KR100803738B1 - Method for preparing titaniumoxide photocatalyst with ti-peroxy gel - Google Patents

Method for preparing titaniumoxide photocatalyst with ti-peroxy gel Download PDF

Info

Publication number
KR100803738B1
KR100803738B1 KR1020060083572A KR20060083572A KR100803738B1 KR 100803738 B1 KR100803738 B1 KR 100803738B1 KR 1020060083572 A KR1020060083572 A KR 1020060083572A KR 20060083572 A KR20060083572 A KR 20060083572A KR 100803738 B1 KR100803738 B1 KR 100803738B1
Authority
KR
South Korea
Prior art keywords
titanium
photocatalyst
titanium oxide
acid
metal
Prior art date
Application number
KR1020060083572A
Other languages
Korean (ko)
Inventor
지충수
오한준
이종호
Original Assignee
오한준
지충수
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오한준, 지충수 filed Critical 오한준
Priority to KR1020060083572A priority Critical patent/KR100803738B1/en
Priority to PCT/KR2007/004127 priority patent/WO2008026864A1/en
Application granted granted Critical
Publication of KR100803738B1 publication Critical patent/KR100803738B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0217Pretreatment of the substrate before coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates
    • B01J37/0226Oxidation of the substrate, e.g. anodisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

A method for preparing titanium oxide photocatalysts by using a Ti-peroxy gel is provided to mass-produce titanium oxide photocatalysts, and prepare titanium oxide photocatalysts having various shapes by a simple process in which a chemical treatment and a heat treatment are combined with each other, wherein the prepared titanium oxide photocatalysts have a very high photocatalytic efficiency as well as excellent adhesion of a base metal with titanium oxide. As a preparation method of a titanium oxide photocatalyst having a crystal type titanium dioxide coating, the preparation method includes the steps of: cleaning surfaces of a Ti-based metal; dipping the cleaned surfaces of the Ti-based metal into a mixed solution consisting of an acid and an oxidizer to form an oxide coating layer with a mixed phase of an amorphous phase and a crystalline phase; and heat-treating the Ti-based metal having the mixed phased oxide coating layer formed thereon. The Ti-based metal is a pure Ti, or a Ti alloy comprising 80 wt.% to less than 100 wt.% of Ti as a Ti alloy comprising titanium(Ti) and at least one selected from the group consisting of aluminum(Al), vanadium(V), zirconium(Zr), niobium(Nb), nickel(Ni) and molybdenum(Mo).

Description

티타늄-페르옥시겔을 이용한 산화티타늄 광촉매 제조방법 {Method for preparing titaniumoxide photocatalyst with Ti-peroxy gel}Method for preparing titanium oxide photocatalyst using titanium-peroxy gel {Method for preparing titaniumoxide photocatalyst with Ti-peroxy gel}

도 1은 본 발명에 따른 산화티타늄 광촉매 제조방법에 있어서, 황산과 산화제가 첨가된 혼합용액에서 생성된 티타늄 페르옥시겔 피막의 표면조직(a)과 단면조직(b)에 대한 전자현미경 측정 결과를 도시한 도면이다.1 is a method for preparing a titanium oxide photocatalyst according to the present invention, the results of electron microscopy measurement of the surface structure (a) and the cross-sectional structure (b) of the titanium peroxygel film produced from the mixed solution added with sulfuric acid and oxidizing agent Figure is shown.

도 2는 본 발명에 따른 산화티타늄 광촉매 제조방법에 있어서, 황산과 산화제가 첨가된 혼합용액에서 생성된 티타늄 페르옥시겔 피막의 결정구조에 대한 XRD 측정 결과를 도시한 도면이다.FIG. 2 is a diagram illustrating an XRD measurement result of a crystal structure of a titanium peroxygel film produced in a mixed solution containing sulfuric acid and an oxidizing agent in a method for preparing a titanium oxide photocatalyst according to the present invention.

도 3은 본 발명에 따른 산화티타늄 광촉매 제조방법에 있어서, 화학적 산화촉진 반응과 열처리의 조합을 통해 생성된 섬유상의 TiO2 광촉매 피막의 결정구조에 대한 XRD 측정 결과를 도시한 도면이다.FIG. 3 is a diagram illustrating XRD measurement results of a crystal structure of a fibrous TiO 2 photocatalyst film formed by a combination of a chemical oxidation promoting reaction and a heat treatment in the method of preparing a titanium oxide photocatalyst according to the present invention.

도 4는 본 발명에 따른 산화티타늄 광촉매 제조방법에 있어서, 본 발명에 의해 제조된 섬유상 TiO2 광촉매 형상의 일 구현 예에 대한 사진을 도시한 도면이다.4 is a view showing a photograph of one embodiment of the fibrous TiO 2 photocatalyst shape prepared by the present invention in the method for producing a titanium oxide photocatalyst according to the present invention.

도 5는 아닐린 블루(Aniline blue)의 염료분해반응을 통해서 본 발명에 따른 산화티타늄 광촉매 제조방법에 의해서 제조된 광촉매에 대한 효율 시험 결과를 도시한 도면이다.5 is a view showing the results of the efficiency test for the photocatalyst prepared by the titanium oxide photocatalyst production method according to the present invention through the dye decomposition of aniline blue (Aniline blue).

본 발명은 티타늄-페르옥시겔(Ti-peroxy gel)을 이용한 산화티타늄 광촉매 제조방법에 관한 것으로서, 더욱 구체적으로는 대량 생산이 가능하고 화학적 처리와 열처리를 결합한 단순한 공정에 의해 다양한 형태의 산화티타늄 광촉매를 제조할 수 있으며, 제조된 산화티타늄 광촉매는 소지금속과 산화티타늄과의 밀착성이 매우 우수할 뿐 아니라 광촉매 효율이 매우 높은 티타늄-페르옥시겔(Ti-peroxy gel)을 이용한 산화티타늄 광촉매 제조방법에 관한 것이다.The present invention relates to a method for producing a titanium oxide photocatalyst using a titanium-peroxy gel, and more particularly, to mass production of titanium oxide photocatalyst by a simple process combining chemical treatment and heat treatment. In the titanium oxide photocatalyst, the prepared titanium oxide photocatalyst is not only excellent in adhesion between the base metal and titanium oxide, but also has a high photocatalytic efficiency in a method of preparing a titanium oxide photocatalyst using a titanium-peroxy gel. It is about.

광촉매란 빛을 받아서 화학반응을 촉진시키는 물질을 말하는 것으로서, 예를 들어 반도체, 엽록소, V2O3, ZnO, ZrO2, 페로브스카이트형 복합 금속산화물(SrTiO3), 산화티타늄 등이 있다.The photocatalyst refers to a substance that receives a light and promotes a chemical reaction. Examples of the photocatalyst include a semiconductor, chlorophyll, V 2 O 3 , ZnO, ZrO 2 , perovskite-type composite metal oxide (SrTiO 3 ), and titanium oxide.

산화티타늄은 자신이 빛을 받아도 변하지 않아 반영구적으로 사용이 가능하고, 대부분의 유기물을 산화시켜 이산화탄소와 물로 분해하므로 2차 오염이 적고 표백 및 악취제거에도 효과적이다. 따라서, 상기 사항 및 광촉매 반응에 대한 산화물 피막의 활성을 고려해 볼 때 산화티타늄이 광촉매 분야에서 대표적인 물질로 부각되어 현재 많은 연구가 진행되고 있다. 광촉매 기능이 있는 산화티타늄은 결정형에 따라 크게 아나타제형(anatase)과 루틸형(rutile)으로 구분된다. 일반적으로 루틸형은 결정상태가 안정적이나 활성이 떨어지는 문제가 있고, 아나타제형은 광촉매 활성이 높아 광촉매 분야에서 더 바람직한 형태라 할 수 있다. 이러한 광촉매에 의한 유기물 분해는, 밴드 갭(band gap) 에너지 이상의 빛에너지를 광촉매에 조사하였을 때 전자와 정공이 발생하고, 이들에 의해 생성되는 수산화 라디칼(-0H)의 강력한 산화력으로 광촉매 표면에 흡착된 기상 또는 액상의 유기물이 분해되는 산화반응에 의한 것이다.Titanium oxide can be used semi-permanently because it does not change even when it receives light. Since it oxidizes most organic materials and decomposes them into carbon dioxide and water, it is less secondary pollution and effective for removing bleach and odor. Therefore, in view of the above and the activity of the oxide film for the photocatalytic reaction, titanium oxide is emerging as a representative material in the photocatalyst field, and many studies have been conducted. Titanium oxide with a photocatalytic function is largely divided into anatase and rutile according to the crystalline form. In general, the rutile type has a problem that the crystal state is stable but the activity is inferior, and the anatase type has a high photocatalytic activity and thus may be a more preferable form in the photocatalyst field. The decomposition of organic matter by the photocatalyst generates electrons and holes when light energy above band gap energy is irradiated to the photocatalyst, and is adsorbed on the surface of the photocatalyst by the strong oxidizing power of the hydroxyl radical (-0H) generated by the photocatalyst. This is due to the oxidation reaction in which the gaseous or liquid organic matter is degraded.

산화티타늄을 광촉매로 이용하기 위한 방법으로는 제조된 산화티타늄의 분말을 광촉매로 직접 이용하거나, 산화티타늄에 실리카와 같은 바인더를 첨가하여 도료로서 지지체나 담체에 도포시키는 방법과 사염화티타늄이나 티타늄알콕사이드 등의 티타늄화합물을 지지체에 코팅한 후 졸겔법을 이용하여 지지체 표면에 산화티타늄을 형성시켜 사용하는 방법 등이 널리 알려져 왔다.As a method for using titanium oxide as a photocatalyst, a method of directly applying a powder of titanium oxide prepared as a photocatalyst or adding a binder such as silica to titanium oxide and coating it on a support or a carrier as a paint, titanium tetrachloride, titanium alkoxide, etc. After coating the titanium compound of the support on the support using a sol-gel method to form titanium oxide on the surface of the support and the like have been widely known.

산화티타늄(TiO2) 분말 자체를 광촉매로서 사용하기 위해서는 황산법과 염소법을 통하여 1차 재료로서 아나타제(anatase)와 루타일(rutile)의 결정구조가 혼합된 분말 이산화티타늄을 합성하여야 한다. 이렇게 제조된 이산화티타늄 분말은 슬러리 형태로 사용되거나 또는 지지체에 표면코팅되어 사용된다. 또한 TiO2 분말을 직접 광촉매로 폐수처리 등에 이용할 경우, 광촉매 반응기 내부에는 UV 램프가 설치되고 반응셀 내부에 폐수와 TiO2 분말이 슬러리 형태로 혼합되어 사용되고 있으며, 폐수의 반응시간과 처리량에 따라 임의로 반응셀을 연결시켜 사용하고 있다. 또한 장치의 반응셀 말단에 촉매(TiO2 분말) 회수 장치를 부착하여 사용하고 있다. 그러나 이 경우 촉매인 TiO2를 회수하여 재활용하기 위해서는 별도의 장치가 필요하며 산화 티타늄을 회수 재활용하는 비용이 막대하여 비경제적일 뿐 아니라, 또한 폐수의 물질 일부가 촉매의 표면에 흡착되어 촉매의 효율이 떨어지므로 대부분 특정한 형태가 필요한 촉매의 경우와 대기 정화용 광촉매로서는 이러한 슬러리 형태가 사용될 수 없다.In order to use titanium oxide (TiO 2 ) powder itself as a photocatalyst, powdered titanium dioxide in which the crystal structure of anatase and rutile are mixed as a primary material is synthesized through a sulfuric acid method and a chlorine method. The titanium dioxide powder thus prepared is used in the form of a slurry or surface coated on a support. In addition, when TiO 2 powder is directly used as a photocatalyst for wastewater treatment, a UV lamp is installed inside the photocatalytic reactor, and wastewater and TiO 2 powder are mixed and used in a slurry form in the reaction cell, depending on the reaction time and throughput of the wastewater. The reaction cells are connected and used. In addition, a catalyst (TiO 2 powder) recovery apparatus is attached to the reaction cell terminal of the apparatus. However, in this case, a separate device is required to recover and recycle the catalyst, TiO 2 , and the cost of recovering and recycling the titanium oxide is not only economically expensive, but also a part of the waste water is adsorbed on the surface of the catalyst, thereby increasing the efficiency of the catalyst. As such, most of these slurry forms cannot be used for catalysts requiring a specific form and for photocatalysts for atmospheric purification.

TiO2가 공기 정화기용 광촉매로 사용되는 경우 담체나 지지체 위에 이산화티타늄 분말을 현탁시킨 용액을 표면에 코팅 후 건조하는 방법이 사용되어져 왔으나, TiO2 표면 코팅법의 단점은 제조 방법이 복잡하여 제조비용이 많이 들뿐만 아니라 지지체와 코팅된 TiO2의 결합이 약하여 밀착성이 약하고 광촉매 표면이 박리되는 등 사용상의 문제점이 자주 발생되었다. 졸 - 겔(sol - gel)법을 이용한 코팅 방법도 많이 이용되고 있으나 이 방법은 출발물질인 금속알콕사이드로서는 타이타늄 에톡사이드(titanium ethoxide [Ti(OC2H5)4])를 이용하거나 티타늄 테트라이소프로폭사이드(titanium tetraisopropoxide)를 이용하여 TiO2 졸을 먼저 제조해야 하므로, 제조 방법이 복잡하여 비용이 많이 들뿐만 아니라 지지체와 코팅된 TiO2의 결합이 약하여 박리되는 등 사용상의 문제점이 많이 발생되고 있어 새로운 방식의 촉매제조 기술이 요구되고 있다.When TiO 2 is used as a photocatalyst for an air purifier, a method of coating and drying a solution in which a titanium dioxide powder is suspended on a carrier or a support has been used. However, the disadvantage of TiO 2 surface coating is that the manufacturing method is complicated and the manufacturing cost is increased. Not only this, but also the bond between the support and the coated TiO 2 is weak, the adhesion is weak, the surface of the photocatalyst is peeled off frequently used problems. The coating method using the sol-gel method is also widely used, but this method uses titanium ethoxide [Ti (OC 2 H 5 ) 4 ]) or titanium tetraiso as the starting metal alkoxide. Since TiO 2 sol must be prepared first using propane (titanium tetraisopropoxide), the manufacturing method is complicated and expensive, and there are many problems in use such as weak bonding of the TiO 2 coated with the support. There is a need for a new type of catalyst production technology.

대한민국 특허출원 (등록번호: 1004241000000, 출원번호: 2001-59765)에는 전기화학적인 양극산화를 통해서 섬유상의 TiO2 광촉매를 제조하는 방법이 개시되어 있다. 상기 전기화학적인 양극산화법에 의해 제조된 섬유상의 TiO2 광촉매는, 미세한 티타늄 섬유상(fiber) 표면에 티타늄 금속과 직접적인 전기화학 반응을 일으켜, 아나타제와 루타일의 결정구조를 나타내는 TiO2를 생성시키는 제조법으로, 이 방식으로 제조된 광촉매를 이용할 경우, 촉매반응기의 형상에 제약을 받을 필요가 없으며 피막의 접착력이 좋아 박리의 위험이 없이 반영구적으로 사용할 수 있고 무엇보다도 촉매의 비표면적이 커지기 때문에 광촉매 효율을 현저하게 상승시킬 수 있어 품질과 효과 면에서 대단히 우수하며, 대기나 수질 등의 다방면의 분야에 적용될 수 있는 장점을 가지고 있으나, 상기 전기화학적인 방법에 의한 광촉매 제조는 전극 장치가 단순하지 않을 뿐만 아니라 과도한 설비가 요구되는 등의 공정상의 제약점이 있다.Korean patent application (Registration No .: 1004241000000, Application No .: 2001-59765) discloses a method for producing a fibrous TiO 2 photocatalyst through electrochemical anodization. The fibrous TiO 2 photocatalyst prepared by the electrochemical anodic oxidation method produces a TiO 2 which exhibits a crystal structure of anatase and rutile by direct electrochemical reaction with titanium metal on a fine titanium fiber surface. By using the photocatalyst prepared in this way, the shape of the catalytic reactor does not need to be restricted and the adhesion of the film is good so that it can be used semi-permanently without the risk of peeling. It is remarkably excellent in terms of quality and effect, and can be applied to various fields such as air and water, but the photocatalyst production by the electrochemical method is not only an electrode device not only simple. There are process limitations such as excessive equipment required.

따라서, 본 발명은 상기 종래 기술의 문제점을 해결하고자, 대량 생산이 가능하고 화학적 처리와 열처리를 결합한 단순한 공정에 의해 다양한 형태의 산화티타늄 광촉매를 제조할 수 있으며, 제조된 산화티타늄 광촉매는 소지금속과 산화티타늄과의 밀착성이 매우 우수할 뿐 아니라 광촉매 효율이 매우 높은 티타늄-페르옥시겔(Ti-peroxy gel)을 이용한 산화티타늄 광촉매 제조방법을 제공하는 것을 목적으로 한다.Accordingly, the present invention is to solve the problems of the prior art, it is possible to mass-produce and can produce various types of titanium oxide photocatalyst by a simple process combining the chemical treatment and heat treatment, the prepared titanium oxide photocatalyst is a base metal It is an object of the present invention to provide a method for producing a titanium oxide photocatalyst using a titanium-peroxy gel having a very high adhesion to titanium oxide and a very high photocatalytic efficiency.

본 발명은 상기 기술적 과제를 달성하기 위하여,The present invention to achieve the above technical problem,

결정형 이산화티타늄 피막을 구비한 산화티타늄 광촉매 제조방법으로서, A method of producing a titanium oxide photocatalyst having a crystalline titanium dioxide film,

티타늄계 금속을 세척하는 단계;Washing the titanium metal;

세척된 상기 티타늄계 금속의 표면을 산 및 산화제로 이루어진 혼합 용액에 침지시켜 비정질 및 결정질 혼합상의 산화피막층을 형성시키는 단계; 및Immersing the washed surface of the titanium-based metal in a mixed solution of an acid and an oxidizing agent to form an oxide layer of an amorphous and crystalline mixed phase; And

상기 혼합상의 산화피막층이 형성된 티타늄계 금속을 열처리하는 단계를Heat-treating the titanium-based metal on which the oxide layer of the mixed phase is formed

포함하는 산화티타늄 광촉매 제조방법을 제공한다.It provides a titanium oxide photocatalyst manufacturing method comprising the.

이하, 본 발명에 대하여 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명은 결정형 이산화티타늄 피막을 구비한 산화티타늄 광촉매 제조방법으로서, 티타늄계 금속을 세척하는 단계; 세척된 상기 티타늄계 금속 표면을 산 및 산화제로 이루어진 혼합 용액에 침지시켜 비정질 및 결정질 혼합상의 산화피막층을 형성시키는 단계; 및 상기 혼합상의 산화피막층이 형성된 티타늄계 금속을 열처리하는 단계를 포함하는 산화티타늄 광촉매 제조방법을 제공한다. 상기 방법은 전기화학적 아노다이징(anodizing) 방법을 통하여 높은 비표면적을 나타내는 섬유상 형태의 산화티타늄 광촉매를 제조하는 경우에 나타나는 문제점들, 즉 복잡한 공정 조건, 과도한 설비투자 등에 의해 발생되는 대량생산의 저해요인들을 해결할 수 있다.The present invention provides a method for producing a titanium oxide photocatalyst having a crystalline titanium dioxide film, the method comprising: washing a titanium metal; Immersing the washed titanium-based metal surface in a mixed solution of an acid and an oxidizing agent to form an oxide layer of an amorphous and crystalline mixed phase; And it provides a titanium oxide photocatalyst manufacturing method comprising the step of heat-treating the titanium-based metal on which the oxide film layer of the mixed phase is formed. This method eliminates the problems in the production of fibrous titanium oxide photocatalysts exhibiting high specific surface areas through electrochemical anodizing, i.e. inhibitors of mass production caused by complex process conditions, excessive equipment investment, etc. I can solve it.

본 발명에 따른 제조 방법에 있어서, 상기 티타늄계 금속은 티타늄과, 알루미늄 (Al), 바나듐 (V), 지르코늄 (Zr), 니오븀 (Nb), 니켈 (Ni) 및 몰리브데늄 (Mo) 으로 이루어진 군으로부터 선택된 하나 이상의 금속과의 합금일 수 있으며, 순수 티타늄 금속의 사용도 가능한데, 상기 티타늄계 금속의 바람직한 티타늄 함량 은 80 중량% 이상이다. In the manufacturing method according to the present invention, the titanium-based metal is made of titanium, aluminum (Al), vanadium (V), zirconium (Zr), niobium (Nb), nickel (Ni) and molybdenum (Mo). It may be an alloy with one or more metals selected from the group, and the use of pure titanium metal is also possible, with the preferred titanium content of the titanium based metal being at least 80% by weight.

상기 티타늄계 금속의 함량이 80 중량% 미만이면 티타늄-페르옥시겔의 산화피막을 형성시키는데 문제가 생길 수 있을 뿐 아니라, 이후의 열처리를 통하여 이산화티타늄 결정으로 결정조직의 전이가 어려워진다.When the content of the titanium-based metal is less than 80% by weight, it may not only cause a problem in forming an oxide film of titanium-peroxygel, but also makes it difficult to transfer the crystal structure to titanium dioxide crystals through subsequent heat treatment.

복잡한 형태를 갖는 티타늄계 금속 표면에 광촉매 특성을 나타내는 이산화티타늄을 형성시키기 위해서는 우선 티타늄의 표면의 세척과정을 통하여 기름이나 오염 물질을 제거해야 되는 바 상기 제조방법에서 사용될 수 있는 세척액은 특별히 한정되지 않으며 당해 기술 분야에서 사용되는 모든 세척액이 사용 가능하나, 불산(HF), 질산(HNO3) 및 물의 혼합 용액인 것이 바람직하다.In order to form titanium dioxide that exhibits photocatalytic properties on a titanium-based metal surface having a complex shape, oil or contaminants must be removed by first cleaning the surface of titanium. The cleaning solution that can be used in the manufacturing method is not particularly limited. All washes used in the art can be used but are preferably a mixed solution of hydrofluoric acid (HF), nitric acid (HNO 3 ) and water.

상기 세척액의 혼합 비율은 불산(HF, 30-49 중량% 용액), 질산(HNO3, 50-70 중량% 용액), 및 물의 혼합 부피비가 불산 1의 부피비율에 대해 질산은 0.5 내지 2의 비율, 그리고 물은 1.0 내지 3의 비율인 것이 바람직하다.The mixing ratio of the washing liquid is a ratio of the mixed volume of hydrofluoric acid (HF, 30-49 wt% solution), nitric acid (HNO 3 , 50-70 wt% solution), and water in the ratio of 0.5 to 2 nitric acid relative to the volume ratio of hydrofluoric acid 1, And it is preferable that water is the ratio of 1.0-3.

상기 질산(HNO3)의 부피비가 0.5 미만인 경우 표면 세척을 위해 소요되는 시간이 길어지며, 2를 초과하는 경우 티타늄소재의 용해가 너무 빨라 소재치수가 급격히 감소되는 문제가 발생될 수 있다. 또한, 상기 물의 부피비율이 1 미만인 경우 티타늄 소지금속의 과도한 용해가 문제가 될 수 있으며, 3을 초과하는 경우 표면 세척에 소요되는 시간이 길어지는 문제가 발생된다.If the volume ratio of the nitric acid (HNO 3 ) is less than 0.5, the time required for surface cleaning is long, if more than 2 may cause a problem that the material size is rapidly reduced because the dissolution of titanium material is too fast. In addition, when the volume ratio of the water is less than 1, excessive dissolution of the titanium base metal may be a problem, and when it exceeds 3, a problem of increasing the time required for surface cleaning occurs.

상기 제조 방법에서 상기 세척시간은 1 내지 2분 동안인 것이 바람직하다.In the preparation method, the washing time is preferably 1 to 2 minutes.

이렇게 표면 세척된 섬유상 형태의 티타늄 또는 여러 형태의 티타늄 소지금 속을, 예를 들어 황산과 같은 산 및 산화제가 첨가된 혼합용액에서 일정시간 침지시키면, 섬유상 티타늄 소재의 표면에서 황산에 의한 산화 반응과 더불어, 첨가된 산화제의 강한 환원을 통해 티타늄 금속의 표면은 산화가 촉진되면서 티타늄 표면에 Ti4 +(OH)X (0<X≤1), Ti4+(OH)2O2 2-, Ti4 +(OH-)2O2 2 - 및 TiO2ㆍnH2O의 혼합성분들로 구성되는 산화티타늄 겔, 티타니아겔, 혹은 티타늄페르옥시겔 (Ti-peroxy gel)이라고 불리워지는 황금색의 비정질의 산화피막층이 생성된다. 상기 혼합용액 중의 산으로는 특별히 제한받지는 않으나, 황산 (H2SO4), 염산 (HCl) 및 질산 (HNO3), 또는 상기 세 가지 산의 혼합물이 사용될 수 있으며, 산화제 또한 특별히 제한받지는 않으나, 과산화수소 (H2O2)가 사용될 수 있다.The surface-washed fibrous titanium or various forms of titanium soja are immersed in a mixed solution containing acid and an oxidizing agent, for example sulfuric acid, for a certain time, and the oxidation reaction of sulfuric acid on the surface of the fibrous titanium material On the surface of the titanium metal, oxidation is accelerated through the strong reduction of the added oxidant, Ti 4 + (OH) X (0 <X≤1), Ti 4+ (OH) 2 O 2 2- , Ti 4 + (OH -) 2 O 2 2 - , and TiO 2 and nH oxide consisting of mixed components of the 2 O titanium gel, titania gel, or a titanium FER oxy gel amorphous oxide of the gold which is called the (Ti-peroxy gel) A film layer is produced. The acid in the mixed solution is not particularly limited, but sulfuric acid (H 2 SO 4 ), hydrochloric acid (HCl) and nitric acid (HNO 3 ), or a mixture of the three acids may be used. However, hydrogen peroxide (H 2 O 2 ) can be used.

상기 황산, 염산 및 질산의 농도는 황산 용액의 경우 90 - 98 중량%, 염산 용액의 경우 30 - 38 중량%, 질산 용액의 경우 60 - 90 중량%인 것이 바람직하고, 산화제의 농도는 과산화수소의 경우 20 - 30 중량%인 것이 바람직하다.The concentration of sulfuric acid, hydrochloric acid and nitric acid is preferably 90 to 98% by weight for sulfuric acid solution, 30 to 38% by weight for hydrochloric acid solution, 60 to 90% by weight for nitric acid solution, and the concentration of oxidant is hydrogen peroxide. It is preferred that it is 20-30% by weight.

한편, 사용되는 혼합용액 중의 산과 산화제의 혼합비에 따라서 티타늄계 금속 표면에 생성되는, 예를 들어, 티타늄페르옥시겔의 결정구조와 생성속도는 약간씩 차이가 나타나게 되므로, 상기 제조 방법에서 상기 비결정질 산화피막층 형성에 사용되는 상기 혼합용액 중의 산 및 산화제의 혼합 부피비율이 1 : 3 내지 1 : 1 인 것이 바람직하다.On the other hand, since the crystal structure and formation rate of, for example, titanium peroxygel produced on the titanium-based metal surface in accordance with the mixing ratio of the acid and the oxidizing agent in the mixed solution used are slightly different, the amorphous oxidation in the production method It is preferable that the mixing volume ratio of the acid and the oxidant in the mixed solution used for forming the coating layer is 1: 3 to 1: 1.

상기 혼합상의 산화피막층 형성에 사용되는 상기 혼합용액 중에서 산이 상기 비율보다 과량으로 존재하게 되면 티타늄페르옥시겔 산화피막의 성장속도가 지연되 며, 산화제가 상기 비율보다 과량으로 존재하게 되면 이후 열처리에서의 TiO2 결정조직으로 전이되는 효율이 낮아져 광촉매의 효과가 낮아지는 문제가 있다.When the acid is present in the mixed solution used to form the oxide film layer of the mixed phase in excess of the ratio, the growth rate of the titanium peroxygel oxide film is delayed, and when the oxidant is present in excess of the ratio, There is a problem that the efficiency of the photocatalyst is lowered because the efficiency of transition to the TiO 2 crystal structure is lowered.

예를 들어, 상기 티타늄페르옥시겔의 산화피막을 형성시키기 위해서, 산으로서 황산 (H2SO4, 농도 95%, 비중 1.83)과 산화제로서 과산화수소 (H2O2, 농도 30%)를 첨가한 혼합용액을 이용하는 경우, 이 과정에서 생성되는 피막의 두께는 최소 500 nm 이상 형성되어야, 이후의 열처리 공정을 통해 효율적인 광촉매에 필요한 TiO2 광촉매 두께를 확보할 수 있다.For example, to form an oxide film of the titanium peroxygel, sulfuric acid (H 2 SO 4 , concentration 95%, specific gravity 1.83) is added as an acid and hydrogen peroxide (H 2 O 2 , concentration 30%) is added as an oxidizing agent. When using a mixed solution, the thickness of the film produced in this process should be formed at least 500 nm, it is possible to secure the thickness of the TiO 2 photocatalyst necessary for the efficient photocatalyst through the subsequent heat treatment process.

또한, 사용되는 혼합용액의 침지 시간에 따라서 산화피막층의 결정조직과 생성속도는 약간씩 차이가 나타나게 되므로, 상기 제조 방법에서 상기 비결정질 산화피막층을 형성시키기 위한 침지 시간은 2 내지 40 시간 인 것이 바람직하다. In addition, since the crystal structure and the production rate of the oxide film layer is slightly different depending on the immersion time of the mixed solution used, the immersion time for forming the amorphous oxide film layer in the production method is preferably 2 to 40 hours. .

상기 침지 시간이 2 시간 보다 짧으면 생성되는 산화피막의 두께가 너무 얇아서 광촉매의 효율의 문제가 있고, 40 시간 보다 긴 경우 피막의 두께가 너무 두께워 소지금속과 박리되는 문제가 나타난다.If the immersion time is shorter than 2 hours, the thickness of the resulting oxide film is too thin to have a problem of efficiency of the photocatalyst, and if it is longer than 40 hours, the thickness of the film is too thick, causing a problem of peeling from the base metal.

도 1에는 본 발명에 따른 산화티타늄 광촉매 제조방법에 있어서, 황산과 산화제가 첨가된 혼합용액에서 생성된 두께 3 μm 정도의 티타늄 페르옥시겔 피막의 표면조직과 단면 조직을 나타낸 그림이며, 티타늄 페르옥시겔 피막이 소지금속인 티타늄과 잘 밀착되어 생성된 것을 볼 수 있다.1 is a diagram showing the surface structure and cross-sectional structure of a titanium peroxygel film having a thickness of about 3 μm generated in a mixed solution containing sulfuric acid and an oxidizing agent in the method for preparing a titanium oxide photocatalyst according to the present invention. It can be seen that the gel film was produced by being in close contact with titanium, the base metal.

도 2에는 본 발명에 따른 산화티타늄 광촉매 제조방법에 있어서, 황산과 산화제가 첨가된 혼합용액에서 생성된 티타늄 페르옥시겔 피막의 결정구조에 대한 XRD 측정 결과를 도시하였으며, 도 2를 참조하면, 상기 혼합 용액 내에서 침지로 산화피막의 특별한 결정구조는 나타나지 않고 있으나 이산화티타늄의 결정구조인 루타일과 아나타제 성분이 약간 혼합되어 있으며, 상기의 서술한 바와 같이 산과 산화제의 혼합용액에서의 혼합비와 침지 시간에 따라 미세하게 생성되는 TiO2 결정조직들이 혼재되어 있는 비율은 약간씩 차이를 나타내나 대부분의 페르옥시겔의 산화피막은 비정질의 조직을 보여주고 있다.Figure 2 shows the XRD measurement results of the crystal structure of the titanium peroxygel film produced in the mixed solution of sulfuric acid and oxidizing agent in the method for producing a titanium oxide photocatalyst according to the present invention, referring to FIG. The immersion in the mixed solution did not show any particular crystal structure of the oxide film, but rutile and anatase components, which are crystal structures of titanium dioxide, were slightly mixed.As described above, the mixture ratio and immersion time in the mixed solution of acid and oxidant As a result, the ratio of the finely formed TiO 2 crystal structures differs slightly, but the oxide film of most peroxygels shows an amorphous structure.

황산과 첨가제에 의한 산화반응으로 형성된 산화티타늄 겔의 피막은, 일정한 피막두께에서도 소지금속인 티타늄과는 매우 우수한 밀착성을 나타내나, 완전한 TiO2의 결정구조를 나타내지 않으므로 광촉매로서 사용할 수 없기 때문에 열처리를 통하여 티타늄 페르옥시겔의 산화피막을 이산화티타늄 결정(아나타제(anatase), 루타일(rutile))으로 변화시키는 과정이 요구되는데, 상기 제조 방법에서 상기 비결정질 산화피막층이 형성된 티타늄 금속을 열처리하는 단계의 온도는 400℃ 내지 800℃인 것이 바람직하다.The film of titanium oxide gel formed by oxidation reaction with sulfuric acid and additives has very good adhesion with titanium as a base metal even at a certain film thickness, but since it does not show a complete crystal structure of TiO 2 , it cannot be used as a photocatalyst. The process of changing the oxide film of titanium peroxygel to titanium dioxide crystals (anatase, rutile) is required, and the temperature of the step of heat-treating the titanium metal on which the amorphous oxide film layer is formed in the manufacturing method It is preferable that is 400 degreeC-800 degreeC.

도 3은 본 발명에 따른 산화티타늄 광촉매 제조방법에 있어서, 화학적 산화촉진 반응과 열처리의 조합을 통해 생성된 섬유상의 TiO2 광촉매 피막의 결정구조에 대한 XRD 측정 결과를 도시하였으며, 도 3을 참조하면, 광촉매 반응에 이용되는 결정형의 이산화티타늄의 종류는 상기 언급한 바와 같이 아나타제(anatase)와 루타일(rutile)의 두 가지 형태로 구별할 수 있는데, 열처리 온도가 낮은 경우, 즉 400℃ 내지 500℃에서 열처리를 할 경우 낮은 온도에서 안정상인 아나타제 결정형이 대부분 형성되며 700℃ 내지 800℃의 온도에서는 고온에서의 안정형인 루타일 형태의 결정이 형성된다. 따라서, 상기 열처리 단계의 온도가 400℃보다 작으면 아나타제 및 루타일 형태의 결정이 형성되지 않는 문제가 있고, 800℃보다 큰 경우 고온산화가 급격히 진행되므로 피막의 박리가 일어나기 쉬워 광촉매로서의 사용에 제약을 받는다는 문제가 있다. 상기 제조 방법에서 상기 열처리 단계의 시간은 특별히 한정되지는 않으나, 30 분 내지 2시간 인 것이 바람직하다.FIG. 3 shows the XRD measurement results of the crystal structure of the fibrous TiO 2 photocatalyst film formed by a combination of a chemical oxidation promoting reaction and a heat treatment in the method of preparing a titanium oxide photocatalyst according to the present invention. Referring to FIG. As described above, the type of crystalline titanium dioxide used in the photocatalytic reaction can be classified into two types, anatase and rutile. In the case where the heat treatment temperature is low, that is, 400 ° C to 500 ° C In the case of heat treatment at, most stable anatase crystal forms are formed at low temperatures, and rutile crystals are formed at high temperatures at 700 ° C. to 800 ° C. Therefore, when the temperature of the heat treatment step is less than 400 ℃ there is a problem that the crystals of the anatase and rutile form is not formed, if the temperature is higher than 800 ℃ because the high temperature oxidation proceeds rapidly, the film is likely to be peeled off easily restricted to use as photocatalyst There is a problem of receiving. The time of the heat treatment step in the manufacturing method is not particularly limited, but is preferably 30 minutes to 2 hours.

상기 열처리 단계의 시간이 30 분 보다 작으면 아나타제나 또는 루타일의 결정구조로 변화되기가 힘들며, 2 시간 보다 큰 경우는 과도한 표면산화의 문제가 있다.If the time of the heat treatment step is less than 30 minutes it is difficult to change to the crystal structure of anatase or rutile, if greater than 2 hours there is a problem of excessive surface oxidation.

상기 언급된 두 가지 형태의 이산화티타늄의 결정형 중에서 광촉매로서 효율은 루타일 결정보다는 아나타제의 결정형이 약간 우수하다고 알려져 있으나, 루타일의 결정은 고온에서 짧은 열처리 시간으로도 생성이 가능하므로 작업성의 관점에서는 유리한 측면도 있다.Among the above-mentioned two types of crystal forms of titanium dioxide, the efficiency as a photocatalyst is known to be slightly better than that of rutile crystals, but rutile crystals can be produced even at a high heat treatment time at high temperatures. There is also an advantageous side.

본 발명에 따른 산화티타늄 광촉매의 제조방법에서 티타늄계 금속의 소재 형태는 특별히 한정되지 않으나, 판상, 망상, 입체형태의 구조물 또는 섬유상(fiber)인 것이 바람직하고, 섬유상인 경우 직경은 10 ㎛ 내지 1 mm 인 것이 바람직하다. 상기 티타늄 소재 직경이 10 ㎛ 보다 작으면 제조과정에서 소재의 끊김 현상이 발생되며, 1 mm 보다 큰 경우 섬유상 소재의 장점인 비표면적의 향상을 기대할 수 없다.In the manufacturing method of the titanium oxide photocatalyst according to the present invention, the material type of the titanium-based metal is not particularly limited, but it is preferable that it is a plate, network, three-dimensional structure or fiber, and in the case of fiber, the diameter is 10 μm to 1 It is preferable that it is mm. If the diameter of the titanium material is less than 10 ㎛, the breakage of the material occurs in the manufacturing process, when larger than 1 mm can not be expected to improve the specific surface area of the advantage of the fibrous material.

도 4에는 본 발명에 따른 산화티타늄 광촉매 제조방법에 있어서, 본 발명에 의해 제조된 섬유상 TiO2 광촉매 형상의 일 구현 예에 대한 사진을 도시하였다.Figure 4 shows a photo of one embodiment of the fibrous TiO 2 photocatalyst shape prepared by the present invention in the method for producing a titanium oxide photocatalyst according to the present invention.

상기 산화티타늄 광촉매는 중금속 제거용, 초친수성으로 인한 자정작용(self cleaning) 및 김서림 방지용, 자외선 차단용, 양친매성으로서의 사용, 태양광을 이용한 물의 광분해용, 수질 정화용, 악취제거용, 공기 청정기용, 유가 귀금속 회수용, 항균 및 살균용 등의 여러 분야에 사용될 수 있으며, 특히 수질 정화용, 악취제거용, 공기 청정기용, 유가 귀금속 회수용, 항균 및 살균용으로 사용될 수 있다.The titanium oxide photocatalyst is used for removing heavy metals, preventing self-cleaning and antifogging due to superhydrophilicity, blocking UV rays, using amphiphilic properties, photolysis of water using sunlight, water purification, odor removal, and air purifiers. In addition, it can be used in various fields such as valuable precious metal recovery, antibacterial and sterilization, and especially can be used for water purification, deodorization, air purifier, valuable precious metal recovery, antibacterial and sterilization.

이하에서 바람직한 실시 예를 들어 본 발명을 보다 상세하게 설명하고자 하나, 하기의 실시예는 설명의 목적을 위한 것으로 본 발명을 제한하기 위한 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to preferred embodiments, but the following examples are for the purpose of explanation and are not intended to limit the invention.

실시예Example

제조에 필요한 유기, 무기 시약 등은 알드리치(Aldrich)사 또는 플루카(Fluka)사 제품으로 표준 방법에 의해 정제하여 사용하였으며, 산화 티타늄피막의 결정구조를 확인하기 위해 X-선 회절 분석기를 사용하여 입사각을 1.5도 (degree)로 고정하고 2θ를 20도부터 80도 범위에서 측정하였다.The organic and inorganic reagents required for the preparation were purified by standard methods from Aldrich or Fluka, and used an X-ray diffractometer to confirm the crystal structure of the titanium oxide film. The incident angle was fixed at 1.5 degrees and 2θ was measured in the range of 20 to 80 degrees.

(1)세척단계 (1) washing stage

산화티타늄 광촉매를 제조하기 위한 소지금속으로는 순수한 형태이거나 합금의 형태를 사용하여도 무방하며, 기지금속의 모양은 섬유형태뿐만 아니라 어떤 복잡한 형상이라도 가능하나, 본 실시 예에서는 티타늄 95 중량% 의 직경 150 μm의 상업용 섬유상 티타늄 40 g을 불산(HF 48%, Aldrich사 제조)과 질산(HNO3 70% Aldrich사 제조)의 혼합용액을 사용하여 HF : HNO3 : H2O가 부피비가 1 : 1 : 1.5 의 비율로 혼합된 세척액에 약 1 내지 2 분간 세척하였다. The base metal for preparing the titanium oxide photocatalyst may be in pure form or may be in the form of an alloy. The base metal may be any shape as well as a fiber, but in this embodiment, 95 wt% titanium 40 g of 150 μm commercial fibrous titanium was treated with hydrofluoric acid (48% HF, manufactured by Aldrich) and nitric acid (HNO 3). HF: HNO 3 using a mixed solution of 70% Aldrich) It was washed for about 1 to 2 minutes in a washing solution in which the volume ratio of H 2 O was 1: 1: 1.5.

(2)침지단계(2) Immersion stage

상기 세척된 티타늄 소지 금속을 황산(H2SO4 , 농도 95%, 비중 1.83, Aldrich사 제조) 및 과산화수소(H2O2 , 농도 30%, Aldrich사 제조) 1 : 3 부피비의 혼합용액에 10 시간 동안 침지시켜 티타늄 금속 표면에 비정질 산화피막층을 형성시켰다. 상기 혼합용액의 온도는 35 - 45oC였으며, 침지 후 형성된 피막을 X-선 회절기로 입사각 1.5 도 (degree)로 고정하고 2θ를 20도부터 80도 범위에서 측정 분석하였다.The washed titanium-containing metal is sulfuric acid (H 2 SO 4 , concentration 95%, specific gravity 1.83, manufactured by Aldrich) and hydrogen peroxide (H 2 O 2 , concentration 30%, manufactured by Aldrich) 1: 10 in a mixed solution of 3 volume ratio It was immersed for a time to form an amorphous oxide layer on the titanium metal surface. The temperature of the mixed solution was 35-45 o C, and the film formed after immersion was fixed at an incident angle of 1.5 degrees with an X-ray diffraction and 2θ was measured and analyzed in the range of 20 to 80 degrees.

(3) 열처리 단계(3) heat treatment step

상기 혼합상의 산화피막층이 형성된 티타늄 금속을 650℃에서 1시간 동안 열처리하였다. 열처리후 TiO2 광촉매 산화피막의 결정구조를 X-선 회절분석기를 사용하여 측정하였다. 침지단계 이후 티타늄 금속 표면에 형성된 산화피막(티타늄 페르옥시겔)의 X-선 분석 결과, 루타일 및 아나타제 성분이 약간 나타났으나, 티타늄 소지금속의 성분인 티타늄의 회절 피크가 주로 나타났으며, 이로써 표면의 산화피막이 대부분 비정질임을 알 수 있었다(도 2 참조). 티타늄페르옥시겔의 피막두께는 약 3 ㎛ 정도였다.The titanium metal on which the mixed oxide layer was formed was heat-treated at 650 ° C. for 1 hour. After the heat treatment, the crystal structure of the TiO 2 photocatalyst oxide film was measured using an X-ray diffractometer. X-ray analysis of the oxide film (titanium peroxygel) formed on the titanium metal surface after the immersion step showed some rutile and anatase components, but mainly showed diffraction peaks of titanium, which is a component of the titanium base metal. As a result, it was found that the oxide film on the surface was mostly amorphous (see FIG. 2). The film thickness of titanium peroxy gel was about 3 micrometers.

과산화수소의 혼합용액에서 침지시켜 티타늄 피막상에 티타늄 페르옥시 겔이 형성된 파이버 형태의 티타늄소재는 열처리를 통하여 광촉매로서 반응할 수 있는 결정형의 이산화티타늄의 조직으로 변화될 수 있었다. 열처리 단계 이후 금속 표면에 형성된 산화피막의 X-선 분석 결과, 섬유상의 티타늄 표면에는 광촉매 반응이 가능한 이산화티타늄의 고온 결정인 아나타제 구조의 조직이 소지금속인 티타늄과 밀착되어 생성되어 있었으며 약간의 루타일 결정도 혼합되어 있음을 알 수 있었다(도 3 참조). 열처리 단계 이후 산화피막의 X-선 분석에서 티타늄의 피크가 나타난 것은 섬유형태의 내부에 존재하는 티타늄 금속 성분이 함께 검출되었기 때문이며, 도 2의 결정구조의 분석을 통하여 본 발명의 제조방법에 의한 섬유상의 TiO2 광촉매는 광촉매의 작용을 하기에 적당한 구조를 나타내고 있음을 알 수 있었다. 도 4에는 상기 방법으로 제조된 섬유상 TiO2 광촉매 형상에 대한 사진을 도시하였다.A fiber-type titanium material in which titanium peroxy gel was formed on a titanium film by immersion in a mixed solution of hydrogen peroxide could be transformed into a crystalline titanium dioxide structure that can react as a photocatalyst through heat treatment. X-ray analysis of the oxide film formed on the metal surface after the heat treatment step revealed that the anatase structure, which is a high-temperature crystal of titanium dioxide capable of photocatalytic reaction, was formed on the fibrous titanium surface in close contact with titanium, the base metal, and a little rutile. It was found that the crystals were also mixed (see FIG. 3). The peak of titanium in the X-ray analysis of the oxide film after the heat treatment step was due to the detection of the titanium metal component present in the inside of the fibrous form, and through the analysis of the crystal structure of FIG. It was found that the TiO 2 photocatalyst exhibited a suitable structure for the action of the photocatalyst. 4 shows a photograph of the shape of the fibrous TiO 2 photocatalyst prepared by the above method.

아닐린 블루 염료의 분해 반응 결과Result of decomposition reaction of aniline blue dye

본원 발명의 방법으로 제조된 섬유형태의 이산화티타늄 광촉매의 효율을 조사하기 위하여 광촉매의 염료분해 효율을 조사하였다. In order to investigate the efficiency of the fibrous titanium dioxide photocatalyst prepared by the method of the present invention, the dye decomposition efficiency of the photocatalyst was investigated.

광분해 반응 실험은 본 발명의 방법으로 제조된 150 ㎛의 섬유상 TiO2 광촉매 2.5 g을 원통형 파이렉스(Pyrex) 유리 반응기(Φ = 7.0cm, h = 2.0cm )의 바닥에 잘 펼쳐놓고, 0.01 mM 아닐린 블루 용액( pH 4.0, Fluka사 제조) 40 mL를 첨가한 후, 고압 수은등(100W)을 광원으로 사용하여 25℃에서 광분해 효율을 측정하였다. 이때 아닐린 블루의 분해 농도는 UV/Vis. 분광광도계(Unicam 8700)를 사용하여 염료의 분해되는 양에 따라 다르게 차이가 나는 600nm에서의 흡광도로 비교 측정한 후 염료 분해율로 환산하였다.The photolysis reaction experiment was performed by spreading 2.5 g of a 150 μm fibrous TiO 2 photocatalyst prepared by the method of the present invention on the bottom of a cylindrical Pyrex glass reactor (Φ = 7.0 cm, h = 2.0 cm), and 0.01 mM aniline blue. After adding 40 mL of a solution (pH 4.0, Fluka), the photolysis efficiency was measured at 25 ° C using a high pressure mercury lamp (100 W) as a light source. At this time, the decomposition concentration of aniline blue was UV / Vis. A spectrophotometer (Unicam 8700) was used to measure the absorbance at 600 nm, which differs depending on the amount of dye decomposition, and was then converted into dye degradation rate.

염료의 광분해 효과를 측정한 결과 염료의 분해율은 1시간 동안 14.86 %로 나타났으며, 2시간의 경우는 31 % 분해율을, 6시간 실험 결과 60 %의 염료 분해율을 나타냈다(도 5 참조). 이러한 광촉매 효율은 매우 우수한 것으로서, 만약 광촉매 분해효율 시험시 투입되는 시료의 양을 증가시킬 경우, 염료 분해효율은 더욱 향상될 것이다.As a result of measuring the photodegradation effect of the dye, the degradation rate of the dye was 14.86% for 1 hour, 31% for 2 hours, and 60% for 6 hours. This photocatalytic efficiency is very good, and if the amount of sample to be injected during the photocatalytic decomposition efficiency test is increased, the dye decomposition efficiency will be further improved.

본 발명에 따르면, 대량 생산이 가능하고 화학적 처리와 열처리를 결합한 단순한 공정에 의해 다양한 형태의 산화티타늄 광촉매를 제조할 수 있으며, 제조된 산화티타늄 광촉매는 소지금속과 산화티타늄과의 밀착성이 매우 우수할 뿐 아니라 광촉매 효율이 매우 높다. 본 발명에 따른 산화티타늄 광촉매는 각종 공기청정기용, 대기정화용, 수질정화용, 폐수처리용, 살균과 항균 등 다양한 분야에서 촉매로서 탁월한 효과를 나타낼 수 있다.According to the present invention, it is possible to mass-produce and produce various types of titanium oxide photocatalyst by a simple process combining chemical treatment and heat treatment, and the prepared titanium oxide photocatalyst may have excellent adhesion between the base metal and titanium oxide. In addition, the photocatalytic efficiency is very high. Titanium oxide photocatalyst according to the present invention can exhibit an excellent effect as a catalyst in various fields such as for various air cleaners, air purification, water purification, wastewater treatment, sterilization and antibacterial.

Claims (7)

결정형 이산화티타늄 피막을 구비한 산화티타늄 광촉매 제조방법으로서, A method of producing a titanium oxide photocatalyst having a crystalline titanium dioxide film, 티타늄계 금속을 세척하는 단계;Washing the titanium metal; 세척된 상기 티타늄 금속의 표면을 산 및 산화제로 이루어진 혼합 용액에 침지시켜 비정질 및 결정질 혼합상의 산화피막층을 형성시키는 단계; 및Immersing the washed surface of the titanium metal in a mixed solution of an acid and an oxidizing agent to form an oxide layer of an amorphous and crystalline mixed phase; And 상기 혼합상의 산화피막층이 형성된 티타늄 금속을 열처리하는 단계를Heat-treating the titanium metal on which the oxide layer of the mixed phase is formed 포함하는 산화티타늄 광촉매 제조방법.Titanium oxide photocatalyst production method comprising. 제1항에 있어서, 상기 티타늄계 금속은 티타늄과, 알루미늄(Al), 바나듐(V), 지르코늄(Zr), 니오븀(Nb), 니켈(Ni) 및 몰리브데늄(Mo)으로 이루어진 군으로부터 선택된 하나 이상의 금속과의 티타늄 합금으로서, 티타늄 함량이 80 중량% 이상 100 중량% 미만인 티타늄 합금; 또는 순수 티타늄인 것을 특징으로 하는 산화티타늄 광촉매 제조방법.The method of claim 1, wherein the titanium-based metal is selected from the group consisting of titanium, aluminum (Al), vanadium (V), zirconium (Zr), niobium (Nb), nickel (Ni) and molybdenum (Mo). A titanium alloy with at least one metal, the titanium alloy having a titanium content of at least 80% by weight and less than 100% by weight; Or titanium oxide photocatalyst production method, characterized in that the pure titanium. 제1항에 있어서, 상기 세척 단계의 세척액은, 30 내지 49 중량% 농도의 불산(HF) 용액, 50 내지 70 중량% 농도의 질산(HNO3) 용액 및 물의 혼합 용액이며, 그 혼합 부피비는 불산 1의 부피비율에 대해 질산은 0.5 내지 2의 비율이고, 물은 1.0 내지 3의 비율인 것을 특징으로 하는 산화티타늄 광촉매 제조방법.The washing solution of claim 1, wherein the washing solution is a mixed solution of 30 to 49 wt% hydrofluoric acid (HF) solution, 50 to 70 wt% nitric acid (HNO 3 ) solution and water, and the mixed volume ratio is hydrofluoric acid. Nitric acid is a ratio of 0.5 to 2 with respect to the volume ratio of 1, water is a method of producing a titanium oxide photocatalyst, characterized in that the ratio of 1.0 to 3. 제1항에 있어서, 상기 비정질 및 결정질 혼합상의 산화피막층 형성에 사용되는 상기 혼합용액 중의 산은 90 내지 98 중량% 농도의 황산 (H2SO4), 30 내지 38 중량% 농도의 염산 (HCl) 및 60 내지 90 중량% 농도의 질산 (HNO3), 또는 그 혼합물이며, 상기 산화제는 20 내지 30 중량% 농도의 과산화수소 (H2O2)인 것을 특징으로 하는 산화티타늄 광촉매 제조방법.According to claim 1, wherein the acid in the mixed solution used to form the oxide film layer of the amorphous and crystalline mixed phase is 90 to 98% by weight of sulfuric acid (H 2 SO 4 ), 30 to 38% by weight of hydrochloric acid (HCl) and Nitric acid (HNO 3 ) at a concentration of 60 to 90% by weight, or a mixture thereof, and the oxidizing agent is hydrogen peroxide (H 2 O 2 ) at a concentration of 20 to 30% by weight. 제1항에 있어서, 상기 산 및 산화제의 혼합 부피비는 1 : 3 내지 1 : 1이고, 상기 혼합 용액에의 침지 시간은 2 내지 40 시간인 것을 특징으로 하는 산화티타늄 광촉매 제조방법.The method of claim 1, wherein the mixing volume ratio of the acid and the oxidizing agent is 1: 3 to 1: 1, and the immersion time in the mixed solution is 2 to 40 hours. 제1항에 있어서, 상기 열처리 단계의 온도가 400℃ 내지 800℃이고, 열처리 시간이 30분 내지 2시간 인 것을 특징으로 하는 산화티타늄 광촉매 제조방법.The method of claim 1, wherein the temperature of the heat treatment step is 400 ° C. to 800 ° C., and the heat treatment time is 30 minutes to 2 hours. 제1항에 있어서, 상기 티타늄계 금속의 소재 형태가 판상, 망상, 입체형태의 구조물, 또는 직경 10 ㎛ 내지 1 mm 의 섬유상(fiber)인 것을 특징으로 하는 산화티타늄 광촉매 제조방법.The method of claim 1, wherein the titanium-based metal material is in the form of a plate, a network, a three-dimensional structure, or a fiber having a diameter of 10 µm to 1 mm.
KR1020060083572A 2006-08-31 2006-08-31 Method for preparing titaniumoxide photocatalyst with ti-peroxy gel KR100803738B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020060083572A KR100803738B1 (en) 2006-08-31 2006-08-31 Method for preparing titaniumoxide photocatalyst with ti-peroxy gel
PCT/KR2007/004127 WO2008026864A1 (en) 2006-08-31 2007-08-28 Method for preparing titaniumoxide photocatalyst with ti-peroxy gel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060083572A KR100803738B1 (en) 2006-08-31 2006-08-31 Method for preparing titaniumoxide photocatalyst with ti-peroxy gel

Publications (1)

Publication Number Publication Date
KR100803738B1 true KR100803738B1 (en) 2008-02-15

Family

ID=39136104

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060083572A KR100803738B1 (en) 2006-08-31 2006-08-31 Method for preparing titaniumoxide photocatalyst with ti-peroxy gel

Country Status (2)

Country Link
KR (1) KR100803738B1 (en)
WO (1) WO2008026864A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013032253A2 (en) * 2011-09-02 2013-03-07 주식회사 현대단조 Method for preparing titanium dioxide
KR20220008532A (en) 2020-07-14 2022-01-21 인하대학교 산학협력단 Selective oxidation photocatalyst of heterojunction structure comprising MoP and MoO3-x and method for manufacturing the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201015231D0 (en) * 2010-09-13 2010-10-27 Ucl Business Plc A photocatalytic body
CN108421412A (en) * 2017-02-13 2018-08-21 优维科斯株式会社 Photocatalyst-supporting net slice and its manufacturing method, air purifier
JP6963853B1 (en) * 2021-01-15 2021-11-10 株式会社シケン Manufacturing method of semiconductor titanium oxide

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64990A (en) * 1987-06-23 1989-01-05 Sanyo Electric Co Ltd Display device for automatic vending machine
KR20050074557A (en) * 2002-11-07 2005-07-18 사스티나부르 . 테크노로지 가부시키가이샤 Titania-metal composite and method for preparation thereof, and film forming method using dispersion comprising the composite
JP2005270876A (en) 2004-03-25 2005-10-06 Ul Tran Technology & Service Corp Synthetic method for titanium oxide photocatalyst

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL325526A1 (en) * 1995-09-15 1998-08-03 Rhodia Chimie Sa Substrate carrying a photocatalytic coating based on titanium dioxide and organic titanium dioxide suspensions for producing such coating
FR2738813B1 (en) * 1995-09-15 1997-10-17 Saint Gobain Vitrage SUBSTRATE WITH PHOTO-CATALYTIC COATING
EP0924164A3 (en) * 1997-12-18 2000-01-05 Hoya Corporation Methods for producing oxides or composites thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64990A (en) * 1987-06-23 1989-01-05 Sanyo Electric Co Ltd Display device for automatic vending machine
KR20050074557A (en) * 2002-11-07 2005-07-18 사스티나부르 . 테크노로지 가부시키가이샤 Titania-metal composite and method for preparation thereof, and film forming method using dispersion comprising the composite
JP2005270876A (en) 2004-03-25 2005-10-06 Ul Tran Technology & Service Corp Synthetic method for titanium oxide photocatalyst

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
논문 1990

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013032253A2 (en) * 2011-09-02 2013-03-07 주식회사 현대단조 Method for preparing titanium dioxide
WO2013032253A3 (en) * 2011-09-02 2013-06-06 주식회사 현대단조 Method for preparing titanium dioxide
KR20220008532A (en) 2020-07-14 2022-01-21 인하대학교 산학협력단 Selective oxidation photocatalyst of heterojunction structure comprising MoP and MoO3-x and method for manufacturing the same

Also Published As

Publication number Publication date
WO2008026864A1 (en) 2008-03-06

Similar Documents

Publication Publication Date Title
Nasirian et al. Enhancement of photocatalytic activity of titanium dioxide using non-metal doping methods under visible light: a review
Macak et al. Self‐organized TiO2 nanotube layers as highly efficient photocatalysts
Hirano et al. Direct formation of anatase (TiO2)/silica (SiO2) composite nanoparticles with high phase stability of 1300° C from acidic solution by hydrolysis under hydrothermal condition
Wu et al. Low-temperature growth of a nitrogen-doped titania nanoflower film and its ability to assist photodegradation of rhodamine B in water
Sakthivel et al. A fine route to tune the photocatalytic activity of TiO2
Kuznetsov et al. Visible light absorption by various titanium dioxide specimens
Fahim et al. A novel method for synthesis of titania nanotube powders using rapid breakdown anodization
Lin et al. Photocatalytic Activity of Rutile Ti1− xSnxO2Solid Solutions
Wark et al. Photocatalytic activity of hydrophobized mesoporous thin films of TiO2
EP1757365A1 (en) Titanium oxide base photocatalyst, process for producing the same and use thereof
He Facile synthesis of ultrafine CuS nanocrystalline/TiO2: Fe nanotubes hybrids and their photocatalytic and Fenton-like photocatalytic activities in the dye degradation
KR100803738B1 (en) Method for preparing titaniumoxide photocatalyst with ti-peroxy gel
TW200944288A (en) Method for producing catalyst for wastewater treatment
Xie et al. Role of sodium ion on TiO2 photocatalyst: influencing crystallographic properties or serving as the recombination center of charge carriers?
JP2003168495A (en) Photoelectric cell and photocatalyst
Barbana et al. Preparation and characterization of photocatalytic TiO2 films on functionalized stainless steel
Ramalingam et al. Surface and electrochemical characterization of N-Fe-doped-TiO2 nanoparticle prepared by hydrothermal and facile electro-deposition method for visible light driven pollutant removal
JP2009012444A (en) Layered product and its manufacturing method
JP2007325995A (en) Photocatalyst film and its manufacturing method
KR20080058104A (en) Method for preparing tio2 photocatalyst using anodic aluminum oxide template and the tio2 photocatalyst prepared by the method
Evtushenko et al. Synthesis and properties of TiO 2-based nanomaterials
Hsiao et al. Preparation of Pd-containing TiO2 film and its photocatalytic properties
JP3791067B2 (en) Photocatalyst composition and glass article
Hegazy High performance crystalline Tio2 mesocrystals for enhanced solar fuel
JP2006240967A (en) Amorphous titania

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Re-publication after modification of scope of protection [patent]
FPAY Annual fee payment

Payment date: 20120203

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20130204

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee