KR20080041037A - 단백질 수송 펩타이드와 짧은 간섭 rna와의 복합체 및그 용도 - Google Patents

단백질 수송 펩타이드와 짧은 간섭 rna와의 복합체 및그 용도 Download PDF

Info

Publication number
KR20080041037A
KR20080041037A KR1020060109119A KR20060109119A KR20080041037A KR 20080041037 A KR20080041037 A KR 20080041037A KR 1020060109119 A KR1020060109119 A KR 1020060109119A KR 20060109119 A KR20060109119 A KR 20060109119A KR 20080041037 A KR20080041037 A KR 20080041037A
Authority
KR
South Korea
Prior art keywords
complex
lmwp
sirna
growth factor
protein transport
Prior art date
Application number
KR1020060109119A
Other languages
English (en)
Inventor
박윤정
정종평
씨. 양 빅터
최영숙
Original Assignee
재단법인서울대학교산학협력재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인서울대학교산학협력재단 filed Critical 재단법인서울대학교산학협력재단
Priority to KR1020060109119A priority Critical patent/KR20080041037A/ko
Publication of KR20080041037A publication Critical patent/KR20080041037A/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/645Polycationic or polyanionic oligopeptides, polypeptides or polyamino acids, e.g. polylysine, polyarginine, polyglutamic acid or peptide TAT
    • A61K47/6455Polycationic oligopeptides, polypeptides or polyamino acids, e.g. for complexing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43563Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from insects
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • C12N2310/141MicroRNAs, miRNAs

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Toxicology (AREA)
  • Insects & Arthropods (AREA)
  • Epidemiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

본 발명은 단백질 수송 펩타이드와 짧은 간섭 RNA(siRNA)와의 복합체 및 그 용도에 관한 것으로, 보다 구체적으로는, 단백질 수송 펩타이드와 타겟 RNA의 발현을 사일런싱하는 짧은 간섭 RNA(siRNA)를 화학적 또는 정전기적 상호작용을 통하여 결합시킨 복합체 및 상기 복합체를 함유하는 질병 치료용 약학 조성물에 관한 것이다.
본 발명에 따른 복합체는 단백질 수송 펩타이드를 이용하여 최적의 표적 지향화를 통해 약물의 치료 효과를 극대화하고 부작용을 최소화하여 질병 치료에 유용하다.
단백질 수송 펩타이드, siRNA, 전사 후 유전자 사일런싱

Description

단백질 수송 펩타이드와 짧은 간섭 RNA와의 복합체 및 그 용도{Complex of Protein Transduction Peptide and Small Interference RNA and Use Thereof}
도 1은 본 발명에 따른 VEGFsiRNA-LMWP 복합체를 전기영동으로 확인한 것이다 (1번 레인(lane): 사이즈 마커(size marker); 2번 레인(lane): siRNA; 3번 레인(lane): siRNA-LMWP 복합체).
도 2는 본 발명에 따른 siRNA-LMWP 복합체를 처리한 경우, 루시퍼레이즈 단백질의 발현 변화를 공초점 주사형광 현미경(confocal laser scanning microscope)으로 관찰한 것이다 (A: 루시퍼레이즈 LUCsiRNA를 처리한 경우; B: LUCsiRNA-LMWP 복합체를 처리한 경우).
도 3은 LUCsiRNA 및 LUCsiRNA-LMWP 복합체의 유효 저해농도(IC50)를 측정한 것이다.
도 4는 생체 외(in vitro)에서 VEGFsiRNA-LMWP 복합체의 혈관 생성 억제 정도를 확인한 것이다 ((a): 증류수 처리군; (B): VEGFsiRNA 처리군; (C) 내지 (E): VEGFsiRNA-LMWP 처리군).
도 5는 동물 실험을 통해 VEGFsiRNA-LMWP 복합체의 혈관 생성 억제 정도를 확인한 것이다. (a), (b) 및 (c)는 피하로, (d), (e) 및 (f)는 복강 내로 약물을 주사한 시료이다 ((a) 및 (d): 증류수 처리군; (b) 및 (e): VEGFsiRNA 처리군; (c) 및 (f): VEGFsiRNA-LMWP 처리군).
도 6은 본 발명에 따른 VEGFsiRNA-LMWP 복합체의 종양 치료 정도를 확인한 것이다.
발명의 분야
본 발명은 단백질 수송 펩타이드와 짧은 간섭 RNA(siRNA)와의 복합체 및 그 용도에 관한 것으로, 보다 구체적으로는, 단백질 수송 펩타이드와 타겟 RNA의 발현을 사일런싱하는 짧은 간섭 RNA(siRNA)를 화학적 또는 정전기적 상호작용을 통하여 결합시킨 복합체 및 상기 복합체를 함유하는 질병 치료용 약학 조성물에 관한 것이다.
배경기술
'RNA 간섭(RNA interference)'(RNAi)은 이중가닥 RNA를 선충(C. elegans)에 주입하는 경우, 전달된 이중가닥 RNA 서열에 고도로 상동성인 유전자를 특정적으로 사일런싱(silencing)시킨다는 것을 발견한 후에 신조된 용어이다. 그 후, 곤충, 개 구리 및 생쥐를 포함한 다른 동물에서도 관찰되었으며, 인간에서도 존재할 것으로 여겨진다. RNAi는 식물의 공동-억제(co-suppression) 및 진균 진압(quelling)의 전사 후 유전자-사일런싱(post-transcriptional gene-silencing; PTGS) 기작과 밀접하게 연관되어 있고, RNAi 기구의 일부 성분은 공동-억제에 의한 전사 후 사일런싱에도 필요하다.
세포 내에서 형성되거나 세포 외부로부터 전달된 이중가닥 RNA는 표적 mRNA의 분해를 유발하는데 중심적 역할을 한다. 이중가닥 RNA는 RNA분해 효소Ⅲ의 일종인 Dicer에 의해 21∼23개의 뉴클레오타이드 길이를 갖는 짧은 간섭 RNA(small interference RNA, 이하 'siRNA'로 약칭함)로 절단되고, 단사슬로 풀리면서 전령 RNA(mRNA)를 인식하여 분해시키는 RNA-유도 사일런싱 복합체(RNA-induced silencing complex, 이하 'RISC'로 약칭함)에 붙는 것으로 알려져 있다. 상기 RISC는 siRNA의 상보적 결합을 이용하여 표적 전령 RNA(mRNA)를 인식하여 결합한 후, 이를 분해한다.
일반적으로, 살아있는 세포는 단백질, 핵산과 같은 거대 분자에 대해서 불투과성이다. 일부 작은 물질들만이 매우 낮은 비율로 살아있는 세포의 세포막을 통과하여 세포 내부의 세포질 또는 핵으로 들어갈 수 있는 반면에, 거대분자는 세포 내부로 들어갈 수 없으므로 단백질 또는 핵산을 포함하는 거대분자를 이용한 치료, 예방 및 진단시 제한 요인이 되고 있다. 한편, 대부분의 치료, 예방 및 진단 목적으로 제조되는 물질들은 진단, 예방 및 치료 유효량이 세포 내로 전달되어야 하므로 이들을 세포 외부나 표적 세포의 표면에서 작용시켜 세포 내로 전달시키기 위한 여러 가지 방법들이 개발되었다. 이와 같이, 생체 외(in vitro)에서 세포 내로 거대 분자를 전달하는 방법에는 전기충격(electroporation), 리포좀을 이용한 막 융합, 표면에 DNA가 코팅된 미세 투사체를 이용한 고농도 투사법, 칼슘-인-DNA 침전체를 이용한 배양법, DEAE-덱스트란을 이용한 트렌스펙션(transfection), 변형된 바이러스 핵산을 이용한 감염, 단일 세포로의 직접 미세 주입방법 등이 있다.
그러나, 이러한 방법들은 거대 분자를 주입시키고자 하는 전체 세포 중 일부에만 전달할 수 있을 뿐이며, 다른 많은 수의 세포에 바람직하지 않은 영향을 준다. 또한, 생체 내에서 세포 내로 거대 분자를 실험적으로 이동시키는 방법으로서, 스크래프 로딩(scrape loading), 칼슘-인 침전, 리포좀을 이용하는 방법 등이 있으나, 이러한 방법들은 생체 내에서 세포 내로 물질을 전달함에 있어 사용이 극히 제한적이라는 문제점이 있다.
따라서, 생체 내부 및 외부 모두에서 세포를 손상시키지 않고 생물학적 활성을 지닌 거대 분자를 효과적으로 전달하는 방법이 필요하게 되었다. 이와 같은 방법의 예로서, 지질 펩타이드의 화학적인 추가 또는 폴리라이신이나 폴리아르기닌과 같은 염기성 중합체를 사용하는 방법이 있으나, 이들 방법은 아직 검증되지 않았다. 수송체로서 사용되는 엽산은 엽산-염 결합체의 형태로 세포 내로 이동된다는 사실이 보고되었으나(Leamon, C.P. et al ., Proc . Natl . Acd . Sci ., USA, 88:5572, 1991), 세포질 안으로까지 전달되는지 확인된 바 없다. 또한, 슈도모나스 외독소(Pseudomonas exotoxin)도 수송체의 한 종류로서 사용되고 있으나(Prior, T.I. et al ., Cell, 64:1017, 1991), 이러한 방법에서도 생물학적으로 활성화된 전달대 상 물질의 세포 내로의 이동에 관한 효과 및 일반적인 적용 가능성에 대해서는 명확하지 않다. 따라서, 살아있는 세포의 세포질이나 핵 안으로 생물학적 활성을 가지는 물질을 보다 안전하고 효과적으로 전달할 수 있는 방법이 요구되고 있는 실정이다.
이러한 요구에 대한 연구의 결과로서 제시된 것으로 단백질 수송 도메인(protein transduction domain, PTD)이 있으며, 이중 가장 많은 연구가 진행된 것은 인간 면역 결핍 바이러스-1(human immunodeficiency virus-1, HIV-1)의 전사인자인 TAT 단백질이다. 상기 단백질은 세포막을 통과함에 있어 86개의 아미노산으로 구성된 완전한 형태일 때보다 양전하를 갖는 아미노산들이 집중적으로 분포되어 있는 47번째부터 57번째 아미노산 서열(YGRKKRRQRRR)의 일부분으로 구성된 형태일 경우 더욱 효과적이라는 것이 밝혀졌다 (Fawell, S. et al ., Proc . Natl . Acad . Sci . USA, 91:664, 1994). PTD로서의 효과가 확인된 다른 예로는 HSV-1(herpes simplex virus type 1)의 VP22 단백질의 267번째부터 300번째까지의 아미노산 서열을 가지는 펩타이드(Elliott, G. et al ., Cell, 88:223, 1997), HSV-2의 UL-56 단백질의 84번째부터 92번째까지의 아미노산 서열을 가지는 펩타이드(GeneBank code:D1047[gi:221784]) 및 드로소필라 속(Drosophila sp.)의 안테나페디아(antennapedia, ANTP) 단백질의 339번째부터 355번째까지의 아미노산 서열을 가지는 펩타이드(Schwarze, S.R. et al ., Trends . Pharmacol . Sci., 21:45, 2000) 등이 있으며, 전기적으로 양성인 아미노산들을 나열한 인위적인 펩타이드의 경우도 그 효과가 확인되었다 (Laus, R. et al ., Nature . Biotechnol., 18:1269, 2000).
종래 PTD를 다른 펩타이드 또는 단백질과 연결시켰을 경우 융합 단백질을 효율적으로 세포 내로 수송하는 것이 밝혀진 이후, PTD를 이용한 다양한 응용이 시도되었으나(대한민국 특허등록 제10-0568457호), PTD 펩타이드가 바이러스에서 유래하기 때문에 안전성 측면에서 문제점을 가지고 있다.
최근 TAT와 유사한 펩타이드 배열을 가지고, 수송 도메인으로 활용된 펩타이드로서 아르기닌(arginine) 등의 양이온성 아미노산을 다량 함유하는 저분자형 프로타민(low molecular weight protamine, LMWP)이 알려져 있다. 특히, LMWP는 프로타민으로부터 유래하는 천연 유래 양이온성 펩타이드로서, 독성에 대한 염려가 없고 대량으로 생산해 낼 수 있는 장점이 있다 (Park, Y.J. et al ., J. Gene . Med., 700, 2003). 상기 양이온성 펩타이드-약물 결합체는 항체와 결합되어 있는 음이온성을 띠는 분자와 자발적인 이온-이온 상호작용에 의한 복합체 형성이 가능하다.
이에, 본 발명자들은 질병 치료 물질을 세포 내로 효과적으로 전달할 수 있는 방법을 개발하고자 예의 노력한 결과, 단백질 수송 펩타이드인 저분자 프로타민(low molecular weight protamine, LMWP)에 타겟 RNA에 대한 siRNA를 결합시킨 경우, 엔도사이토시스(endocytosis) 과정 없이 직접 세포 내로 도입되어 기존의 siRNA 도입 방법에 비해 용이하고 간편하게 siRNA를 세포 내로 전달하여 질병을 치료할 수 있다는 것을 확인하고 본 발명을 완성하게 되었다.
본 발명의 주된 목적은 단백질 수송 펩타이드와 타겟 RNA에 대한 짧은 간섭 RNA(siRNA)가 결합되어 있는 단백질 수송 펩타이드-siRNA 복합체를 제공하는데 있다.
본 발명의 다른 목적은 상기 복합체를 함유하는 타겟 유전자의 발현에 의하여 발생하는 질병 치료용 약학 조성물을 제공하는데 있다.
상기 목적을 달성하기 위하여, 본 발명은 단백질 수송 펩타이드와 타겟 RNA에 대한 짧은 간섭 RNA(small interference RNA, siRNA)가 결합되어 있는 단백질 수송 펩타이드-siRNA 복합체를 제공한다.
본 발명에 있어서, 상기 단백질 수송 펩타이드는 아르기닌, 라이신 및 히스티딘으로 구성된 군에서 선택되는 아미노산의 함량이 70~80%인 펩타이드인 것을 특징으로 할 수 있고, 바람직하게는 저분자 프로타민(low molecular weight protamine, LMWP(VSRRRRRRGGRRRR)), TAT(YGRKKRRQRRR), 페너트라틴(Penetratin, RQIKIWFQNRRMKWKK) 및 안테나페디아(Antennapedia, ANTP)으로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 타겟 RNA는 혈관 내피세포 성장 인자(vascular endothelial growth factor, VEGF), B-cell 루케미아/림포마 2(B-cell leukemia/lymphoma 2, BCL2), 표피 성장인자 수용체(epidermal growth factor receptor, EGFR), 인간 표피 성장인자 수용체(human epidermal growth factor receptor 2, HER2), 야누스 카이네이즈(Janus kinase, JAN) 및 포스파티딜리노시톨 -3-카이네이즈/Akt 카이네이즈(phosphatidylinositol-3-kinase/Akt kinase, PI3-K/AKT)로 구성된 군에서 선택된 유전자로부터 전사된 mRNA인 것을 특징으로 할 수 있다.
본 발명은 또한, 상기 복합체를 함유하는 타겟 유전자의 발현에 의하여 발생하는 질병 치료용 약학 조성물을 제공한다.
본 발명에 있어서, 상기 질병은 종양인 것을 특징으로 할 수 있다.
이하, 본 발명을 상세히 설명한다.
본 발명의 일 양태는 단백질 수송 펩타이드와 타겟 RNA에 대한 짧은 간섭 RNA(small interference RNA, siRNA)가 결합되어 있는 단백질 수송 펩타이드-siRNA 복합체에 관한 것이다.
본 발명은 단백질 수송 도메인(protein transduction domain, PTD)인 LMWP를 이용하여 타겟 RNA에 대한 siRNA를 세포 내로의 전달 기법에 관한 것으로, 양이온성 PTD 펩타이드인 LMWP를 운반체(carrier)로 하여 도입시키고자 하는 타겟 RNA에 대한 siRNA를 화학적 또는 정전기적 상호작용을 통하여 결합시킨 후, 수용액 상태로 생체 내(in vivo) 및 생체 외( in vitro)에 처리하여 엔도사이토시스(endocytosis) 과정 없이 직접 세포 내로 도입하는 것이다.
상기 양이온성 PTD 펩타이드로는 LMWP 이외의 다른 양이온 PTD 펩타이드, 즉 아르기닌, 라이신 또는 히스티딘이 70~80% 이상 포함된 펩타이드가 사용될 수 있고, 더욱 자세히는 TAT, 페너트라틴(Penetratin) 및 안테나페디아(Antennapedia, ANTP) 등이 사용될 수 있으며, 세포막을 투과할 수 있다면 전술한 펩타이드 이외의 다른 펩타이드 또는 펩타이드 유사체도 사용할 수 있다.
본 발명에 따른 siRNA-LMWP 복합체는 아미노산의 양전하와 siRNA의 음전하 사이의 정전기적 상호작용을 이용하여 결합시키거나, 가교제를 이용하여 화학적 결합을 유도시켜 만들 수 있다. 정전기적 상호작용을 이용하여 결합을 시킬 경우, LMWP:siRNA의 조성비는 효과적으로 유전자를 전달하기 위한 목적을 고려하여 1:1~4:1인 것이 바람직하며, 특히 LMWP와 siRNA의 전하 비가 1:1일 때 가장 큰 효율성을 나타내었다. 상기 조성비의 범위를 초과한 경우에는 유전자의 전달 효율이 감소하는 경향을 나타내었으며, 반응 온도는 실온에서 4시간 동안 방치시킨 결과 siRNA-LMWP 복합체가 형성되는 것을 확인할 수 있었다.
가교제를 이용하여 화학적 결합을 유도시킬 경우, PTD 펩타이드의 N말단에 각각의 자유 아미노기를 지니고 있어 가교제에 의한 복합체 형성이 용이하다. 본 발명에서 사용할 수 있는 가교제는 1,4-비스-말레이미도부탄(1,4-bis-maleimidobutane, BMB), 1,11-비스-말레이미도테트라에틸렌글리콜(1,11-bis-maleimidotetraethyleneglycol, BM[PEO]4), 1-에틸-3-[3-디메틸 아미노프로필] 카보디이미드 하이드로클로라이드(1-ethyl-3-[3-dimethyl aminopropyl] carbodiimide hydrochloride, EDC), 숙시니미딜-4-[N-말레이미도메틸시클로헥산-1-카복시-[6-아미도카프로에이트]](succinimidyl-4-[N-maleimidomethylcyclohexane-1-carboxy-[6-amidocaproate]], SMCC) 및 그의 설폰화염(sulfo-SMCC), 숙시미딜 6-[3-(2-피리딜디티오)-로피오나미도] 헥사노에이트](succimidyl 6-[3-(2-pyridyldithio)- ropionamido] hexanoate, SPDP) 및 그의 설폰화염(sulfo-SPDP), m-말레이미도벤조일-N-하이드로시숙시니미드 에스터(m-maleimidobenzoyl-N-hydroxysuccinimide ester, MBS) 및 그의 설폰화염(sulfo-MBS), 숙시미딜[4-(p-말레이미도페닐) 부틸레이트](succimidyl[4-(p-maleimidophenyl) butyrate], SMPB) 및 그의 설폰화염(sulfo-SMPB) 등이 있으나, 이에 국한되는 것은 아니다. S-S결합에 의해 단백질 수송 도메인과 siRNA가 결합되어 있는 경우, 세포 내에 존재하는 환원 효소 등에 의해 siRNA가 단백질 수송 도메인으로부터 해리가 가능하다. 이와 같은 방법을 이용하면 장시간이 요구되는 재조합벡터를 제작하지 않아도 쉽고 간편하게 siRNA를 세포 내로 도입시킬 수 있어 유전자 사일런싱(gene silencing)을 용이하게 수행할 수 있다.
본 발명에 있어서, siRNA는 타겟 RNA의 발현을 사일런싱하는 RNA를 의미하고, 바람직하게는 질병을 유발하는 RNA로부터 전사된 mRNA를 의미하며, 더욱 바람직하게는 종양을 유발하는 RNA로부터 전사된 mRNA를 의미한다. 본 발명에 있어서, 종양을 유발하는 RNA는 암 유발 유전자로부터 전사된 mRNA를 의미하며, 암 유발 유전자는 혈관 내피세포 성장인자(vascular endothelial growth factor, VEGF) 유전자를 들 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 다른 양태는 상기 복합체를 함유하는 종양 치료용 약학 조성물에 관한 것이다.
본 발명에 따른 루시퍼레이즈를 사일언싱시키는 siRNA와 LMWP를 결합시킨 siRNA-LMWP 복합체에 의한 루시퍼레이즈의 발현 억제 및 혈관 생성 억제 여부를 확 인한 결과, LUCsiRNA-LMWP 복합체를 처리한 경우 루시퍼레이즈의 발현이 억제되었고, VEGF 유전자를 사일런싱시키는 VEGFsiRNA와 LMWP를 결합시킨 VEGFsiRNA-LMWP 복합체를 투여한 세포에서 혈관 내피세포 성장인자(VEGF) 단백질의 발현이 억제되었다. 또한, 상기 VEGFsiRNA-LMWP 복합체를 종양 유도된 마우스 모델에 처리한 경우 종양이 치유되는 것을 확인할 수 있었다.
본 발명에 따른 siRNA-LMWP 복합체의 유효 저해 농도(IC50)을 측정하기 위하여 MTT 검사법을 실시한 결과, 1.3×10-9M의 낮은 농도에서도 세포 독성을 나타내었다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
특히, 하기 실시예에서는 siRNA로 VEGF 유전자의 siRNA만을 예시하였으나, B-cell 루케미아/림포마 2(B-cell leukemia/lymphoma 2, BCL2), 표피 성장인자 수용체(epidermal growth factor receptor, EGFR), 인간 표피 성장인자 수용체(human epidermal growth factor receptor 2, HER2), 야누스 카이네이즈(Janus kinase, JAN) 및 포스파티딜리노시톨-3-카이네이즈/Akt 카이네이즈(phosphatidylinositol-3-kinase/Akt kinase, PI3-K/AKT) 등 질병 유발 유전자의 siRNA를 사용할 경우에도 유사 또는 동일한 효과를 얻을 수 있다는 것은 당업자에게 자명하다 할 것이다.
실시예 1. LMWP 펩타이드 siRNA 의 제조
펩타이드 분해효소인 써모라이신(thermolysin) 및 상기 효소의 활성을 위해 50mM의 EDTA을 첨가하고, 저분자량 프로타민(low molecular weight protamine, LMWP)의 원재료가 되는 프로타민(protamine)을 섞어 30분간 실온에 방치시킨 후, 한외여과(ultrafiltration)를 통해 분해되지 않은 써모라이신을 제거하고, 상기 효소에 의해 분해된 프로타민 분자들을 동결건조시킨 다음, 헤파린 친화성 크로마토그래피(heparin affinity chromatography)를 통해 프로타민의 절편(thermolysin digested segment of protamine; TDSP)을 분리하였다. 상기 분리된 프로타민의 절편 중, TDSP 5(VSRRRRRRGGRRRR)를 LMWP로 사용하였다.
siRNA의 경우, 루시퍼레이즈(luciferase) RNA 및 혈관 내피세포 성장인자(vascular endothelial growth factor, VEGF)의 RNA에 대한 siRNA를 (주)바이오니아에 의뢰하여 제작하였다.
실시예 2. LMWP siRNA 의 복합체 형성
실시예 2-1. 정전기적 결합에 의한 LMWP와 siRNA의 복합체 형성
정전기적 상호작용을 이용하여 LMWP 및 siRNA를 결합시키기 위하여, RNA 분해효소가 제거된 2차 증류수를 반응 용매로 하고, 상기 실시예 1에서 제조된 LMWP:siRNA(LUCsiRNA 또는 VEGFsiRNA)의 조성비를 1:1 전하 비(RNA 1㎍당 LMWP 0.596㎍)로 하여. 실온에서 4시간 동안 방치시켰다. 그 결과, LUCsiRNA-LMWP 복합체 및 VEGFsiRNA-LMWP 복합체가 형성되는 것을 확인할 수 있었다.
실시예 2-2. 화학적 결합에 의한 LMWP 및 siRNA의 복합체 형성
상기 LMWP의 N-말단을 SATA 가교제(PIERCE Biotechnology)를 사용하여 자유-설프하이드릴(free-sulfhydryl)기를 만들어 화학적 결합을 유도하였다. 인산 완충용액(PBS, pH 7.4)에 상기 LMWP 5㎎/㎖ 및 LMWP 분자량의 10배에 해당하는 SATA 가교제를 DMSO(dimethyl sulfoxide)에 녹여 섞은 후, 실온에서 2시간 동안 방치한 다음, 생성된 free-sulfhydryl기의 양을 Ellman's 시약(PIERCE Biotechnology)을 이용하여 측정하였다. LUCsiRNA 또는 VEGFsiRNA는 C-말단에 티올(thiol)기를 붙인 형태로 제작하였다. 상기 1분자의 siRNA-SH당 10분자의 LMWP-SH를 넣어 4℃에서 12시간 반응시킨 후, 한외여과(ultrafiltration)를 통하여 결합되지 않은 분자들을 걸러낸 다음, 동결건조하여 LUCsiRNA-LMWP 복합체 또는 VEGFsiRNA-LMWP 복합체를 수득하였다.
실시예 2-3. siRNA-LMWP 복합체 확인
상기에서 형성된 siRNA-LMWP의 복합체의 결합 여부를 전기영동을 통해 확인하였다. 2% 아가로오즈젤을 사용하여 전기영동을 한 결과, 대조군으로 쓰인 LUCsiRNA는 음전하를 띄므로 양전하 방향(아래쪽)으로 내려오지만, siRNA-LMWP 복합체의 경우 전체적으로 중성을 띄므로 양전하 방향(아래쪽)으로 내려오지 못하고 웰 속에 머물러 있었다 (도 1). 따라서, siRNA-LMWP 복합체가 형성된 것을 확인할 수 있었다.
실시예 3: LUC siRNA - LMWP 복합체에 의한 루시퍼레이즈의 발현 억제
상기 LUCsiRNA-LMWP 복합체를 직접 세포에 접종하여 단백질 발현 억제를 확인하였다. SK-HEP1(human hepatocellular carcinoma cell line)을 변형시켜 만든 세포로서 루시퍼레이즈(Luciferase)를 DNA내에 삽입하여 외부에서 루시페린(Luciferin)을 넣어 줄 경우 연두색으로 발색하는 SK-HEP1-NIS-LUC 세포(서울대학교 암연구소, Shin, J.H. et al., J. Nucl . Ned ., 45:2109, 2004)에 루시퍼레이즈 전령 RNA(mRNA)와 결합하여 루시퍼레이즈의 발현을 억제하는 LUCsiRNA 및 상기 LUCsiRNA-LMWP 복합체를 48시간 동안 처리한 후, 50㎍의 루시페린 용액을 첨가하여 루시퍼레이즈 단백질의 발현 여부를 공초점 주사형광 현미경(confocal laser scanning microscope)으로 관찰하였다 (도 2). 이때, 염색 부위가 세포임을 증명하기 위하여 세포핵을 염색시키는 Hoechst 33342(5㎍/㎖)로 염색한 후, 10% 중성 포르말린 용액으로 세포를 고정하였다.
그 결과, LUCsiRNA-LMWP 복합체를 처리한 경우 LUCsiRNA만 첨가한 경우보다 형광이 거의 나타나지 않았다. 이는 LMWP에 결합된 siRNA가 세포 내로 많이 투과되어 루시퍼레이즈의 전사 RNA(mRNA)와 결합하여 루시퍼레이즈의 발현을 억제시킨 것이라 할 수 있다.
실시예 4: siRNA - LMWP 복합체의 유효 저해농도( IC 50 ) 측정
상기 VEGFsiRNA-LMWP 복합체의 유효 저해농도(IC50)를 측정하기 위하여, 세포의 색소 환원능력 실험(MTT 검사법)를 실시하였다. MTT 검사법은 탈수소 효소작용에 의하여 노란색의 수용성 기질인 MTT 테트라졸리엄(tetrazolium)을 청자색을 띄는 비수용성의 MTT 포마즌(formazan)으로 환원시키는 미토콘드리아의 능력을 이용하는 검사법이다. 쥐의 대장암 세포(CT-26, KCLB(한국세포주은행, Korea cell line bank) 80009)를 배양한 후, siRNA-LMWP 및 상기 VEGFsiRNA-LMWP 복합체를 다양한 농도로 넣어 주었다. 24시간 후, MTT 시약 3-(4,5-dimethylthiazol-2-ly)-2,5-diphenyl tetrazolium bromide(MTT)을 넣어 37℃에서 4시간 동안 배양한 다음, 배지를 제거하고 MTT 시약과 동량의 DMSO를 넣어 540㎚에서 흡광도를 측정하여 세포의 생존율을 확인하였다.
그 결과, siRNA-LMWP 자체에 의해서는 세포독성을 나타내지 않는데 비해, 상기 VEGFsiRNA-LMWP 복합체를 처리한 경우 현저한 세포 독성을 나타내었으며, 유효 저해농도(IC50)는 대략 1.3 x 10-9M로 측정되었다 (도 3). 이는 VEGFsiRNA-LMWP 복합체가 세포내 도입 능력이 향상되어 낮은 농도에서도 유효한 항암력을 나타내는 것이라 할 수 있다.
실시예 5. 생체 외( in vitro )에서 siRNA - LMWP 복합체의 혈관 생성 억제
상기 siRNA-LMWP 복합체의 혈관 생성 억제 정도를 확인하기 위하여, VEGFsiRNA 또는 VEGFsiRNA-LMWP 복합체를 SK-HEP1-NIS-LUC 세포에 30분간 노출시킨 후, 세포 내 총 단백질을 추출한 다음, 전기영동 시키고, 니트로셀룰로오스 멤브레인으로 옮겨, 대조군 단백질인 액틴(actin) 및 혈관 내피세포 성장인자(VEGF)의 항체와 반응시켰다. 이후, 상기 항체와 결합하는 2차 항체를 표지자로 표지하여 반응시켜 세포 내 혈관 형성에 관계하는 마커 단백질인 혈관 내피세포 성장인자(VEGF)의 양을 측정하였다 (도 4).
그 결과, VEGFsiRNA-LMWP 복합체 처리군의 혈관 내피세포 성장인자(VEGF)는 증류수 처리군(NT) 및 VEGFsiRNA 처리군에 비해 적게 발현되었고, 농도가 증가할수록 발현율이 감소하였다. 이 결과는 VEGFsiRNA-LMWP가 VEGFsiRNA에 비해 핵 내로 많이 투과되면서 VEGF 전사 RNA(mRNA)와 결합하여 VEGF 단백질 발현을 억제하여 나타난 것이다.
실시예 6. 생체 내( in vivo )에서 siRNA - LMWP 복합체의 혈관 생성 억제
상기 siRNA-LMWP의 혈관 생성 억제 정도를 확인하기 위하여, 쥐의 대장암 세포(CT-26, KCLB 80009)를 Balb/c 마우스(Musculus sp.)의 대퇴부에 주입하고, 세포 밀도가 0~600㎣이 되었을 때부터 증류수, VEGFsiRNA 및 VEGFsiRNA-LMWP 복합체를 처리한 후, 3일에 한 번씩 복강 또는 피하에 약물을 주사하였다 (site 당 100㎍/200㎕). 총 6회의 주사(3주) 후, 상기 Balb/c 마우스를 희생시켜 암을 적출하고, 그 중 0.1g을 라이시스 용액(50mM Tris-HCl(pH 8.0), 1mM EDTA) 3㎖에 넣어 균질화하였다. 원심분리기를 이용해 상층액을 채취하고 세포 내의 총 단백질을 추출하여, Bradford 방법으로 정량하였다. 단백질 24㎍을 아크릴아미드 겔에 전기영동 시킨 후, 니트로셀룰로오스 멤브레인에 옮기고, 대조군 단백질인 액틴(actin) 및 세포 내 혈관형성에 관계하는 마커 단백질인 혈관내피세포성장인자(VEGF)의 항체와 반응시켰다. 이후, 항체와 결합하는 2차 항체를 표지자로 표지하여 반응시켜 혈관 내피세포 성장인자(VEGF)의 양을 측정하였다 (도 5).
그 결과, VEGFsiRNA-LMWP 복합체를 처리한 경우 증류수 처리군(NT) 및 VEGFsiRNA 처리군에 비하여, 세포의 혈관 내피세포 성장인자의 발현이 50% 내외로 적게 발현되었다. 이는 siRNA-LMWP 복합체가 siRNA에 비해 핵 내로 많이 투과되면서 VEGF 전사RNA(mRNA)와 결합해 VEGF 단백질 발현을 억제시킨다는 것을 의미한다.
실시예 7. siRNA - LMWP 복합체의 종양 치료
상기 siRNA-LMWP 복합체의 종양 치료 정도를 확인하기 위하여, SK-HEP1-NIS-LUC 세포를 Balb/c 마우스(Musculus sp.)의 대퇴부에 주입하고, 세포 밀도가 500~600㎣이 되었을 때 증류수 처리군, VEGFsiRNA 처리군 및 VEGFsiRNA-LMWP 복합체 처리군으로 나눈 후, 2일에 한 번씩 피하에 증류수, VEGFsiRNA 및 VEGFsiRNA-LMWP 복합체를 각각 주사하였다 (site 당 100㎍/200㎕). 약물 주사 전 디지털 캘리퍼를 이용하여 종양의 크기를 측정(부피=장축×단축2×0.52)하여 종양의 크기 변화를 확인하였고, 치료 시작 후 2주에 한 번씩 럼푼과 케타민을 1:2로 섞어 증류수로 3배로 희석시킨 마취용액 200㎕와 종양에서의 루시퍼레이즈 발색 정도를 확인할 수 있는 루시페린 5㎎을 섞어 함께 주사하였다. 주사 20~30분 내에 루미노플루오레센스 카메라(luminofluorescence camera)를 이용하여 분자 영상 이미지를 얻었다 (도 6).
그 결과, 증류수 처리군(NT) 및 VEGFsiRNA 처리군은 각각 치료 23일 및 35일째 되는 날 치사한 반면, VEGFsiRNA-LMWP 처리군의 경우 약물 투여 2주 후부터 종양의 크기가 줄어들기 시작하여 약 50일 이후에 종양이 완전히 치유되는 모습을 보였다. 이는 VEGFsiRNA-LMWP 복합체가 종양 치료에 효과적이라는 것을 나타낸다.
이상 상세히 기술한 바와 같이, 본 발명은 단백질 수송 펩타이드와 타겟 RNA에 대한 짧은 간섭 RNA(siRNA)가 결합되어 있는 단백질 수송 펩타이드-siRNA 복합체 및 이를 함유하는 질병 치료용 약학 조성물을 제공하는 효과가 있다.
본 발명에 따른 복합체는 기존의 바이러스성 펩타이드 수송체에서 탈피하여 높은 안전성을 보이고, 최적의 표적 지향화를 통해 약물 치료 요법의 효과를 극대화하며, 부작용을 최소화하여 혁신적인 치료기술을 제시할 수 있다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정 의된다고 할 것이다.

Claims (6)

  1. 단백질 수송 펩타이드와 타겟 RNA에 대한 짧은 간섭 RNA(small interference RNA, siRNA)가 결합되어 있는 단백질 수송 펩타이드-siRNA 복합체.
  2. 제1항에 있어서, 상기 단백질 수송 펩타이드는 아르기닌, 라이신 및 히스티딘으로 구성된 군에서 선택되는 아미노산의 함량이 70~80%인 펩타이드인 것을 특징으로 하는 복합체.
  3. 제1항에 있어서, 상기 단백질 수송 펩타이드는 저분자 프로타민(low molecular weight protamine, LMWP(VSRRRRRRGGRRRR)), TAT(YGRKKRRQRRR), 페너트라틴(Penetratin, RQIKIWFQNRRMKWKK) 및 안테나페디아(Antennapedia, ANTP)로 구성된 군에서 선택되는 것을 특징으로 하는 복합체.
  4. 제1항에 있어서, 상기 타겟 RNA는 혈관 내피세포 성장 인자(vascular endothelial growth factor, VEGF), B-cell 루케미아/림포마 2(B-cell leukemia/lymphoma 2, BCL2), 표피 성장인자 수용체(epidermal growth factor receptor, EGFR), 인간 표피 성장인자 수용체(human epidermal growth factor receptor 2, HER2), 야누스 카이네이즈(Janus kinase, JAN) 및 포스파티딜리노시톨-3-카이네이즈/Akt 카이네이즈(phosphatidylinositol-3-kinase/Akt kinase, PI3-K/AKT)로 구성된 군에서 선택된 유전자로부터 전사된 mRNA인 것을 특징으로 하는 복합체.
  5. 제1항의 복합체를 함유하는 타겟 유전자의 발현에 의하여 발생하는 질병 치료용 약학 조성물.
  6. 제5항에 있어서, 상기 질병은 종양인 것을 특징으로 하는 조성물.
KR1020060109119A 2006-11-06 2006-11-06 단백질 수송 펩타이드와 짧은 간섭 rna와의 복합체 및그 용도 KR20080041037A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060109119A KR20080041037A (ko) 2006-11-06 2006-11-06 단백질 수송 펩타이드와 짧은 간섭 rna와의 복합체 및그 용도

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060109119A KR20080041037A (ko) 2006-11-06 2006-11-06 단백질 수송 펩타이드와 짧은 간섭 rna와의 복합체 및그 용도

Publications (1)

Publication Number Publication Date
KR20080041037A true KR20080041037A (ko) 2008-05-09

Family

ID=39648435

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060109119A KR20080041037A (ko) 2006-11-06 2006-11-06 단백질 수송 펩타이드와 짧은 간섭 rna와의 복합체 및그 용도

Country Status (1)

Country Link
KR (1) KR20080041037A (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010086597A1 (en) * 2009-01-27 2010-08-05 Trojan Technologies Ltd. Delivery of nucleic acids using cell-penetrating peptides
KR100986604B1 (ko) * 2010-04-01 2010-10-08 충남대학교산학협력단 신규한 아미노지질을 함유하는 에스아이알엔에이 수송용 유전자 조성물 및 제조방법
WO2013032210A2 (ko) * 2011-08-31 2013-03-07 (주)아모레퍼시픽 생체막 투과성 조성물

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010086597A1 (en) * 2009-01-27 2010-08-05 Trojan Technologies Ltd. Delivery of nucleic acids using cell-penetrating peptides
KR100986604B1 (ko) * 2010-04-01 2010-10-08 충남대학교산학협력단 신규한 아미노지질을 함유하는 에스아이알엔에이 수송용 유전자 조성물 및 제조방법
WO2013032210A2 (ko) * 2011-08-31 2013-03-07 (주)아모레퍼시픽 생체막 투과성 조성물
WO2013032210A3 (ko) * 2011-08-31 2013-05-10 (주)아모레퍼시픽 생체막 투과성 조성물

Similar Documents

Publication Publication Date Title
Tai et al. Functional peptides for siRNA delivery
Meade et al. Enhancing the cellular uptake of siRNA duplexes following noncovalent packaging with protein transduction domain peptides
Meade et al. Exogenous siRNA delivery using peptide transduction domains/cell penetrating peptides
KR101095841B1 (ko) 표적 선택적 세포/조직 투과기능 활성을 가지는 펩타이드 및 그 용도
Hou et al. A role for peptides in overcoming endosomal entrapment in siRNA delivery—A focus on melittin
Jans et al. Signals mediating nuclear targeting and their regulation: application in drug delivery
US8354387B2 (en) Methods and compositions for delivering siRNA into mammalian cells
US9598465B2 (en) Cell penetrating peptides for intracellular delivery of molecules
US20050260756A1 (en) Complex for facilitating delivery of dsRNA into a cell and uses thereof
Oskolkov et al. NickFects, phosphorylated derivatives of transportan 10 for cellular delivery of oligonucleotides
Baoum et al. Calcium condensed cell penetrating peptide complexes offer highly efficient, low toxicity gene silencing
KR20130103562A (ko) 암을 치료하기 위한 펩티드 표적화 시스템의 조성물
US9849190B2 (en) Peptide having cancer selective translocation function and use thereof
KR101447901B1 (ko) 지방세포 표적 비바이러스성 유전자 전달체
CN109453187B (zh) 具有双重酶敏感特性的抗体核酸药物偶联物及其制备方法和应用
JP2014508521A (ja) 細胞内へのカーゴ送達のためのシステム
JP2021525508A (ja) 核酸治療薬のための調節可能な共カップリングポリペプチドナノ粒子送達系の組成物および方法
Djemaa et al. Versatile electrostatically assembled polymeric siRNA nanovectors: Can they overcome the limits of siRNA tumor delivery?
JP2020525462A (ja) 改善された薬物送達のためのステープル又はステッチペプチドを含む化合物
Chen et al. Aptamer-functionalized binary-drug delivery system for synergetic obesity therapy
JP2003504417A (ja) 活性物質の細胞特異的、区画特異的、または膜特異的輸送媒介用コンジュゲート
WO2015164666A1 (en) Nanoparticles for targeted gene therapy and methods of use thereof
WO2022147587A1 (en) Extracellular vesicle-mediated delivery to cells
KR20080041037A (ko) 단백질 수송 펩타이드와 짧은 간섭 rna와의 복합체 및그 용도
WO2014121050A1 (en) Functionalized dna dendrimers for gene delivery to cells

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E601 Decision to refuse application