JPH0813118A - Adhesion structure of thermally sprayed coating film and improvement of adhesion of thermally sprayed coating film - Google Patents

Adhesion structure of thermally sprayed coating film and improvement of adhesion of thermally sprayed coating film

Info

Publication number
JPH0813118A
JPH0813118A JP17026894A JP17026894A JPH0813118A JP H0813118 A JPH0813118 A JP H0813118A JP 17026894 A JP17026894 A JP 17026894A JP 17026894 A JP17026894 A JP 17026894A JP H0813118 A JPH0813118 A JP H0813118A
Authority
JP
Japan
Prior art keywords
base material
sprayed film
sprayed
layer
adhesion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17026894A
Other languages
Japanese (ja)
Other versions
JP3033811B2 (en
Inventor
Kazuhiko Mori
和彦 森
Yukikazu Kodama
幸多 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP6170268A priority Critical patent/JP3033811B2/en
Publication of JPH0813118A publication Critical patent/JPH0813118A/en
Application granted granted Critical
Publication of JP3033811B2 publication Critical patent/JP3033811B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To enhance the metallurgical joining property of a thermally sprayed coating film to a base material composed of aluminum alloy and to improve the adhesion of the sprayed coating film. CONSTITUTION:A base material such as piston, consisting of aluminum alloy (Al-Si), and a thermally spraying material, containing an alloying element (Cu) having a melting point lower than that of the aluminum alloy constituting the base material and capable of forming a melt layer, are used. This thermally spraying material is subjected to thermally spraying treatment, by which the sprayed coating film is laminated on the base material. Subsequently, heating is done for 2hr to 530 deg.C as a temp. corresponding to the solution heat treatment temp. of T6 and T7 treatment, by which a melt layer is formed in an interfacial region. Then, by applying cooling, an interfacial melted and solidified layer is formed in the interface between the sprayed coating film and the base material and metallurgical joining property is enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は溶射膜密着構造及び溶射
膜密着向上方法に関する。本発明は例えば内燃機関のピ
ストンのリング溝、シリンダのボア摺動面に適用できる
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sprayed film adhesion structure and a sprayed film adhesion improving method. INDUSTRIAL APPLICABILITY The present invention can be applied to, for example, a piston ring groove of an internal combustion engine and a bore sliding surface of a cylinder.

【0002】[0002]

【従来の技術】従来より基材に溶射膜を積層することが
行われている。溶射膜と基材との密着は一般に機械的な
結合が主体であり、溶射処理前にショットブラストによ
り基材を粗面化させ、表面積を増加したり、新生面を出
したりすることにより、溶射膜の密着力を増加させてい
る。
2. Description of the Related Art Conventionally, a thermal spray coating is laminated on a base material. Generally, the mechanical bond is the main contact between the sprayed film and the base material, and the base material is roughened by shot blasting before the spraying process to increase the surface area or create a new surface, thereby forming a sprayed film. Has increased the adhesion.

【0003】溶射膜の密着力を向上させるための他の方
法としては、溶射処理前の状態の基材を予熱する方法も
提案されている。また特公昭54−42855号公報に
は、ショットブラスト処理した表出面を備えた基材に、
白銑化した鋳鉄からなる粉末を基材の表出面に溶射し、
密着力を向上させた硬化層を積層する技術が開示されて
いる。
As another method for improving the adhesion of the sprayed coating, a method of preheating a base material in a state before the spraying treatment has been proposed. In addition, Japanese Patent Publication No. 54-42855 discloses that a base material having a surface exposed by shot blasting,
The surface of the base material is sprayed with powder made of white cast iron.
A technique of stacking a cured layer having improved adhesion is disclosed.

【0004】[0004]

【発明が解決しようとする課題】ショットブラストによ
る表出面の粗面化の程度は、その清浄度、ブラスト粒子
の大きさ、形態、材質等により大きく影響を受ける。そ
のため溶射膜の密着力はかなりバラツキ傾向にあり、信
頼性に関しては必ずしも充分ではなく、工程管理にて対
応しているのが現状である。このため、溶射膜のはがれ
等が発生し易く、不良の発生もしばしばである。従っ
て、ショットブラストした表出面への溶射膜の積層は、
比較的重要性が低い部品へは適用されているものの、重
要性が高い部品への適用は進んでいないのが実情であ
る。
The degree of roughening of the exposed surface by shot blasting is greatly influenced by the cleanliness, the size, shape and material of the blast particles. Therefore, the adhesion of the sprayed coating tends to vary considerably, the reliability is not always sufficient, and the current situation is to manage the process. Therefore, peeling of the sprayed film is likely to occur, and defects often occur. Therefore, the lamination of the sprayed film on the exposed surface shot blasted,
Although it is applied to relatively less important parts, the fact is that it has not been applied to highly important parts.

【0005】前記した溶射処理前に基材を予熱する形態
においても、ショットブラスト処理による密着力向上を
前提としたものであり、溶射膜の密着力を大幅に向上で
きるものではない。更に、前記した公報に係る技術にお
いても、ショットブラスト処理による密着力向上を前提
としたものであり、溶射膜の密着力を大幅に向上できる
ものではなく、しかも基材はアルミ合金系ではなく鉄系
を対象とするものである。
Even in the case of preheating the base material before the thermal spraying treatment described above, it is premised on the improvement of the adhesiveness by the shot blasting treatment, and the adhesiveness of the thermal spray coating cannot be greatly improved. Further, the technology according to the above-mentioned publication is also based on the premise that the adhesion strength is improved by the shot blasting treatment, and the adhesion strength of the sprayed film cannot be significantly improved, and the base material is not an aluminum alloy type but an iron material. It is intended for systems.

【0006】本発明は上記した実情に鑑みなされたもの
であり、アルミ合金からなる基材と溶射膜との界面にお
いて界面溶融凝固層を形成することにより、溶射膜の冶
金的接合性を高め、溶射膜の密着力を向上させた溶射膜
密着構造及び溶射膜密着向上方法を提供することを課題
とする。
The present invention has been made in view of the above-mentioned circumstances, and enhances the metallurgical bondability of a sprayed film by forming an interfacial melt solidification layer at the interface between a base material made of an aluminum alloy and the sprayed film, An object of the present invention is to provide a sprayed film adhesion structure in which the adhesion of the sprayed film is improved and a sprayed film adhesion improving method.

【0007】[0007]

【課題を解決するための手段】本発明者は、アルミ合金
からなる基材に溶射膜を積層する形態について鋭意開発
を進めた結果、基材を構成するアルミ合金よりも低い融
点をもつ溶融液層を生成可能な合金元素を含む溶射材料
を用い、その溶射材料を基材に溶射処理して溶射膜を形
成した後に、溶融液層を生成し得る温度領域(共晶温度
より僅かに上方の温度領域)に加熱した後に冷却すれ
ば、溶射膜と基材との界面において薄厚状の界面溶融凝
固層(共晶組織または共晶を含む組織と推定される)が
形成され、これの冶金的結合により、基材に対する溶射
膜の密着力が大幅に向上することを知見し、試験で確認
し、本発明を完成したものである。
Means for Solving the Problems The inventors of the present invention have made intensive efforts to develop a mode of laminating a sprayed coating on a base material made of an aluminum alloy, and as a result, have found that a molten liquid having a melting point lower than that of the aluminum alloy constituting the base material. A thermal spray material containing an alloying element capable of forming a layer is used, and after the thermal spray material is sprayed on a base material to form a sprayed film, a temperature range in which a molten liquid layer can be formed (slightly above the eutectic temperature If heated to a temperature range) and then cooled, a thin interfacial solidification layer (presumed to be a eutectic structure or a structure containing a eutectic) is formed at the interface between the sprayed film and the base material, and metallurgical The inventors have found that the bond strength of the sprayed film to the base material is significantly improved by the bonding, and confirmed by a test to complete the present invention.

【0008】例えば、図1に示すアルミと他の元素
(X)との二元系の状態図において、共晶温度Teより
僅かに上方の温度Taに加熱すれば溶融液層が局部的に
生成するものの、合金濃度が高まるとすぐに固化してし
まい、結局、溶融液層が界面領域でしか生じない。従っ
てこれを冷却すれば、溶射膜と基材との界面において局
部的に薄い肉厚の界面溶融凝固層(共晶組織または共晶
を含む組織と推定される)が形成され、これの冶金的結
合性が向上すると考えられる。
For example, in the phase diagram of a binary system of aluminum and another element (X) shown in FIG. 1, if a temperature Ta slightly higher than the eutectic temperature Te is heated, a molten liquid layer is locally formed. However, as the alloy concentration increases, the alloy solidifies immediately and, eventually, the melt layer is formed only in the interface region. Therefore, if this is cooled, a thin-walled interface melt solidification layer (presumed to be a eutectic structure or a structure containing a eutectic) is locally formed at the interface between the sprayed film and the base material, and the metallurgical It is considered that the bondability is improved.

【0009】即ち、請求項1に係る溶射膜密着構造は、
表出面を備えたアルミ合金からなる基材と、基材の表出
面に積層された溶射膜とで構成され、溶射膜と基材との
界面領域には溶融凝固した界面溶融凝固層が形成されて
いることを特徴とするものである。請求項2に係る溶射
膜密着向上方法は、上記した請求項1に係る溶射膜密着
構造を容易に製造できる方法であり、アルミ合金からな
る基材と、基材を構成するアルミ合金よりも低い融点を
もつ溶融液層を生成可能な合金元素を含む溶射材料とを
用い、溶射材料を該基材の表出面に溶射処理して溶射膜
を積層する溶射工程と、溶射処理後において溶融液層を
生成し得る温度領域に少なくとも溶射膜を加熱し、溶射
膜と基材との界面領域において局部的な溶融液層を形成
し、その後に冷却することにより、溶射膜と基材との界
面領域に溶融凝固した界面溶融凝固層を形成し、界面領
域における冶金的結合性を高める冶金接合工程とを順に
実施することを特徴とするものである。
That is, the sprayed film adhesion structure according to claim 1 is
It is composed of a base material made of an aluminum alloy having a surface to be exposed and a sprayed film laminated on the surface of the base material, and an interfacial melted and solidified layer that is melted and solidified is formed in the interface region between the sprayed film and the base material. It is characterized by that. The sprayed film adhesion improving method according to claim 2 is a method capable of easily manufacturing the sprayed film adhesion structure according to claim 1, and is lower than the base material made of an aluminum alloy and the aluminum alloy constituting the base material. Using a thermal spray material containing an alloying element capable of forming a molten liquid layer having a melting point, a thermal spray material is sprayed on the exposed surface of the base material to form a thermal spray film, and a molten liquid layer after the thermal spray treatment. By heating at least the sprayed film in a temperature range capable of generating, to form a local melt layer in the interface region between the sprayed film and the base material, and then by cooling it, the interface region between the sprayed film and the base material Is characterized in that an interfacial melt-solidified layer that is melt-solidified is formed, and a metallurgical joining step for enhancing metallurgical bondability in the interface region is sequentially performed.

【0010】[0010]

【作用】アルミ合金からなる基材と、基材の表出面に積
層された溶射膜は、界面溶融凝固層を介して冶金的結合
をしている。従って溶射膜は高い密着強度が得られる。
請求項1においては、界面溶融凝固層は共晶組織または
共晶を含む組織であると考えられる。共晶の組成は、一
般的には、溶射粉末の組成や基材を構成するアルミ合金
等に応じる。二元系の場合には二元系共晶、三元系の場
合には三元系共晶、多元系の場合には多元系共晶とな
る。界面溶融凝固層の平均厚みは5〜500μm程度、
特に10〜200μmにできる。溶射膜の接合強度確保
を考慮すると、界面溶融凝固層は、基材と溶射膜の界面
の略全面に介在する形態が好ましいが、界面領域に部分
的に介在する形態でも良い。
[Function] The base material made of an aluminum alloy and the sprayed film laminated on the exposed surface of the base material are metallurgically bonded through the interfacial melting and solidifying layer. Therefore, the sprayed film can obtain high adhesion strength.
In the first aspect, the interfacial melt solidification layer is considered to have a eutectic structure or a structure containing a eutectic. The composition of the eutectic generally depends on the composition of the sprayed powder, the aluminum alloy constituting the base material, and the like. In the case of a binary system, it is a binary eutectic, in the case of a ternary system, it is a ternary eutectic, and in the case of a multi-component system, it is a multi-element eutectic. The average thickness of the interface melting and solidifying layer is about 5 to 500 μm,
In particular, it can be 10 to 200 μm. In consideration of ensuring the bonding strength of the sprayed film, the interfacial melted and solidified layer is preferably present on substantially the entire interface between the substrate and the sprayed film, but may be partially present on the interface region.

【0011】界面溶融凝固層は、基材と溶射膜の界面領
域に生成した溶融液層が凝固して形成されるので、界面
溶融凝固層を凝固させる冷却速度を比較的大きくでき、
従って界面溶融凝固層における組織は微細化され易い。
図2に模式的に例示した様に基材1の表出面1aに溶射
膜2を一層積層する形態でも、あるいは、図3に模式的
に例示した様に基材1の表出面1aに第1溶射層3aを
積層し、その上に第2溶射層3bを積層する形態でも良
い。
The interface melt-solidified layer is formed by solidifying the melt liquid layer generated in the interface region between the base material and the sprayed film, so that the cooling rate for solidifying the interface melt-solidified layer can be made relatively high,
Therefore, the structure in the interfacial melting and solidifying layer is likely to be refined.
In a form in which the sprayed film 2 is further laminated on the exposed surface 1a of the base material 1 as schematically illustrated in FIG. 2, or on the exposed surface 1a of the base material 1 as illustrated schematically in FIG. The sprayed layer 3a may be laminated, and the second sprayed layer 3b may be laminated thereon.

【0012】溶射処理の際には、表面が部分的に溶融し
た粒状の溶射材料、あるいは、全体が液滴状となった粒
状の溶射材料が基材の表出面に衝突する。そのため溶射
膜の内部構造は、図4に模式的に示す様に、やや偏平な
粒子4が積層される形態となる。なお粒子4間は粒子4
の種類にもよるが一般的には微小気孔となり易い。請求
項2においては、基材を構成するアルミ合金よりも低い
融点をもつ溶融液層を生成可能な合金元素を含む溶射材
料を用いる。溶射材料が粉粒状である場合には、粒径は
1〜100μm、特に5〜70μm程度にできる。この
様な元素としては銅、シリコン、銀、スズ、亜鉛が挙げ
られる。この場合にはその合金元素を合金化した粉末を
溶射材料として用いたり、その合金元素の粉末と溶射材
料であるアルミ粉末との混合粉末を用いることができ
る。
During the thermal spraying treatment, a granular thermal spraying material whose surface is partially melted or a granular thermal spraying material which is entirely in the form of droplets collides with the exposed surface of the base material. Therefore, the internal structure of the sprayed film has a form in which slightly flat particles 4 are laminated, as schematically shown in FIG. In addition, between particles 4 is particle 4
Generally, it is easy to form micropores depending on the type. In the second aspect, a thermal spray material containing an alloy element capable of forming a melt layer having a melting point lower than that of the aluminum alloy forming the base material is used. When the thermal spray material is in the form of powder, the particle size can be about 1 to 100 μm, especially about 5 to 70 μm. Examples of such elements include copper, silicon, silver, tin and zinc. In this case, a powder obtained by alloying the alloy element can be used as a thermal spray material, or a mixed powder of the alloy element powder and an aluminum powder which is a thermal spray material can be used.

【0013】そして請求項2においては、溶射材料を基
材の表出面に溶射処理して溶射膜を積層する。溶射処理
に先立ち、従来と同様に基材の表出面はブラスト処理に
より粗面化しておくことが好ましい。界面溶融凝固層に
よる冶金的結合に加えて、従来同様に機械的結合をも期
待でき、溶射膜の一層の密着力の増加を期待できるから
である。請求項2においては、溶射処理の後に、前記し
た溶融液層を生成し得る温度領域に少なくとも溶射膜を
加熱することにより、溶射膜と基材との界面領域におい
て溶融液層を形成する。加熱温度は溶融液層の融点より
も数10°C(例えば2〜50°C程度なかでも10〜
30°C程度)上方に設定することが好ましい。従って
共晶を意図する場合には、共晶温度よりも例えば2〜5
0°C程度なかでも10〜30°C程度上方に設定する
ことが好ましい。
According to a second aspect of the present invention, the sprayed material is sprayed on the exposed surface of the base material to form a sprayed film. Prior to the thermal spraying treatment, it is preferable that the exposed surface of the base material is roughened by blasting as in the conventional case. This is because, in addition to metallurgical bonding by the interfacial melting and solidifying layer, mechanical bonding can be expected as in the conventional case, and further increase in adhesion of the sprayed coating can be expected. In the second aspect, after the thermal spraying treatment, at least the thermal sprayed film is heated to a temperature region where the above-mentioned molten liquid layer can be formed, so that the molten liquid layer is formed in the interface region between the thermal sprayed film and the base material. The heating temperature is several tens of degrees Celsius (e.g.
It is preferable to set the temperature above 30 ° C.). Therefore, when a eutectic is intended, the temperature is, for example, 2 to 5 rather than the eutectic temperature.
It is preferable to set the temperature above 10 ° C to 30 ° C even above 0 ° C.

【0014】冶金接合工程を実施する前における溶射膜
の気孔率は、基材の形状や種類等に応じて適宜選択でき
るが、一般的には2体積%以下(なかでも1体積%以
下、特に0.8体積%以下、0.6体積%以下)が好ま
しい。気孔率が小さい方が界面における溶融液層の流出
回避に有利であり、ひいては界面溶融凝固層の生成に有
利と考えられる。
The porosity of the sprayed film before carrying out the metallurgical bonding step can be appropriately selected according to the shape and type of the base material, but it is generally 2% by volume or less (in particular, 1% by volume or less, especially 0.8 volume% or less, 0.6 volume% or less) is preferable. It is considered that the smaller porosity is advantageous for avoiding the outflow of the molten liquid layer at the interface, and thus is advantageous for the formation of the interfacial melt solidification layer.

【0015】加熱は、基材全体を加熱炉に装入して基材
全体を加熱する形態でも良く、あるいは、誘導加熱等を
利用して溶射膜を局部的に加熱する様にしても良い。そ
の後に溶射膜を冷却することにより、溶融液層を凝固さ
せ、界面溶融凝固層を形成する。この場合には溶融液層
自体の体積は基材体積に比較して大幅に小さく、かつ、
基材は熱伝導性の高いアルミ合金製であるため、溶融液
層の熱は基材側に迅速に伝熱され、凝固冷却速度を大き
くでき、従って界面溶融凝固層における組織の微細化を
図り得る。
The heating may be carried out by charging the entire base material into a heating furnace to heat the entire base material, or by using induction heating or the like to locally heat the sprayed film. Thereafter, the sprayed film is cooled to solidify the melt liquid layer and form an interfacial melt solidification layer. In this case, the volume of the melt layer itself is significantly smaller than the base material volume, and
Since the base material is made of an aluminum alloy with high thermal conductivity, the heat of the melt layer is quickly transferred to the base material side, and the solidification cooling rate can be increased. Therefore, the structure of the interfacial melt solidification layer can be refined. obtain.

【0016】[0016]

【実施例】【Example】

(実施例1)溶射工程では、鉄系粉末(アトマイズ粉
末,−280メッシュ,鉄−1.0wt%炭素)と銅−
アルミ粉末(アトマイズ粉末,−200メッシュ,銅−
9wt%アルミ)とを用い、両者を混合して混合粉末と
し、これを溶射材料とする。ここで混合粉末全体を10
0wt%としたとき、銅−アルミ粉末を30wt%の配
合割合とした。
(Example 1) In the thermal spraying process, iron-based powder (atomized powder, -280 mesh, iron-1.0 wt% carbon) and copper-
Aluminum powder (atomized powder, -200 mesh, copper-
9 wt% aluminum), and both are mixed to form a mixed powder, which is used as a thermal spray material. Here, the whole mixed powder is 10
When the content was 0 wt%, the copper-aluminum powder had a blending ratio of 30 wt%.

【0017】基材として、アルミ−シリコン−マグネシ
ウム系であるJIS−AC8Aのアルミ合金を用いる。
基材の表出面はブラスト処理により粗面化(Rz50〜
150μm程度)されている。そして、上記した溶射材
料を溶射装置により基材の表出面に溶射した。これによ
り溶射膜(平均厚み400〜600μm程度)を表出面
に積層した。この溶射膜の気孔率は一般的には0.5〜
1体積%である。溶射条件はHVOF溶射法で、O2
40リットル/min、プロピレン=39リットル/m
in、エア=56リットル/min、粉末供給量=90
グラム/minである。
As the base material, an aluminum alloy of JIS-AC8A which is an aluminum-silicon-magnesium system is used.
The exposed surface of the base material is roughened by blasting (Rz50-
It is about 150 μm). Then, the above-mentioned thermal spray material was sprayed onto the exposed surface of the substrate by a thermal spraying device. As a result, a sprayed film (average thickness of 400 to 600 μm) was laminated on the exposed surface. The porosity of this sprayed film is generally 0.5 to
It is 1% by volume. The thermal spraying conditions are HVOF thermal spraying method and O 2 =
40 liters / min, propylene = 39 liters / m
in, air = 56 liter / min, powder supply amount = 90
Gram / min.

【0018】次に冶金接合工程を実施する。即ち、溶射
膜を積層した基材を均熱式の加熱炉に装入し、大気雰囲
気において530℃×2hr加熱保持し、これにより熱
処理した。この熱処理の温度は、基材を構成するアルミ
合金のT6処理やT7処理に対応するものであり、従っ
て、基材を構成するアルミ合金はT6処理やT7処理と
しての溶体化処理が実施されることになる。
Next, a metallurgical joining process is carried out. That is, the base material on which the sprayed coating was laminated was placed in a soaking type heating furnace, heated and held at 530 ° C. for 2 hours in the air atmosphere, and heat-treated thereby. The temperature of this heat treatment corresponds to the T6 treatment or T7 treatment of the aluminum alloy constituting the base material. Therefore, the aluminum alloy constituting the base material is subjected to solution treatment as T6 treatment or T7 treatment. It will be.

【0019】なお熱処理の際には溶射膜が上に基材が下
になる様に配置した。これにより溶射膜の気孔率が比較
的高い場合であっても、界面に生成した溶融液層の流出
回避に有利であると考えられる。熱処理の後、常温領域
に空冷した。その後、大気雰囲気において170°Cで
10時間加熱保持して時効処理を行ない、その後空冷し
た。
During the heat treatment, the sprayed film was placed on the top and the substrate was placed on the bottom. Therefore, even if the porosity of the sprayed film is relatively high, it is considered to be advantageous for avoiding the outflow of the melt layer generated at the interface. After the heat treatment, it was air-cooled to a room temperature region. Then, it was heated and held at 170 ° C. for 10 hours in an air atmosphere to perform an aging treatment, and then air-cooled.

【0020】この実施例では溶射材料は前記の様に銅−
アルミ粉末を含むものであり、基材はアルミ−シリコン
系である。ここでアルミ−銅−シリコンの三元系状態図
を考慮すると、アルミ−銅−シリコン系の三元系共晶の
共晶温度は524°Cと判断される。従って上記した様
に溶射膜を備えた基材を530℃×2hr加熱保持した
後に冷却すれば、その共晶組成または共晶に近い組成の
溶融液が界面に生成し、凝固により、共晶組織または共
晶を含む組織が界面に生成したものと推察される。
In this embodiment, the thermal spray material is copper-based as described above.
It contains aluminum powder, and the base material is an aluminum-silicon system. Considering the aluminum-copper-silicon ternary phase diagram, the eutectic temperature of the aluminum-copper-silicon ternary eutectic is determined to be 524 ° C. Therefore, as described above, when the substrate provided with the sprayed film is heated and held at 530 ° C. for 2 hours and then cooled, a melt having a eutectic composition or a composition close to the eutectic is generated at the interface, and solidification causes eutectic structure. It is also presumed that a structure containing eutectic was generated at the interface.

【0021】この実施例において、熱処理(530℃×
2hr)した後の溶射膜と基材との界面領域を光学顕微
鏡(倍率:200倍)で観察し、これを図6に示す。更
に比較例として、熱処理する前の状態において、溶射膜
と基材との界面領域を光学顕微鏡(倍率:200倍)で
観察し、これを図5に示す。図5及び図6において右側
の部分は基材をそれぞれ示し、左側の部分は粉末状の溶
射材料が積層した溶射膜をそれぞれ示す。
In this example, heat treatment (530 ° C. ×
The interface region between the sprayed film and the substrate after 2 hours) was observed with an optical microscope (magnification: 200 times), and this is shown in FIG. Further, as a comparative example, the interface region between the sprayed film and the base material was observed with an optical microscope (magnification: 200 times) before heat treatment, and this is shown in FIG. In FIGS. 5 and 6, the right side portion shows the base material, and the left side portion shows the thermal spray coating in which the powdery thermal spray material is laminated.

【0022】更に実施例において、前記した熱処理した
後の溶射膜と基材との界面領域を走査型電子顕微鏡(S
EM)で観察した。その写真を図7(倍率:400倍)
及び図8(倍率:1000倍)にそれぞれ示す。図7及
び図8において、下部の略半円形状あるいは略1/4円
形状の黒色部分はアルミ合金製の基材の表出面の部分を
示し、上部は溶射膜を示す。更に図7及び図8におい
て、基材と溶射膜との界面領域には、溶射膜及び基材と
は異なる組織の界面溶融凝固層が形成されていることが
わかる。これは上記した理由からアルミ−銅−シリコン
系の共晶組織または共晶を含む組織と推定される。この
界面溶融凝固層の平均厚みは20〜100μm程度であ
った。
Further, in the embodiment, a scanning electron microscope (S
It was observed by EM). The photograph is shown in FIG. 7 (magnification: 400 times)
8 and FIG. 8 (magnification: 1000 times). 7 and 8, the lower substantially semicircular or substantially quarter circular black portion indicates the exposed surface of the aluminum alloy base material, and the upper portion indicates the thermal spray coating. Further, in FIGS. 7 and 8, it can be seen that an interfacial melt solidification layer having a structure different from those of the sprayed film and the base material is formed in the interface region between the base material and the sprayed film. This is presumed to be an aluminum-copper-silicon eutectic structure or a structure containing a eutectic for the reasons described above. The average thickness of this interfacial melting and solidification layer was about 20 to 100 μm.

【0023】図7及び図8においてアルミ合金製の基材
を構成する黒色部分の間の微小隙間にも界面溶融凝固層
が進入してその微小隙間を埋めていることからしても、
一旦溶融した後に凝固して界面溶融凝固層が生成された
ものと推定される。更に図6においても、基材の表出面
における凹部にも界面溶融凝固層が確実に進入している
ため、一旦溶融した後に凝固して界面溶融凝固層が生成
されたものと推定される。
In FIGS. 7 and 8, the interfacial melt solidification layer also enters the minute gaps between the black portions constituting the aluminum alloy base material to fill the minute gaps.
It is presumed that the interfacial melting solidified layer was generated by once melting and then solidifying. Further, in FIG. 6 as well, since the interfacial melting solidification layer has surely entered the concave portion on the exposed surface of the base material, it is presumed that the interfacial melting solidification layer was produced by once melting and solidifying.

【0024】上記した熱処理後の溶射膜の密着力を調べ
る試験を行い、その試験結果を図9に示す。試験片の個
数は10個とした。図9に示す様に実施例では溶射膜の
密着力は8kg/cm2 程度であった。熱処理前の比較
例では溶射膜の密着力は5kg/cm2 程度と小さかっ
た。この様に実施例では比較例に比較して溶射膜の密着
力が大幅に向上していた。しかも溶射膜の密着力のバラ
ツキα1も、比較例におけるバラツキα2に比較して大
幅に減少した(3分の1程度)。このことから、界面溶
融凝固層の形成は、溶射膜の密着力向上および密着力の
バラツキ低減に大いに有利であることがわかる。
A test for examining the adhesion of the thermal sprayed film after the above heat treatment was conducted, and the test result is shown in FIG. The number of test pieces was 10. As shown in FIG. 9, in the example, the adhesion of the sprayed film was about 8 kg / cm 2 . In the comparative example before the heat treatment, the adhesion of the sprayed film was as small as about 5 kg / cm 2 . As described above, in the example, the adhesion of the sprayed film was significantly improved as compared with the comparative example. Moreover, the variation α1 in the adhesive force of the sprayed film was also greatly reduced (about one third) as compared with the variation α2 in the comparative example. From this, it can be seen that the formation of the interfacial melting and solidification layer is very advantageous for improving the adhesive force of the sprayed film and reducing the variation in the adhesive force.

【0025】この密着力を調べる試験では、図10に示
すアルミ合金からなる四角形状の試験片W(L1=8m
m、L2=5〜8mm、L3=1mm)を用い、試験片
Wに溶射膜W10を積層した。図11は試験装置を示
す。試験装置は基台10と保持部11と負荷12とボル
ト13とを備えている。そしてボルト13を締結して試
験片Wを保持部11に保持した状態で、負荷12を矢印
Y1方向に移動させ、負荷12を溶射膜W10に押し当
て、これにより溶射膜W10に剪断力を与えて行った。
In the test for examining this adhesion, a rectangular test piece W (L1 = 8 m) made of an aluminum alloy shown in FIG.
m, L2 = 5 to 8 mm, L3 = 1 mm), and the sprayed film W10 was laminated on the test piece W. FIG. 11 shows a test apparatus. The test apparatus includes a base 10, a holding unit 11, a load 12, and a bolt 13. Then, with the bolt 13 fastened and the test piece W held by the holding portion 11, the load 12 is moved in the direction of the arrow Y1 to press the load 12 against the sprayed film W10, thereby applying a shearing force to the sprayed film W10. I went.

【0026】(実施例2)この例では、基材としてアル
ミ−シリコン−マグネシウム系合金であるJIS−AC
4C合金を用いる。また溶射材料としての銅−ニッケル
−シリコン粉末(アトマイズ粉末,−150メッシュ,
銅−10wt%ニッケル−3%wtシリコン)を用い
る。そしてショットブラスト処理した基材の表出面に銅
−ニッケル−シリコン粉末を溶射し、第1溶射膜(厚み
100μm)を積層する。第1溶射膜の溶射条件はO2
=42リットル/min、プロピレン=40リットル/
min、エア=60リットル/min、粉末供給量=8
0グラム/minである。
Example 2 In this example, JIS-AC, which is an aluminum-silicon-magnesium alloy as a base material, is used.
4C alloy is used. Also, copper-nickel-silicon powder (atomized powder, -150 mesh,
Copper-10 wt% nickel-3% wt silicon) is used. Then, copper-nickel-silicon powder is sprayed on the exposed surface of the shot-blasted base material, and a first sprayed film (thickness 100 μm) is laminated. The thermal spraying condition of the first thermal spray coating is O 2
= 42 liters / min, propylene = 40 liters /
min, air = 60 liters / min, powder supply amount = 8
It is 0 g / min.

【0027】次に、溶射材料としての鉄系粉末(アトマ
イズ粉末,−280メッシュ,鉄−1.0wt%炭素)
を第1溶射膜の上に溶射し、第2溶射層(平均厚み50
0μm)を積層した。第2溶射膜の溶射条件はO2 =4
0リットル/min、プロピレン=38リットル/mi
n、エア=50リットル/min、粉末供給量=90リ
ットル/minである。この様な第1溶射膜及び第2溶
射膜を形成した基材を均熱式の加熱炉に装入し、530
℃×2hr加熱した。その後に溶射膜と基材との界面の
断面を調べた結果、20〜100μmの界面溶融凝固層
が界面において形成されているのが確認された。この界
面溶融凝固層は実施例1の場合の様にアルミ−銅−シリ
コン系の共晶組織または共晶を含む組織と考えられる。
Next, iron-based powder (atomized powder, -280 mesh, iron-1.0 wt% carbon) as a thermal spray material.
Is sprayed onto the first sprayed film, and the second sprayed layer (average thickness 50
0 μm) was laminated. The spraying condition of the second sprayed film is O 2 = 4
0 liter / min, propylene = 38 liter / mi
n, air = 50 liter / min, powder supply amount = 90 liter / min. The base material on which the first sprayed film and the second sprayed film are formed is charged into a soaking type heating furnace, and 530
Heated at ℃ × 2hr. After that, as a result of examining the cross section of the interface between the sprayed coating and the base material, it was confirmed that an interface melt-solidified layer of 20 to 100 μm was formed at the interface. It is considered that this interface melt-solidified layer has an aluminum-copper-silicon eutectic structure or a structure containing a eutectic as in the case of Example 1.

【0028】更にこの例においても実施例1の場合と同
様に密着力を測定する試験をしたところ、溶射膜の密着
力の向上、密着力のバラツキの低下が確認された。 (実施例3)この例では、基材としてAC8P合金を用
いる。そして基材のショットブラスト処理した表出面に
スズ粉末(アトマイズ粉末,−350メッシュ、純度9
9%)を基材の表出面に溶射し、第1溶射膜(平均厚み
50μm)を積層する。第1溶射膜の溶射条件はO2
38リットル/min、プロピレン=36リットル/m
in、エア=50リットル/min、粉末供給量=80
グラム/minである。次に、実施例2で用いた鉄系粉
末を溶射し第2溶射膜(平均厚み500μm)を積層す
る。この様な第1溶射膜及び第2溶射膜を形成した基材
を上記した均熱式の加熱炉に装入し、240℃×2hr
加熱した。溶射膜と基材との界面の断面を調査した結
果、平均厚み10〜50μmの界面溶融凝固層(アルミ
−スズ合金層)が界面において形成されているのが確認
された。更にこの例においても実施例1の場合と同様
に、溶射膜の密着力の向上、密着力のバラツキの低下が
確認された。
Further, also in this example, the same test as in Example 1 was conducted to measure the adhesion, and it was confirmed that the adhesion of the sprayed film was improved and the variation in the adhesion was reduced. (Example 3) In this example, an AC8P alloy is used as the base material. Then, tin powder (atomized powder, -350 mesh, purity 9
9%) is sprayed on the exposed surface of the base material, and a first sprayed film (average thickness 50 μm) is laminated. The thermal spraying condition of the first thermal sprayed film is O 2 =
38 liters / min, propylene = 36 liters / m
in, air = 50 liters / min, powder supply amount = 80
Gram / min. Next, the iron-based powder used in Example 2 is sprayed and a second sprayed film (average thickness 500 μm) is laminated. The base material on which the first sprayed film and the second sprayed film are formed is charged into the above-mentioned soaking type heating furnace, and the temperature is 240 ° C. × 2 hr.
Heated. As a result of investigating the cross section of the interface between the sprayed coating and the base material, it was confirmed that an interface melt-solidified layer (aluminum-tin alloy layer) having an average thickness of 10 to 50 μm was formed at the interface. Further, in this example, as in the case of Example 1, it was confirmed that the adhesive force of the sprayed film was improved and the variation in the adhesive force was decreased.

【0029】殊に溶射膜を銅系とした場合には、基材を
構成するアルミ合金におけるT6、T7処理時の溶体化
処理温度付近(一般的には510〜525℃)に銅−ア
ルミ合金系の融点(共晶温度)が対応するため、溶体化
処理における加熱と、溶射膜の密着力を向上するための
熱処理における加熱とを兼用することもできる。また溶
射膜をアルミ系とした場合には、冶金接合工程における
加熱温度は500°Cを越えるため、界面溶融凝固層に
よる冶金的接合効果ばかりか、溶射膜に生成している残
留応力の緩和効果も期待できる。よって、溶射膜を機械
加工する場合、溶射膜を使用する場合において、溶射膜
の耐剥離性を一層高める効果を期待できる。
In particular, when the thermal spray coating is made of copper, the copper-aluminum alloy is kept near the solution treatment temperature (generally 510 to 525 ° C.) during the T6 and T7 treatments of the aluminum alloy constituting the base material. Since the melting point (eutectic temperature) of the system corresponds, the heating in the solution treatment and the heating in the heat treatment for improving the adhesion of the sprayed film can be combined. When the sprayed coating is made of aluminum, the heating temperature in the metallurgical joining process exceeds 500 ° C, so not only the metallurgical joining effect due to the interfacial melting and solidification layer but also the effect of relaxing residual stress generated in the sprayed coating. Can be expected. Therefore, when machining the sprayed film, when using the sprayed film, the effect of further enhancing the peeling resistance of the sprayed film can be expected.

【0030】(適用例)図12及び図13は内燃機関の
ピストン100のリング溝110に適用した適用例を示
す。図12は製造過程を模式的に示し、図13はリング
溝110に積層した溶射膜200を機械加工した状態の
ピストン100を示す。この例では図12に示す様に、
リング溝110を備えたアルミ合金(AC8A)製のピ
ストン100を用いる。リング溝110は外周に向かう
につれて拡開している形状であり、拡開面110a、1
10bを備えている。そして溶射ガン150で粉末状の
溶射材料140をピストン100のリング溝110の全
周に溶射処理する。その後、前記した熱処理を経た後に
溶射膜200を機械加工で所定の形状及び寸法に設定す
る。この様にピストン100のリング溝110に溶射膜
200を積層した場合においても、溶射膜200の寿命
を長くでき、内燃機関の出力確保に有利である。この適
用例ではピストン100に適用したが、内燃機関のシリ
ンダボアの摺動面に適用しても良いものである。
(Application Example) FIGS. 12 and 13 show an application example applied to the ring groove 110 of the piston 100 of the internal combustion engine. FIG. 12 schematically shows the manufacturing process, and FIG. 13 shows the piston 100 in a state where the sprayed coating 200 laminated on the ring groove 110 is machined. In this example, as shown in FIG.
An aluminum alloy (AC8A) piston 100 having a ring groove 110 is used. The ring groove 110 has a shape that expands toward the outer periphery, and the expansion surfaces 110 a, 1
10b is provided. Then, the powder spray material 140 is sprayed on the entire circumference of the ring groove 110 of the piston 100 by the spray gun 150. Then, after undergoing the above-mentioned heat treatment, the sprayed coating 200 is set to a predetermined shape and size by machining. Even when the sprayed film 200 is laminated in the ring groove 110 of the piston 100 in this way, the life of the sprayed film 200 can be extended, which is advantageous for securing the output of the internal combustion engine. Although this application example is applied to the piston 100, it may be applied to the sliding surface of the cylinder bore of the internal combustion engine.

【0031】[0031]

【発明の効果】請求項1によれば、アルミ合金からなる
基材と溶射膜との界面領域において形成した界面溶融凝
固層により、基材に対する溶射膜の冶金的接合性を高め
得、これにより溶射膜の密着力を向上させ得る。従って
溶射膜の剥離を軽減または回避できる。
According to the first aspect of the present invention, the interfacial melting solidification layer formed in the interface region between the base material made of an aluminum alloy and the thermal spray coating can enhance the metallurgical bondability of the thermal spray coating to the base material. The adhesion of the sprayed film can be improved. Therefore, peeling of the sprayed film can be reduced or avoided.

【0032】請求項2によれば、基材を構成するアルミ
合金よりも低い融点をもつ溶融液層を生成可能な合金元
素を含む溶射材料を用い、溶射処理後において溶融液層
を生成し得る温度領域に加熱し、界面領域において局部
的な溶融液層を形成した後に、これを冷却凝固すること
により界面溶融凝固層を形成するので、溶射膜と基材と
の界面における冶金的結合性が高まり、溶射膜の密着力
が向上する。
According to the second aspect, a thermal spray material containing an alloying element capable of forming a molten liquid layer having a melting point lower than that of the aluminum alloy forming the substrate can be used to form the molten liquid layer after the thermal spraying treatment. After heating to a temperature range and forming a local melt layer in the interface area, the interface melt-solidified layer is formed by cooling and solidifying this, so that the metallurgical bondability at the interface between the sprayed film and the base material is improved. As a result, the adhesion of the sprayed film is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】共晶反応を呈するアルミと他の元素との二元系
状態図である。
FIG. 1 is a binary system phase diagram of aluminum exhibiting a eutectic reaction and other elements.

【図2】基材に溶射膜を積層した形態を模式的に示す構
成図である。
FIG. 2 is a configuration diagram schematically showing a form in which a sprayed film is laminated on a base material.

【図3】基材に溶射膜を積層した他の形態を模式的に示
す構成図である。
FIG. 3 is a configuration diagram schematically showing another embodiment in which a thermal spray coating is laminated on a base material.

【図4】溶射膜の内部構造を模式的に示す構成図であ
る。
FIG. 4 is a configuration diagram schematically showing an internal structure of a sprayed film.

【図5】比較例に係る光学顕微鏡写真である。FIG. 5 is an optical microscope photograph according to a comparative example.

【図6】実施例に係る光学顕微鏡写真である。FIG. 6 is an optical micrograph according to an example.

【図7】実施例に係る電子顕微鏡写真である。FIG. 7 is an electron micrograph according to an example.

【図8】実施例に係る電子顕微鏡写真である。FIG. 8 is an electron micrograph according to an example.

【図9】溶射膜の密着力を示すグラフである。FIG. 9 is a graph showing the adhesion of the sprayed film.

【図10】密着力を調べる試験で用いた試験片の概略斜
視図である。
FIG. 10 is a schematic perspective view of a test piece used in a test for examining adhesion.

【図11】密着力を調べる試験で用いた試験装置の構成
図である。
FIG. 11 is a configuration diagram of a test device used in a test for examining adhesion.

【図12】溶射過程を示す構成図である。FIG. 12 is a configuration diagram showing a thermal spraying process.

【図13】リング溝に溶射膜を形成したピストンの側面
図である。
FIG. 13 is a side view of a piston having a sprayed coating formed on a ring groove.

【符号の説明】[Explanation of symbols]

図中、100はピストン、110はリング溝、2、3
a、3b、200は溶射膜を示す。
In the figure, 100 is a piston, 110 is a ring groove, 2, 3
Reference numerals a, 3b and 200 denote sprayed films.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】表出面を備えたアルミ合金からなる基材
と、 該基材の表出面に積層された溶射膜とで構成され、 該溶射膜と該基材との界面領域には溶融凝固した界面溶
融凝固層が形成されていることを特徴とする溶射膜密着
構造。
1. A base material made of an aluminum alloy having an exposed surface and a sprayed film laminated on the exposed surface of the base material, and melt-solidified in an interface region between the sprayed film and the base material. A sprayed film adhesion structure characterized in that an interfacial melt solidification layer is formed.
【請求項2】アルミ合金からなる基材と、該基材を構成
するアルミ合金よりも低い融点をもつ溶融液層を生成可
能な合金元素を含む溶射材料とを用い、 該溶射材料を該基材の表出面に溶射処理して溶射膜を積
層する溶射工程と、 溶射処理後において該溶融液層を生成し得る温度領域に
少なくとも該溶射膜を加熱し、該溶射膜と該基材との界
面領域において局部的な溶融液層を形成し、その後に冷
却することにより、該溶射膜と該基材との界面領域に溶
融凝固した界面溶融凝固層を形成し、該界面領域におけ
る冶金的結合性を高める冶金接合工程とを順に実施する
ことを特徴とする溶射膜密着向上方法。
2. A base material made of an aluminum alloy and a thermal spray material containing an alloying element capable of forming a molten liquid layer having a melting point lower than that of the aluminum alloy constituting the base material are used. A thermal spraying step of laminating a thermal spray coating on the exposed surface of the material, and heating the thermal spray coating at least in a temperature range where the molten liquid layer can be formed after the thermal spray treatment, thereby forming the thermal spray coating and the base material. By forming a local melt layer in the interface region and then cooling, a melt-solidified interface melt-solidified layer is formed in the interface region between the sprayed film and the substrate, and metallurgical bonding in the interface region. A method for improving adhesion of a sprayed coating, which comprises sequentially performing a metallurgical bonding step for improving the property.
JP6170268A 1994-06-28 1994-06-28 Sprayed film adhesion improvement method Expired - Lifetime JP3033811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6170268A JP3033811B2 (en) 1994-06-28 1994-06-28 Sprayed film adhesion improvement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6170268A JP3033811B2 (en) 1994-06-28 1994-06-28 Sprayed film adhesion improvement method

Publications (2)

Publication Number Publication Date
JPH0813118A true JPH0813118A (en) 1996-01-16
JP3033811B2 JP3033811B2 (en) 2000-04-17

Family

ID=15901793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6170268A Expired - Lifetime JP3033811B2 (en) 1994-06-28 1994-06-28 Sprayed film adhesion improvement method

Country Status (1)

Country Link
JP (1) JP3033811B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7332199B2 (en) 2002-02-28 2008-02-19 Koncentra Marine & Power Ab Thermal spraying of a piston ring
JP2015063752A (en) * 2013-08-27 2015-04-09 公立大学法人大阪府立大学 SPRAY COATING FILM OF Ni-BASED INTERMETALLIC COMPOUND ALLOY, SPRAY COATING FILM COATED MEMBER, AND METHOD OF FORMING SPRAY COATING FILM

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7332199B2 (en) 2002-02-28 2008-02-19 Koncentra Marine & Power Ab Thermal spraying of a piston ring
JP2015063752A (en) * 2013-08-27 2015-04-09 公立大学法人大阪府立大学 SPRAY COATING FILM OF Ni-BASED INTERMETALLIC COMPOUND ALLOY, SPRAY COATING FILM COATED MEMBER, AND METHOD OF FORMING SPRAY COATING FILM

Also Published As

Publication number Publication date
JP3033811B2 (en) 2000-04-17

Similar Documents

Publication Publication Date Title
US5429173A (en) Metallurgical bonding of metals and/or ceramics
JP3049605B2 (en) Wear-resistant aluminum-silicon alloy coating and method for producing the same
CN1043415C (en) A method of brazing
JP3172911B2 (en) Abrasion resistant aluminum-silicon coating and method of making same
US20060093736A1 (en) Aluminum articles with wear-resistant coatings and methods for applying the coatings onto the articles
US8444042B2 (en) Method for producing steel pipe plated with metal by thermal spraying
JP3380081B2 (en) Valve seat
KR101319165B1 (en) Method for coating a cylinder sleeve
CA2129448A1 (en) A material and a method for forming a protective coating on a substrate of a copper-based alloy
JP2005291360A (en) Sliding bearing and its manufacturing method
JPH0813118A (en) Adhesion structure of thermally sprayed coating film and improvement of adhesion of thermally sprayed coating film
US7235144B2 (en) Method for the formation of a high-strength and wear-resistant composite layer
JP3078411B2 (en) Method for manufacturing composite aluminum member
JP2003025058A (en) Al ALLOY MEMBER FOR CAST-IN AND METHOD FOR CASTING THIS Al ALLOY MEMBER FOR CAST-IN
EP1462194B1 (en) Method of manufacturing metallic components
JP3460968B2 (en) Spray method
JPH079085A (en) Manufacture of partially reformed aluminum-made core for casting
JPH0367470B2 (en)
JP3060638B2 (en) Laser cladding method
JP2023012910A (en) Insert material for liquid phase diffusion welding and liquid phase diffusion welding method
KR100533649B1 (en) Fabrication method of metallic wire for thermal spray deposition or welding
JPS61170577A (en) Formation of alloyed layer on al alloy casting surface
JP3769912B2 (en) Casting method for aluminum castings
JPH09323151A (en) Method for joining aluminum base
JP2001129652A (en) Connecting method for aluminum and copper