KR20070110237A - Fabrication of bst-pb based pyroclore composite dielectric films for tunability - Google Patents

Fabrication of bst-pb based pyroclore composite dielectric films for tunability Download PDF

Info

Publication number
KR20070110237A
KR20070110237A KR1020070108948A KR20070108948A KR20070110237A KR 20070110237 A KR20070110237 A KR 20070110237A KR 1020070108948 A KR1020070108948 A KR 1020070108948A KR 20070108948 A KR20070108948 A KR 20070108948A KR 20070110237 A KR20070110237 A KR 20070110237A
Authority
KR
South Korea
Prior art keywords
thin film
dielectric thin
composite
composite dielectric
electric field
Prior art date
Application number
KR1020070108948A
Other languages
Korean (ko)
Other versions
KR101013762B1 (en
Inventor
고경현
이혁준
Original Assignee
한국정보통신대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국정보통신대학교 산학협력단 filed Critical 한국정보통신대학교 산학협력단
Publication of KR20070110237A publication Critical patent/KR20070110237A/en
Application granted granted Critical
Publication of KR101013762B1 publication Critical patent/KR101013762B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/47Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on strontium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/088Oxides of the type ABO3 with A representing alkali, alkaline earth metal or Pb and B representing a refractory or rare earth metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02197Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02266Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by physical ablation of a target, e.g. sputtering, reactive sputtering, physical vapour deposition or pulsed laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/92Capacitors with potential-jump barrier or surface barrier
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Structural Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Insulating Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Semiconductor Memories (AREA)

Abstract

A composite dielectric film comprising a dielectric based on pyroclore Pb is provided to realize a high dielectric constant and a low dielectric loss while showing a high filed alteration ratio, and to produce a field alterable capacitor including a phase converter, flat panel antenna or filter. A composite dielectric film is represented by the formula of Ba-Sr-Ti-O comprising a pyroclore phase based on Pb-X-Nb-O(wherein X is any one element selected from the group consisting of Zn, Ni, Cu and Mg), and has a filed alteration ratio of 20-75% as defined by the formula of [field alteration ratio={(Co-Cv)/Co}x100, wherein Co represents an electrostatic capacity in the absence of filed, and Cv represents an electrostatic capacity upon the application of a field of 1000 kV/cm. A dielectric rate of the composite dielectric film is 100 or more.

Description

전계 가변형 BST-Pb계 파이로클로어 복합 유전체 박막과 제조방법{FABRICATION OF BST-PB BASED PYROCLORE COMPOSITE DIELECTRIC FILMS FOR TUNABILITY}Field Variable Type VTS-PJ Based Pyroclaw Composite Dielectric Thin Film and Manufacturing Method {FABRICATION OF BST-PB BASED PYROCLORE COMPOSITE DIELECTRIC FILMS FOR TUNABILITY}

본 발명은 복합 유전체 박막 및 그의 제조 방법에 관한 것으로, 보다 상세하게는 Pb를 기반으로 한 파이로클로어(Pyrochlore) 구조의 유전체를 포함한 전계 가변형 Ba1-xSrxTiO3 박막 및 그 제조 방법에 관한 것이다.The present invention relates to a composite dielectric thin film and a method for manufacturing the same, and more particularly, a field-variable Ba 1-x Sr x TiO 3 thin film including a Pb-based Pyrochlore structure dielectric and a method of manufacturing the same. It is about.

통상적으로, 유전체 박막의 전계 가변 특성은 인가 전계의 변화에 따라 정전 용량 및 유전율이 변화하는 특성을 말하는 것으로, 이 특성은 전계 무인가시의 유전율에 대한 전계 인가시의 유전율의 변화 비율로 정의되는 전계 가변율(tunability)에 의해 평가될 수 있다. In general, the electric field variable characteristic of a dielectric thin film refers to a characteristic in which capacitance and dielectric constant change according to the change of an applied electric field, and this characteristic is defined as the ratio of the change in permittivity at the time of electric field application to the dielectric constant without an electric field. Can be evaluated by tunability.

지금까지 전계 가변형 박막을 캐패시터(capacitor)로 응용한 예로는 BaTiO3와 SrTiO3의 고용체인 Ba1-xSrxTiO3(이하 'BST'라 한다) 단일 박막에 국한되어 왔다. BST 박막은 조성에 따라 퀴리 온도 (qurie temperature; Tc)가 변화하는데, 퀴리 온도가 상온 근처인 x = 0.3 ∼ 0.5 부근의 조성이 전계 가변형 소자로 적합한 것으로 알려져 있다. BST 박막은 일반적으로 0.5 이상의 전계 가변율을 갖는데, 기판으로 산화물 단결정 기판을 사용하거나 기타 특수한 증착 조건 하에서는 약 0.7의 전계 가변율을 나타내고 있다. 그러나 BST 박막은 우수한 전계 가변 특성에도 불구하고 0.03을 초과하는 큰 유전 손실 때문에 실제적인 응용이 곤란한 문제점이 있었다.Until now, examples of applying the field-variable thin film as a capacitor have been limited to a single thin film of Ba 1-x Sr x TiO 3 (hereinafter referred to as 'BST'), which is a solid solution of BaTiO 3 and SrTiO 3 . Curie temperature (Tc) changes according to the composition of the BST thin film, and it is known that a composition around x = 0.3 to 0.5 where the Curie temperature is near room temperature is suitable as an electric field variable element. BST thin films generally have an electric field variable rate of 0.5 or more, and use an oxide single crystal substrate as a substrate or exhibit an electric field variable rate of about 0.7 under other special deposition conditions. However, the BST thin film has a problem in that its practical application is difficult due to the large dielectric loss exceeding 0.03 in spite of excellent electric field variation characteristics.

이러한 문제점을 해결하기 위해 BST 박막의 유전 손실을 줄이려는 노력이 지속적으로 이루어져 왔다. 예를 들어 산화물 단결정 기판 위에 BST 박막을 에피택셜 성장(epitaxial growth)시키거나 Mg2+ 등의 양이온을 BST 박막에 첨가하는 등의 방법이 그것이다. 이러한 방법에 의해 일부 문헌에서 0.03 보다 낮은 유전 손실을 갖는 BST 박막의 제조가 가능하다고 보고된 바 있으나, BST 박막이 갖는 높은 유전 손실에 대한 근본적인 해결책이 되지는 못하고 있는 실정이다. In order to solve this problem, efforts have been made to reduce the dielectric loss of BST thin films. For example, a method such as epitaxial growth of a BST thin film on an oxide single crystal substrate or addition of a cation such as Mg2 + to a BST thin film. Although some methods have reported that the BST thin film having a dielectric loss lower than 0.03 can be produced by this method, it is not a fundamental solution to the high dielectric loss of the BST thin film.

이에 따라 보다 낮은 유전 손실을 가지는 새로운 물질의 개발에 많은 노력이 기울여져 왔으며, 특히 Bi-Zn-Nb-O계 (이하 'BZN'이라 한다) 박막을 중심으로 많은 연구가 이루어져 왔다. 그 중 입방 결정 구조를 갖는 (Bi1.5Zn0.5)(Zn0.5Nb1.5)O7(이하 'BZZN' 이라 한다)조성을 갖는 BZZN 박막은 유전율 150, 유전손실 0.005를 가지며, 830kV/cm의 전계에서 약 0.1의 전계 가변율을 나타낸다. 물론 BZZN 박막의 경우에는 인가 전계를 증가시킬 경우 전계 가변율이 소폭 증가할 것으로 예상되지만, 유 전 손실이 작다는 장점에 비하여 상대적으로 낮은 유전율과 전계 가변 특성으로 인해 기존의 BST 박막을 대체하지 못하고 있는 실정이다.As a result, much effort has been devoted to the development of new materials with lower dielectric losses, and a lot of research has been made especially on Bi-Zn-Nb-O based films (hereinafter referred to as 'BZN'). Among them, a BZZN thin film having a (Bi 1.5 Zn 0.5 ) (Zn 0.5 Nb 1.5 ) O 7 (hereinafter referred to as 'BZZN') composition having a cubic crystal structure has a dielectric constant of 150 and a dielectric loss of 0.005, and has an electric field of about 830 kV / cm. An electric field variable rate of 0.1 is shown. Of course, in case of BZZN thin film, if the applied electric field is increased, the electric field variable rate is expected to increase slightly.However, compared to the advantage of low dielectric loss, the relatively low permittivity and electric field variable characteristics cannot replace the existing BST thin film. There is a situation.

따라서 낮은 유전 손실을 유지하면서 보다 큰 유전율과 우수한 전계 가변 특성을 가지는 조성의 유전체 박막의 개발이 요구되고 있다.Accordingly, there is a demand for the development of a dielectric thin film having a composition having a larger dielectric constant and excellent electric field variable characteristics while maintaining a low dielectric loss.

따라서 본 발명은 높은 유전율과 낮은 유전 손실을 가지며, 우수한 전계 가변 특성을 가지는 새로운 조성의 유전체 박막 및 그의 제조 방법을 제공함에 있다.Accordingly, the present invention provides a dielectric thin film having a new composition having a high dielectric constant and low dielectric loss and having excellent electric field variable characteristics, and a method of manufacturing the same.

상술한 본 발명은 Pb-X-Nb-O(여기서 X는 Zn, Ni, Cu 및 Mg으로 이루어진 그룹 중에서 선택된 하나의 원소임)계 파이로클로어 구조의 유전체를 포함한 Ba1-xSrxTiO3 유전체 박막으로서, 아래의 수학식에 의해 정의되는 전계 가변율이 20∼75% 범위내인 것을 특징으로 하는 유전체 박막을 제공한다. The present invention described above is a Pb-X-Nb-O (where X is one element selected from the group consisting of Zn, Ni, Cu and Mg) based on the pyrochlore structure of the Ba 1-x Sr x TiO As the three dielectric thin films, there is provided a dielectric thin film, wherein the electric field variable rate defined by the following equation is in the range of 20 to 75%.

본 발명은 파이로클로어 상의 Pb 계의 유전체를 포함한 Ba1-xSrxTiO3 복합 유전체 박막을 제공한다. 본 발명의 복합 유전체 박막은 Ba1-xSrxTiO3의 높은 유전율을 유지하면서 낮은 유전 손실 특성을 나타낸다. 또한, 본 발명의 복합 유전체 박막은 최대 75% 이상의 높은 전계 가변율을 나타내는데, 이러한 특성으로 인해 위상 변환기, 평판 안테나, 필터 등의 전계 가변형 캐패시터로서 사용되기에 적합하다.The present invention provides a Ba 1-x Sr x TiO 3 composite dielectric thin film including a Pb-based dielectric on a pyroclaw. The composite dielectric thin film of the present invention exhibits low dielectric loss characteristics while maintaining a high dielectric constant of Ba 1-x Sr x TiO 3 . In addition, the composite dielectric thin film of the present invention exhibits a high electric field variable rate of up to 75% or more, which is suitable for use as an electric field variable capacitor of a phase converter, a flat antenna, a filter, and the like.

또한, 본 발명의 복합 유전체 박막 제조 방법은 기판 온도 및 후열처리 온도에 따라 박막의 유전 특성, 즉 유전율, 전계 가변율을 넓은 범위에서 조절할 수 있 다는 이점을 갖는다. 더욱이, 본 발명의 복합 유전체 박막은 강유전체의 Ba1-xSrxTiO3와 Pb계의 파이로클로어 유전체가 혼합하여 이루어져 있기 때문에 높은 전계 가변율을 유지하면서 낮은 손실을 갖는 박막을 제조할 수 있어, 매우 높은 이익 지수를 갖는 유전체 박막을 제조할 수 있는 이점이 있다. In addition, the method of manufacturing a composite dielectric thin film of the present invention has an advantage of controlling the dielectric properties of the thin film, that is, the dielectric constant and the electric field variable rate, in a wide range according to the substrate temperature and the post-heat treatment temperature. Furthermore, the composite dielectric thin film of the present invention is made of a mixture of ferroelectric Ba 1-x Sr x TiO 3 and Pb-based pyrochlore dielectric, so that a thin film having a low loss while maintaining a high electric field variable rate can be manufactured. Therefore, there is an advantage that a dielectric thin film having a very high profit index can be manufactured.

이하, 첨부된 도면을 참조하여 본 발명의 동작 원리를 상세히 설명한다. 하기에서 본 발명을 설명함에 있어서 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. Hereinafter, with reference to the accompanying drawings will be described in detail the operating principle of the present invention. In the following description of the present invention, when it is determined that a detailed description of a known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted. Terms to be described later are terms defined in consideration of functions in the present invention, and may be changed according to intentions or customs of users or operators. Therefore, the definition should be made based on the contents throughout the specification.

본 발명의 구체적인 핵심 기술요지를 살펴보면, 파이로클로어 상의 Pb 계의 유전체를 포함한 Ba1-xSrxTiO3 복합 유전체 박막을 구현하여, 높은 전계 가변율을 유지하면서 낮은 손실을 갖는 박막을 제조하는 기술을 통해 본 발명에서 이루고자 하는 바를 쉽게 달성할 수 있다.Looking at the specific core technical aspect of the present invention, by implementing a Ba 1-x Sr x TiO 3 composite dielectric thin film containing a Pb-based dielectric on the Pyroclaw, a thin film having a low loss while maintaining a high electric field variable rate It is possible to easily achieve the purpose of the present invention through the technique.

본 발명의 전계 가변형 BST-Pb계 파이로클로어 복합 유전체 박막에서, 전계 가변율은 바람직하게는 30 ∼ 60%이며, 유전율은 바람직하게는 100 이상, 유전손실 tan δ는 0.03 이하, 바람직하게는 0.01 이하로 형성되며, 또한 상기 복합 유전체 박막의 두께는 3000 Å이하로 형성되는 것이 바람직하다. In the field-variable BST-Pb based pyroclaw composite dielectric thin film of the present invention, the electric field variable rate is preferably 30 to 60%, the dielectric constant is preferably 100 or more, and the dielectric loss tan δ is 0.03 or less, preferably It is preferably formed to 0.01 or less, and the thickness of the composite dielectric thin film is preferably less than 3000 kPa.

또한 본 발명은, Pb6X1Nb6O22(여기서 X는 Zn, Ni, Cu 및 Mg으로 이루어진 그룹 중에서 선택된 하나의 원소임)로 표현되는 입방정 파이로클로어 상을 포함한 Ba1-xSrxTiO3 박막을 제공한다. The present invention also relates to Ba 1-x Sr comprising a cubic pyrochlore phase represented by Pb 6 X 1 Nb 6 O 22 , where X is one element selected from the group consisting of Zn, Ni, Cu and Mg. x TiO 3 thin film.

상기 복합체 박막은 1000kV/cm의 전계 인가 범위에서 전계 무인가시의 상기 박막의 유전율에 대한 전계 인가시의 상기 박막의 유전율 변화의 백분율로 정의되는 전계 가변율이 20 ∼ 75%, 바람직하게는 40 ∼ 65% 로 형성된다. 또한, 상기 박막의 유전율은 바람직하게는 200이상, 유전 손실 tan δ는 0.03, 바람직하게는 0.01 이하이다.The composite thin film has an electric field variability defined as a percentage of the dielectric constant change of the thin film when the electric field is applied to the dielectric constant of the thin film when no electric field is applied in an electric field application range of 1000 kV / cm, preferably 40 to 40%. 65%. In addition, the dielectric constant of the thin film is preferably 200 or more, and the dielectric loss tan δ is 0.03, preferably 0.01 or less.

또한 본 발명은 전계 가변형 BST-Pb계 파이로클로어 복합 유전체 박막 제조 방법에 있어서, Pb-X-Nb-O(여기서 X는 Zn, Ni, Cu 및 Mg으로 이루어진 그룹 중에서 선택된 최소한 하나 이상을 포함)로 표현되는 소결체와 Ba-Sr-Ti-O 소결체 타겟을 제공하는 단계; 기판을 가열하는 단계; 및 상기 두 소결체 타겟을 동시 스퍼터링하여 상기 기판에 Pb-X-Nb-O와 Ba-Sr-Ti-O 복합 박막을 형성하는 단계를 포함하는 것을 특징으로 한다. The present invention also provides a Pb-X-Nb-O (where X is at least one selected from the group consisting of Zn, Ni, Cu and Mg in the field variable BST-Pb-based pyroclaw composite dielectric thin film manufacturing method) Providing a sintered compact and Ba-Sr-Ti-O sintered compact target represented by; Heating the substrate; And simultaneously sputtering the two sintered body targets to form a Pb-X-Nb-O and Ba-Sr-Ti-O composite thin film on the substrate.

상기 방법에서 복합체 박막은 조성식 Pb6X1Nb6O22로 표현되는 파이로클로어 상 과 Ba1-xSrxTiO3 복합상인 것이 바람직하다. 또한 상기 방법에서 상기 기판 가열 단계의 기판 온도는 350 ∼ 600℃로 유지되는 것이 바람직하다. In the above method, the composite thin film is preferably a pyrochlore phase and a Ba 1-x Sr x TiO 3 composite phase represented by the composition formula Pb 6 X 1 Nb 6 O 22 . In addition, the substrate temperature in the substrate heating step in the method is preferably maintained at 350 ~ 600 ℃.

또한 본 발명의 복합 유전체 박막 제조 방법은 상기 복합 박막을 형성하는 단계이후, 500℃ 이상의 온도에서 후열처리하는 단계를 더 포함할 수 있다. 이 때, 상기 후열처리 단계는 800℃ 이하의 온도에서 수행되는 것이 바람직하다. In addition, the method of manufacturing a composite dielectric thin film of the present invention may further include a post heat treatment after forming the composite thin film at a temperature of 500 ° C. or more. At this time, the post-heat treatment step is preferably performed at a temperature of 800 ℃ or less.

전술한 본 발명의 Pb-X-Nb-O계 파이로클로어 상과 Ba-Sr-Ti-O 상에서 상기 원소 X로는 나열한 Zn, Mg, Cu, Ni 이외에도 이들과 이온 반경이 유사한 2가의 다른 금속이 사용될 수도 있음은 본 발명이 속하는 기술 분야의 당업자라면 누구나 알 수 있을 것이다.In addition to the Zn, Mg, Cu and Ni listed as the element X on the Pb-X-Nb-O-based pyroclaw phase and Ba-Sr-Ti-O of the present invention described above, other divalent metals having similar ion radiuses to these It may be used by those skilled in the art to which the present invention pertains.

이하 도면을 참조하여 본 발명의 바람직한 실시 예를 설명함으로써, 본 발명을 상술한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명의 실시 예에 따른 복합 유전체 박막 제조 과정을 도시한 절차도이다. 도 1을 참조하면, 먼저 고상 합성법으로 타겟을 제조한 뒤(S110), 제조된 타겟에 대한 스퍼터링(sputtering)을 통해, 상기 타겟 하부에 위치한 기판 상에 Pb-X-Nb-O와 Ba-Sr-Ti-O 복합 유전체 박막을 형성한다(S120). 이때, 상기 기판은 약 300 ∼ 600℃의 온도로 유지된다. 상기 기판의 유지 온도의 상한선은 스터퍼 장치의 가열 조건에 따르며, 상기 스퍼터 장치가 허용하는 경우 예컨대 스퍼터 타겟의 제조에 적합한 소결 온도와 같은 고온에서 유지될 수도 있다. 이어서, 얻어진 박막을 약 500 ∼ 800℃의 온도에서 후열처리 한다(S130). 상기 후열처리는 얻어진 박막이 비정질상으로 존재하는 경우, 이의 결정화를 위한 것과 유전 특성을 증가시키기 위함이다. 이하에서는 본 발명의 바람직한 실시 예를 통해 복합 유전체 박막 제조 공정 및 얻어진 박막의 특성을 보다 상세히 설명한다.1 is a flowchart illustrating a process of manufacturing a composite dielectric thin film according to an exemplary embodiment of the present invention. Referring to FIG. 1, first, a target is manufactured by a solid phase synthesis method (S110), and then sputtered for the manufactured target, and then, Pb-X-Nb-O and Ba-Sr on a substrate positioned below the target. A Ti-O composite dielectric thin film is formed (S120). At this time, the substrate is maintained at a temperature of about 300 ~ 600 ℃. The upper limit of the holding temperature of the substrate depends on the heating conditions of the stuffer device, and may be maintained at a high temperature such as, for example, a sintering temperature suitable for the manufacture of the sputter target, if the sputter device permits. Subsequently, the obtained thin film is post-heated at a temperature of about 500 to 800 ° C. (S130). The post heat treatment is for increasing the dielectric properties and crystallization of the obtained thin film in the amorphous phase. Hereinafter, the process of manufacturing the composite dielectric thin film and the characteristics of the obtained thin film will be described in more detail with reference to preferred embodiments of the present invention.

스퍼터 타겟의 제조Preparation of Sputter Target

일본 코준도 케미칼랩 코퍼레이션 (Kojundo Chemical Lab Co., Ltd.)의 순도 99.9% 이상의 PbO, ZnO, MgO, NiO, Nb2O5를 Pb6ZnNb6O22, Pb6ZnNb6O22 및 Pb6ZnNb6O22의 화학 양론비에 맞추어 각각 칭량한 후, 무수 에탄올과 지르코니아 볼을 사용하여 혼합하였다. 또한, 일본 코준도 케미칼랩 코퍼레이션 (Kojundo Chemical Lab Co., Ltd.)의 순도 99.9% 이상의 BaCO3, SrCO3, TiO2를 Ba0.5Sr0.5TiO3, Ba0.6Sr0.4TiO3의 화학 양론비에 맞추어 각각 칭량한 후, 무수 에탄올과 지르코니아 볼을 사용하여 혼합하였다.PbO, ZnO, MgO, NiO, and Nb 2 O 5 with a purity of 99.9% or higher of Kojundo Chemical Lab Co., Ltd., Japan, were converted into Pb 6 ZnNb 6 O 22 , Pb 6 ZnNb 6 O 22 and Pb 6 Each was weighed according to the stoichiometric ratio of ZnNb 6 O 22 and then mixed using anhydrous ethanol and zirconia ball. Furthermore, BaCO 3 , SrCO 3 and TiO 2 with a purity of 99.9% or higher of Kojundo Chemical Lab Co., Ltd., Japan, were converted into stoichiometric ratios of Ba 0.5 Sr 0.5 TiO 3 and Ba 0.6 Sr 0.4 TiO 3 . Each was weighed and then mixed using anhydrous ethanol and zirconia balls.

혼합된 분말을 약 900 ∼ 950℃에서 하소한 후, 지르코니아 볼을 사용하여 분쇄하였다. 분쇄 후 폴리비닐알코올을 바인더로 첨가하여 입자를 조립화한 후 약 1000kg/cm2의 압력으로 일축 가압 및 정수압 성형(Cold Isostatic Pressure)하여 성형체를 제조하였다. 이어서, 성형체를 1150℃ ∼ 1250℃의 온도 범위에서 소결하였다. 소결체를 지름 2 inch, 두께 7mm의 디스크 형태로 가공하고, 약 800 ℃의 온도에서 번 아웃(burn out)하여 스퍼터 타겟을 제조하였다.The mixed powder was calcined at about 900-950 ° C. and then ground using zirconia balls. After pulverization, polyvinyl alcohol was added as a binder to granulate the particles, and then a uniaxial pressurized and hydrostatic pressure (Cold Isostatic Pressure) was manufactured at a pressure of about 1000 kg / cm < 2 > Next, the molded body was sintered at a temperature range of 1150 ° C to 1250 ° C. The sintered body was processed into a disk shape having a diameter of 2 inches and a thickness of 7 mm, and burned out at a temperature of about 800 ° C. to prepare a sputter target.

아래 [표 1]은 제조된 각 타겟의 물성 및 제조 조건을 요약한 표이다.Table 1 below is a table summarizing the physical properties and manufacturing conditions of each manufactured target.

[표 1]TABLE 1

조성Furtherance 기호sign 하소 온도 (도)Calcination temperature (degrees) 소결온도 (도)Sintering Temperature (degrees) Pb6ZnNb6O22 Pb 6 ZnNb 6 O 22 PZNPZN 900900 11501150 Ba0.5Sr0.5TiO3 Ba 0.5 Sr 0.5 TiO 3 B5S5TB5S5T 950950 12001200 Ba0.6Sr0.4TiO3 Ba 0.6 Sr 0.4 TiO 3 B6S4TB6S4T 950950 12001200 Pb6ZnNb6O22 Pb 6 ZnNb 6 O 22 PMNPMN 950950 12501250

유전체 박막의 제조Fabrication of Dielectric Thin Films

위 [표 1]의 두 개의 타겟으로 오프 액시스 지오메트리(Off-Axis geometry)를 갖는 반응성 RF 마그네트론 스퍼터링 시스템을 사용하여 동시 스퍼터링하여 복합 유전체 박막을 제조하였다. 이때, 기판 재료로는 Pt(111)/TiO2/SiO2/Si을 사용하였으며, 기판 각층의 두께는 1500Å/200Å/3000Å/550㎛로 설정하였다. 또한 스퍼터링을 위한 공정 챔버는 초기에 약 3×10-6 Torr의 압력으로 진공을 유지하였고, 스퍼터링 가스로는 순도 99.99%의 아르곤 가스와 반응 가스로는 순도 99.99%의 산소 가스를 챔버 내로 유입하였다.Composite dielectric thin films were prepared by simultaneous sputtering using a reactive RF magnetron sputtering system with off-axis geometry as the two targets of Table 1 above. At this time, Pt (111) / TiO 2 / SiO 2 / Si was used as the substrate material, and the thickness of each substrate layer was set to 1500 mW / 200 mW / 3000 mW / 550 µm. In addition, the process chamber for sputtering initially maintained a vacuum at a pressure of about 3 × 10 −6 Torr, and argon gas having a purity of 99.99% as a sputtering gas and oxygen gas having a purity of 99.99% as a reactive gas were introduced into the chamber.

플라즈마 소스(plasma source)로는 BST 타겟 쪽은 150 W의 RF 전원을 사용하였고 Pb계의 타겟 쪽은 50 ∼ 150W까지 조절하여 사용하였다. 유량 조절기를 통해 아르곤 가스의 유입량을 20sccm, 산소 가스의 유입량을 2sccm이 되도록 하여 O2/Ar 비를 약 10 %로 유지하였으며, 작업 압력(working pressure)은 10-3 Torr를 유지하였다.As a plasma source, 150 W of RF power was used for the BST target side, and 50 to 150 W was used for the target side of the Pb system. The flow rate controller maintained the flow rate of argon gas at 20 sccm and the flow rate of oxygen gas at 2 sccm, maintaining an O 2 / Ar ratio of about 10% and a working pressure of 10 −3 Torr.

증착시 기판의 온도를 주요 공정 변수로 설정하였고 각각의 타겟 조성에 대 해서 350 ∼ 550℃의 온도 구간에서 증착을 실시하였다. 증착시 공정 챔버내 타겟과 기판과의 거리는 13cm를 유지하였으며, 증착되는 박막의 두께는 약 3000Å이 되도록 유지하였다. 이때, 증착된 상태(as-deposited)의 박막은 제조시 기판 온도에 따라 저온에서는 비정질 상으로 고온에서는 결정 상으로 존재할 수 있으므로, 제조된 박막을 공기 분위기에서 약 500℃ 이상, 800℃ 이하의 온도로 3시간 동안 후열처리하였다.During deposition, the temperature of the substrate was set as the main process variable, and deposition was carried out at a temperature range of 350 to 550 ° C. for each target composition. During deposition, the distance between the target and the substrate in the process chamber was maintained at 13 cm, and the thickness of the deposited thin film was maintained at about 3000 mm 3. At this time, the thin film in the as-deposited state may exist as an amorphous phase at a low temperature and a crystalline phase at a high temperature according to the substrate temperature at the time of manufacture, so that the manufactured thin film is at a temperature of about 500 ° C. or higher and 800 ° C. or lower in an air atmosphere. After heat treatment for 3 hours.

유전체 박막 특성 Dielectric Thin Film Characteristics

복합 유전체 박막의 유전 특성을 측정하기 위한 새도우 마스크를 사용하여 열증착법으로 지름 250㎛, 두께 5㎛인 Ag 도트(dot)를 박막상에 형성하여, 기판의 Pt층과 Ag 도트간의 정전 용량을 측정하였다. 도 2에는 유전 특성을 측정을 위한 박막 샘플의 적층 구조를 모식적으로 나타내었다.Using a shadow mask to measure the dielectric properties of the composite dielectric thin film, an Ag dot having a diameter of 250 μm and a thickness of 5 μm was formed on the thin film by thermal evaporation to measure the capacitance between the Pt layer and the Ag dot of the substrate. It was. 2 schematically shows a laminated structure of a thin film sample for measuring dielectric properties.

정전 용량 및 유전 손실(dissipation factor, tan δ)을 에이질런트 4249A 임피던스(impedance) 분석기를 사용하여 40Hz ∼ 10MHz의주파수로 진동하는 실효 전압 500mV에서 측정하였다. Capacitance and dissipation factor (tan δ) were measured at an effective voltage of 500 mV oscillating at a frequency of 40 Hz to 10 MHz using an Agilent 4249A impedance analyzer.

유전 상수는 측정된 정전 용량으로부터 아래의 [수학식 1]로부터 계산하였다.The dielectric constant was calculated from Equation 1 below from the measured capacitance.

Figure 112007077477979-PAT00001
Figure 112007077477979-PAT00001

(여기서, C는 정전 용량, d는 필름 두께, A는 상부 전극 면적, εo는 8.8542×10-12이다)(Where C is the capacitance, d is the film thickness, A is the upper electrode area, and ε o is 8.8542 × 10 -12 )

또한, 전계 무인가시의 상기 박막의 유전율에 대한 전계 인가시의 상기 박막의 유전율 변화로 정의되는 전계 가변율을 아래의 [수학식 2]에 따라 측정하였다. 이때, 전계 가변율은 1 MHz의 주파수에서 측정하였으며, 인가 전계 범위는 ±1000 kV/cm 였다.In addition, the electric field variable rate defined by the change in dielectric constant of the thin film when the electric field is applied to the dielectric constant of the thin film when no electric field is applied was measured according to Equation 2 below. At this time, the electric field variable rate was measured at a frequency of 1 MHz, the applied electric field range was ± 1000 kV / cm.

Figure 112007077477979-PAT00002
Figure 112007077477979-PAT00002

(여기서, Co는 무전계시의 정전 용량, Cv는 전계 인가시의 정전 용량)(Where C o is the capacitance at the electrostatic field and C v is the capacitance at the time of electric field application)

도 3a 및 도 3b는 500℃의 기판 온도(substrate temperature; S. T.)에서 형성된 Ba1-xSrxTiO3-PMN 복합 유전체 박막의 증착 상태 및 후열처리 온도에 따른 유전 상수의 변화를 나타내는 그래프이다. 3A and 3B are graphs showing changes in dielectric constants according to deposition conditions and post-heating temperatures of a Ba 1-x Sr x TiO 3 -PMN composite dielectric thin film formed at a substrate temperature (ST) of 500 ° C.

상기 도 3a 및 도 3b에 도시된 그래프로부터 후열처리 온도가 증가함에 따라 유전 상수가 증가함을 알 수 있다. 500℃의 기판 온도에서 증착된 복합 유전체 박막의 경우 600 ℃의 후열처리를 거치게 되면 유전 상수는 약 260에 이름을 알 수 있다.It can be seen from the graphs shown in FIGS. 3A and 3B that the dielectric constant increases as the postheating temperature increases. In the case of a composite dielectric thin film deposited at a substrate temperature of 500 ° C., the dielectric constant is about 260 after the post-heat treatment of 600 ° C.

도 5a 및 도 5b는 기판 온도 500℃에서 형성된 Ba1-xSrxTiO3-PMN 박막의 증착 상태 및 후열처리 온도에 따른 유전 손실 특성을 도시하는 그래프이다.5A and 5B are graphs showing dielectric loss characteristics of a Ba 1-x Sr x TiO 3 -PMN thin film formed at a substrate temperature of 500 ° C. according to deposition conditions and post-heating temperatures.

상기 도 5a 및 도 5b에 도시된 바와 같이, 얻어진 박막의 유전 손실은 최대 0.03이하임을 알 수 있으며, 기판 온도 500℃, Pb계 타겟의 RF 소스가 150W에서 형성된 박막의 경우에는 유전 손실이 0.01이하이며 최대 0.004까지 감소함을 알 수 있다.As shown in FIG. 5A and FIG. 5B, it can be seen that the dielectric loss of the obtained thin film is at most 0.03 or less, and in the case of a thin film having an RF source of 150W at a substrate temperature of 500 ° C. and a Pb-based target, the dielectric loss is less than 0.01. It can be seen that the maximum decrease to 0.004.

도 4a 및 도 4b는 500℃의 기판 온도(substrate temperature)에서 형성된 Ba1-xSrxTiO3-PZN 복합 유전체 박막의 증착 상태 및 후열처리 온도에 따른 유전 상수의 변화를 나타내는 그래프이다. 4A and 4B are graphs showing changes in dielectric constants according to deposition conditions and post-heating temperatures of a Ba 1-x Sr x TiO 3 -PZN composite dielectric thin film formed at a substrate temperature of 500 ° C.

상기 도 4a 및 도 4b에 도시된 그래프로부터 기판 온도 및 후열처리 온도가 증가함에 따라 박막의 유전 상수가 증가함을 알 수 있다. 500℃의 기판 온도에서 증착된 박막의 경우 100이상의 유전 상수를 가지며, 600℃의 후열처리를 거치게 되면 유전 상수는 약 260에 이름을 알 수 있다.It can be seen from the graphs shown in FIGS. 4A and 4B that the dielectric constant of the thin film increases as the substrate temperature and the post-heat treatment temperature increase. The thin film deposited at the substrate temperature of 500 ℃ has a dielectric constant of more than 100, the dielectric constant is about 260 after the post-heat treatment of 600 ℃.

도 6a 및 도 6b는 기판 온도 500℃에서 형성된 Ba1-xSrxTiO3-PZN 박막의 증착 상태 및 후열처리 온도에 따른 유전 손실 특성을 도시하는 그래프이다. 6A and 6B are graphs showing dielectric loss characteristics of a Ba 1-x Sr x TiO 3 -PZN thin film formed at a substrate temperature of 500 ° C. according to deposition conditions and post-heating temperatures.

상기 도 6a 및 도 6b에 도시된 바와 같이, 얻어진 박막의 유전 손실은 최대 0.033이하임을 알 수 있으며, PZN의 타겟 RF소스가 150W에서 형성된 박막의 경우에는 유전 손실이 약 0.0005까지 감소함을 알 수 있다.6A and 6B, it can be seen that the dielectric loss of the obtained thin film is at most 0.033 or less, and in the case of the thin film formed at 150W of the target RF source of PZN, the dielectric loss is reduced to about 0.0005. have.

도 7a 및 도 7b는 500℃의 기판 온도(substrate temperature)에서 형성된 Ba1-xSrxTiO3-PMN 박막의 전계 가변율 특성을 나타내는 그래프이다. 여기서, 전계 가변율은 1000 kV/cm에서 계산된 값이다.7A and 7B are graphs showing electric field variable rate characteristics of a Ba 1-x Sr x TiO 3 -PMN thin film formed at a substrate temperature of 500 ° C. Here, the electric field variable rate is a value calculated at 1000 kV / cm.

도 7a를 참조하면, 전계 가변율은 후열처리 온도의 증가에 따라서 증가하고 있지만 증가폭이 크지 않다. Pb 타겟 쪽의 RF 소스가 작은 경우, 전계 가변율이 최대 값을 가지며, 소스가 50W인 경우에는 가장 낮은 값을 갖는다. 기판 온도 500℃에서 형성된 박막의 경우에는 후열처리 온도에 따라 전계 가변율이 약 20 ∼ 65 %에 이름을 알 수 있다.Referring to FIG. 7A, the electric field variable rate increases with increase in post-heat treatment temperature, but the increase is not large. When the RF source toward the Pb target is small, the electric field variable rate has the maximum value, and when the source is 50W, it has the lowest value. In the case of the thin film formed at a substrate temperature of 500 ° C., the name of the thin film may be about 20 to 65% depending on the post-heat treatment temperature.

도 8a 및 도 8b는 기판 온도(substrate temperature) 500℃에서 형성된 Ba1-xSrxTiO3-PZN 박막의 전계 가변율 특성을 나타내는 그래프이다. 8A and 8B are graphs showing electric field variable rate characteristics of a Ba 1-x Sr x TiO 3 -PZN thin film formed at a substrate temperature of 500 ° C.

상기 도 8a를 참조하면, 후열처리 온도의 증가에 따라 전계 가변율이 증가하지만, 증가폭이 크지 않다. 또한, 후열처리 온도에 따라 전계 가변율이 최대 약 75 %에 이름을 알 수 있다.Referring to FIG. 8A, although the electric field variable rate increases with increasing post-heat treatment temperature, the increase is not large. In addition, depending on the post-heating temperature, the electric field variable rate can be known up to about 75%.

이상 그래프를 참조하여 계산한 PZN, PMN 박막의 유전 특성(유전 상수, 유전 손실) 및 전계 가변율 특성을 요약하면 아래 [표 2] 내지 [표 5]와 같다.Dielectric properties (dielectric constant, dielectric loss) and electric field variable rate characteristics of PZN and PMN thin films calculated with reference to the above graphs are summarized in Tables 2 to 5 below.

[표 2] Ba0.5Sr0.5TiO3-PMN Composite 박막의 특성표[Table 2] Characteristic table of Ba 0.5 Sr 0.5 TiO 3 -PMN Composite thin film

Figure 112007077477979-PAT00003
Figure 112007077477979-PAT00003

[표 3] Ba0 .6Sr0 .4TiO3-PMN Composite 박막의 특성표[Table 3] Ba 0 .6 Sr 0 .4 properties of the TiO thin film Table 3 Composite -PMN

Figure 112007077477979-PAT00004
Figure 112007077477979-PAT00004

[표 4] Ba0 .5Sr0 .5TiO3-PZN Composite 박막의 특성표[Table 4] Ba 0 0 .5 Sr .5 TiO 3 Properties of Composite films -PZN Table

Figure 112007077477979-PAT00005
Figure 112007077477979-PAT00005

[표 5] Ba0 .6Sr0 .4TiO3-PZN Composite 박막의 특성표[Table 5] Ba 0 .6 Sr 0 .4 properties of the TiO thin film Table 3 Composite -PZN

Figure 112007077477979-PAT00006
Figure 112007077477979-PAT00006

한편 상술한 본 발명의 설명에서는 구체적인 실시 예에 관해 설명하였으나, 여러 가지 변형이 본 발명의 범위에서 벗어나지 않고 실시될 수 있다. 따라서 발명의 범위는 설명된 실시 예에 의하여 정할 것이 아니고 특허청구범위에 의해 정하여져야 한다.Meanwhile, in the above description of the present invention, specific embodiments have been described, but various modifications may be made without departing from the scope of the present invention. Therefore, the scope of the invention should be determined by the claims rather than by the described embodiments.

도 1은 본 발명의 실시 예에 따른 박막 제조 과정을 도시한 절차도,1 is a procedure showing a thin film manufacturing process according to an embodiment of the present invention,

도 2는 본 발명의 실시 예에 따른 유전 박막의 유전 특성 측정을 위한 박막 샘플의 적층 구조 모식도,2 is a schematic diagram of a laminated structure of a thin film sample for measuring dielectric properties of a dielectric thin film according to an embodiment of the present invention;

도 3a 내지 도 3b는 다양한 RF 소스에 의해 형성된 Ba0.5Sr0.5TiO3-PMN, Ba0.6Sr0.4TiO3-PMN 박막의 증착 상태 및 후열처리 온도에 따른 유전 상수 변화를 나타내는 그래프,3A to 3B are graphs showing changes in dielectric constants of Ba 0.5 Sr 0.5 TiO 3 -PMN, Ba 0.6 Sr 0.4 TiO 3 -PMN thin films formed by various RF sources according to deposition conditions and post-treatment temperatures;

도 4a 내지 도 4b는 다양한 RF 소스에 의해 형성된 Ba0.5Sr0.5TiO3-PZN, Ba0.6Sr0.4TiO3-PZN 박막의 증착 상태 및 후열처리 온도에 따른 유전 상수의 변화를 나타내는 그래프,4A to 4B are graphs showing changes in dielectric constants according to deposition states and post-heating temperatures of Ba 0.5 Sr 0.5 TiO 3 -PZN and Ba 0.6 Sr 0.4 TiO 3 -PZN thin films formed by various RF sources;

도 5a 내지 도 5b는 다양한 RF 소스에 의해 형성된 Ba0.5Sr0.5TiO3-PMN, Ba0.6Sr0.4TiO3-PMN 박막의 증착 상태 및 후열처리 온도에 따른 유전 손실의 변화를 나타내는 그래프,5A to 5B are graphs showing changes in dielectric loss of Ba 0.5 Sr 0.5 TiO 3 -PMN, Ba 0.6 Sr 0.4 TiO 3 -PMN thin films formed by various RF sources according to deposition conditions and post-treatment temperatures;

도 6a 내지 도 6b는 다양한 RF 소스에 의해 형성된 Ba0.5Sr0.5TiO3-PZN, Ba0.6Sr0.4TiO3-PZN 박막의 증착 상태 및 후열처리 온도에 따른 유전 손실의 변화를 나타내는 그래프,6A to 6B are graphs showing changes in dielectric loss of Ba 0.5 Sr 0.5 TiO 3 -PZN and Ba 0.6 Sr 0.4 TiO 3 -PZN thin films formed by various RF sources according to deposition conditions and post-heating temperatures.

도 7a 내지 도 7b는 다양한 RF 소스에 의해 형성된 Ba0.5Sr0.5TiO3-PMN, Ba0.6Sr0.4TiO3-PMN 박막의 전계 가변율 특성을 나타내는 그래프,7A to 7B are graphs showing electric field variable rate characteristics of Ba 0.5 Sr 0.5 TiO 3 -PMN, Ba 0.6 Sr 0.4 TiO 3 -PMN thin films formed by various RF sources;

도 8a 내지 도 8b는 다양한 RF 소스에 의해 형성된 Ba0 .5Sr0 .5TiO3-PZN, Ba0.6Sr0.4TiO3-PZN 박막의 전계 가변율 특성을 나타내는 그래프이다.Figure 8a to Figure 8b is a graph of Ba 0 .5 Sr 0 .5 field variation ratio characteristics of the TiO 3 -PZN, Ba 0.6 Sr 0.4 TiO 3 -PZN thin film formed by a variety of RF source.

Claims (22)

Pb-X-Nb-O (여기서 X는 Zn, Ni, Cu 및 Mg으로 이루어진 그룹 중에서 선택된 하나의 원소임)계 파이로클로어 상을 포함한 Ba-Sr-Ti-O의 유전체 박막으로서, 아래의 수학식에 의해 정의되는 전계 가변율이 20 ∼ 75% 범위내인 것을 특징으로 하는 복합 유전체 박막Pb-X-Nb-O (where X is one element selected from the group consisting of Zn, Ni, Cu, and Mg), a dielectric thin film of Ba-Sr-Ti-O including a pyrochlore phase, Composite dielectric thin film, characterized in that the electric field variable rate defined by the equation is in the range of 20 to 75% [수학식][Equation]
Figure 112007077477979-PAT00007
Figure 112007077477979-PAT00007
Co : 무전계시의 정전 용량, C o : electrostatic capacitance at the time of electroless field, Cv : 1000 kV/cm 전계 인가시의 정전 용량.C v : capacitance at 1000 kV / cm electric field.
제1항에 있어서,The method of claim 1, 상기 전계 가변율은, 20 ∼ 70% 인 것을 특징으로 하는 복합 유전체 박막.Said electric field variable rate is 20 to 70%, The composite dielectric thin film characterized by the above-mentioned. 제1항에 있어서,The method of claim 1, 상기 유전체 박막의 유전율은, 100 이상인 것을 특징으로 하는 복합 유전체 박막.The dielectric constant of the dielectric thin film is a composite dielectric thin film, characterized in that 100 or more. 제1항에 있어서,The method of claim 1, 상기 유전체 박막의 유전 손실 tan δ은, 0.03 미만인 것을 특징으로 하는 복합 유전체 박막.The dielectric loss tan δ of the dielectric thin film is less than 0.03, the composite dielectric thin film. 제1항에 있어서,The method of claim 1, 상기 유전체 박막의 두께는, 3000Å 미만인 것을 특징으로 하는 복합 유전체 박막.The thickness of the dielectric thin film is a composite dielectric thin film, characterized in that less than 3000Å. 제1항에 있어서,The method of claim 1, 상기 유전체 박막은, Pb6Zn1Nb6O22로 표현되는 파이로클로어 상을 포함한 Ba1-xSrxTiO3의 박막인 것을 특징으로 하는 복합 유전체 박막.The dielectric thin film is a composite dielectric thin film, characterized in that the thin film of Ba 1-x Sr x TiO 3 including a pyrochlore phase represented by Pb 6 Zn 1 Nb 6 O 22 . 제6항에 있어서,The method of claim 6, 상기 유전체 박막은, 아래의 수학식에 의해 정의되는 전계 가변율이 50 ∼ 75% 범위내인 것을 특징으로 하는 복합 유전체 박막The dielectric thin film is a composite dielectric thin film, characterized in that the electric field variable rate is defined by the following equation within the range of 50 to 75% [수학식][Equation]
Figure 112007077477979-PAT00008
Figure 112007077477979-PAT00008
Co : 무전계시의 정전 용량, C o : electrostatic capacitance at the time of electroless field, Cv : 1000 kV/cm 전계 인가시의 정전 용량.C v : capacitance at 1000 kV / cm electric field.
제6항에 있어서,The method of claim 6, 상기 유전체 박막의 유전율은, 50 이상 260 이하인 것을 특징으로 하는 복합 유전체 박막.The dielectric constant of the said dielectric thin film is 50 or more and 260 or less, The composite dielectric thin film characterized by the above-mentioned. 제6항에 있어서, The method of claim 6, 상기 유전체 박막의 유전 손실 tan δ은, 0.03 미만인 것을 특징으로 하는 복합 유전체 박막.The dielectric loss tan δ of the dielectric thin film is less than 0.03, the composite dielectric thin film. 제6항에 있어서,The method of claim 6, 상기 유전체 박막의 두께는, 3000Å 미만인 것을 특징으로 하는 복합 유전체 박막.The thickness of the dielectric thin film is a composite dielectric thin film, characterized in that less than 3000Å. 제1항에 있어서,The method of claim 1, 상기 유전체 박막은, Pb6Mg1Nb6O22로 표현되는 파이로클로어 상을 포함한 Ba1-xSrxTiO33의 복합 유전체 박막.The dielectric thin film is a composite dielectric thin film of Ba 1-x Sr x TiO 3 3 including a pyrochlore phase represented by Pb 6 Mg 1 Nb 6 O 22 . 제11항에 있어서,The method of claim 11, 상기 유전체 박막은, 아래의 수학식에 의해 정의되는 전계 가변율이 20 ∼ 70% 범위내인 것을 특징으로 하는 복합 유전체 박막The dielectric thin film is a composite dielectric thin film, characterized in that the electric field variable rate is defined by the following equation in the range of 20 to 70% [수학식] [Equation]
Figure 112007077477979-PAT00009
Figure 112007077477979-PAT00009
Co : 무전계시의 정전 용량, C o : electrostatic capacitance at the time of electroless field, Cv : 1000 kV/cm 전계 인가시의 정전 용량.C v : capacitance at 1000 kV / cm electric field.
제11항에 있어서,The method of claim 11, 상기 유전체 박막의 유전율은, 45 이상 260 이하인 것을 특징으로 하는 복합 유전체 박막.The dielectric constant of the said dielectric thin film is 45 or more and 260 or less, The composite dielectric thin film characterized by the above-mentioned. 제11항에 있어서,The method of claim 11, 상기 유전체 박막의 유전 손실 tan δ은, 0.025 미만인 것을 특징으로 하는 복합 유전체 박막.The dielectric loss tan δ of the dielectric thin film is less than 0.025, the composite dielectric thin film. 제11항에 있어서,The method of claim 11, 상기 유전체 박막의 두께는, 3000Å 미만인 것을 특징으로 하는 복합 유전체 박막.The thickness of the dielectric thin film is a composite dielectric thin film, characterized in that less than 3000Å. Pb-X-Nb-O (여기서 X는 Zn, Ni, Cu 및 Mg으로 이루어진 그룹 중에서 선택된 최소한 하나 이상을 포함)로 표현되는 소결체 타겟과 Ba-Sr-Ti-O 로 표현되는 소결체 타겟을 제공하는 단계;Providing a sintered compact target represented by Pb-X-Nb-O (where X includes at least one selected from the group consisting of Zn, Ni, Cu and Mg) and a sintered compact target represented by Ba-Sr-Ti-O step; 기판을 가열하는 단계; 및 Heating the substrate; And 상기 두 소결체 타겟 물질을 동시 스퍼터링하여 상기 기판에 Pb-X-Nb-O와 Ba-Sr-Ti-O 복합 박막을 형성하는 단계Simultaneously sputtering the two sintered target materials to form a Pb-X-Nb-O and Ba-Sr-Ti-O composite thin film on the substrate 를 포함하는 복합 유전체 박막 형성 방법.Composite dielectric thin film formation method comprising a. 제16항에 있어서,The method of claim 16, 상기 유전체 박막은, 조성식 Pb6X1Nb6O22로 표현되는 파이로클로어 상을 포함한 Ba1-xSrxTiO3 강유전체인 것을 특징으로 하는 복합 유전체 박막 형성 방법.The dielectric thin film is a composite dielectric thin film formation method, characterized in that the Ba 1-x Sr x TiO 3 ferroelectric including a Pyroclaw phase represented by the composition formula Pb 6 X 1 Nb 6 O 22 . 제16항에 있어서,The method of claim 16, 상기 기판 가열 단계에서 기판 온도는, 350 ∼ 600℃로 유지되는 것을 특징으로 하는 복합 유전체 박막 형성 방법.In the substrate heating step, the substrate temperature is maintained at 350 ~ 600 ℃ composite dielectric thin film formation method, characterized in that. 제 16 항에 있어서,The method of claim 16, 상기 복합 유전체 박막을 동시 스퍼터링하는 단계에서, 스퍼터링 가스로는 아르곤 가스를 사용하며, 반응가스로는 산소가스를 사용하는 것을 특징으로 하는 복합 유전체 박막 형성 방법. In the step of sputtering the composite dielectric thin film, a method of forming a composite dielectric thin film, characterized in that using the argon gas as the sputtering gas, oxygen gas as the reaction gas. 제19항에 있어서,The method of claim 19, 상기 아르곤 가스에 대한 산소 가스의 혼합 비율은 10%로 유지되는 것을 특징으로하는 복합 유전체 박막 형성 방법.And a mixing ratio of oxygen gas to argon gas is maintained at 10%. 제16항에 있어서,The method of claim 16, 상기 복합 유전체 박막을 동시 스퍼터링하는 단계에서, 증착 압력은 10 mTorr로 유지되는 것을 특징으로 하는 복합 유전체 박막 형성 방법.In the sputtering of the composite dielectric thin film, the deposition pressure is maintained at 10 mTorr. 제16항에 있어서,The method of claim 16, 상기 복합 유전체 박막 형성 단계 이후, 500℃ 이상의 온도에서 후열처리하는 단계를 더 포함하는 것을 특징으로 하는 복합 유전체 박막 형성 방법.After the composite dielectric thin film forming step, further comprising the step of post-heat treatment at a temperature of 500 ℃ or more.
KR1020070108948A 2007-09-28 2007-10-29 Fabrication of bst-pb based pyroclore composite dielectric films for tunability KR101013762B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020070098023 2007-09-28
KR1020070098023A KR20070108487A (en) 2007-09-28 2007-09-28 Fabrication of bst-pb based pyroclore composite dielectric films for tunability

Publications (2)

Publication Number Publication Date
KR20070110237A true KR20070110237A (en) 2007-11-16
KR101013762B1 KR101013762B1 (en) 2011-02-14

Family

ID=39063284

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020070098023A KR20070108487A (en) 2007-09-28 2007-09-28 Fabrication of bst-pb based pyroclore composite dielectric films for tunability
KR1020070108948A KR101013762B1 (en) 2007-09-28 2007-10-29 Fabrication of bst-pb based pyroclore composite dielectric films for tunability

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020070098023A KR20070108487A (en) 2007-09-28 2007-09-28 Fabrication of bst-pb based pyroclore composite dielectric films for tunability

Country Status (1)

Country Link
KR (2) KR20070108487A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160062569A (en) * 2014-11-25 2016-06-02 삼성전자주식회사 Multi-qubit coupling

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101439970A (en) * 2008-12-17 2009-05-27 电子科技大学 Bismuth-based dielectric material for microwave tuning and preparation thereof
KR20180058042A (en) 2016-11-23 2018-05-31 삼성전기주식회사 Thin-film ceramic capacitor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980019771A (en) * 1996-09-03 1998-06-25 변재동 A capacitor for DRAM having an insulating layer in a defect inside the dielectric thin film and a method of manufacturing the same
KR100591931B1 (en) * 2005-03-07 2006-06-20 고경현 Electric field tunable pb-based pyrochlore dielectric thin films and process for making
KR100781964B1 (en) * 2005-12-02 2007-12-06 한국과학기술연구원 Embedded capacitor and method of fabricating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160062569A (en) * 2014-11-25 2016-06-02 삼성전자주식회사 Multi-qubit coupling

Also Published As

Publication number Publication date
KR20070108487A (en) 2007-11-12
KR101013762B1 (en) 2011-02-14

Similar Documents

Publication Publication Date Title
KR20150051069A (en) Transparent conductive thin film
EP0656429B1 (en) Ferroelectric thin film and method of manufacturing the same
JPH0817245A (en) Ferro-electric thin film and manufacture thereof
Yu et al. Effect of oxygen pressure on preferential orientation, microstructure and functional properties of Bi1. 5MgNb1. 5O7 thin films prepared by pulsed laser deposition
CN109912304B (en) Bismuth ferrite based ternary solid solution dielectric thin film material and preparation method thereof
WO1998049120A1 (en) SOLUTION COATED HYDROTHERMAL BaTiO3 FOR LOW-TEMPERATURE FIRING
KR20070110237A (en) Fabrication of bst-pb based pyroclore composite dielectric films for tunability
EP3382727A1 (en) Oxynitride thin film and capacitance element
US5948216A (en) Method for making thin film tantalum oxide layers with enhanced dielectric properties and capacitors employing such layers
Gao et al. The growth of bismuth-based cubic pyrochlore dielectric thin films
TW202035332A (en) Dielectric film and electronic component
WO2004112056A1 (en) Multilayer unit
KR100591931B1 (en) Electric field tunable pb-based pyrochlore dielectric thin films and process for making
KR20050083545A (en) Pyroelectric device, method for manufacturing same and infrared sensor
CN115910604A (en) Dielectric composition and electronic component
Borderon et al. Mn-Doped Ba 0.8 Sr 0.2 TiO 3 Thin Films for Energy Storage Capacitors
US11274363B2 (en) Method of forming a sputtering target
EP2762462B1 (en) Method of forming a target and depositing doped dielectric films by sputtering
JPH06290984A (en) High dielectric-constant capacitor and manufacture thereof
Lu et al. Effects of Tb doping on structural and electrical properties of 47 (Ba0. 7Ca0. 3) TiO3–0.53 Ba (Zr0. 2Ti0. 8) O3 thin films at various annealing temperature by pulsed laser deposition
Wang et al. Characteristics and crystal structure of the Ba (ZrxTi1− x) O3 thin films deposited by RF magnetron sputtering
JP3389370B2 (en) Ceramic capacitors
Xinghua et al. Progress of (Sr, Ba) TiO 3 ferroelectric thin film and tunability
JPH07172984A (en) Production of dielectric thin film and apparatus therefor
WO2020246363A1 (en) Dielectric film, capacitor using same, and dielectric film production method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
N231 Notification of change of applicant
B601 Maintenance of original decision after re-examination before a trial
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20090626

Effective date: 20101015

Free format text: TRIAL NUMBER: 2009101005922; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20090626

Effective date: 20101015

S901 Examination by remand of revocation
GRNO Decision to grant (after opposition)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140127

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee