KR20080058104A - Method for preparing tio2 photocatalyst using anodic aluminum oxide template and the tio2 photocatalyst prepared by the method - Google Patents

Method for preparing tio2 photocatalyst using anodic aluminum oxide template and the tio2 photocatalyst prepared by the method Download PDF

Info

Publication number
KR20080058104A
KR20080058104A KR1020060132224A KR20060132224A KR20080058104A KR 20080058104 A KR20080058104 A KR 20080058104A KR 1020060132224 A KR1020060132224 A KR 1020060132224A KR 20060132224 A KR20060132224 A KR 20060132224A KR 20080058104 A KR20080058104 A KR 20080058104A
Authority
KR
South Korea
Prior art keywords
tio
photocatalyst
aluminum sheet
acid
solution
Prior art date
Application number
KR1020060132224A
Other languages
Korean (ko)
Other versions
KR100907467B1 (en
Inventor
김수영
하정숙
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR1020060132224A priority Critical patent/KR100907467B1/en
Publication of KR20080058104A publication Critical patent/KR20080058104A/en
Application granted granted Critical
Publication of KR100907467B1 publication Critical patent/KR100907467B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/65150-500 nm

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

A method for preparing a TiO2 photocatalyst is provided to secure a catalyst support by an aluminum anodized film, increase surface area of the catalyst using nano-sized pores on a surface of the aluminum anodized film, and prepare the catalyst without surface defects by performing the heat treatment process of a TiO2 thin film, and a TiO2 photocatalyst prepared by the method is provided. A method for preparing a TiO2 photocatalyst comprises the steps of: electropolishing a thin aluminum sheet in an electrolyte; performing a first anodizing process in an acid solution relative to the electropolished thin aluminum sheet; performing an etching process relative to the first anodized thin aluminum sheet; performing a second anodizing process relative to the etched thin aluminum sheet; and depositing a thin TiO2 film onto a surface of the second anodized thin aluminum sheet. The electrolyte is a solution prepared by mixing ethanol with perchloric acid at a volume ratio of 3:1 to 5:1. The acid solution is an oxalic acid solution, a phosphoric acid solution, a sulfuric acid solution, a chromic acid solution, or mixed solutions thereof. The first and second anodizing processes are performed at a voltage of 30 to 50 V, an electric current of 0.001 to 0.009 A, and a temperature of 5 to 10 deg.C for 15 to 25 hours in the acid solution with a concentration of 0.1 to 1.0M. The etching process is performed at a temperature of 50 to 70 deg.C for 25 to 50 hours in a solution in which phosphoric acid is mixed with chromic acid at a weight ratio of 1:2 to 1:4. Further, the step of depositing a thin TiO2 film is performed by atomic layer deposition.

Description

알루미늄 양극 산화막 템플레이트를 이용한 Ti02 광촉매의 제조방법 및 상기 방법에 의해서 제조된 Ti02 광촉매 {Method for preparing TiO2 photocatalyst using anodic aluminum oxide template and the TiO2 photocatalyst prepared by the method}{Method for preparing TiO2 photocatalyst using anodic aluminum oxide template and the TiO2 photocatalyst prepared by the method}

도 1은 본 발명에 따른 TiO2 광촉매의 제조방법에 대한 개략적인 공정도를 도시한 도면이다.1 is a view showing a schematic process diagram of a method for producing a TiO 2 photocatalyst according to the present invention.

도 2는 종래의 통상적인 원자층 증착법에 의한 TiO2 박막층의 증착 과정을 도시한 도면이다.FIG. 2 is a view illustrating a deposition process of a TiO 2 thin film layer by a conventional atomic layer deposition method.

본 발명은 TiO2 광촉매의 제조방법 및 상기 방법에 의해서 제조된 TiO2 광촉매에 관한 것으로서, 더욱 구체적으로는 알루미늄 양극 산화막 템플레이트 상에 TiO2를 매우 얇고 균일한 박막의 형태로 성장시켜서 알루미늄 양극 산화막에 의한 촉매 지지체를 확보하는 동시에, 알루미늄 양극 산화막 표면의 나노 크기 세공을 이용하여 촉매 표면적을 증가시킬 수 있고, 열처리 과정을 통하여 TiO2 박막의 결정성을 촉매 반응에 적합한 형태로 표면 결함 없이 제작할 수 있는 TiO2 광촉매의 제조방법 및 상기 방법에 의해서 제조된 TiO2 광촉매에 관한 것이다.The present invention on aluminum anodic oxide films by relates to a TiO 2 photocatalyst produced by the production method and the method of the TiO 2 photocatalyst, more specifically it grows in the form of a very thin and uniform thin film of TiO 2 on the aluminum anodic oxide film template It is possible to increase the catalyst surface area by using nano-sized pores on the surface of the aluminum anode oxide film, and to produce the crystallinity of the TiO 2 thin film in a form suitable for catalysis without surface defects through the heat treatment process. production method of the TiO 2 photocatalyst and a process for the TiO 2 photocatalyst produced by the method.

광촉매란 빛을 받아서 화학반응을 촉진시키는 물질을 말하는 것으로서, 예를 들어 반도체, 엽록소, V2O3, ZnO, ZrO2, 페로브스카이트형 복합 금속산화물 (SrTiO3), TiO2 등이 있으며, TiO2의 광촉매로서의 용도는 1967년 두 일본인 학자에 의해 발견되었으며, TiO2가 자외선 등에 노출될 경우 난분해성 유기물을 분해할 수 있다는 것이 발견되면서 환경문제를 해결할 수 있는 청정기술로서의 가능성을 인정받게 되었다. 특히, TiO2는 자신이 빛을 받아도 변하지 않아 반영구적으로 사용이 가능할 뿐만 아니라 대부분의 유기물을 산화시켜 이산화탄소와 물로 분해하므로 2차 오염이 적고 표백 및 악취제거에도 효과적이다. 따라서, 상기 점들 및 광촉매 반응에 대한 산화물 피막의 활성을 고려하여 TiO2가 광촉매 분야에서 대표적인 물질로 부각되어 현재 많은 연구가 진행되고 있다.The photocatalyst refers to a substance that receives a light to promote a chemical reaction, and examples thereof include a semiconductor, chlorophyll, V 2 O 3 , ZnO, ZrO 2 , perovskite-type composite metal oxide (SrTiO 3 ), and TiO 2 . The use of TiO 2 as a photocatalyst was discovered by two Japanese scholars in 1967, and it was recognized that TiO 2 could decompose hardly decomposable organic substances when exposed to ultraviolet rays. . In particular, TiO 2 is semi-permanent because it does not change even when it receives light, and since most organic substances are oxidized and decomposed into carbon dioxide and water, it is less secondary pollution and effective for removing bleach and odor. Therefore, considering the activity of the oxide film for the above points and photocatalytic reaction, TiO 2 has emerged as a representative material in the photocatalyst field, and many studies have been conducted.

