KR100250217B1 - Spray coating method for casting mold - Google Patents
Spray coating method for casting mold Download PDFInfo
- Publication number
- KR100250217B1 KR100250217B1 KR1019950055010A KR19950055010A KR100250217B1 KR 100250217 B1 KR100250217 B1 KR 100250217B1 KR 1019950055010 A KR1019950055010 A KR 1019950055010A KR 19950055010 A KR19950055010 A KR 19950055010A KR 100250217 B1 KR100250217 B1 KR 100250217B1
- Authority
- KR
- South Korea
- Prior art keywords
- coating
- coating layer
- continuous casting
- casting mold
- spray coating
- Prior art date
Links
- 238000005507 spraying Methods 0.000 title claims abstract description 34
- 238000005266 casting Methods 0.000 title description 3
- 239000011247 coating layer Substances 0.000 claims abstract description 41
- 238000009749 continuous casting Methods 0.000 claims abstract description 26
- 239000000843 powder Substances 0.000 claims abstract description 21
- 238000000576 coating method Methods 0.000 claims abstract description 17
- 229910000881 Cu alloy Inorganic materials 0.000 claims abstract description 16
- 239000011248 coating agent Substances 0.000 claims abstract description 16
- 229910000599 Cr alloy Inorganic materials 0.000 claims abstract description 5
- 239000000788 chromium alloy Substances 0.000 claims abstract description 5
- 239000000463 material Substances 0.000 claims abstract description 4
- 229910000990 Ni alloy Inorganic materials 0.000 claims abstract 2
- 238000004880 explosion Methods 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 239000002360 explosive Substances 0.000 claims description 4
- 239000007921 spray Substances 0.000 claims description 3
- 239000000306 component Substances 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 5
- 238000004881 precipitation hardening Methods 0.000 abstract description 3
- 239000006104 solid solution Substances 0.000 abstract description 3
- 238000005299 abrasion Methods 0.000 abstract description 2
- 239000000470 constituent Substances 0.000 abstract 3
- 238000005474 detonation Methods 0.000 abstract 3
- 238000010283 detonation spraying Methods 0.000 abstract 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 29
- 229910052759 nickel Inorganic materials 0.000 description 14
- 229910052804 chromium Inorganic materials 0.000 description 11
- 239000011651 chromium Substances 0.000 description 11
- VYZAMTAEIAYCRO-UHFFFAOYSA-N chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 10
- 230000035939 shock Effects 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 238000009713 electroplating Methods 0.000 description 4
- 210000002381 Plasma Anatomy 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- REDXJYDRNCIFBQ-UHFFFAOYSA-N aluminium(3+) Chemical class [Al+3] REDXJYDRNCIFBQ-UHFFFAOYSA-N 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000007751 thermal spraying Methods 0.000 description 2
- 229910001208 Crucible steel Inorganic materials 0.000 description 1
- 229910001341 Crude steel Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/126—Detonation spraying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/0006—Spraying by means of explosions
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/06—Metallic material
- C23C4/08—Metallic material containing only metal elements
Abstract
Description
본 발명은 연속 주조 주형의 경사기능 폭발 용사코팅방법에 관한 것으로, 더욱 상세하게는 연속 주조공정에 사용되는 연속주조 주형에 경사기능 폭발 용사코팅을 하여 연속 주조 주형에 내열 및 내밀착성이 우수한 용사코팅층을 형성하는 방법에 관한 것이다.The present invention relates to an inclined explosive spray coating method of a continuous casting mold, and more particularly, a thermal spray coating layer having excellent heat resistance and adhesion resistance to a continuous casting mold by applying an inclined explosive spray coating to a continuous casting mold used in a continuous casting process. It relates to a method of forming a.
최근에 철강수요의 상승에 따라 생산량을 증대시키기 위하여 조강생산에서 연속 주조 공정이 차지하는 비율이 급격히 상승하고 있다. 연속 주조의 설비중 주조용 몰드는 고로의 용탕을 직접 응고시키는 설비로써 가장 가혹한 조건에서 사용되고 있고, 마모 및 부식에 의한 수명단축으로 정기적인 보수 및 교체를 하여야 한다.Recently, as the demand for steel increases, the ratio of continuous casting process in crude steel production is rapidly increasing to increase production. Casting mold is the equipment to directly solidify the blast furnace molten metal among the equipment of continuous casting. It is used under the most severe conditions and should be regularly repaired and replaced due to shortening of life due to wear and corrosion.
그러므로 연속 주조 주형의 코팅기술을 개발하여 주형의 수명을 연장하여 생산성 및 제품의 품질을 향상시키려 하고 있다.Therefore, by developing coating technology of continuous casting mold, we are trying to improve the productivity and product quality by extending the life of mold.
연속 주조 주형은 제1도에 나타난 바와 같이, 장변 몰드(1)와 단변 몰드(2)로 조립되어 있으며, 단변 몰드(2)는 조업중에 이동 할 수 있게 되어 있어 주조품의 폭을 변경할 수 있도록 되어 있으며, 장변 몰드(1)와 단변 몰드(2) 상에 내마모 코팅층(3)과 마모된 코팅층(4)을 표시하였다.As shown in FIG. 1, the continuous casting mold is assembled into a long side mold 1 and a short side mold 2, and the short side mold 2 is movable in operation to change the width of the casting. The wear resistant coating layer 3 and the worn coating layer 4 are marked on the long side mold 1 and the short side mold 2.
조업시 주편의 이동에 의하여 주형이 마모되므로 마찰이 되는 주형의 표면 전체에 내마모 코팅층(3)을 형성시키거나, 마모가 심한 주형의 상부에서 30㎝ 이하에만 내마모 코팅층을 형성시켜 수명을 증가시키고 있다.Since the mold is worn by the movement of the cast during operation, the wear-resistant coating layer (3) is formed on the entire surface of the mold to be rubbed, or the wear-resistant coating layer is formed only at 30 cm or less on the top of the mold with high wear to increase the service life. I'm making it.
내마모 코팅층(3)에 요구되는 특성으로는 조업 초기에 고온의 용탕을 공급하여 1∼2분간 유지시킨 후 작업을 시작함으로써, 코팅 상단부에서는 고온에서의 내열충격성이 요구되며, 하단부에서는 1000℃정도의 6∼8㎜응고 두께를 갖는 주편과 마찰이 일어나므로 고온 내마모 특성이 필요하다.The characteristics required for the wear-resistant coating layer 3 is to start the operation after supplying a high temperature molten metal at the beginning of the operation to maintain for 1 to 2 minutes, the thermal shock resistance at high temperature is required at the top of the coating, about 1000 ℃ at the bottom Since friction occurs with cast steel having a solidification thickness of 6 to 8 mm, high temperature wear resistance is required.
연속 주조 주형의 코팅층을 형성시키는 종래의 방법으로는 Ni 전기도금 및 합금도금층을 형성시키는 방법(일본국특허 제733885호 및 제1182099호와 일본국특허공개공보 소56-160649호, 소58-38637호, 소54-46131호, 소58-112633호, 소 58-112634호)을 들 수 있으며, 최근에는 2단 용사코팅을 플라즈마 용사법을 사용하여 행하는 방법(일본국특허공개공보 소57-7360호, 및 소57-7361호)이 행해지고 있다.As a conventional method of forming a coating layer of a continuous casting mold, a method of forming Ni electroplating and alloy plating layers (Japanese Patent Nos. 733885 and 11182099 and Japanese Patent Laid-Open Nos. 56-160649 and 58-38637). No. 54-46131, No. 58-112633, No. 58-112634), and recently, a method of performing two-stage spray coating by using a plasma spray method (Japanese Patent Laid-Open No. 57-7360). And 57-7361).
상기 전기도금을 이용하는 경우에는 공정이 복잡하고, 코팅성분에 제약이 있으며, 내마모성을 향상시키는데 한도가 있어 200Hv 정도의 표면 경도만을 얻을 수 있으며, 플라즈마 용사코팅의 경우 표면경도 600Hv이상의 높은 경도를 얻을 수 있으나 플라즈마 코팅층은 밀착 및 파단강도에서 코팅상단부에 내열충격성을 만족시킬 수가 없다.In the case of using the electroplating process is complicated, there is a limitation in the coating component, there is a limit to improve the wear resistance can be obtained only surface hardness of about 200Hv, in the case of plasma spray coating can obtain a high hardness of 600Hv or more surface hardness However, the plasma coating layer cannot satisfy the thermal shock resistance at the upper end of the coating in adhesion and breaking strength.
따라서 플라즈마 코팅의 밀착력 및 파단강도를 향상시키기 위하여 2단 용사 코팅방법을 사용해 왔으며, 2단용사 코팅방법은 1단은 본드코팅으로 Ni 전기도금 또는 용사코팅을 행하고 2단은 고경도 톱코팅을 실시한다. 또한 플라즈마 용사코팅한 후에 코팅층의 확산에 의한 파단강도를 증가시키기 위하여 열처리(fusing)를 행하고 있다.Therefore, the two-stage spray coating method has been used to improve the adhesion and breaking strength of the plasma coating. In the two-stage spray coating method, the first stage is a bond coating with Ni electroplating or spray coating, and the second stage is a high hardness top coating. do. In addition, after plasma spray coating, heat treatment is performed to increase the breaking strength due to diffusion of the coating layer.
이와 같이 2단 용사코팅방법은 전기도금과 용사코팅의 2단계 공정을 거쳐야 하며, 플라즈마 용사코팅 후 열처리시 주형의 연화를 방지하기 위한 기술적인 한계가 있으므로, 플라즈마 용사코팅방법은 현재 몰드의 재질로 사용하고 있고, 석출경화형의 구리합금 주형에만 적용이 가능하며, 고용강화형의 구리합금주형에서는 열처리(fusing)후에 경도가 40∼50Hv정도로 열화되므로 사용이 불가능하다.As described above, the two-stage spray coating method requires two steps of electroplating and spray coating, and there is a technical limitation to prevent softening of the mold during heat treatment after plasma spray coating. It is used and can be applied only to precipitation hardening copper alloy mold, and it cannot be used in solid solution hardening copper alloy mold because its hardness deteriorates to about 40 ~ 50 Hv after heat treatment.
본 발명의 목적은 상기와 같은 제반 문제점을 해소하기 위한 것으로, 연속 주조 주형의 폭발 용사코팅방법에 있어서 코팅층의 성분을 조절하는 경사기능 코팅을 하여 코팅층 내의 열충격 및 밀착강도를 향상시키고 열처리(fusing)를 생략하여, 석출경화형과 고용강화형의 구리합금 주형에 모두 사용할 수 있고, 내열 내마모성이 우수한 코팅층을 형성시킬 수 있는 방법을 제공하는 것이다.An object of the present invention is to solve the above problems, in the explosion spray coating method of the continuous casting mold to improve the thermal shock and adhesion strength in the coating layer by adjusting the components of the coating layer to improve the heat treatment (fusing) By omitting, it is possible to provide both a precipitation hardening type and a solid solution type copper alloy mold, and to provide a method for forming a coating layer having excellent heat resistance and abrasion resistance.
제1도는 연속 주조 주형의 개략도.1 is a schematic representation of a continuous casting mold.
제2도는 코팅층내의 성분 분석도.2 is a component analysis diagram in the coating layer.
* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings
1 : 장변 몰드 2 : 단변 몰드1: long side mold 2: short side mold
3 : 내마모 코팅층 4 : 마모된 코팅층3: wear-resistant coating layer 4: worn coating layer
본 발명은 폭발 용사장치에 의해 금속분말을 소재의 표면에 용사하여 코팅층을 형성하는 방법에 있어서, 2개의 분말공급장치를 갖춘 폭발 용사장치를 사용하여, 구리합금 연속주조 주형의 표면에 연속주조 주형과 동일한 성분의 구리합금분말과 니켈, 크롬합금분말을 교대로 용사하여 코팅함으로서 성분의 기울기를 갖는 코팅층을 형성하는 것을 특징으로 한다.The present invention relates to a method of forming a coating layer by spraying a metal powder on a surface of a material by an explosion spray device, wherein the continuous casting mold is formed on a surface of a copper alloy continuous casting mold by using an explosion spraying device having two powder supply devices. It is characterized by forming a coating layer having a gradient of the component by coating by thermally spraying the copper alloy powder and nickel, chromium alloy powder of the same component.
이하, 본 발명에 대하여 더욱 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail.
연속 주조용 몰드는 조업초기에 1560℃이상 고온의 용탕을 코팅몰드에 직접 공급하므로 코팅층내에 열구배에 의한 열응력이 발생하게 된다.The continuous casting mold directly supplies the molten metal having a high temperature of 1560 ° C. or higher directly to the coating mold at the beginning of operation to generate thermal stress due to thermal gradient in the coating layer.
동의 열팽창 계수는 17×10-6이며 니켈, 크롬 코팅층의 열팽창 계수는 13×10-6이다.The thermal expansion coefficient of copper is 17 × 10 −6, and the thermal expansion coefficient of the nickel and chromium coating layer is 13 × 10 −6 .
또한, 400℃에서의 니켈, 크롬 코팅층의 영스모듈러스(Yongs Modulus)는 16000㎏f/㎣이므로 조업초기에 코팅층 내에 열구배가 200℃정도 발생한다고 가정하면 코팅층에 작용하는 열응력은 다음과 같다.In addition, since the Young's modulus of the nickel and chromium coating layers at 400 ° C. is 16000 kgf / ㎣, the thermal stress acting on the coating layer is assumed as follows.
200 × 4 × 10-6× 16000 = 12.8(㎏f/㎣)200 × 4 × 10 -6 × 16000 = 12.8 (kgf / ㎣)
따라서 코팅층의 밀착강도 및 파단강도가 12.8㎏f/㎣이상이 되지 않는다면 코팅층의 분리 및 파괴가 발생하게 된다.Therefore, if the adhesion strength and the breaking strength of the coating layer is not more than 12.8kgf / ㎣ the separation and destruction of the coating layer will occur.
본 발명은 고속 용사코팅건에 의하여 열처리없이 높은 밀착강도 및 내열성을 얻는 방법으로서, 2개의 분말공급장치를 갖춘 용사장치를 사용하여 구리합금 연속 주조 주형에 니켈, 크롬계 합금분말과 동 분말을 교대로 용사하여 코팅두께에 따라서 성분을 변화시키는 경사기능 코팅층을 연속 주조용 몰드에 형성하는 것이다.The present invention is a method of obtaining high adhesion strength and heat resistance without a heat treatment by a high-speed spray coating gun, using a thermal spraying device equipped with two powder supply device to alternate nickel, chromium-based alloy powder and copper powder in a copper alloy continuous casting mold By spraying to form a gradient coating layer for changing the components in accordance with the coating thickness in the mold for continuous casting.
상기 고속 용사코팅건은 폭발 용사코팅장비의 하나로서 용사화염의 속도가 음속의 10배이고, 용융입자의 속도는 음속의 3배이므로 용사화염의 속도가 음속의 3배인 플라즈마 용사장비와 달리 우수한 코팅특성층을 얻을 수 있으므로 별도의 열처리 공정을 생략할 수 있다.The high speed spray coating gun is one of explosion spray coating equipments. The speed of thermal spraying flame is 10 times the speed of sound and the speed of the molten particles is 3 times the speed of sound. Since a layer can be obtained, a separate heat treatment step can be omitted.
본 발명에서 사용되는 니켈, 크롬계와 동 합금분말은 40∼60㎛정도의 고속용사용 분말을 사용하는 것이 바람직하며, 경사기능 코팅의 두께는 두꺼울수록 성분의 기울기가 완만하여 밀착력 및 내열 충격성이 향상되나 연속주조용 몰드의 냉각성을 고려하면 100㎛정도가 적당하다.Nickel, chromium-based and copper alloy powder used in the present invention is preferably used for high-speed powder of about 40 ~ 60㎛, the thicker the thickness of the gradient coating, the smoother the component gradient, the adhesion and thermal shock resistance Although it improves, considering the cooling property of the continuous casting mold, about 100 μm is appropriate.
제2도는 코팅층내의 니켈, 크롬합금과 구리 합금의 성분 기울기를 나타낸 것이다.2 shows the component gradients of nickel, chromium alloy and copper alloy in the coating layer.
몰드의 성분은 구리가 주성분이며, 코팅층 내의 성분은 몰드에서 두께가 증가함에 따라 구리 성분은 점차 감소하고 니켈, 크롬성분이 증가하여 100㎛ 이상의 코팅층에서는 100% 니켈, 크롬 성분으로 구성되어 있다.The main component of the mold is copper, and the components in the coating layer gradually decrease in thickness as the thickness of the mold increases, and the nickel and chromium components increase, so that the coating layer is composed of 100% nickel and chromium components.
100㎛정도의 경사기능층을 열팽창율이 다른 동 몰드와 니켈, 크롬코팅층 사이에 형성시킴으로써 표면경도 700Hv이상, 16㎏f/㎣ 이상의 밀착력 및 우수한 열충격성을 갖는 용사코팅층이 형성된다.By forming an inclined functional layer of about 100 μm between a copper mold having a different thermal expansion rate and a nickel and chromium coating layer, a thermal spray coating layer having a surface hardness of 700 Hv or more, 16 kgf / ㎣ or more adhesion and excellent thermal shock property is formed.
이하, 실시예를 통하여 본 발명을 설명하면 다음과 같다.Hereinafter, the present invention will be described through Examples.
[실시예]EXAMPLE
구리합금 연속주조 주형에 중량%로 Ni : 72%, Cr : 17%, Si : 4.0% B : 3.5% 기타 C, Fe 및 Co로 구성된 니켈, 크롬계 합금분말과 동 합금분말로 100㎛두께의 경사기능 코팅층을 형성시킨 후 몰드의 위치에 따라 상부에 200㎛에서 500㎛의 니켈, 크롬코팅층을 형성시킨다.Copper alloy continuous casting mold by weight% Ni: 72%, Cr: 17%, Si: 4.0% B: 3.5% Others Nickel, chromium alloy powder composed of C, Fe and Co and copper alloy powder After forming the inclined coating layer to form a nickel, chromium coating layer of 200㎛ to 500㎛ on the top according to the position of the mold.
경사기능 코팅층 폭발 용사코팅장비에 2개의 분말공급장치를 설치하여 하기 표 1에 기재한 바와 같이 동 분말과 니켈, 크롬분말을 교대로 폭발 용사코팅 시키는 방법으로 형성하였다.Two powder supply devices were installed on the gradient coating layer explosion spray coating equipment, and thus, copper powder, nickel, and chromium powder were alternately formed by a thermal spray coating as described in Table 1 below.
상기 표 1에서와 같이 동 분말과 니켈, 크롬분말을 폭발 용사하는 횟수에 따라 코팅두께의 성분 기울기가 발생하게 되었다.As shown in Table 1, the gradient of components of the coating thickness was generated according to the number of explosions of copper powder, nickel, and chromium powder.
경사기능 코팅층의 밀착력, 기공율 및 열 충격성을 조사하였고, 종래의 플라즈마 용사법에 의해 코팅하고 열처리(fusing)한 코팅층의 특성과 비교하여 그 결과를 하기 표 2에 나타내었다.Adhesion, porosity and thermal shock of the gradient coating layer were investigated, and the results are shown in Table 2 in comparison with the characteristics of the coating layer coated and heat treated by the conventional plasma spraying method.
*열충격성은 800℃에서 20분 유지후 수냉 시켰을 때, 코팅에 크랙이 생기는 횟수를 나타냄.* Thermal shock represents the number of cracks in the coating when cooled after holding water at 800 ° C for 20 minutes.
상기 표 2에 나타난 바와 같이, 본 발명에 따라 경사기능 폭발 용사코팅을 하는 경우 종래의 플라즈마 코팅 및 열처리에 의한 경우보다 밀착력, 기공율, 열충격성에 있어서 휠씬 우수함을 알 수 있다.As shown in Table 2, it can be seen that when the inclined explosive spray coating according to the present invention in the adhesion, porosity, thermal shock properties are much better than the conventional plasma coating and heat treatment.
상기에서 알수있는 바와 같이, 본 발명은 연속 주조 주형에 경사기능 코팅층을 형성하여 모재와 코팅층 간의 밀착 강도 및 열충격을 더욱 향상 시킬 수 있는 효과가 있는 것이다.As can be seen from the above, the present invention is to form an inclined coating layer on the continuous casting mold has the effect of further improving the adhesion strength and thermal shock between the base material and the coating layer.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019950055010A KR100250217B1 (en) | 1995-12-22 | 1995-12-22 | Spray coating method for casting mold |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019950055010A KR100250217B1 (en) | 1995-12-22 | 1995-12-22 | Spray coating method for casting mold |
Publications (2)
Publication Number | Publication Date |
---|---|
KR970033235A KR970033235A (en) | 1997-07-22 |
KR100250217B1 true KR100250217B1 (en) | 2000-04-01 |
Family
ID=19443495
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019950055010A KR100250217B1 (en) | 1995-12-22 | 1995-12-22 | Spray coating method for casting mold |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100250217B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030018695A (en) * | 2001-08-30 | 2003-03-06 | 국방과학연구소 | Method of preparing functionally gradient composite materials using detonation gun spraying |
KR101319165B1 (en) * | 2005-06-15 | 2013-10-16 | 말레 인터내셔널 게엠베하 | Method for coating a cylinder sleeve |
KR101598858B1 (en) | 2014-11-05 | 2016-03-03 | 국방과학연구소 | Ni-YSZ COMPOSITE MATERIAL POWDER, MANUFACTURING METHOD THEREOF AND COATING METHOD USING THE POWDER |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07258816A (en) * | 1994-03-25 | 1995-10-09 | Toshiba Corp | Ceramic coating structure on metallic base material and its formation |
-
1995
- 1995-12-22 KR KR1019950055010A patent/KR100250217B1/en not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07258816A (en) * | 1994-03-25 | 1995-10-09 | Toshiba Corp | Ceramic coating structure on metallic base material and its formation |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030018695A (en) * | 2001-08-30 | 2003-03-06 | 국방과학연구소 | Method of preparing functionally gradient composite materials using detonation gun spraying |
KR101319165B1 (en) * | 2005-06-15 | 2013-10-16 | 말레 인터내셔널 게엠베하 | Method for coating a cylinder sleeve |
KR101598858B1 (en) | 2014-11-05 | 2016-03-03 | 국방과학연구소 | Ni-YSZ COMPOSITE MATERIAL POWDER, MANUFACTURING METHOD THEREOF AND COATING METHOD USING THE POWDER |
Also Published As
Publication number | Publication date |
---|---|
KR970033235A (en) | 1997-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080093047A1 (en) | Casting molds coated for surface enhancement and methods of making | |
KR920002009B1 (en) | Continuous casting moulds with a wear-resistant layers and proces for making | |
CN102794417A (en) | Metal ceramic coating on surface of copper plate of continuous casting mold and manufacturing process for metal ceramic coating | |
KR20080089388A (en) | Components of a steelworks, such as a continuous casting installation or a rolling mill, method for producing such a component and installation for creating or processing semifinished metallic products | |
KR101852960B1 (en) | Method for producing a piston ring having embedded particles | |
KR20080019202A (en) | Method for coating a cylinder sleeve | |
KR100250217B1 (en) | Spray coating method for casting mold | |
KR101426682B1 (en) | Grate bar with thermally sprayed aluminum oxide and fabricating method thereof | |
Luo et al. | Effect of arc power on the wear and high-temperature oxidation resistances of plasma-sprayed fe-based amorphous coatings | |
KR100665531B1 (en) | The Continuous Casting Mold | |
KR101458375B1 (en) | Grate bar with thermally sprayed chromium oxide and fabricating method thereof | |
RU2465111C2 (en) | Electrode for wear deposition and method of making antiwear layer on metallurgical equipment using deposition electrodes | |
KR100879155B1 (en) | Thermal spraying of a piston ring | |
CN110004372B (en) | High-temperature-resistant, oxidation-resistant and wear-resistant metallurgical roller and preparation method thereof | |
KR101458376B1 (en) | Grate bar with thermally sprayed tungsten carbide and fabricating method thereof | |
JPS5973153A (en) | Mold for continuous casting and its production | |
CA1323745C (en) | Continuous casting mold with removable insert | |
JPH07155909A (en) | Water-cooled mold and continuous casting excellent in erosion resistance | |
JPH11171562A (en) | Plunger for bottle making and its production | |
JP3622437B2 (en) | Continuous casting mold and continuous casting method using the same | |
JP4055522B2 (en) | Molded copper plate for continuous casting mold and manufacturing method thereof | |
JPH09228071A (en) | Method for thermal spraying to casting mold for continuous casting and casting mold for continuous casting | |
JP3380425B2 (en) | Twin drum type continuous casting drum | |
JPH10230348A (en) | Mold for continuous casting | |
KR0143491B1 (en) | Coating method by explosion spray on the continuous mold |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20021220 Year of fee payment: 4 |
|
LAPS | Lapse due to unpaid annual fee |