 청구항 1에 있어서, 고분자 매트릭스가 폴리벤즈이미다졸, 폴리벤조티아졸, 폴리벤조옥사졸, 폴리이미드, 폴리카보네이트, 또는 이들의 2종 이상의 공중합체 또는 블렌드로 이루어지는 것을 특징으로 하는 고온용 연료전지 고분자 전해질.
  4. 청구항 1에 있어서, 음이온계 화합물이 인산, 아세트산, 질산, 황산, 개미산, 및 이들의 유도체로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 고온용 연료전지 고분자 전해질.
  5. 청구항 1에 있어서, 음이온계 화합물이 인산 또는 이의 유도체인 것을 특징으로 하는 고온용 연료전지 고분자 전해질.
  6. 청구항 1에 있어서, 고분자 매트릭스에 음이온이 도핑되는 것을 특징으로 하는 고온용 연료전지 고분자 전해질.
  7. 청구항 1 내지 청구항 6 중의 어느 한 항의 고분자 전해질 포함하는 고분자 전해질 연료전지.
KR1020070027092A 2007-03-20 2007-03-20 보론계 화합물을 포함하는 고온 연료전지용 고분자 전해질및 이를 포함하는 고분자 전해질 연료전지 KR20080085484A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070027092A KR20080085484A (ko) 2007-03-20 2007-03-20 보론계 화합물을 포함하는 고온 연료전지용 고분자 전해질및 이를 포함하는 고분자 전해질 연료전지

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070027092A KR20080085484A (ko) 2007-03-20 2007-03-20 보론계 화합물을 포함하는 고온 연료전지용 고분자 전해질및 이를 포함하는 고분자 전해질 연료전지

Publications (1)

Publication Number Publication Date
KR20080085484A true KR20080085484A (ko) 2008-09-24

Family

ID=40025202

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070027092A KR20080085484A (ko) 2007-03-20 2007-03-20 보론계 화합물을 포함하는 고온 연료전지용 고분자 전해질및 이를 포함하는 고분자 전해질 연료전지

Country Status (1)

Country Link
KR (1) KR20080085484A (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018039104A1 (en) * 2016-08-23 2018-03-01 Doosan Fuel Cell America, Inc. Boron phosphate matrix layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018039104A1 (en) * 2016-08-23 2018-03-01 Doosan Fuel Cell America, Inc. Boron phosphate matrix layer
US10164269B2 (en) 2016-08-23 2018-12-25 Doosan Fuel Cell America, Inc. Boron phosphate matrix layer

Similar Documents

Publication Publication Date Title
KR100634551B1 (ko) 이온전도성 가교 공중합체 및 이를 포함하는 연료전지
JP4588035B2 (ja) 燃料電池用高分子電解質膜とその製造方法、及び燃料電池
US7547748B2 (en) Polymer comprising terminal sulfonic acid group, and polymer electrolyte and fuel cell using the same
US20080026276A1 (en) Proton-Conducting Material, Solid Polymer Electrolyte Membrane, and Fuel Cell
Baglio et al. Proton exchange membranes based on the short-side-chain perfluorinated ionomer for high temperature direct methanol fuel cells
KR101963921B1 (ko) 백금 저함량 전극
KR101085358B1 (ko) 실란계 화합물을 포함하는 탄화수소계 고분자막, 이의 제조방법, 이를 포함하는 막-전극 어셈블리 및 연료전지
KR100925913B1 (ko) 음이온 고정화 물질이 코팅된 무가습 고분자 전해질 막 및 이를 포함하는 연료전지
Xing et al. Investigation of the Ag-SiO2/sulfonated poly (biphenyl ether sulfone) composite membranes for fuel cell
KR20080085484A (ko) 보론계 화합물을 포함하는 고온 연료전지용 고분자 전해질및 이를 포함하는 고분자 전해질 연료전지
KR100980997B1 (ko) 고온 연료전지용 고분자 전해질막 및 이를 포함하는고분자 전해질 연료전지
KR101334088B1 (ko) 고온형 고분자 전해질 연료전지의 전극 도포용 조성물 및 고온형 고분자 전해질 연료전지용 전극의 제조방법
KR100668316B1 (ko) 겔 전해질 및 이를 채용한 연료 전지
Qiao et al. Life test of DMFC using poly (ethylene glycol) bis (carboxymethyl) ether plasticized PVA/PAMPS proton-conducting semi-IPNs
KR100773322B1 (ko) 크로스링크된 pbi를 포함하는 연료전지용 고분자전해질막 및 그 제조방법
CN1978535B (zh) 质子导体及包含它的聚合物电解液以及采用该聚合物电解液的燃料电池
KR20120017142A (ko) 고분자 전해질 막 연료전지의 고온 운전을 위한 이온 전도성 고분자 전해질 복합막
KR101395040B1 (ko) 알킬 사슬 변성 술폰화 폴리에테르술폰 공중합체 및 그 제조 방법
KR100612897B1 (ko) 프로톤 전도성 전해질, 그 제조방법 및 이를 이용한 연료전지
KR100622722B1 (ko) 폴리이미드 계열의 다공성 고분자 전해질 조성물 및 이의 제조방법
KR101082672B1 (ko) 아릴렌에테르기를 함유하는 폴리벤즈이미다졸 공중합체 및이를 포함하는 전해질막
KR20120001559A (ko) 가교화 고분자 및 이를 포함하는 연료전지용 전해질 막
CN115275289A (zh) 具有高离子传导性的耐用膜电极组件及其制造方法
JP2006120405A (ja) プロトン伝導性固体高分子電解質膜および燃料電池
KR100931146B1 (ko) 연료전지 자동차용 고분자 전해질 막과 이의 제조방법 및이를 적용한 연료전지

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E601 Decision to refuse application