이러한 TiO2의 광촉매에 의한 유기물 분해는, 밴드갭 (band gap) 에너지 이상의 빛에너지를 광촉매에 조사하였을 때 전자와 정공이 발생하고, 이들에 의해 생성되는 수산화 라디칼 (-0H)의 강력한 산화력으로 광촉매 표면에 흡착된 기상 또는 액상의 유기물이 분해되는 산화반응에 의한 것이며, 이를 보다 구체적으로 설명하 면 다음과 같다. 광촉매용 재료의 표면에 재료의 밴드갭 이상의 에너지를 갖는 UV광을 조사시키면, 광촉매 표면에서 에너지적으로 여기되어 방출된 전자는 수중의 용존 산소와 반응하여 OH 라디칼을 형성하고, 동시에 산화티탄 표면의 정공에 의해 OH 라디칼이 형성된다. 즉, 산화티탄의 표면에서는 TiO2 + hυ -> e-(발생) + h+이 일어난다. 이때 전자의 반응은 다음과 같다.The decomposition of organic matter by the photocatalyst of TiO 2 generates electrons and holes when the photocatalyst is irradiated with light energy of more than the band gap energy, and the photocatalyst is formed by the strong oxidizing power of the hydroxyl radical (-0H) produced by them. This is due to an oxidation reaction in which organic substances in a gaseous or liquid phase adsorbed on the surface are decomposed, which will be described in more detail as follows. When the surface of the photocatalytic material is irradiated with UV light having energy above the bandgap of the material, electrons excited and released from the photocatalytic surface react with dissolved oxygen in water to form OH radicals, and at the same time Holes form OH radicals. That is, in the surface of titanium oxide TiO 2 + hυ -> e - ( generation) + h + takes place. The reaction of the former is as follows.

e_ + O2 --> O2-(super oxide radical)e _ + O 2- > O 2- (super oxide radical)

2O2- + 2H2O --> 2ㆍOH + 2OH- + O2 And 2O 2 - + 2H 2 O -> 2 and OH + 2OH - + O 2

또한, TiO2 표면에서는 h+ + OH_ --> 2ㆍOH와 같은 반응이 진행되어 형성된 OH 라디칼에 의해 유해한 유기물질이 분해된다.In addition, on the surface of TiO 2 , a reaction such as h + + OH _- > 2 .OH proceeds to decompose harmful organic substances by OH radicals formed.

TiO2를 광촉매로 이용하기 위한 방법으로는 제조된 TiO2 분말을 광촉매로 직접 이용하거나, TiO2에 실리카와 같은 바인더를 첨가하여 도료로서 지지체나 담체에 도포시키는 방법과 사염화티탄이나 티타늄알콕사이드 등의 티타늄화합물을 지지체에 코팅한 후 졸겔법을 이용하여 지지체 표면에 TiO2를 형성시켜 사용하는 방법 등이 널리 알려져 왔다. As a method for using TiO 2 as a photocatalyst, the prepared TiO 2 powder is directly used as a photocatalyst, or a binder such as silica is added to TiO 2 to be applied to a support or a carrier as a coating material, and titanium tetrachloride, titanium alkoxide, and the like. After coating a titanium compound on a support, a method of forming TiO 2 on the surface of a support using a sol-gel method and the like has been widely known.

TiO2 분말 자체를 광촉매로서 사용하기 위해서는 황산법과 염소법을 통하여 1차 재료로서 아나타제 (anatase)와 루타일 (rutile)의 결정 구조가 혼합된 분말 TiO2를 합성하여야 한다. 이렇게 제조된 TiO2 분말은 슬러리 형태로 사용되거나 또는 지지체에 표면코팅되어 사용된다. 또한 TiO2 분말을 직접 광촉매로 폐수처리 등에 이용할 경우, 광촉매 반응기 내부에는 UV 램프가 설치되고 반응셀 내부에 폐수와 TiO2 분말이 슬러리 형태로 혼합되어 사용되고 있으며, 폐수의 반응시간과 처리량에 따라 임의로 반응셀을 연결시켜 사용하고 있다. 또한 장치의 반응셀 말단에 촉매 (TiO2 분말) 회수 장치를 부착하여 사용하고 있다.In order to use TiO 2 powder itself as a photocatalyst, powder TiO 2 mixed with anatase and rutile crystal structures as a primary material must be synthesized through a sulfuric acid method and a chlorine method. The TiO 2 powder thus prepared is used in the form of a slurry or surface coated on a support. In addition, when TiO 2 powder is directly used as a photocatalyst for wastewater treatment, a UV lamp is installed inside the photocatalytic reactor, and wastewater and TiO 2 powder are mixed and used in a slurry form in the reaction cell, depending on the reaction time and throughput of the wastewater. The reaction cells are connected and used. In addition, a catalyst (TiO 2 powder) recovery device is attached to the reaction cell terminal of the device.

그러나, 분말형 TiO2를 회수하여 재활용하기 위해서는 별도의 장치가 필요하며 그 비용이 막대하여 비경제적일 뿐 아니라, 폐수의 물질 일부가 분말형 촉매의 표면에 흡착되어 촉매의 효율이 떨어지며, 분말 자체가 표면 결함 및 결정성에 문제점을 갖는다.However, in order to recover and recycle the powdered TiO 2 , a separate device is required and the cost is enormous, which is uneconomical. In addition, a part of the waste water is adsorbed on the surface of the powdered catalyst, thereby decreasing the efficiency of the catalyst. Has problems with surface defects and crystallinity.

따라서, 출발물질로서 금속알콕사이드 형태의 Ti 전구체를 사용하여 소정의 지지체 표면에 코팅 또는 증착시키는 방법을 TiO2 광촉매 제조를 위한 일 방법으로서 고려될 수 있으며, 이 경우 지지체 상에 TiO2를 얇고 균일한 박막의 형태로 성장시킬 수 있어야 하며, 촉매 반응 유효 표면적을 최대로 증가시킬 필요성이 대두된다.Thus, a method of coating or depositing a predetermined support surface using a Ti precursor in the form of a metal alkoxide as a starting material can be considered as a method for preparing a TiO 2 photocatalyst, in which case TiO 2 is thin and uniform on the support. There is a need to be able to grow in the form of a thin film and to increase the effective surface area of the catalytic reaction to the maximum.

따라서, 본 발명이 이루고자 하는 첫 번째 기술적 과제는, 알루미늄 양극 산 화막 템플레이트 상에 TiO2를 매우 얇고 균일한 박막의 형태로 성장시켜서 알루미늄 양극 산화막에 의한 촉매 지지체를 확보하는 동시에, 알루미늄 양극 산화막 표면의 나노 크기 세공을 이용하여 촉매 표면적을 증가시킬 수 있고, 열처리 과정을 통하여 TiO2 박막의 결정성을 촉매 반응에 적합한 형태로 표면 결함 없이 제작할 수 있는 TiO2 광촉매의 제조방법을 제공하는 것이다.Accordingly, the first technical problem to be achieved by the present invention is to grow TiO 2 in the form of a very thin and uniform thin film on the aluminum anode oxide film template to secure the catalyst support by the aluminum anode oxide film, it is possible to use the nano-sized pores to increase the catalyst surface area, through to a heat treatment provides a method for producing TiO 2 photocatalyst can be produced without surface defects in a form suitable for determination of the TiO 2 thin film in the catalytic reaction.

또한, 본 발명이 이루고자 하는 두 번째 기술적 과제는, 상기 방법에 의해서 제조된 TiO2 광촉매를 제공하는 것이다.In addition, a second technical problem to be achieved by the present invention is to provide a TiO 2 photocatalyst prepared by the above method.

본 발명은 상기 첫 번째 기술적 과제를 달성하기 위해서,The present invention to achieve the first technical problem,

알루미늄 박판을 전해액 중에서 전해연마하는 단계;Electrolytic polishing the thin aluminum plate in an electrolyte solution;

상기 전해연마 처리된 알루미늄 박판에 대해서 산 용액 중에서 제1 양극산화 과정을 수행하는 단계;Performing a first anodization process in an acid solution on the electropolished aluminum sheet;

상기 제1 양극산화 처리된 알루미늄 박판에 대해서 에칭 과정을 수행하는 단계;Performing an etching process on the first anodized aluminum sheet;

상기 에칭 처리된 알루미늄 박판에 대해서 상기 제2 양극산화 과정을 수행하는 단계; 및Performing the second anodization process on the etched aluminum sheet; And

상기 제2 양극산화 처리된 알루미늄 박판의 표면에 TiO2 박막을 증착시키는 단계를 포함하는 TiO2 광촉매의 제조방법을 제공한다.It provides a method for producing a TiO 2 photocatalyst comprising depositing a TiO 2 thin film on the surface of the second anodized aluminum thin film.

본 발명의 바람직한 일 실시예에 따르면, 상기 전해액은 에탄올과 과염소산의 3:1 내지 5:1 부피비의 혼합 용액일 수 있다.According to a preferred embodiment of the present invention, the electrolyte may be a mixed solution of 3: 1 to 5: 1 volume ratio of ethanol and perchloric acid.

본 발명의 바람직한 다른 실시예에 따르면, 상기 산 용액은 옥살산, 인산, 황산, 크롬산 또는 그 혼합물의 용액일 수 있다.According to another preferred embodiment of the present invention, the acid solution may be a solution of oxalic acid, phosphoric acid, sulfuric acid, chromic acid or a mixture thereof.

본 발명의 바람직한 또 다른 실시예에 따르면, 상기 제1 양극산화 과정 및 상기 제2 양극산화 과정은 0.1M 내지 1.0M 농도의 상기 산 용액 중에서, 30V 내지 50V의 전압 및 0.001A 내지 0.009A의 전류 조건으로, 5℃ 내지 10℃에서 15시간 내지 25시간 동안 수행될 수 있다.According to another preferred embodiment of the present invention, the first anodization process and the second anodization process is a voltage of 30V to 50V and a current of 0.001A to 0.009A in the acid solution of 0.1M to 1.0M concentration As a condition, it may be carried out at 5 to 10 ℃ for 15 to 25 hours.

본 발명의 바람직한 또 다른 실시예에 따르면, 상기 에칭 과정은 인산과 크롬산의 1:2 내지 1:4 중량비의 혼합 용액 중에서 50℃ 내지 70℃의 온도로 수행될 수 있다.According to another preferred embodiment of the present invention, the etching process may be carried out at a temperature of 50 ℃ to 70 ℃ in a mixed solution of 1: 2 to 1: 4 weight ratio of phosphoric acid and chromic acid.

본 발명의 바람직한 또 다른 실시예에 따르면, 상기 에칭 과정은 25시간 내지 50시간 동안 수행될 수 있다.According to another preferred embodiment of the present invention, the etching process may be performed for 25 to 50 hours.

본 발명의 바람직한 또 다른 실시예에 따르면, 상기 제2 양극산화 과정에 의해서 제조된 알루미늄 박판 표면의 세공 직경은 10nm 내지 100nm이며, 세공 간 거리는 80nm 내지 120nm이고, 세공 깊이는 0.5㎛ 내지 1.5㎛일 수 있다.According to another preferred embodiment of the present invention, the pore diameter of the surface of the aluminum sheet produced by the second anodization process is 10nm to 100nm, the distance between the pores is 80nm to 120nm, the pore depth is 0.5㎛ to 1.5㎛ Can be.

본 발명의 바람직한 또 다른 실시예에 따르면, 상기 TiO2 박막의 증착은 원자층 증착법 (atomic layer deposition)에 의해서 수행될 수 있다.According to another preferred embodiment of the present invention, the deposition of the TiO 2 thin film may be performed by atomic layer deposition (atomic layer deposition).

본 발명의 바람직한 또 다른 실시예에 따르면, 상기 원자층 증착법의 Ti 전 구체로는 Ti(OCH(CH3)2)4를 사용하고, 산소 공급원으로는 H2O를 사용하며, 퍼지 가스로는 Ar을 사용할 수 있다.According to another preferred embodiment of the present invention, Ti (OCH (CH 3 ) 2 ) 4 is used as the Ti precursor of the atomic layer deposition method, H 2 O is used as the oxygen source, and Ar is used as the purge gas. Can be used.

본 발명의 바람직한 또 다른 실시예에 따르면, 상기 Ti 전구체의 증발은 60℃ 내지 80℃의 온도에서 수행되며, 상기 TiO2 박막의 증착은 150℃ 내지 220℃에서 수행될 수 있다.According to another preferred embodiment of the present invention, evaporation of the Ti precursor is carried out at a temperature of 60 ℃ to 80 ℃, deposition of the TiO 2 thin film may be carried out at 150 ℃ to 220 ℃.

또한, 본 발명은 상기 두 번째 기술적 과제를 달성하기 위해서,In addition, the present invention to achieve the second technical problem,

상기 방법에 의해서 제조된 TiO2 광촉매를 제공한다.It provides a TiO 2 photocatalyst prepared by the above method.

본 발명에 따르면, TiO2 광촉매를 지지하기 위한 지지체로서 알루미늄 양극 산화막을 사용함으로써, 알루미늄 양극 산화막 표면의 나노 크기 세공을 이용하여 촉매 표면적을 획기적으로 증가시킬 수 있으며, 열처리 과정을 통하여 TiO2 박막의 결정성을 촉매 반응에 적합한 형태로 표면 결함 없이 제작할 수 있다.According to the present invention, by using the aluminum anodic oxide film as a support for supporting a TiO 2 photocatalyst, using a nano-size pores of the aluminum anodic oxide film surface which can dramatically increase the catalyst surface area, of the TiO 2 thin film by the heat treatment Crystallinity can be produced without surface defects in a form suitable for catalysis.

이하, 본 발명을 더욱 상세하게 설명하기로 한다.Hereinafter, the present invention will be described in more detail.

도 1에는 본 발명에 따른 TiO2 광촉매의 제조방법에 대한 개략적인 공정도를 도시하였으며, 도 1을 참조하면, 본 발명에 따른 TiO2 광촉매의 제조방법은, 알루미늄 박판의 전해연마 단계, 제1 양극산화 단계, 에칭 단계, 제2 양극산화 단계 및 TiO2 박막 증착 단계의 5 단계를 포함한다.1 shows a schematic process diagram of a method for manufacturing a TiO 2 photocatalyst according to the present invention. Referring to FIG. 1, the method for manufacturing a TiO 2 photocatalyst according to the present invention includes an electropolishing step of an aluminum thin plate and a first anode. Five steps of an oxidation step, an etching step, a second anodization step and a TiO 2 thin film deposition step are included.

즉, 본 발명에서는 TiO2 광촉매를 지지하는 지지체로서 나노 크기의 세공을 갖는 알루미나 템플레이트를 사용하였으며, 이러한 알루미나 템플레이트의 제작은 알루미늄 박판을 산 용액 중에서 전해연마 (electropolishing)시키고, 제1 양극산화, 에칭 및 제2 양극산화 과정을 거침으로써 수행된다. 이러한 과정을 거치게 되면 규칙적인 육각 배열의 나노 세공을 갖는 알루미나 템플레이트를 제조할 수 있게 되며, 특히 본 발명에서는 2회에 걸쳐서 양극산화 반응을 수행함으로써 더욱 규칙적인 나노 실린더 형태의 표면을 갖는 지지체를 얻을 수 있게 된다. 이때, 나노 실린더의 크기와 각 나노 실린더 사이의 간격은 사용되는 산의 종류에 의해서 조절이 가능하다. 또한, 제1 양극산화 과정과 제2 양극산화 과정 사이에 에칭 공정을 수행함으로써 더욱 규칙적이고 일정한 배열 및 형태를 갖는 나노 실린더를 형성할 수 있게 된다.That is, in the present invention, an alumina template having nano-sized pores was used as a support for supporting the TiO 2 photocatalyst. The fabrication of the alumina template was performed by electropolishing an aluminum sheet in an acid solution, followed by first anodization and etching. And a second anodization process. Through this process, an alumina template having nano pores in a regular hexagonal array can be manufactured, and in particular, in the present invention, a support having a more regular nanocylindrical surface is obtained by performing anodization twice. It becomes possible. At this time, the size of the nano-cylinder and the distance between each nano-cylinder can be adjusted by the type of acid used. In addition, by performing an etching process between the first anodization process and the second anodization process, it is possible to form a nano cylinder having a more regular and constant arrangement and shape.

바람직하게는, 알루미늄 박판의 전해연마에 사용되는 상기 전해액은 당업계에서 통상적으로 사용되는 전해액이 사용될 수 있으며, 이에 제한되는 것은 아니지만, 에탄올과 과염소산의 3:1 내지 5:1 부피비의 혼합 용액이 사용될 수 있다. 또한, 알루미늄 박판으로는 99% 이상, 예를 들어 순도 99.999%의 알루미늄 박판이 사용될 수 있다.Preferably, the electrolytic solution used for electropolishing of thin aluminum sheet may be an electrolyte solution commonly used in the art, but is not limited thereto, and a mixed solution of 3: 1 to 5: 1 volume ratio of ethanol and perchloric acid may be used. Can be used. In addition, as an aluminum thin plate, an aluminum thin plate of 99% or more, for example, a purity of 99.999% may be used.

도 1로부터 알 수 있는 바와 같이, 알루미늄 박판에 대한 전해연마 과정이 완료되면 표면이 연마되어 표면 굴곡을 가짐으로써, 후속 양극산화 과정을 수행하기에 적합한 알루미늄 박판을 얻을 수 있게 되며, 이러한 알루미늄 박판에 대해서 제1 양극산화 과정을 수행하게 된다.As can be seen from FIG. 1, when the electropolishing process for the aluminum sheet is completed, the surface is polished to have surface curvature, thereby obtaining an aluminum sheet suitable for performing the subsequent anodization process. The first anodization process is performed.

양극산화 (anodizing)이란, 처리 대상 금속에 양극을 가하고 처리 용액에 음 극을 가해서 처리 대상 금속에 산화피막을 입히는 표면처리를 말하며, 이때 처리 대상 금속으로서 알루미늄을 사용하여 일정한 처리 용액 중에서 적정 조건으로 분극시킴으로써 생성된 자연산화 피막보다 두꺼운 알루미늄 산화피막을 알루미늄 양극 산화막 (anodic aluminum oxide)이라 한다.Anodizing refers to a surface treatment in which an anode is applied to a metal to be treated and an anode is applied to a metal to be treated, and an oxide film is coated on the metal to be treated. The aluminum oxide film thicker than the natural oxide film produced by polarization is called anodized aluminum oxide.

양극산화 공정에 의해서 입혀진 산화피막은 산화피막의 종류에 따라서 처리 대상 금속 표면의 내식성, 내구성, 접착성 등을 향상시키며, 일반적으로 처리된 대상 금속의 표면은 표면 굴곡 내지는 요철부를 지니게 된다. 또한, 양극산화 공정에 사용되는 처리 용액으로는 붕산, 인산, 황산, 크롬산 등의 용액이 사용될 수 있으며, 처리 용액의 종류에 따라서 크롬산 양극산화, 붕산 양극산화, 황산 양극산화, 인산 양극산화 등으로 분류되기도 한다.The oxide film coated by the anodization process improves the corrosion resistance, durability, and adhesion of the metal surface to be treated according to the type of the oxide film, and generally, the surface of the metal to be treated has surface curvature or irregularities. In addition, a solution such as boric acid, phosphoric acid, sulfuric acid, or chromic acid may be used as the treating solution used in the anodizing process. Sometimes classified.

본 발명에서 알루미늄 양극산화 공정에 사용될 수 있는 처리 용액으로는, 이에 제한되는 것은 아니지만, 옥살산, 인산, 황산, 크롬산 또는 그 혼합물의 용액을 예로 들 수 있다.Treatment solutions that can be used in the aluminum anodization process in the present invention include, but are not limited to, solutions of oxalic acid, phosphoric acid, sulfuric acid, chromic acid or mixtures thereof.

또한, 상기 양극 산화 과정은 0.1M 내지 1.0M 농도의 처리 용액 중에서, 30V 내지 50V의 전압 및 0.001A 내지 0.009A의 전류 조건으로, 5℃ 내지 10℃에서 15시간 내지 25시간 동안 수행될 수 있다.In addition, the anodic oxidation process may be performed for 15 hours to 25 hours at 5 ° C to 10 ° C in a treatment solution of 0.1M to 1.0M concentration, at a voltage of 30V to 50V and a current condition of 0.001A to 0.009A. .

상기 양극 산화 과정에서 산 용액의 농도가 상기 범위 미만이거나 이를 초과하는 경우, 전압 및 전류가 상기 범위 미만인거나 이를 초과하는 경우, 또는 처리 온도가 상기 범위 미만인거나 이를 초과하는 경우에는 알루미늄 호일이 끊어져서 아예 사용할 수 없게 되거나, 공극의 크기가 불균일해지고 배열이 좋지 않게 되어 템플레이트로 사용이 불가능해지는 문제점이 있어서 바람직하지 않다.When the concentration of the acid solution in the anodic oxidation process is below or above the above range, when the voltage and current are below or above the above range, or when the treatment temperature is below or above the above range, the aluminum foil is cut off. It is not preferable because there is a problem in that it becomes unusable or the size of the pores becomes uneven and the arrangement becomes poor, making it impossible to use as a template.

상술한 바와 같이, 본 발명에서는 단 1회의 양극산화 과정만으로 알루미늄 템플레이트를 제조하는 것이 아니라, 제1 양극산화 과정에 의해서 대략적인 템플레이트를 제조하고, 이를 에칭한 다음, 다시 제2 양극산화 과정을 수행하여 더욱 규칙적이고 정밀한 배열을 갖는 알루미늄 템플레이트를 제조한다는 점에 그 특징이 있다.As described above, in the present invention, an aluminum template is not manufactured by only one anodizing process, but a rough template is prepared by the first anodizing process, etched, and the second anodizing process is performed again. This feature is characterized by the production of aluminum templates having a more regular and precise arrangement.

제1 양극 산화 과정 이후의 에칭 과정을 수행함에 있어서, 에칭 과정은 인산과 크롬산의 1:2 내지 1:4 중량비의 혼합 용액 중에서 50℃ 내지 70℃의 온도로 수행될 수 있다.In performing the etching process after the first anodic oxidation process, the etching process may be performed at a temperature of 50 ° C. to 70 ° C. in a mixed solution of 1: 2 to 1: 4 weight ratio of phosphoric acid and chromic acid.

또한, 상기 에칭 과정은 제1 양극산화 단계와 비슷한 시간 또는 이보다 더 많은 시간 동안 수행되는 것이 바람직한데, 예를 들어, 에칭 과정은, 이에 제한되는 것은 아니지만, 25시간 내지 50시간 동안 수행될 수 있다.In addition, the etching process is preferably performed for a time similar to or more than the first anodization step, for example, the etching process may be performed for 25 to 50 hours, but not limited thereto. .

상기와 같은 에칭 과정이 완료된 이후에는 표면의 세공이 제거되어 표면에 소정의 굴곡 또는 요철부를 갖는 알루미늄 템플레이트를 얻을 수 있게 되는데, 이는 상기 전해연마의 결과물과 비슷한 형태의 것일 수 있지만, 굴곡 또는 요철부 배열의 규칙성은 전해연마의 결과물보다 에칭 과정 완료 후의 결과물이 월등히 우수하다.After the above etching process is completed, the pores of the surface are removed to obtain an aluminum template having a predetermined bend or irregularities on the surface, which may be similar in shape to the result of the electrolytic polishing, but bent or uneven portions. The regularity of the arrangement is much better than that of the electrolytic polishing after the completion of the etching process.

이어서, 상기 에칭 과정을 수행한 이후에는 알루미늄 템플레이트 표면에 대해서 제2 양극산화 과정을 수행한다. 제2 양극산화 과정은 제1 양극산화 과정과 동일한 조건에 의해서 수행될 수 있다.Subsequently, after the etching process, a second anodization process is performed on the surface of the aluminum template. The second anodization process may be performed by the same conditions as the first anodization process.

상술한 바와 같이, 전해연마, 제1 양극산화, 에칭 및 제2 양극산화 과정을 거치게 되면, 표면에 규칙적인 나노 크기의 세공을 갖는 알루미늄 템플레이트를 얻을 수 있게 되는데, 상기 제2 양극산화 과정에 의해서 제조된 알루미늄 박판 표면의 세공 직경은 10nm 내지 100nm이며, 세공 간 거리는 80nm 내지 120nm이고, 세공 깊이는 0.5㎛ 내지 1.5㎛일 수 있다.As described above, when subjected to electropolishing, first anodization, etching, and second anodization, an aluminum template having regular nano-sized pores on the surface can be obtained, and by the second anodization The pore diameter of the prepared aluminum sheet surface is 10nm to 100nm, the distance between the pores is 80nm to 120nm, the pore depth may be 0.5㎛ to 1.5㎛.

본 발명에 따른 TiO2 광촉매의 제조방법에 있어서, 마지막 단계로는 상술한 바와 같이 제조된 알루미늄 템플레이트 표면에 촉매 성분인 TiO2 박막을 성장시키는 단계가 수행되며, 바람직하게는 상기 TiO2 박막의 증착은 원자층 증착법 (atomic layer deposition)에 의해서 수행될 수 있다.In the manufacturing method of the TiO 2 photocatalyst according to the present invention, the final step is a step of growing a TiO 2 thin film as a catalyst component on the surface of the aluminum template prepared as described above, preferably depositing the TiO 2 thin film May be performed by atomic layer deposition.

본 발명에 있어서, 상기 원자층 증착법의 Ti 전구체로는 Ti(OCH(CH3)2)4를 사용하고, 산소 공급원으로는 H2O를 사용하며, 퍼지 가스로는 Ar을 사용할 수 있다. 또한, 상기 Ti 전구체의 증발은 60℃ 내지 80℃의 온도에서 수행되며, 상기 TiO2 박막의 증착은 150℃ 내지 220℃에서 수행될 수 있다.In the present invention, Ti (OCH (CH 3 ) 2 ) 4 may be used as the Ti precursor of the atomic layer deposition method, H 2 O may be used as the oxygen source, and Ar may be used as the purge gas. In addition, the evaporation of the Ti precursor is carried out at a temperature of 60 ℃ to 80 ℃, the deposition of the TiO 2 thin film may be carried out at 150 ℃ to 220 ℃.

상술한 과정에 의해서 도 1의 최종 단계에 도시된 바와 같이, 나노 세공을 갖는 알루미늄 템플레이트의 표면 상에 TiO2 박막층이 증착된 TiO2 광촉매를 제조할 수 있게 되는데, 이는 종래의 평판 지지체 상에 원자층 증착법에 의해서 TiO2 박막층을 형성하는 것에 비해서 동일한 지지체 평면적을 기준으로 월등하게 반응 표면 적이 향상된 TiO2 광촉매를 제조하는 것을 가능하게 한다. 참고로, 도 2에는 종래의 통상적인 원자층 증착법에 의한 TiO2 박막층의 증착 과정을 도시하였다.As shown in the final step of Figure 1 by the above-mentioned procedure, there is a that the TiO 2 photocatalyst deposited TiO 2 thin-film layer on the surface of the aluminum template having the nano-pores can be produced, which atom on a conventional flat substrate It is possible to produce a TiO 2 photocatalyst with an improved reaction surface area based on the same support plane area as compared to forming a TiO 2 thin film layer by a layer deposition method. For reference, FIG. 2 illustrates a deposition process of a TiO 2 thin film layer by a conventional atomic layer deposition method.

또한, 본 발명은 상기 두 번째 기술적 과제를 달성하기 위해서, 상기 방법에 의해서 제조된 TiO2 광촉매를 제공한다.In addition, the present invention provides a TiO 2 photocatalyst prepared by the above method in order to achieve the second technical problem.

본 발명에 따른 TiO2 광촉매는 나노 크기의 세공을 갖는 알루미늄 양극 산화막의 표면에 촉매 성분인 TiO2층이 증착되어 형성되는 바, 동일한 평면적을 갖는 지지체를 기준으로 볼 때 반응 표면적을 월등하게 증가시킬 수 있게 된다.The TiO 2 photocatalyst according to the present invention is formed by depositing a TiO 2 layer as a catalyst component on the surface of an aluminum anodized oxide film having nano-sized pores, which may significantly increase the reaction surface area based on a support having the same planar area. It becomes possible.

이하, 실시예를 통하여 본 발명을 더욱 구체적으로 설명하기로 하되, 하기 실시예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명의 범위가 하기 실시예로만 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the following Examples are merely to aid the understanding of the present invention, and the scope of the present invention is not limited to the following Examples.

실시예Example

제조예Production Example

본 발명에 따른 According to the invention TiOTiO 22 광촉매의Photocatalyst 제조 Produce

순수한 알루미늄 시트 (99.99%, Aldrich사)를 과염소산 및 에탄올의 혼합용액 중에서 전해연마시켰다. 이어서, 상기 알루미늄 시트를 7℃, 0.3M 옥살산 용액 중에서 21시간 동안 40V의 일정한 전압으로 산화시킴으로써 제1 양극산화 과정을 수행하였다. 제조된 양극 산화물층을 6 중량%의 인산 및 1.8 중량%의 크롬산 용액 중에 60℃에서 25시간 동안 침지시킴으로써 제거하여 에칭 과정을 수행하였으며, 마지막으로, 제1 양극산화 과정에 대해서 서술된 바와 동일한 조건으로 제2 양극산화 과정을 수행하였다. Pure aluminum sheet (99.99%, Aldrich) was electropolished in a mixed solution of perchloric acid and ethanol. Subsequently, a first anodization process was performed by oxidizing the aluminum sheet at a constant voltage of 40 V for 21 hours at 7 ° C. in 0.3 M oxalic acid solution. The prepared anodic oxide layer was removed by immersing in a solution of 6 wt% phosphoric acid and 1.8 wt% chromic acid for 25 hours at 60 ° C., and finally, the same conditions as described for the first anodization process were performed. A second anodization process was performed.

TiO2 성장 실험은 Ti-source로 Ti(OCH(CH3)2)4 (Strem chemicals, 99,9 %)를 사용하였고, Oxygen source 로 H2O (purified by Millipore Milli-Q)를 사용하였으며, purging gas 및 carrier gas로는 고순도의 N2 (99.99%)를 사용하였다.TiO 2 growth experiments were performed using Ti (OCH (CH 3 ) 2 ) 4 (Strem chemicals, 99,9%) as the Ti-source, H 2 O (purified by Millipore Milli-Q) as the Oxygen source, High purity N 2 (99.99%) was used as purging gas and carrier gas.

공정 순서는 H2O/purging/Ti(OCH(CH3)2)4/purging/pumping 과정을 수십 번 반복해서 TiO2 박막을 성장시켰으며, 각 공정의 시간은 0.5s/3s/1s/3s/10s로 하였다.The order of the process was to grow TiO 2 thin films by repeating H 2 O / purging / Ti (OCH (CH 3 ) 2 ) 4 / purging / pumping process several times, and the time of each process was 0.5s / 3s / 1s / 3s. It was / 10s.

본 발명에 따르면, 알루미늄 양극 산화막 템플레이트 상에 TiO2를 매우 얇고 균일한 박막의 형태로 성장시켜서 알루미늄 양극 산화막에 의한 촉매 지지체를 확보하는 동시에, 알루미늄 양극 산화막 표면의 나노 크기 세공을 이용하여 촉매 표면적을 증가시킬 수 있고, 열처리 과정을 통하여 TiO2 박막의 결정성을 촉매 반응에 적합한 형태로 표면 결함 없이 제작할 수 있는 TiO2 광촉매의 제조방법 및 상기 방법에 의해서 제조된 TiO2 광촉매를 제공할 수 있다.According to the present invention, TiO 2 is grown on the aluminum anodic oxide template in the form of a very thin and uniform thin film to secure the catalyst support by the aluminum anodic oxide film, and at the same time, the surface area of the catalyst is made by using nano-sized pores on the surface of the aluminum anodic oxide film. can be increased, and it is possible to provide a TiO 2 photocatalyst produced by the crystallinity of the TiO 2 thin film in the manufacturing method and the method of the TiO 2 photocatalyst can be produced without surface defects in a form suitable for the catalytic reaction through the heat treatment process.

Claims (11)

알루미늄 박판을 전해액 중에서 전해연마하는 단계;Electrolytic polishing the thin aluminum plate in an electrolyte solution; 상기 전해연마 처리된 알루미늄 박판에 대해서 산 용액 중에서 제1 양극산화 과정을 수행하는 단계;Performing a first anodization process in an acid solution on the electropolished aluminum sheet; 상기 제1 양극산화 처리된 알루미늄 박판에 대해서 에칭 과정을 수행하는 단계;Performing an etching process on the first anodized aluminum sheet; 상기 에칭 처리된 알루미늄 박판에 대해서 상기 제2 양극산화 과정을 수행하는 단계; 및Performing the second anodization process on the etched aluminum sheet; And 상기 제2 양극산화 처리된 알루미늄 박판의 표면에 TiO2 박막을 증착시키는 단계를 포함하는 TiO2 광촉매의 제조방법.A method of manufacturing a TiO 2 photocatalyst comprising depositing a TiO 2 thin film on a surface of the second anodized aluminum sheet. 제1항에 있어서, 상기 전해액은 에탄올과 과염소산의 3:1 내지 5:1 부피비의 혼합 용액인 것을 특징으로 하는 TiO2 광촉매의 제조방법.The method of claim 1, wherein the electrolytic solution of ethanol and perchloric acid 3: method for producing a TiO 2 photocatalyst, characterized in that a mixture of a volume ratio of 1: 1 to 5. 제1항에 있어서, 상기 산 용액은 옥살산, 인산, 황산, 크롬산 또는 그 혼합물의 용액인 것을 특징으로 하는 TiO2 광촉매의 제조방법.The method of claim 1 wherein the acid solution is a method for producing a TiO 2 photocatalyst, characterized in that a solution of oxalic acid, phosphoric acid, sulfuric acid, chromic acid or a mixture thereof. 제1항에 있어서, 상기 제1 양극산화 과정 및 상기 제2 양극산화 과정은 0.1M 내지 1.0M 농도의 상기 산 용액 중에서, 30V 내지 50V의 전압 및 0.001A 내지 0.009A의 전류 조건으로, 5℃ 내지 10℃에서 15시간 내지 25시간 동안 수행되는 것을 특징으로 하는 TiO2 광촉매의 제조방법.The method of claim 1, wherein the first anodization process and the second anodization process are performed at 5 ° C. under a voltage of 30 V to 50 V and a current condition of 0.001 A to 0.009 A in the acid solution at 0.1 M to 1.0 M concentration. Method for producing a TiO 2 photocatalyst, characterized in that carried out for 15 to 25 hours at 10 ℃. 제1항에 있어서, 상기 에칭 과정은 인산과 크롬산의 1:2 내지 1:4 중량비의 혼합 용액 중에서 50℃ 내지 70℃의 온도로 수행되는 것을 특징으로 하는 TiO2 광촉매의 제조방법.The method of claim 1, wherein the etching process is one of phosphoric acid and chromic acid: 2 to 1: 4 The method of TiO 2 photocatalyst, characterized in that is carried out at a temperature of 50 ℃ to 70 ℃ in a mixed solution of a weight ratio. 제1항에 있어서, 상기 에칭 과정은 25시간 내지 50시간 동안 수행되는 것을 특징으로 하는 TiO2 광촉매의 제조방법.The method of claim 1, wherein the etching process is process for producing a TiO 2 photocatalyst, characterized in that is carried out for 25 hours to 50 hours. 제1항에 있어서, 상기 제2 양극산화 과정에 의해서 제조된 알루미늄 박판 표면의 세공 직경은 10nm 내지 100nm이며, 세공 간 거리는 80nm 내지 120nm이고, 세공 깊이는 0.5㎛ 내지 1.5㎛인 것을 특징으로 하는 TiO2 광촉매의 제조방법.The TiO according to claim 1, wherein the pore diameter of the surface of the aluminum sheet prepared by the second anodization process is 10 nm to 100 nm, the pore distance is 80 nm to 120 nm, and the pore depth is 0.5 μm to 1.5 μm. 2 photocatalyst production method. 제1항에 있어서, 상기 TiO2 박막의 증착은 원자층 증착법 (atomic layer deposition)에 의해서 수행되는 것을 특징으로 하는 TiO2 광촉매의 제조방법.The method of claim 1 wherein the deposition of the TiO 2 thin film process for producing a TiO 2 photocatalyst, characterized in that is carried out by the ALD (atomic layer deposition). 제8항에 있어서, 상기 원자층 증착법의 Ti 전구체로는 Ti(OCH(CH3)2)4를 사용하고, 산소 공급원으로는 H2O를 사용하며, 퍼지 가스로는 Ar을 사용하는 것을 특징으로 하는 TiO2 광촉매의 제조방법.The Ti precursor according to claim 8, wherein Ti (OCH (CH 3 ) 2 ) 4 is used as the Ti precursor in the atomic layer deposition method, H 2 O is used as the oxygen source, and Ar is used as the purge gas. Method for producing a TiO 2 photocatalyst. 제9항에 있어서, 상기 Ti 전구체의 증발은 60℃ 내지 80℃의 온도에서 수행되며, 상기 TiO2 박막의 증착은 150℃ 내지 220℃에서 수행되는 것을 특징으로 하는 TiO2 광촉매의 제조방법.The method of claim 9, wherein the vaporization of the Ti precursor is carried out at a temperature of 60 ℃ to 80 ℃, the deposition method for producing a TiO 2 photocatalyst, characterized in that is carried out at 150 ℃ to 220 ℃ of the TiO 2 thin film. 제1항 내지 제10항 중 어느 한 항에 따른 방법에 의해서 제조된 TiO2 광촉매.TiO 2 photocatalyst prepared by the method according to any one of claims 1 to 10.
KR1020060132224A 2006-12-21 2006-12-21 Method for preparing TiO2 photocatalyst using anodic aluminum oxide template and the TiO2 photocatalyst prepared by the method KR100907467B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060132224A KR100907467B1 (en) 2006-12-21 2006-12-21 Method for preparing TiO2 photocatalyst using anodic aluminum oxide template and the TiO2 photocatalyst prepared by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060132224A KR100907467B1 (en) 2006-12-21 2006-12-21 Method for preparing TiO2 photocatalyst using anodic aluminum oxide template and the TiO2 photocatalyst prepared by the method

Publications (2)

Publication Number Publication Date
KR20080058104A true KR20080058104A (en) 2008-06-25
KR100907467B1 KR100907467B1 (en) 2009-07-13

Family

ID=39803798

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060132224A KR100907467B1 (en) 2006-12-21 2006-12-21 Method for preparing TiO2 photocatalyst using anodic aluminum oxide template and the TiO2 photocatalyst prepared by the method

Country Status (1)

Country Link
KR (1) KR100907467B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103189305A (en) * 2010-11-02 2013-07-03 国际商业机器公司 Feedback control of dimensions in nanopore and nanofluidic devices
KR101628258B1 (en) * 2015-02-17 2016-06-21 경북대학교 산학협력단 Fabrication of ultrafine nano-porous anodic aluminium oxide template by sulfamic acid anodizing, and ultrafine nano-porous anodic aluminium oxide template fabricated therby
CN106824150A (en) * 2017-03-08 2017-06-13 济南大学 Small molecular organic acid prepares complex phase titanium dioxide microballoon sphere
KR20190054821A (en) * 2017-11-14 2019-05-22 한국생산기술연구원 Photocatalytic filter and manufacturing method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101149162B1 (en) * 2010-01-19 2012-05-25 주식회사 넥스트론 nano cilia manufacturing method and nano cilia thereby
CN103388166A (en) * 2013-08-07 2013-11-13 苏州扬清芯片科技有限公司 Electrolytic tank for rapidly preparing anodic aluminum oxide template

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH021A (en) * 1989-05-09 1990-01-05 Seiko Epson Corp Color filter
JP3645985B2 (en) 1997-03-07 2005-05-11 昭 藤嶋 Deodorizing and deodorizing material and method for producing the same
KR20030075227A (en) * 2002-03-16 2003-09-26 김영식 Porous alumina for metal nano-sized rod and process for preparing the same
JP4619197B2 (en) * 2005-05-25 2011-01-26 進次 三浦 Aluminum substrate with anodized film and method for producing the same
KR20070039199A (en) * 2005-10-07 2007-04-11 월드엔앤씨 주식회사 Method for treating the surface of aluminium material and aluminium material manufactured by the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103189305A (en) * 2010-11-02 2013-07-03 国际商业机器公司 Feedback control of dimensions in nanopore and nanofluidic devices
CN103189305B (en) * 2010-11-02 2015-12-09 国际商业机器公司 The FEEDBACK CONTROL of size in nano-pore and nano-fluid device
US9422154B2 (en) 2010-11-02 2016-08-23 International Business Machines Corporation Feedback control of dimensions in nanopore and nanofluidic devices
US10316423B2 (en) 2010-11-02 2019-06-11 International Business Machines Corporation Feedback control of dimensions in nanopore and nanofluidic devices
US10323333B2 (en) 2010-11-02 2019-06-18 International Business Machines Corporation Feedback control of dimensions in nanopore and nanofluidic devices
US11015258B2 (en) 2010-11-02 2021-05-25 International Business Machines Corporation Feedback control of dimensions in nanopore and nanofluidic devices
KR101628258B1 (en) * 2015-02-17 2016-06-21 경북대학교 산학협력단 Fabrication of ultrafine nano-porous anodic aluminium oxide template by sulfamic acid anodizing, and ultrafine nano-porous anodic aluminium oxide template fabricated therby
CN106824150A (en) * 2017-03-08 2017-06-13 济南大学 Small molecular organic acid prepares complex phase titanium dioxide microballoon sphere
KR20190054821A (en) * 2017-11-14 2019-05-22 한국생산기술연구원 Photocatalytic filter and manufacturing method thereof

Also Published As

Publication number Publication date
KR100907467B1 (en) 2009-07-13

Similar Documents

Publication Publication Date Title
Wang et al. Efficient hydrogen production by photocatalytic water splitting using N-doped TiO2 film
KR100907467B1 (en) Method for preparing TiO2 photocatalyst using anodic aluminum oxide template and the TiO2 photocatalyst prepared by the method
Liu et al. Photocatalytic hydrogen production from water/methanol solutions over highly ordered Ag–SrTiO3 nanotube arrays
Nakata et al. Fabrication and photocatalytic properties of TiO2 nanotube arrays modified with phosphate
JP2000203998A (en) Production of fine line containing titanium oxide, and fine line and structural body produced by the producing method
Choi et al. Fabrication and photocatalytic activity of a novel nanostructured TiO2 metal membrane
Wang et al. Room temperature one-step synthesis of microarrays of N-doped flower-like anatase TiO2 composed of well-defined multilayer nanoflakes by Ti anodization
TW200944288A (en) Method for producing catalyst for wastewater treatment
KR102438310B1 (en) Hollow fiber type photocatalyst and manufacturing method thereof
Qarechalloo et al. Simply tuned and sustainable cobalt oxide decorated titania nanotubes for photoelectrochemical water splitting
Jung et al. Preparation, crystal structure, and photocatalytic activity of TiO 2 films by chemical vapor deposition
Ohtsu et al. Fabrication of visible-light-responsive titanium dioxide layer on titanium using anodic oxidization in nitric acid
Liu et al. In situ formation of porous TiO2 nanotube array with MgTiO3 nanoparticles for enhanced photocatalytic activity
US20140144834A1 (en) Membrane with titanium dioxide nanostructure and method for fabricating the same
Tacchini et al. Anatase nanotubes synthesized by a template method and their application as a green photocatalyst
KR100852496B1 (en) Method of preparation for titania photo-catalyst by oxygen plasma and rapid thermal annealing
Ravanbakhsh et al. Synthesis and characterization of porous zinc oxide nano-flakes film in alkaline media
KR20100032841A (en) Manufacturing method of nanotube-shaped tio2
Denisov et al. Role of iron and chromium in the photocatalytic activity of titanium dioxide films on stainless steel
Chen et al. Construction of titania–ceria nanostructured composites with tailored heterojunction for photocurrent enhancement
CN1228138C (en) Modified titanium dioxide immobilization method for degrading organic pollutant in water
CN110862120A (en) Method for treating antibiotic wastewater by utilizing visible light response semiconductor-MOFs hybrid photoelectrocatalysis material electrode
JP2001286749A (en) Chemical transducer
Abramo et al. Nanostructure-performance relationships in titania-only electrodes for the selective electrocatalytic hydrogenation of oxalic acid
Yan et al. Photoelectrocatalytic activity of two antimony doped SnO2 films for oxidation of phenol pollutants

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B90T Transfer of trial file for re-examination
E801 Decision on dismissal of amendment
B601 Maintenance of original decision after re-examination before a trial
S901 Examination by remand of revocation
E902 Notification of reason for refusal
S601 Decision to reject again after remand of revocation
J201 Request for trial against refusal decision
AMND Amendment
J201 Request for trial against refusal decision
GRNO Decision to grant (after opposition)
J501 Disposition of invalidation of trial
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120615

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20130621

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140721

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee