KR20080019202A - Method for coating a cylinder sleeve - Google Patents

Method for coating a cylinder sleeve Download PDF

Info

Publication number
KR20080019202A
KR20080019202A KR1020077025418A KR20077025418A KR20080019202A KR 20080019202 A KR20080019202 A KR 20080019202A KR 1020077025418 A KR1020077025418 A KR 1020077025418A KR 20077025418 A KR20077025418 A KR 20077025418A KR 20080019202 A KR20080019202 A KR 20080019202A
Authority
KR
South Korea
Prior art keywords
layer
alloy
cylinder sleeve
cylinder
copper
Prior art date
Application number
KR1020077025418A
Other languages
Korean (ko)
Other versions
KR101319165B1 (en
Inventor
게르하르트 부커
Original Assignee
말레 인터내셔널 게엠베하
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 말레 인터내셔널 게엠베하 filed Critical 말레 인터내셔널 게엠베하
Publication of KR20080019202A publication Critical patent/KR20080019202A/en
Application granted granted Critical
Publication of KR101319165B1 publication Critical patent/KR101319165B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/131Wire arc spraying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

The invention relates to a method for coating a cylinder sleeve consisting of an iron-based material. A first layer and a second layer made of a zinc alloy are injected onto the outer surface using a thermal injection method. A good metallic connection between the cylinder sleeve and the cylinder crankcase, wherein the cylinder sleeve is poured, is produced by using alloyed or unalloyed copper for the first layer and by using a zinc-aluminium-alloy for the second layer. ® KIPO & WIPO 2008

Description

실린더 슬리브 코팅 방법{METHOD FOR COATING A CYLINDER SLEEVE}Cylinder sleeve coating method {METHOD FOR COATING A CYLINDER SLEEVE}

본 발명은 청구항 1의 전제부에 설명한 실린더 슬리브 코팅 방법에 관한 것이다. The present invention relates to a cylinder sleeve coating method as described in the preamble of claim 1.

일반적으로 실린더 크랭크 케이스는 특히 알루미늄과 같은 경금속으로 주조되며, 경금속의 불량한 마찰마모(tribological) 특성으로 인하여 철 계열 재료, 특히 회주철로 이루어진 실린더 슬리브를 실린더 크랭크 케이스에 함께 주조해야 하는 필요성이 발생한다. 이와 관련하여 실린더 슬리브를 실린더 크랭크 케이스에 충분히 견고하게 고정하고, 실린더 슬리브와 실린더 크랭크 케이스 사이의 충분한 열 전달을 보장하는 것이 문제점이다. 이 문제점은, 실린더 슬리브 외측면이 언더컷을 구비한 거친 표면 주철 구조를 포함함으로써 해결된다. 하지만 이로 인하여 실린더 크랭크 케이스에 주조된 실린더 슬리브 사이의 바(bar)가 매우 넓어지게 되고 따라서 실린더 슬리브가 차지하는 공간이 매우 커진다. In general, cylinder crankcases are cast in particular from light metals such as aluminum, and due to the poor tribological properties of the light metals, there is a need to cast together a cylinder sleeve made of iron-based material, in particular gray cast iron, into the cylinder crankcase. In this connection, it is a problem to secure the cylinder sleeve to the cylinder crankcase sufficiently firmly and to ensure sufficient heat transfer between the cylinder sleeve and the cylinder crankcase. This problem is solved by including the rough surface cast iron structure in which the cylinder sleeve outer surface has an undercut. However, this results in a very wide bar between the cylinder sleeves cast in the cylinder crankcase and thus a very large space taken up by the cylinder sleeves.

동일한 출력에서 엔진의 크기가 작아지는 엔진 개발 경향에 부합하기 위하여 각 실린더 슬리브 사이의 간격을 줄이고 또한 연소실에서 실린더 슬리브를 거쳐 실린더 크랭크 케이스의 냉각 공간으로의 열전달을 개선할 필요성이 발생한다. 이 문제는, 거친 표면 주철 슬리브에 대안적으로 매끄럽거나 균일하게 거친 외측면 및 코팅이 포함된 회주철 실린더 슬리브를 사용함으로써 해결할 수 있는데, 이러한 코팅은 실린더 크랭크 케이스의 외측 주조 재료에 대한 실린더 슬리브의 안정적 결합을 보장한다. There is a need to reduce the spacing between each cylinder sleeve and to improve heat transfer from the combustion chamber through the cylinder sleeve to the cooling space of the cylinder crankcase in order to meet the engine development trend of smaller engines at the same power. This problem can be solved by using a gray cast iron cylinder sleeve which alternatively has a smooth or uniformly rough outer surface and a coating on the rough surface cast iron sleeve, which is a coating of the cylinder sleeve to the outer casting material of the cylinder crankcase. To ensure a stable coupling.

이러한 유형의 회주철 실린더 슬리브는 독일 특허 DE 197 29 017 C2에 설명되어 있다. 여기에 공개된 바에 따르면 슬리브의 외측면은 화염 용사법(flame spraying) 또는 아크 용사법을 이용해 형성되며 15 % 미만의 규소가 함유된 AlSi-합금의 커버층을 포함한다. 이 커버층에는 아연 합금으로 이루어진 산화 보호층이 코팅되는데, 그 용도는 실린더 크랭크 케이스의 외측 주조 재료와 커버층의 금속 결합을 방지하는 AlSi-층의 산화를 방지하는 것이다. Gray cast iron cylinder sleeves of this type are described in German patent DE 197 29 017 C2. As disclosed herein, the outer side of the sleeve is formed by flame spraying or arc spraying and comprises a cover layer of AlSi-alloy containing less than 15% silicon. This cover layer is coated with an oxide protective layer made of zinc alloy, the purpose of which is to prevent oxidation of the AlSi-layer which prevents metal bonding of the outer cast material of the cylinder crankcase and the cover layer.

하지만 커버층의 코팅 시 이미 AlSi-합금이 산화되는 것이 단점이다. 이때 형성된 산화물 피막이 AlSi-층에 매우 견고하게 부착된다. 또한 주조 시 그 용융 온도가 도달 가능한 온도보다 더 높다. 복잡한 과정을 거쳐 산화물 피막을 제거할 수는 있지만, 산화물 피막은 제거 후에 다시 빠르게 다시 형성되므로, 추가적으로 형성된 아연 또는 아연 합금의 보호층이 AlSi-층과 실린더 크랭크 케이스의 외측 주조 재료 사이의 금속 결합을 안정적으로 보장하지 못한다. However, the disadvantage is that the AlSi-alloy is already oxidized when the cover layer is coated. The oxide film formed at this time adheres very firmly to the AlSi layer. Also, in casting, its melting temperature is higher than the temperature attainable. Although the oxide film can be removed through a complex process, the oxide film is quickly re-formed after removal, so that an additional protective layer of zinc or zinc alloy forms a metal bond between the AlSi-layer and the outer casting material of the cylinder crankcase. It cannot be reliably guaranteed.

또한 AlSi 커버층의 열팽창 계수가 회주철의 열팽창 계수의 약 1.7배에 달하므로, 온도 변화 시 알려진 층 시스템에 응력이 발생하는데, 이런 응력은 실린더 슬리브와 실린더 크랭크 케이스 사이의 결합을 침해한다. In addition, the AlSi cover layer has a thermal expansion coefficient of about 1.7 times that of gray cast iron, so that stresses occur in known layer systems upon temperature change, which interferes with the coupling between the cylinder sleeve and the cylinder crankcase.

본 발명의 목적은 이런 종래 기술의 단점을 개선하는 것, 즉 실린더 크랭크 케이스의 외측 주조 재료와 실린더 슬리브 사이의 금속 결합 및 이로써 실린더 슬리브와 실린더 크랭크 케이스 사이의 열전달을 개선하는 것이다. 이 목적은 독립항에 명시한 특징들을 통해 달성된다. It is an object of the present invention to remedy this disadvantage of the prior art, namely to improve the metal coupling between the outer casting material of the cylinder crankcase and the cylinder sleeve and thereby the heat transfer between the cylinder sleeve and the cylinder crankcase. This object is achieved through the features specified in the independent claim.

회주철 슬리브, 층 시스템 및 실린더 크랭크 케이스 사이의 본 발명에 따른 층 구조에서 열팽창 계수의 경사(구배)가 본 발명에 따른 층 구조에서 열에 의한 응력을 현저하게 감소시키는 이점이 나타난다. 또한 실린더 슬리브에서 본 발명에 따른 층 시스템을 거쳐 실린더 크랭크 케이스의 외측 주조 재료에 이르기까지의 용융 온도의 경사는 외측 주조 재료에 대한 외측 층의 확산에 의한 융합 또는 용융 접합을 발생시키는데, 이는 실린더 슬리브와 실린더 크랭크 케이스 외측 주조 재료 사이에서 안정적인 금속 결합이 이루어지게 한다. 마지막으로 본 발명에 따른 합금을 포함하는 코팅은 그 합금 구성 성분이 접합 구역에서 석출 경화(precipitation hardening)에 영향을 미치는 이점을 갖는다. The inclination (gradient) of the coefficient of thermal expansion in the layer structure according to the invention between the gray cast iron sleeve, the layer system and the cylinder crankcase exhibits the advantage of significantly reducing the thermal stress in the layer structure according to the invention. The inclination of the melting temperature from the cylinder sleeve to the outer casting material of the cylinder crankcase through the layer system according to the invention also results in fusion or melt bonding by diffusion of the outer layer to the outer casting material, which is the cylinder sleeve And a stable metal bond between the cylinder and the crankcase outer cast material. Finally, coatings comprising alloys according to the invention have the advantage that their alloying components affect the precipitation hardening in the joining zone.

본 발명의 바람직한 실시 형태는 종속항에 설명된다. Preferred embodiments of the invention are described in the dependent claims.

실린더 크랭크 케이스에 주조되는 실린더 슬리브의 코팅 방법에 대한 본 발명에 따른 방법은 아래에서 상세히 설명된다. The method according to the invention for the method of coating a cylinder sleeve cast in a cylinder crankcase is described in detail below.

본 발명에는 합금이거나 또는 비합금일 수 있는 철 계열 재료로 이루어진 실린더 슬리브가 사용된다. 바람직하게는 실린더 슬리브는 편상 흑연(lamellar graphite), 유충 흑연(vermicular graphite) 또는 구상 흑연을 포함할 수 있는 회주철로 이루어진다. 회주철은 페라이트-펄라이트성(ferritic perlitic), 펄라이트 성(perlitic), 베이나이트성(bainitic) 또는 오스테나이트성(austenitic) 기존 조직을 가질 수 있다. 실린더 슬리브의 외측면은 매끄럽게 형성될 수 있다. 또한 외측면은 평평한 거친 주조 표면에까지 이르는 다른 표면 품질도 가질 수 있다. 이외에도 실린더 슬리브는 절삭 가공된 외측면을 가질 수 있다. In the present invention, a cylinder sleeve made of an iron-based material, which may be an alloy or non-alloy, is used. Preferably the cylinder sleeve is made of gray cast iron which may comprise lamellar graphite, vermicular graphite or spherical graphite. Gray cast iron may have a ferritic perlitic, perlitic, bainitic or austenite existing tissue. The outer surface of the cylinder sleeve can be formed smoothly. The outer side may also have other surface qualities that lead to flat rough cast surfaces. In addition, the cylinder sleeve may have a cut outer surface.

실린더 크랭크 케이스로 실린더 슬리브를 주조할 때, 예를 들어 압력 다이 캐스팅, 스퀴즈 캐스팅(Squeeze Casting), 중력주조법 또는 저압 주조법과 같은 일반적인 모든 주조 방법을 사용할 수 있다. When casting a cylinder sleeve with a cylinder crankcase, all common casting methods such as pressure die casting, squeeze casting, gravity casting or low pressure casting can be used.

실린더 크랭크 케이스는 일반적인 경금속 주조 재료 중 하나로 이루어지며, 알루미늄 계열의 주조 재료 뿐 아니라 마그네슘 계열의 주조 재료도 가능하다. The cylinder crankcase is made of one of the common light metal casting materials. It is possible to cast magnesium based casting materials as well as aluminum based casting materials.

실린더 크랭크 케이스에 실린더 슬리브를 주조할 때 실린더 슬리브와 실린더 크랭크 케이스의 외측 주조 재료와의 금속 결합이 안정적으로 이루어지도록 하기 위해, 열 용사를 통해 실린더 슬리브의 외측면이 코팅된다. 이에 대한 준비 작업으로써, 외측면에서 오염물 및 산화물을 청소하고 이어서 외측면을 러핑(roughing) 처리하는 것이 필요하다. 이에 적합한 방법은 브러싱 및/또는 블러스팅이다. 여기에는 특히 거친 강옥(corundum), 즉 결정질 Al2O3을 통한 블러스팅이 적합하다.When casting the cylinder sleeve to the cylinder crankcase, the outer surface of the cylinder sleeve is coated by thermal spraying so that the metal coupling between the cylinder sleeve and the outer casting material of the cylinder crankcase is made stable. In preparation for this, it is necessary to clean the contaminants and oxides from the outer side and then rough the outer side. Suitable methods for this are brushing and / or blasting. Particularly suitable for this is blasting through coarse corundum, ie crystalline Al 2 O 3 .

이 과정을 실시한 직후에 열 용사를 통해 실린더 슬리브의 외측면에 제1 층을 코팅한다. 이 제1 층은 99.9 %의 구리, CuAl8-합금, CuAl8Ni2-합금, CuP8-합금, CuSi3-합금 또는 CuZn37-합금(황동)으로 이루어진다. 이 공정에서는 두께가 60㎛와 130㎛ 사이인 산화물이 적은 다공성 층이 지향된다. Immediately after this procedure, the first layer is coated on the outer surface of the cylinder sleeve through thermal spraying. This first layer consists of 99.9% copper, CuAl8-alloy, CuAl8Ni2-alloy, CuP8-alloy, CuSi3-alloy or CuZn37-alloy (brass). In this process, an oxide-free porous layer with a thickness of between 60 μm and 130 μm is directed.

실린더 슬리브에 형성되는 층의 용융 온도 경사를 쉽게 조절하기 위해 순수한 구리로 이루어진 제1 층에 전술한 구리 합금으로 이루어진 다른 층을 코팅하는 것이 바람직한데, 그 용융 온도는 구리의 용융 온도보다는 낮지만, 그 용융 온도는 아래에서 제2 층으로 표기되는 외측 코팅으로 이루어진 재료의 용융 온도보다는 높다. In order to easily control the melting temperature gradient of the layer formed in the cylinder sleeve, it is preferable to coat another layer of the above-described copper alloy on the first layer of pure copper, which is lower than the melting temperature of copper, The melting temperature is higher than the melting temperature of the material consisting of the outer coating, denoted below as the second layer.

전술한 합금으로 이루어진 와이어는 시중에 판매되므로, 일반적으로 열 용사법으로는 와이어 화염 용사법(Wire Flame Spraying)이 선호되며, 와이어 형태의 분사 첨가물이 아세틸렌 산소 불꽃의 중앙에서 용융되고, 예를 들어 압축공기 또는 질소와 같은 분사 기체가 실린더 슬리브의 외측면에 분사된다. Since wires made of the above alloys are commercially available, wire flame spraying is generally preferred for thermal spraying, and the spray additive in the form of wire is melted at the center of the acetylene oxygen flame, for example compressed air. Or an injection gas such as nitrogen is injected to the outer side of the cylinder sleeve.

또한 아크 와이어 분사(arc wire spraying)도 적합한데, 이 경우에는 와이어 형태의 두 가지 분사 첨가물이 아크에서 용융되고 분사 기체를 통해 실린더 슬리브의 외측면에 분사된다. 조성이 서로 다른 두 가지 와이어를 서로 용융시키는 것이 가능한데, 이를 통해 형성된 층의 조성은 넓은 범위에서 변화할 수 있다. 예를 들어 구리 와이어 및 아연 와이어를 사용하는 경우, 45 % 이하의 아연이 포함된 CuZn-합금을 실린더 슬리브의 외측면에 코팅하는 것이 가능하다. 질소 또는 아르곤을 분사 기체로 사용하는 경우에는 재료의 산화가 상당 수준 차단된다. Arc wire spraying is also suitable, in which case two spray additives in the form of wire are melted in the arc and sprayed on the outer side of the cylinder sleeve through the spraying gas. It is possible to melt two wires of different composition with one another, whereby the composition of the layer formed can vary over a wide range. When using copper wires and zinc wires, for example, it is possible to coat CuZn-alloys with up to 45% zinc on the outer side of the cylinder sleeve. When nitrogen or argon is used as the injection gas, the oxidation of the material is significantly blocked.

분사 재료의 산화 및 분사된 층의 산화물 함량을 더욱 감소시키기 위해 냉각 기체 용사법을 사용할 수 있는데, 이 방법에서는 용융되지 않고 단지 몇 백 도로만 가열된 분말 입자가 300m/s 내지 1200m/s의 속도로 가속되고 실린더 슬리브의 외측면에 분사된다. 분말 입자의 충돌로 인한 미세 마찰로 인해 접촉면에서 온도가 상 승하며 실린더 슬리브의 외측면에서 분말 입자의 마이크로 용접이 이 이루어진다. To further reduce the oxidation of the sprayed material and the oxide content of the sprayed layer, cold gas spraying can be used, in which powder particles that have not melted and are heated only a few hundred degrees at a rate of 300 m / s to 1200 m / s Accelerated and sprayed on the outer surface of the cylinder sleeve. Due to the fine friction due to the collision of the powder particles, the temperature rises at the contact surface and micro welding of the powder particles occurs at the outer surface of the cylinder sleeve.

또한 고속 화염 용사법(HVOF spraying)도 사용할 수 있는데, 이 방법에서는 분말 형태의 분사 첨가물이 연소실의 중앙 축으로 공급되는데 이 연소실 내에서 연속적인 고압 가스 연소가 이루어진다. 연소실에서 발생된 연소가스 산소 혼합기의 고압은 고속의 입자 속도를 발생시키며, 이로 인해 우수한 접착 특성을 갖는 너무 밀착된 분사층이 형성된다. High speed flame spraying (HVOF spraying) can also be used, in which powdered injection additives are fed to the central axis of the combustion chamber where continuous high pressure gas combustion takes place. The high pressure of the flue gas oxygen mixer generated in the combustion chamber produces a high velocity of particles, which results in the formation of a very tight spray layer with good adhesion properties.

제1 층의 기능은, 실린더 슬리브 회주철에서 제1 층이 양호하게 결합하도록 하고, 제2 층에 대한 양호한 결합 조건이 충족되도록 하며, 용융 온도의 경사, 즉 실린더 슬리브의 회주철에서 제1 층 및 제 2층을 거쳐 실린더 크랭크 케이스의 외측 주조 금속에 이르기까지 단계적인 용융 온도의 전환을 실현시키는 것이다. 이외에도 이를 통하여 실린더 슬리브에서부터 제1 및 제2 층을 거쳐 실린더 크랭크 케이스의 경금속에 이르기까지 열팽창 계수의 경사가 형성된다. The function of the first layer is to ensure that the first layer is well bonded in the cylinder sleeve gray cast iron, that good bonding conditions to the second layer are met, and that the first layer and the first layer in the gray cast iron of the cylinder sleeve are inclined. It is to realize a stepwise change of the melting temperature through the two layers to the outer cast metal of the cylinder crankcase. In addition to this, the inclination of the coefficient of thermal expansion is formed from the cylinder sleeve to the light metal of the cylinder crankcase via the first and second layers.

제1 층의 산화를 방지하기 위하여, 제1 층을 코팅한 직후에 전술한 열 용사법 중 하나를 이용해 제2 층을 제1 층 위에 코팅한다. 이를 위해 바람직하게도 85% 아연 및 15% 알루미늄이 포함된 Zn85Al15 합금이 사용된다. 이 합금에서는 알루미늄 함량이 3 %에서 20 % 사이일 수 있다. 이 공정에서는 두께가 60㎛와 130㎛ 사이인 산화물이 적은 다공성 층이 지향된다. To prevent oxidation of the first layer, immediately after coating the first layer, the second layer is coated over the first layer using one of the thermal spraying methods described above. For this purpose a Zn85Al15 alloy is preferably used, comprising 85% zinc and 15% aluminum. In this alloy, the aluminum content can be between 3% and 20%. In this process, an oxide-free porous layer with a thickness of between 60 μm and 130 μm is directed.

제2 층의 기능은 제1 층이 그 위에 양호하게 코팅되도록 하는 것이다. 또한 15 중량% 알루미늄이 포함된 AlZn-합금은 450 ℃의 용융 온도를 가지며, 이로써 제2 층이 실린더 크랭크 케이스의 주조 시 그 외측 주조 재료에 의해 융착되고 따라 서 실린더 슬리브와 실린더 크랭크 케이스의 외측 주조 재료 사이에서 금속 결합이 이루어진다. The function of the second layer is to allow the first layer to be well coated thereon. The AlZn-alloy with 15 wt% aluminum also has a melting temperature of 450 ° C., whereby the second layer is fused by its outer casting material during casting of the cylinder crankcase, so that the outer casting of the cylinder sleeve and the cylinder crankcase A metal bond is made between the materials.

이때 AlZn-합금이 매우 얇은 산화물 층을 형성하지만 이 층은 실린더 슬리브와 크랭크 케이스 사이의 결합을 방해하지 않는다. 그럼에도 불구하고, 몇 중량%의 구리를 AlZn-합금에 첨가하는 것이 바람직한데, 그 이유는 이렇게 함으로서 산화물 층의 형성이 완전히 억제되고 또한 크랭크 케이스와 실린더 슬리브 사이의 결합이 더욱 개선되기 때문이다. The AlZn-alloy then forms a very thin oxide layer which does not interfere with the bond between the cylinder sleeve and the crankcase. Nevertheless, it is desirable to add a few percent by weight of copper to the AlZn-alloy because this completely suppresses the formation of the oxide layer and further improves the bond between the crankcase and the cylinder sleeve.

본 발명은 실린더 슬리브 코팅 방법에 이용될 수 있다. The present invention can be used in a cylinder sleeve coating method.

Claims (14)

열 용사법을 통하여 아연 합금으로 이루어진 제1 층 및 제2 층이 실린더 슬리브의 외측면으로 용사되는, 철 계열 재료로 구성된 실린더 슬리브의 코팅 방법에 있어서, In the method of coating a cylinder sleeve made of an iron-based material, wherein the first layer and the second layer made of zinc alloy are thermally sprayed onto the outer surface of the cylinder sleeve by thermal spraying, 다음과 같은 공정 단계, 즉 The following process steps: - 구리 또는 구리 계열 합금이 제1 층으로서 실린더 슬리브의 외측면에 용사되는 단계 및 Copper or a copper based alloy is sprayed on the outer surface of the cylinder sleeve as a first layer and - 제1 층에 제 2층으로서 아연 알루미늄 합금이 용사되는 단계를 특징으로 하는 방법. -Spraying zinc aluminum alloy as the second layer on the first layer. 제1항에 있어서, 제1 층으로서 99.9%의 구리가 용사되는 것을 특징으로 하는 방법. The method of claim 1, wherein 99.9% copper is thermally sprayed as the first layer. 제1항에 있어서, 제1 층으로서 CuAl8-합금이 용사되는 것을 특징으로 하는 방법. The method of claim 1 wherein CuAl 8 -alloy is thermally sprayed as the first layer. 제1항에 있어서, 제1 층으로서 CuAl8Ni2-합금이 용사되는 것을 특징으로 하는 방법. The method of claim 1 wherein CuAl 8 Ni 2 -alloy is thermally sprayed as the first layer. 제1항에 있어서, 제1 층으로서 CuP8-합금이 용사되는 것을 특징으로 하는 방법. The method of claim 1, wherein CuP 8 -alloy is thermally sprayed as the first layer. 제1항에 있어서, 제1 층으로서 CuSi3-합금이 용사되는 것을 특징으로 하는 방법. The method of claim 1, wherein CuSi3-alloy is thermally sprayed as the first layer. 제1항에 있어서, 제1 층으로서 45 중량% 이하의 아연이 포함된 CuZn-합금이 용사되는 것을 특징으로 하는 방법. The method of claim 1, wherein CuZn-alloy containing up to 45% by weight of zinc as the first layer is sprayed. 제7항에 있어서, 제1 층으로서 CuZn37-합금이 용사되는 것을 특징으로 하는 방법. 8. The method of claim 7, wherein CuZn37-alloy is thermally sprayed as the first layer. 제1항 내지 제8항 중 어느 한 항에 있어서, 제1 층이 60 ㎛와 130 ㎛ 사이의 두께를 갖는 것을 특징으로 하는 방법. 9. The method of claim 1, wherein the first layer has a thickness between 60 μm and 130 μm. 10. 제1항에 있어서, 제2 층으로서 3 내지 20 중량%의 알루미늄이 포함된 ZnAl-합금이 용사되는 것을 특징으로 하는 방법. The method of claim 1 wherein ZnAl-alloy comprising 3 to 20% by weight of aluminum as the second layer is sprayed. 제10항에 있어서, 제2 층으로서 Zn85Al15-합금이 용사되는 것을 특징으로 하는 방법. The method of claim 10 wherein Zn85Al15-alloy is thermally sprayed as the second layer. 제10항 또는 제11항에 있어서, 구리가 제2 층에 첨가되는 것을 특징으로 하는 방법. 12. The method of claim 10 or 11, wherein copper is added to the second layer. 제1항 내지 제12항 중 어느 한 항에 있어서, 제1 층 및/또는 제2 층의 용사를 위해 냉각 기체 용사법이 사용되는 것을 특징으로 하는 방법. The method according to claim 1, wherein a cooling gas spray is used for the spraying of the first layer and / or the second layer. 회주철로 이루어진 실린더 슬리브에 코팅되는 제1 층으로서의 구리 또는 구리 계열 합금의 사용 및 제1 층에 코팅되는 제2 층으로서의 아연-알루미늄-합금의 사용. Use of copper or a copper based alloy as a first layer coated on a cylinder sleeve made of gray cast iron and use of a zinc-aluminum-alloy as a second layer coated on a first layer.
KR1020077025418A 2005-06-15 2006-06-16 Method for coating a cylinder sleeve KR101319165B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102005027828A DE102005027828A1 (en) 2005-06-15 2005-06-15 Method for coating a cylinder liner
DE102005027828.0 2005-06-15
PCT/DE2006/001023 WO2006133685A1 (en) 2005-06-15 2006-06-16 Method for coating a cylinder sleeve

Publications (2)

Publication Number Publication Date
KR20080019202A true KR20080019202A (en) 2008-03-03
KR101319165B1 KR101319165B1 (en) 2013-10-16

Family

ID=36972883

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020077025418A KR101319165B1 (en) 2005-06-15 2006-06-16 Method for coating a cylinder sleeve

Country Status (9)

Country Link
US (1) US20090110841A1 (en)
EP (1) EP1896626B1 (en)
JP (1) JP5199868B2 (en)
KR (1) KR101319165B1 (en)
CN (1) CN101198712B (en)
BR (1) BRPI0612058A2 (en)
DE (2) DE102005027828A1 (en)
RU (1) RU2414526C2 (en)
WO (1) WO2006133685A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5238883B2 (en) * 2008-09-19 2013-07-17 ノキア シーメンス ネットワークス オサケユキチュア Network element and method of operating network element
CN102371351A (en) * 2010-08-20 2012-03-14 宝馨实业股份有限公司 High silicon-containing aluminum alloy bushing and manufacturing method thereof
DE102010055162A1 (en) 2010-12-18 2012-06-21 Mahle International Gmbh Coating and coated casting component
DE102011085324A1 (en) * 2011-10-27 2013-05-02 Ford Global Technologies, Llc Plasma spray process
DE102012015405B4 (en) * 2012-08-03 2014-07-03 Federal-Mogul Burscheid Gmbh Cylinder liner and method for its production
BR102012025551A2 (en) * 2012-10-05 2014-10-14 Mahle Metal Leve Sa CYLINDER SHIRT FOR ENGINING ON AN ENGINE BLOCK AND ENGINE BLOCK
CN105925928A (en) * 2016-06-22 2016-09-07 成都成发科能动力工程有限公司 Surface treatment method for blade of large turbine machine
US10780491B2 (en) 2018-01-11 2020-09-22 Ford Global Technologies, Llc Aluminum casting design with alloy set cores for improved intermetallic bond strength

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE940082C (en) * 1950-11-17 1956-03-08 Goetzewerke Process for the production of cylinder liners
US3480465A (en) * 1966-03-30 1969-11-25 Shichiro Ohshima Method of chemically bonding aluminum or aluminum alloys to ferrous alloys
US4269867A (en) * 1979-09-04 1981-05-26 Texasgulf Inc. Metallizing of a corrodible metal with a protective metal
JPH03138071A (en) * 1989-10-25 1991-06-12 Mazda Motor Corp Manufacture of cast iron-made cylinder block
US5429173A (en) * 1993-12-20 1995-07-04 General Motors Corporation Metallurgical bonding of metals and/or ceramics
JP2858208B2 (en) * 1994-04-20 1999-02-17 本田技研工業株式会社 Cylinder block
US5899185A (en) * 1994-11-25 1999-05-04 Fuji Oozx Inc. Method of increasing heat transfer of a fitted material of a cylinder head in an internal combustion engine and a fitted portion of the fitted material
KR100250217B1 (en) * 1995-12-22 2000-04-01 이구택 Spray coating method for casting mold
DK174241B1 (en) * 1996-12-05 2002-10-14 Man B & W Diesel As Cylinder element, such as a cylinder liner, piston, piston skirt or piston ring, in a diesel-type internal combustion engine as well as a piston ring for such an engine.
DE19729017C2 (en) * 1997-07-08 2001-10-31 Federal Mogul Burscheid Gmbh Cylinder liner
DE19733205B4 (en) * 1997-08-01 2005-06-09 Daimlerchrysler Ag Coating for a cylinder surface of a reciprocating engine of a hypereutectic aluminum / silicon alloy, spray powder for their production and their use
EP0970757B1 (en) * 1998-07-07 2002-10-30 Kabushiki Kaisha Nippankenkyusho Rust preventive coating and method for forming the same
JP2000282211A (en) * 1999-01-27 2000-10-10 Suzuki Motor Corp Thermal spraying material and structural body on which it is film-formed
DE19937934A1 (en) * 1999-08-11 2001-02-15 Bayerische Motoren Werke Ag Cylinder crankcase, method for manufacturing the cylinder liners therefor and method for manufacturing the cylinder crankcase with these cylinder liners
AU7907900A (en) * 1999-10-29 2001-05-14 Man B&W Diesel A/S Method and device for producing machine components that are provided with at least one sliding surface
JP2001234806A (en) * 2000-02-21 2001-08-31 Toyota Motor Corp Cast-in method and cast-in product
DE10019793C1 (en) * 2000-04-20 2001-08-30 Federal Mogul Friedberg Gmbh Cylinder liner for internal combustion engines and manufacturing processes
CN1141414C (en) * 2000-05-18 2004-03-10 中国科学院海洋研究所 Anticorrosion method of marine steel
US20020073982A1 (en) * 2000-12-16 2002-06-20 Shaikh Furqan Zafar Gas-dynamic cold spray lining for aluminum engine block cylinders
DE10150999C2 (en) * 2001-10-16 2003-08-07 Peak Werkstoff Gmbh Method of profiling the outer peripheral surface of cylinder liners
DE10324279B4 (en) * 2003-05-28 2006-04-06 Daimlerchrysler Ag Use of FeC alloy to renew the surface of cylinder liners
US20060090593A1 (en) * 2004-11-03 2006-05-04 Junhai Liu Cold spray formation of thin metal coatings

Also Published As

Publication number Publication date
US20090110841A1 (en) 2009-04-30
EP1896626B1 (en) 2009-09-09
CN101198712B (en) 2010-12-15
DE502006004802D1 (en) 2009-10-22
RU2414526C2 (en) 2011-03-20
JP5199868B2 (en) 2013-05-15
JP2008544175A (en) 2008-12-04
WO2006133685A1 (en) 2006-12-21
KR101319165B1 (en) 2013-10-16
RU2007147933A (en) 2009-07-20
BRPI0612058A2 (en) 2010-10-13
EP1896626A1 (en) 2008-03-12
CN101198712A (en) 2008-06-11
DE102005027828A1 (en) 2006-12-21

Similar Documents

Publication Publication Date Title
KR101319165B1 (en) Method for coating a cylinder sleeve
US6221504B1 (en) Coating consisting of hypereutectic aluminum/silicon alloy and/or an aluminum/silicon composite material
JP4491385B2 (en) Casting parts, cylinder block and cylinder liner manufacturing method
KR100304463B1 (en) Coating for reciprocating engine cylinder
US8444042B2 (en) Method for producing steel pipe plated with metal by thermal spraying
JP2013534965A (en) Wire-like thermal spray material, functional layer that can be produced thereby, and substrate coating method using thermal spray material
US20020033161A1 (en) Cylinder crankcase, procedure for manufacturing the cylinder bushings for the cylinder crankcase, and procedure for manufacturing the cylinder crankcase with these cylinder bushings
CA2129448A1 (en) A material and a method for forming a protective coating on a substrate of a copper-based alloy
JP2006516313A (en) Valve seat and method for manufacturing the valve seat
US5039477A (en) Powdered metal spray coating material
US6397464B1 (en) Method for producing a valve seat
US7296610B2 (en) Method of manufacturing metallic components
JP2003025058A (en) Al ALLOY MEMBER FOR CAST-IN AND METHOD FOR CASTING THIS Al ALLOY MEMBER FOR CAST-IN
US5194339A (en) Discontinuous casting mold
JPH0367470B2 (en)
JP3460968B2 (en) Spray method
JPS59133360A (en) Melt-spraying material
JPH07224370A (en) Bronze bearing material and its production
JPS61163259A (en) Thermal spraying material
KR100533649B1 (en) Fabrication method of metallic wire for thermal spray deposition or welding
JPS60255963A (en) Thermal spraying material and its manufacture
JPH0517304B2 (en)
JPH0813118A (en) Adhesion structure of thermally sprayed coating film and improvement of adhesion of thermally sprayed coating film
JP2001262309A (en) HOT DIP Zn AND Mg-CONTAINING Al BASE COATED STEEL SHEET EXCELLENT IN RUST-FLOWING RESISTANCE ON EXPOSED PART OF STEEL BASE PART AND LOCAL CORROSION RESISTANCE ON COATED SURFACE, AND ITS PRODUCING METHOD

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160929

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee