KR20070108487A - Fabrication of bst-pb based pyroclore composite dielectric films for tunability - Google Patents

Fabrication of bst-pb based pyroclore composite dielectric films for tunability Download PDF

Info

Publication number
KR20070108487A
KR20070108487A KR1020070098023A KR20070098023A KR20070108487A KR 20070108487 A KR20070108487 A KR 20070108487A KR 1020070098023 A KR1020070098023 A KR 1020070098023A KR 20070098023 A KR20070098023 A KR 20070098023A KR 20070108487 A KR20070108487 A KR 20070108487A
Authority
KR
South Korea
Prior art keywords
thin film
composite dielectric
dielectric
electric field
dielectric thin
Prior art date
Application number
KR1020070098023A
Other languages
Korean (ko)
Inventor
고경현
이혁준
Original Assignee
한국정보통신대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국정보통신대학교 산학협력단 filed Critical 한국정보통신대학교 산학협력단
Priority to KR1020070098023A priority Critical patent/KR20070108487A/en
Priority to KR1020070108948A priority patent/KR101013762B1/en
Publication of KR20070108487A publication Critical patent/KR20070108487A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/47Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on strontium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/088Oxides of the type ABO3 with A representing alkali, alkaline earth metal or Pb and B representing a refractory or rare earth metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02197Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02266Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by physical ablation of a target, e.g. sputtering, reactive sputtering, physical vapour deposition or pulsed laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/92Capacitors having potential barriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Insulating Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Semiconductor Memories (AREA)

Abstract

A fabrication of tunable BST-Pb based pyrochlore composite dielectric films is provided to obtain dielectric films having about 20-70% of total tunability at the electric field of 1000kV/cm having high dielectric constant and low dielectric loss as well as excellent tunability. A fabrication of composite dielectric films comprises steps of: preparing a calcinated body target represented by Pb-X-Nb-O (wherein, X is selected from a group consisting of Zn, Ni, Cu and Mg), and a calcinated body target represented by Ba-Sr-Ti-O, respectively; heating a substrate; and forming Ba1-xSrxTiO3 thin films comprising Pb-X-Nb-O thin films on the substrate by sputtering the target materials coincidently. The temperature of the substrate is maintained to 350-600deg.C during heating step. For sputtering, the ratio of oxygen to argon for mixing is maintained to 10%, and the deposition pressure is maintained to 10mTorr. The step for forming composite dielectric thin films optionally comprises post-heating step at the temperature of at least 500deg.C. The composite dielectric films of Ba-Sr-Ti-O based pyrochlore composite dielectric films comprising Pb-X-Nb-O(wherein, X is one element selected from a group consisting of Zn, Ni, Cu and Mg) based pyrochlore phase have tunability of about 20-75%, and the tunability is defined by tunability(%)=[(Co-Cv)/Co]x100 (wherein, Co is the electrostatic capacity when no electric field is applied, and Cv is the electrostatic capacity when electric field of 1000kV/cm is applied). The dielectric constant of the composite dielectric film is at least 100, and the tan delta of the composite dielectric film is less than 0.03. The thickness of the composite dielectric film is less than 3000Å.

Description

전계 가변형 BST-Pb계 파이로클로어 복합 유전체 박막과 제조방법{FABRICATION OF BST-PB BASED PYROCLORE COMPOSITE DIELECTRIC FILMS FOR TUNABILITY}Field Variable Type VTS-PJ Based Pyroclaw Composite Dielectric Thin Film and Manufacturing Method {FABRICATION OF BST-PB BASED PYROCLORE COMPOSITE DIELECTRIC FILMS FOR TUNABILITY}

본 발명은 복합 유전체 박막 및 그의 제조 방법에 관한 것으로, 보다 상세하게는 Pb를 기반으로 한 파이로클로어 (Pyrochlore) 구조의 유전체를 포함한 전계 가변형 Ba1-x SrxTiO3 박막 및 그 제조 방법에 관한 것이다.The present invention relates to a composite dielectric thin film and a method for manufacturing the same, and more particularly, to a field-variable Ba1-x SrxTiO3 thin film including a Pb-based Pyrochlore structure dielectric and a method of manufacturing the same.

통상적으로, 유전체 박막의 전계 가변 특성은 인가 전계의 변화에 따라 정전 용량 및 유전율이 따라 변화하는 특성을 말하는 것으로, 이 특성은 전계 무인가시의 유전율에 대한 전계 인가시의 유전율의 변화 비율로 정의되는 전계 가변율 (tunability)에 의해 평가될 수 있다. In general, the electric field variable characteristic of a dielectric thin film refers to a characteristic in which capacitance and dielectric constant change according to a change in an applied electric field, and this characteristic is defined as a ratio of the change in permittivity at the time of electric field application to the dielectric constant without an electric field. Can be evaluated by electric field tunability.

지금까지 전계 가변형 박막을 캐패시터로 응용한 예로는 BaTiO3와 SrTiO3의 고용체인 Ba1-xSrxTiO3 (이하 'BST'라 한다) 단일 박막에 국한되어 왔다. BST 박막은 조성에 따라 퀴리 온도 (qurie temperature; Tc)가 변화하는데, 퀴리 온도가 상 온 근처인 x = 0.3 ∼ 0.5 부근의 조성이 전계 가변형 소자로 적합한 것으로 알려져 있다. BST 박막은 일반적으로 0.5 이상의 전계 가변율을 갖는데, 기판으로 산화물 단결정 기판을 사용하거나 기타 특수한 증착 조건 하에서는 약 0.7의 전계 가변율을 나타내고 있다. 그러나 BST 박막은 우수한 전계 가변 특성에도 불구하고 0.03을 초과하는 큰 유전 손실 때문에 실제적인 응용이 곤란하다는 문제점을 가지고 있다. Until now, examples of applying the field-variable thin film as a capacitor have been limited to a single thin film of Ba1-xSrxTiO3 (hereinafter referred to as 'BST'), which is a solid solution of BaTiO3 and SrTiO3. Curie temperature (Tc) changes according to the composition of the BST thin film, and it is known that a composition around x = 0.3 to 0.5 where the Curie temperature is near room temperature is suitable as an electric field variable element. BST thin films generally have an electric field variable rate of 0.5 or more, and use an oxide single crystal substrate as a substrate or exhibit an electric field variable rate of about 0.7 under other special deposition conditions. However, the BST thin film has a problem in that practical application is difficult due to a large dielectric loss exceeding 0.03 in spite of excellent electric field variation characteristics.

이러한 문제점을 해결하기 위해 BST 박막의 유전 손실을 줄이려는 노력이 지속적으로 이루어져 왔다. 예를 들어 산화물 단결정 기판 위에 BST 박막을 에피택셜 성장(epitaxial growth) 시키거나 Mg2+ 등의 양이온을 BST 박막에 첨가하는 등의 방법이 그것이다. 이러한 방법에 의해 일부 문헌에서 0.03 보다 낮은 유전 손실을 갖는 BST 박막의 제조가 가능하다고 보고된 바 있으나, BST 박막이 갖는 높은 유전 손실에 대한 근본적인 해결책이 되지는 못하고 있는 실정이다. In order to solve this problem, efforts have been made to reduce the dielectric loss of BST thin films. For example, a method such as epitaxial growth of a BST thin film on an oxide single crystal substrate or addition of a cation such as Mg2 + to a BST thin film. Although some methods have reported that the BST thin film having a dielectric loss lower than 0.03 can be produced by this method, it is not a fundamental solution to the high dielectric loss of the BST thin film.

이에 따라 보다 낮은 유전 손실을 가지는 새로운 물질의 개발에 많은 노력이 기울여져 왔으며, 특히 Bi-Zn-Nb-O계 (이하 'BZN'이라 한다) 박막을 중심으로 많은 연구가 이루어져 왔다. 그 중 입방 결정 구조를 갖는 (Bi1.5Zn0.5)(Zn0.5Nb1.5)O7 (이하 'BZZN' 이라 한다)조성을 갖는 BZZN 박막은 유전율 150, 유전손실 0.005를 가지며, 830kV/cm의 전계에서 약 0.1의 전계 가변율을 나타낸다. 물론 BZZN 박막의 경우 인가 전계를 증가시킬 경우 전계 가변율이 소폭 증가할 것으로 예상되지만, 유전 손실이 작다는 장점에 비하여 상대적으로 낮은 유전율과 전계 가변 특성으로 인해 기존의 BST 박막을 대체하지 못하고 있는 실정이다.As a result, much effort has been devoted to the development of new materials with lower dielectric losses, and a lot of research has been made especially on Bi-Zn-Nb-O based films (hereinafter referred to as 'BZN'). Among them, the BZZN thin film having a (Bi1.5Zn0.5) (Zn0.5Nb1.5) O7 (hereinafter referred to as 'BZZN') composition having a cubic crystal structure has a dielectric constant of 150, a dielectric loss of 0.005, and an electric field of 830 kV / cm. An electric field variable rate of about 0.1 is shown. Of course, in case of BZZN thin film, if the applied electric field is increased, the electric field variability is expected to increase slightly.However, the relatively low permittivity and electric field variability characteristics of the BZZN thin film do not replace the existing BST thin film. to be.

따라서 낮은 유전 손실을 유지하면서 보다 큰 유전율과 우수한 전계 가변 특성을 가지는 조성의 유전체 박막의 개발이 요구되고 있다.Accordingly, there is a demand for the development of a dielectric thin film having a composition having a larger dielectric constant and excellent electric field variable characteristics while maintaining a low dielectric loss.

따라서 본 발명은 높은 유전율과 낮은 유전 손실을 가지며, 우수한 전계 가변 특성을 가지는 새로운 조성의 유전체 박막 및 그의 제조 방법을 제공함에 있다.Accordingly, the present invention provides a dielectric thin film having a new composition having a high dielectric constant and low dielectric loss and having excellent electric field variable characteristics, and a method of manufacturing the same.

상술한 본 발명은 Pb-X-Nb-O (여기서 X는 Zn, Ni, Cu 및 Mg으로 이루어진 그룹 중에서 선택된 하나의 원소임)계 파이로클로어 구조의 유전체를 포함한 Ba1-xSrxTiO3 유전체 박막으로서, 다음의 수식에 의해 정의되는 전계 가변율이 약 20 내지 75%인 것을 특징으로 하는 유전체 박막을 제공한다. The present invention described above is a Ba1-xSrxTiO3 dielectric thin film comprising a Pb-X-Nb-O (where X is one element selected from the group consisting of Zn, Ni, Cu, and Mg) pyrochlore-based dielectrics, It provides a dielectric thin film, characterized in that the electric field variable rate is defined by the following formula is about 20 to 75%.

Figure 112007070085810-PAT00001
Figure 112007070085810-PAT00001

(여기서, C0는 무전계시의 정전 용량, Cv는 1000 kV/cm 전계 인가시의 정전 용량)(Where C0 is the capacitance at the time of electroless field, Cv is the capacitance at the time of 1000 kV / cm field applied)

본 발명은 파이로클로어 상의 Pb 계의 유전체를 포함한 Ba1-xSrxTiO3 복합 유전체 박막을 제공한다. 본 발명의 복합 유전체 박막은 Ba1-xSrxTiO3의 높은 유전율을 유지하면서 낮은 유전 손실 특성을 나타낸다. 또한, 본 발명의 복합 유전체 박막은 최대 75% 이상의 높은 전계 가변율을 나타내는데, 이러한 특성으로 인해 위상 변환기, 평판 안테나, 필터 등의 전계 가변형 캐패시터로서 사용되기에 적합하다.The present invention provides a Ba1-xSrxTiO3 composite dielectric thin film including a Pb-based dielectric on a pyroclaw. The composite dielectric thin film of the present invention exhibits low dielectric loss characteristics while maintaining a high dielectric constant of Ba1-xSrxTiO3. In addition, the composite dielectric thin film of the present invention exhibits a high electric field variable rate of up to 75% or more, which is suitable for use as an electric field variable capacitor of a phase converter, a flat antenna, a filter, and the like.

또한, 본 발명의 복합 유전체 박막 제조 방법은 기판 온도 및 후열처리 온도에 따라 박막의 유전 특성, 즉 유전율, 전계 가변율를 넓은 범위에서 조절할 수 있다는 장점을 갖는다. 더욱이, 본 발명의 복합 유전체 박막은 강유전체의 Ba1-xSrxTiO3와 Pb 계의 파이로클로어 유전체가 혼합하여 이루어져 있기 때문에 높은 전계 가변율을 유지하면서 낮은 손실을 갖는 박막을 제조할 수 있는 장점을 가지고 결과적으로 매우 높은 이익 지수를 갖는 유전체 박막을 제조할 수 있다. In addition, the method of manufacturing a composite dielectric thin film of the present invention has an advantage of controlling the dielectric properties of the thin film, that is, the dielectric constant and the electric field variable rate, in a wide range according to the substrate temperature and the post-heat treatment temperature. Furthermore, the composite dielectric thin film of the present invention has the advantage of producing a thin film having low loss while maintaining a high electric field variable rate because the composite dielectric thin film is made of a mixture of ferroelectric Ba1-xSrxTiO3 and Pb-based pyroclaw dielectric. As a result, a dielectric thin film having a very high profit index can be manufactured.

이하, 첨부된 도면을 참조하여 본 발명의 동작 원리를 상세히 설명한다. 하기에서 본 발명을 설명함에 있어서 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. Hereinafter, with reference to the accompanying drawings will be described in detail the operating principle of the present invention. In the following description of the present invention, when it is determined that a detailed description of a known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted. Terms to be described later are terms defined in consideration of functions in the present invention, and may be changed according to intentions or customs of users or operators. Therefore, the definition should be made based on the contents throughout the specification.

본 발명의 구체적인 핵심 기술요지를 살펴보면, 파이로클로어 상의 Pb 계의 유전체를 포함한 Ba1-xSrxTiO3 복합 유전체 박막을 제공하는 기술을 통해 본 발명에서 이루고자 하는 바를 쉽게 달성할 수 있다.Looking at the specific core technical gist of the present invention, it is easy to achieve the present invention through the technology to provide a Ba1-xSrxTiO3 composite dielectric thin film including a Pb-based dielectric on the Pyroclaw.

본 발명의 박막에서 상기 전계 가변율은 바람직하게는 30 ∼ 60%이며, 상기 유전율은 바람직하게는 100 이상, 상기 유전손실 tan δ는 0.03 이하, 바람직하게는 0.01 이하이다. 본 발명의 상기 박막은 두께가 3000 Å이하인 것이 바람직하다. In the thin film of the present invention, the electric field variable rate is preferably 30 to 60%, the dielectric constant is preferably 100 or more, and the dielectric loss tan δ is 0.03 or less, preferably 0.01 or less. It is preferable that the said thin film of this invention is 3000 Pa or less in thickness.

또한 본 발명은, Pb6X1Nb6O22 (여기서 X는 Zn, Ni, Cu 및 Mg으로 이루어진 그룹 중에서 선택된 하나의 원소임)로 표현되는 입방정 파이로클로어 상을 포함한 Ba1-xSrxTiO3 박막을 제공한다. The present invention also provides a Ba1-xSrxTiO3 thin film comprising a cubic pyrochlore phase represented by Pb6X1Nb6O22, where X is one element selected from the group consisting of Zn, Ni, Cu and Mg.

상기 복합체 박막은 1000kV/cm의 전계 인가 범위에서 전계 무인가시의 상기 박막의 유전율에 대한 전계 인가시의 상기 박막의 유전율의 변화의 백분율로 정의되는 전계 가변율이 20 ∼ 75%, 바람직하게는 40 ∼ 65%이다. 또한, 상기 박막의 유전율은 바람직하게는 200 이상, 유전 손실 tan δ가 0.03, 바람직하게는 0.01 이하이다.The composite thin film has an electric field variable rate of 20 to 75%, preferably 40, which is defined as a percentage of the dielectric constant of the thin film when the electric field is applied to the dielectric constant of the thin film when no electric field is applied in an electric field application range of 1000 kV / cm. To 65%. The dielectric constant of the thin film is preferably 200 or more and the dielectric loss tan δ is 0.03, preferably 0.01 or less.

또한 본 발명은 Pb-X-Nb-O (여기서 X는 Zn, Ni, Cu 및 Mg으로 이루어진 그룹 중에서 선택된 최소한 하나 이상을 포함)로 표현되는 소결체와 Ba-Sr-Ti-O 소결체 타겟을 제공하는 단계; 기판을 가열하는 단계; 및 상기 두 소결체 타겟을 동시 스퍼터하여 상기 기판에 Pb-X-Nb-O와 Ba-Sr-Ti-O 복합 박막을 형성하는 단계를 포함 하는 복합 유전체 박막 형성 방법을 제공한다. 상기 방법에서 복합체 박막은 조성식 Pb6X1Nb6O22로 표현되는 파이로클로어 상과 Ba1-xSrxTiO3 복합상인 것이 바람직하다. 또한 상기 방법에서 상기 기판 가열 단계의 기판 온도는 350 ∼ 600 ℃로 유지되는 것이 바람직하다. In another aspect, the present invention provides a sintered compact represented by Pb-X-Nb-O (where X includes at least one selected from the group consisting of Zn, Ni, Cu and Mg) and Ba-Sr-Ti-O sintered target step; Heating the substrate; And simultaneously sputtering the two sintered body targets to form a Pb-X-Nb-O and Ba-Sr-Ti-O composite thin film on the substrate. In the above method, the composite thin film is preferably a pyrochlore phase and a Ba1-xSrxTiO3 composite phase represented by the composition formula Pb6X1Nb6O22. In addition, the substrate temperature in the substrate heating step in the method is preferably maintained at 350 ~ 600 ℃.

또한 본 발명의 방법에서 상기 복합 유전체 박막 형성 단계는 500 ℃ 이상의 온도에서 후열처리하는 단계를 더 포함할 수 있다. 이 때, 상기 후열처리 단계는 800 ℃ 이하의 온도에서 수행되는 것이 바람직하다. In addition, in the method of the present invention, the forming of the composite dielectric thin film may further include post-heat treatment at a temperature of 500 ° C. or more. At this time, the post-heat treatment step is preferably performed at a temperature of 800 ℃ or less.

전술한 본 발명의 Pb-X-Nb-O계 파이로클로어 상과 Ba-Sr-Ti-O 상에서 상기 원소 X로는 나열한 Zn, Mg, Cu, Ni 이외에도 이들과 이온 반경이 유사한 2가의 다른 금속이 사용될 수도 있음은 본 발명이 속하는 기술 분야의 당업자라면 누구나 알 수 있을 것이다.In addition to the Zn, Mg, Cu and Ni listed as the element X on the Pb-X-Nb-O-based pyroclaw phase and Ba-Sr-Ti-O of the present invention described above, other divalent metals having similar ion radiuses to these It may be used by those skilled in the art to which the present invention pertains.

이하 도면을 참조하여 본 발명의 바람직한 실시 예를 설명함으로써, 본 발명을 상술한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명의 박막 제조 과정을 도시한 절차도이다. 도 1을 참조하면, 먼저 고상 합성법으로 타겟을 제조한 뒤 (S110), 제조된 타겟으로 기판 상에 Pb-X-Nb-O와 Ba-Sr-Ti-O 복합 유전체 박막을 형성한다 (S120). 이 때, 기판은 약 300 ∼ 600 ℃의 온도로 유지된다. 상기 기판의 유지 온도의 상한선은 스터퍼 장치의 가열 조건에 따르며, 상기 스퍼터 장치가 허용하는 경우 예컨대 스퍼터 타겟의 제조에 적합한 소결 온도와 같은 고온에서 유지될 수도 있다. 이어서, 얻어진 박막을 약 500 ∼ 800 ℃의 온도에서 후열처리 한다 (S130). 상기 후열처리는 얻어진 박막이 비정질상으로 존재하는 경우, 이의 결정화를 위한 것과 유전 특성을 증가시키기 위함이다. 이하에서는 본 발명의 바람직한 실시 예를 통해 전술한 박막 제조 공정 및 얻어진 박막의 특성을 보다 상세히 설명한다.1 is a flowchart illustrating a thin film manufacturing process of the present invention. Referring to FIG. 1, first, a target is manufactured by a solid phase synthesis method (S110), and then a Pb-X-Nb-O and Ba-Sr-Ti-O composite dielectric thin film is formed on a substrate using the prepared target (S120). . At this time, the substrate is maintained at a temperature of about 300 to 600 ° C. The upper limit of the holding temperature of the substrate depends on the heating conditions of the stuffer device, and may be maintained at a high temperature such as, for example, a sintering temperature suitable for the manufacture of the sputter target, if the sputter device permits. Subsequently, the obtained thin film is post-heated at a temperature of about 500 to 800 ° C. (S130). The post heat treatment is for increasing the dielectric properties and crystallization of the obtained thin film in the amorphous phase. Hereinafter, the above-described thin film manufacturing process and the characteristics of the obtained thin film through the preferred embodiment of the present invention will be described in more detail.

스퍼터 타겟의 제조Preparation of Sputter Target

일본 코준도 케미칼랩 코퍼레이션 (Kojundo Chemical Lab Co., Ltd.)의 순도 99.9% 이상의 PbO, ZnO, MgO, NiO, Nb2O5를 Pb6ZnNb6O22, Pb6ZnNb6O22 및 Pb6ZnNb6O22의 화학 양론비에 맞추어 각각 칭량한 후, 무수 에탄올과 지르코니아 볼을 사용하여 혼합하였다. 또한, 일본 코준도 케미칼랩 코퍼레이션 (Kojundo Chemical Lab Co., Ltd.)의 순도 99.9% 이상의 BaCO3, SrCO3, TiO2를 Ba0.5Sr0.5TiO3, Ba0.6Sr0.4TiO3의 화학 양론비에 맞추어 각각 칭량한 후, 무수 에탄올과 지르코니아 볼을 사용하여 혼합하였다.PbO, ZnO, MgO, NiO, and Nb2O5 with a purity of 99.9% or higher of Kojundo Chemical Lab Co., Ltd., Japan, were weighed with anhydrous ratios according to the stoichiometry of Pb6ZnNb6O22, Pb6ZnNb6O22, and Pb6ZnNb6O22, respectively. Mix using zirconia balls. In addition, BaCO3, SrCO3 and TiO2 with a purity of 99.9% or higher of Kojundo Chemical Lab Co., Ltd., respectively, were weighed according to the stoichiometric ratio of Ba0.5Sr0.5TiO3 and Ba0.6Sr0.4TiO3. And mixed using anhydrous ethanol and zirconia balls.

혼합된 분말을 약 900 ∼ 950 ℃에서 하소한 후, 지르코니아 볼을 사용하여 분쇄하였다. 분쇄 후 폴리비닐알코올을 바인더로 첨가하여 입자를 조립화한 후 약 1000 kg/cm2의 압력으로 일축 가압 및 정수압 성형 (Cold Isostatic Pressure)하여 성형체를 제조하였다. 이어서, 성형체를 1150 ℃ ∼ 1250 ℃의 온도 범위에서 소결하였다. 소결체를 지름 2 inch, 두께 7mm의 디스크 형태로 가공하고, 약 800 ℃의 온도에서 번 아웃 (burn out)하여 스퍼터 타겟을 제조하였다.The mixed powder was calcined at about 900-950 ° C. and then ground using zirconia balls. After pulverization, polyvinyl alcohol was added as a binder to granulate the particles, and then a uniaxial pressure and hydrostatic pressure (Cold Isostatic Pressure) were manufactured at a pressure of about 1000 kg / cm < 2 > Next, the molded body was sintered at a temperature range of 1150 ° C to 1250 ° C. The sintered body was processed into a disk shape having a diameter of 2 inches and a thickness of 7 mm, and burned out at a temperature of about 800 ° C. to prepare a sputter target.

아래 표 1은 제조된 각 타겟의 물성 및 제조 조건을 요약한 표이다.Table 1 below is a table summarizing the physical properties and manufacturing conditions of each manufactured target.

[표 1]TABLE 1

조성Furtherance 기호sign 하소 온도 (도)Calcination temperature (degrees) 소결온도 (도)Sintering Temperature (degrees) Pb6ZnNb6O22Pb6ZnNb6O22 PZNPZN 900900 11501150 Ba0.5Sr0.5TiO3Ba0.5Sr0.5TiO3 B5S5TB5S5T 950950 12001200 Ba0.6Sr0.4TiO3Ba0.6Sr0.4TiO3 B6S4TB6S4T 950950 12001200 Pb6ZnNb6O22Pb6ZnNb6O22 PMNPMN 950950 12501250

유전체 박막의 제조Fabrication of Dielectric Thin Films

위 표 1의 두 개의 타겟으로 오프 액시스 지오메트리 (Off-Axis geometry)를 갖는 반응성 RF 마그네트론 스퍼터링 시스템을 사용하여 동시 스퍼터하여 복합 유전체 박막을 제조하였다. 기판 재료로는 Pt(111)/TiO2/SiO2/Si을 사용하였으며, 기판 각층의 두께는 1500Å/200Å/3000Å/550㎛였다. 챔버는 초기에 약 3ㅧ10-6 Torr의 압력으로 진공을 유지하였고, 스퍼터 가스로 순도 99.99%의 아르곤 가스와 반응 가스로 순도 99.99%의 산소 가스를 챔버 내로 유입하였다.Composite dielectric thin films were prepared by sputtering simultaneously with two targets of Table 1 using a reactive RF magnetron sputtering system having off-axis geometry. Pt (111) / TiO 2 / SiO 2 / Si was used as the substrate material, and the thickness of each substrate was 1500 μs / 200 μs / 3000 μs / 550 μm. The chamber was initially maintained in a vacuum at a pressure of about 3 × 10 −6 Torr, and argon gas having a purity of 99.99% as a sputter gas and oxygen gas having a purity of 99.99% as a reactive gas were introduced into the chamber.

플라즈마 소스로는 BST 타겟 쪽은 150 W의 RF 전원을 사용하였고 Pb계의 타겟 쪽은 50 ∼ 150W까지 조절하여 사용하였다. 유량 조절기를 통해 아르곤 가스의 유입량을 20 sccm, 산소 가스의 유입량을 2 sccm이 되도록 하여 O2/Ar 비를 약 10 %로 유지하였다. 작업 압력 (working pressure)은 10 mTorr를 유지하였다.As the plasma source, the RF power of 150 W was used for the BST target side, and the target side of the Pb system was adjusted to 50 to 150 W. The flow rate controller maintained the flow rate of argon gas at 20 sccm and the flow rate of oxygen gas at 2 sccm, thereby maintaining the O 2 / Ar ratio at about 10%. Working pressure was maintained at 10 mTorr.

증착시 기판의 온도를 주요 공정 변수로 설정하였고 각각의 타겟 조성에 대해서 350 ∼ 550 ℃의 온도 구간에서 증착을 실시하였다. 증착시 타겟과 기판과의 거리는 13 cm를 유지하였다. 증착되는 박막의 두께는 약 3000 Å이 되도록 유지하였다.During deposition, the temperature of the substrate was set as the main process variable, and deposition was performed at a temperature range of 350 to 550 ° C. for each target composition. During deposition, the distance between the target and the substrate was maintained at 13 cm. The thickness of the deposited thin film was maintained to be about 3000 mm 3.

증착된 상태 (as-deposited)의 박막은 제조시 기판 온도에 따라 저온에서는 비정질상으로 고온에서는 결정상으로 존재할 수 있으므로, 제조된 박막을 공기 분위기에서 약 500 이상, 800 ℃ 이하의 온도로 3시간 동안 후열처리하였다.As-deposited thin films may exist in the amorphous phase at low temperature and in the crystalline phase at high temperature according to the substrate temperature at the time of manufacture. Heat treatment.

유전체 박막 특성 Dielectric Thin Film Characteristics

복합 유전체 박막의 유전 특성을 측정하기 위한 새도우 마스크를 사용하여 열증착법으로 지름 250 ㎛ 두께 5㎛인 Ag 도트 (dot)를 박막상에 형성하여, 기판의 Pt층과 Ag 도트간의 정전 용량을 측정하였다. 도 2에 유전 특성을 측정을 위한 박막 샘플의 적층 구조를 모식적으로 나타내었다.Using a shadow mask for measuring dielectric properties of the composite dielectric thin film, Ag dots having a diameter of 250 μm and a thickness of 5 μm were formed on the thin film by thermal evaporation, and the capacitance between the Pt layer and the Ag dot of the substrate was measured. . 2 schematically shows a laminated structure of a thin film sample for measuring dielectric properties.

정전 용량 및 유전 손실 (dissipation factor, tan δ)을 에이질런트 4249A 임피던스 분석기를 사용하여 40Hz ∼ 10MHz의주파수로 진동하는 실효 전압 500 mV에서 측정하였다. Capacitance and dissipation factor (tan δ) were measured at an effective voltage of 500 mV oscillating at a frequency of 40 Hz to 10 MHz using an Agilent 4249A impedance analyzer.

유전 상수는 측정된 정전 용량으로부터 다음의 [수학식 1]로부터 계산하였다.The dielectric constant was calculated from Equation 1 below from the measured capacitance.

Figure 112007070085810-PAT00002
Figure 112007070085810-PAT00002

(여기서, C는 정전 용량, d는 필름 두께, A는 상부 전극 면적, 는 8.8542ㅧ10-12이다)(Where C is the capacitance, d is the film thickness, A is the upper electrode area, and 8.8542 ㅧ 10-12)

또한, 전계 무인가시의 상기 박막의 유전율에 대한 전계 인가시의 상기 박막의 유전율의 변화로 정의되는 전계 가변율을 다음의 [수학식 2]에 따라 측정하였다. 전계 가변율은 1 MHz의 주파수에서 측정하였으며, 인가 전계 범위는 ㅁ1000 kV/cm 였다.In addition, the electric field variable rate defined by the change in the dielectric constant of the thin film when the electric field is applied to the dielectric constant of the thin film when no electric field is applied was measured according to the following [Equation 2]. The electric field variable rate was measured at a frequency of 1 MHz, and the applied electric field range was ㅁ 1000 kV / cm.

Figure 112007070085810-PAT00003
Figure 112007070085810-PAT00003

(여기서, C0는 무전계시의 정전 용량, Cv는 전계 인가시의 정전 용량)(Where C0 is the capacitance at the time of electrostatic field, Cv is the capacitance at the time of electric field application)

도 3a와 도 3b는 500 ℃의 기판 온도 (substrate temperature; S. T.)에서 형성된 Ba1-xSrxTiO3-PMN 복합 유전체 박막의 증착 상태 및 후열처리 온도에 따른 유전 상수의 변화를 나타내는 그래프이다. 이 그래프로부터 후열처리 온도가 증가함에 따라 유전 상수가 증가함을 알 수 있다. 500 ℃의 기판 온도에서 증착된 복합 유전체 박막의 경우 600 ℃의 후열처리를 거치게 되면 유전 상수는 약 260에 이름을 알 수 있다.3A and 3B are graphs showing changes in dielectric constants according to deposition conditions and post-heating temperatures of a Ba1-xSrxTiO3-PMN composite dielectric thin film formed at a substrate temperature of 500 ° C. It can be seen from this graph that the dielectric constant increases as the postheating temperature increases. In the case of a composite dielectric thin film deposited at a substrate temperature of 500 ° C., the dielectric constant is about 260 after the post-heat treatment of 600 ° C.

도 5a와 도 5b는 기판 온도 500 ℃에서 형성된 Ba1-xSrxTiO3-PMN 박막의 증착 상태 및 후열처리 온도에 따른 유전 손실 특성을 도시하는 그래프이다.5A and 5B are graphs showing dielectric loss characteristics of a Ba1-xSrxTiO3-PMN thin film formed at a substrate temperature of 500 ° C. according to deposition conditions and post-heating temperatures.

도시된 바와 같이, 얻어진 박막의 유전 손실은 최대 0.03이하임을 알 수 있으며, 기판 온도 500 ℃, Pb 계 타겟의 RF 소스가 150W에서 형성된 박막의 경우에는 유전 손실이 0.01이하이며 최대 0.004까지 감소함을 알 수 있다.As shown, it can be seen that the dielectric loss of the obtained thin film is at most 0.03 or less, and in the case of a thin film formed at a substrate temperature of 500 ° C. and an RF source of Pb-based target at 150 W, the dielectric loss is less than 0.01 and decreases up to 0.004. Able to know.

도 4a와 도 4b는 500 ℃의 기판 온도 (substrate temperature) 에서 형성된 Ba1-xSrxTiO3-PZN 복합 유전체 박막의 증착 상태 및 후열처리 온도에 따른 유전 상수의 변화를 나타내는 그래프이다. 이 그래프로부터 기판 온도 및 후열처리 온도가 증가함에 따라 박막의 유전 상수가 증가함을 알 수 있다. 500 ℃의 기판 온도에서 증착된 박막의 경우 100 이상의 유전 상수를 가지며, 600 ℃의 후열처리를 거치게 되면 유전 상수는 약 260에 이름을 알 수 있다.4A and 4B are graphs showing changes in dielectric constants according to deposition conditions and post-heating temperatures of a Ba1-xSrxTiO3-PZN composite dielectric thin film formed at a substrate temperature of 500 ° C. It can be seen from this graph that the dielectric constant of the thin film increases as the substrate temperature and the post-heating temperature increase. A thin film deposited at a substrate temperature of 500 ° C. has a dielectric constant of 100 or more, and the dielectric constant is about 260 when subjected to post-heat treatment at 600 ° C.

도 6a와 도 6b는 기판 온도 500 ℃에서 형성된 Ba1-xSrxTiO3-PZN 박막의 증착 상태 및 후열처리 온도에 따른 유전 손실 특성을 도시하는 그래프이다. 도시된 바와 같이, 얻어진 박막의 유전 손실은 최대 0.033이하임을 알 수 있으며, PZN의 타겟 RF 소스가 150W에서 형성된 박막의 경우에는 유전 손실이 약 0.0005까지 감소함을 알 수 있다.6A and 6B are graphs showing dielectric loss characteristics of a Ba1-xSrxTiO3-PZN thin film formed at a substrate temperature of 500 ° C. according to deposition conditions and post-heat treatment temperatures. As shown, it can be seen that the dielectric loss of the obtained thin film is at most 0.033 or less, and in the case of the thin film formed at 150W of the target RF source of PZN, the dielectric loss is reduced to about 0.0005.

도 7a와 도 7b는 500 ℃의 기판 온도 (substrate temperature)에서 형성된 Ba1-xSrxTiO3-PMN 박막의 전계 가변율 특성을 나타내는 그래프이다. 여기서, 전계 가변율은 1000 kV/cm에서 계산된 값이다.7A and 7B are graphs showing electric field variable rate characteristics of a Ba1-xSrxTiO3-PMN thin film formed at a substrate temperature of 500 ° C. Here, the electric field variable rate is a value calculated at 1000 kV / cm.

도 7a를 참조하면, 전계 가변율은 후열처리 온도의 증가에 따라서 증가하고 있지만 증가폭이 크지 않다. Pb 타겟 쪽의 RF 소스가 작은 경우, 전계 가변율이 최대 값을 가지며, 소스가 50 W인 경우에는 가장 낮은 값을 갖는다. 기판 온도 500 ℃에서 형성된 박막의 경우에는 후열처리 온도에 따라 전계 가변율이 약 20 ∼ 약 65 %에 이름을 알 수 있다.Referring to FIG. 7A, the electric field variable rate increases with increase in post-heat treatment temperature, but the increase is not large. When the RF source toward the Pb target is small, the electric field variable rate has the maximum value, and when the source is 50 W, it has the lowest value. In the case of the thin film formed at the substrate temperature of 500 ° C., the name of the thin film may be about 20% to about 65% depending on the post-heat treatment temperature.

도 8a와 도 8b는 기판 온도 (substrate temperature) 500 ℃ 에서 형성된 Ba1-xSrxTiO3-PZN 박막의 전계 가변율 특성을 나타내는 그래프이다. 도 8a를 참조하면, 후열처리 온도의 증가에 따라 전계 가변율이 증가하지만, 증가폭이 크지 않다. 또한, 후열처리 온도에 따라 전계 가변율이 최대 약 75 %에 이름을 알 수 있다.8A and 8B are graphs showing electric field variable rate characteristics of a Ba1-xSrxTiO3-PZN thin film formed at a substrate temperature of 500 ° C. Referring to FIG. 8A, the electric field variable rate increases with increasing post-heating temperature, but the increase is not large. In addition, depending on the post-heating temperature, the electric field variable rate can be known up to about 75%.

이상 그래프를 참조하여 계산한 PZN, PMN 박막의 유전 특성 (유전 상수, 유전 손실) 및 전계 가변율 특성을 요약하면 아래 표 2 내지 표 5와 같다.Dielectric properties (dielectric constant, dielectric loss) and electric field variable rate characteristics of PZN and PMN thin films calculated with reference to the above graphs are summarized in Tables 2 to 5 below.

[표 2] Ba0.5Sr0.5TiO3-PMN Composite 박막의 특성표[Table 2] Characteristics of Ba0.5Sr0.5TiO3-PMN Composite Thin Film

Figure 112007070085810-PAT00004
Figure 112007070085810-PAT00004

[표 3] Ba0.6Sr0.4TiO3-PMN Composite 박막의 특성표[Table 3] Characteristic table of Ba0.6Sr0.4TiO3-PMN Composite thin film

Figure 112007070085810-PAT00005
Figure 112007070085810-PAT00005

[표 4] Ba0.5Sr0.5TiO3-PZN Composite 박막의 특성표[Table 4] Characteristics of Ba0.5Sr0.5TiO3-PZN Composite Thin Films

Figure 112007070085810-PAT00006
Figure 112007070085810-PAT00006

[표 5] Ba0.6Sr0.4TiO3-PZN Composite 박막의 특성표[Table 5] Characteristics of Ba0.6Sr0.4TiO3-PZN Composite Thin Films

Figure 112007070085810-PAT00007
Figure 112007070085810-PAT00007

한편 상술한 본 발명의 설명에서는 구체적인 실시 예에 관해 설명하였으나, 여러 가지 변형이 본 발명의 범위에서 벗어나지 않고 실시될 수 있다. 따라서 발명의 범위는 설명된 실시 예에 의하여 정할 것이 아니고 특허청구범위에 의해 정하여져야 한다.Meanwhile, in the above description of the present invention, specific embodiments have been described, but various modifications may be made without departing from the scope of the present invention. Therefore, the scope of the invention should be determined by the claims rather than by the described embodiments.

도 1은 본 발명의 박막 제조 과정을 도시한 절차도이다.1 is a flowchart illustrating a thin film manufacturing process of the present invention.

도 2는 발명의 유전 박막의 유전 특성을 측정을 위한 박막 샘플의 적층 구조를 모식적으로 나타낸 도면이다.2 is a diagram schematically illustrating a laminated structure of a thin film sample for measuring dielectric properties of the dielectric thin film of the present invention.

도 3a 내지 도 3b는 각각 다양한 RF 소스에 의해 형성된 Ba0.5Sr0.5TiO3-PMN, Ba0.6Sr0.4TiO3-PMN 박막의 증착 상태 및 후열처리 온도에 따른 유전 상수의 변화를 나타내는 그래프이다.3A to 3B are graphs showing changes in dielectric constants according to deposition states and post-heating temperatures of Ba0.5Sr0.5TiO3-PMN and Ba0.6Sr0.4TiO3-PMN thin films formed by various RF sources, respectively.

도 4a 내지 도 4b는 각각 다양한 RF 소스에 의해 형성된 Ba0.5Sr0.5TiO3-PZN, Ba0.6Sr0.4TiO3-PZN 박막의 증착 상태 및 후열처리 온도에 따른 유전 상수의 변화를 나타내는 그래프이다.4A to 4B are graphs showing changes in dielectric constants according to deposition states and post-heating temperatures of Ba0.5Sr0.5TiO3-PZN and Ba0.6Sr0.4TiO3-PZN thin films formed by various RF sources, respectively.

도 5a 내지 도 5b는 각각 다양한 RF 소스에 의해 형성된 Ba0.5Sr0.5TiO3-PMN, Ba0.6Sr0.4TiO3-PMN 박막의 증착 상태 및 후열처리 온도에 따른 유전 손실의 변화를 나타내는 그래프이다.5A to 5B are graphs showing changes in dielectric loss according to deposition states and post-heating temperatures of Ba0.5Sr0.5TiO3-PMN and Ba0.6Sr0.4TiO3-PMN thin films formed by various RF sources, respectively.

도 6a 내지 도 6b는 각각 다양한 RF 소스에 의해 형성된 Ba0.5Sr0.5TiO3-PZN, Ba0.6Sr0.4TiO3-PZN 박막의 증착 상태 및 후열처리 온도에 따른 유전 손실의 변화를 나타내는 그래프이다.6A to 6B are graphs showing changes in dielectric loss according to deposition states and post-heating temperatures of Ba0.5Sr0.5TiO3-PZN and Ba0.6Sr0.4TiO3-PZN thin films formed by various RF sources, respectively.

도 7a 내지 도 7b는 각각 다양한 RF 소스에 의해 형성된 Ba0.5Sr0.5TiO3-PMN, Ba0.6Sr0.4TiO3-PMN 박막의 전계 가변율 특성을 나타내는 그래프이다.7A to 7B are graphs showing electric field variable rate characteristics of Ba0.5Sr0.5TiO3-PMN and Ba0.6Sr0.4TiO3-PMN thin films formed by various RF sources, respectively.

도 8a 내지 도 8b는 각각 다양한 RF 소스에 의해 형성된 Ba0.5Sr0.5TiO3-PZN, Ba0.6Sr0.4TiO3-PZN 박막의 전계 가변율 특성을 나타내는 그래프이다.8A to 8B are graphs showing electric field variable rate characteristics of Ba0.5Sr0.5TiO3-PZN and Ba0.6Sr0.4TiO3-PZN thin films formed by various RF sources, respectively.

Claims (21)

Pb-X-Nb-O (여기서 X는 Zn, Ni, Cu 및 Mg으로 이루어진 그룹 중에서 선택된 하나의 원소임)계 파이로클로어 상을 포함한 Ba-Sr-Ti-O의 복합 유전체 박막으로서, 다음의 수식에 의해 정의되는 전계 가변율이 약 20 내지 75%인 것을 특징으로 하는 유전체 박막A composite dielectric thin film of Ba-Sr-Ti-O comprising a Pb-X-Nb-O (where X is one element selected from the group consisting of Zn, Ni, Cu and Mg) based pyrochlore phases, Dielectric thin film, characterized in that the electric field variable rate is defined by the formula of about 20 to 75%
Figure 112007070085810-PAT00008
Figure 112007070085810-PAT00008
(여기서, C0는 무전계시의 정전 용량, Cv는 1000 kV/cm 전계 인가시의 정전 용량).(Where C0 is the capacitance at the field, Cv is the capacitance at 1000 kV / cm).
제1항에 있어서,The method of claim 1, 상기 전계 가변율은 20 ~ 70% 인 것을 특징으로 하는 유전체 박막.The electric field variable rate is a dielectric thin film, characterized in that 20 to 70%. 제1항에 있어서,The method of claim 1, 상기 유전율이 100 이상인 것을 특징으로 하는 유전체 박막.The dielectric thin film, characterized in that the dielectric constant is 100 or more. 제1항에 있어서,The method of claim 1, 상기 유전 손실 tan δ가 0.03 미만인 것을 특징으로 하는 유전체 박막.The dielectric loss tan δ is less than 0.03. 제1항에 있어서,The method of claim 1, 상기 박막의 두께는 3000Å 미만인 것을 특징으로 하는 유전체 박막.The thickness of the thin film is a dielectric thin film, characterized in that less than 3000Å. Pb6Zn1Nb6O22로 표현되는 파이로클로어 상을 포함한 Ba1-xSrxTiO3 복합 유전체 박막.Ba1-xSrxTiO3 composite dielectric thin film comprising a pyrochlore phase represented by Pb6Zn1Nb6O22. 제6항에 있어서,The method of claim 6, 상기 박막은 다음의 수식에 의해 정의되는 전계 가변율이 50 ~ 75%인 것을 특징으로 하는 복합 유전체 박막The thin film composite dielectric thin film, characterized in that the electric field variable rate is defined by the following formula 50 ~ 75%
Figure 112007070085810-PAT00009
Figure 112007070085810-PAT00009
(여기서, C0는 무전계시의 정전 용량, Cv는 1000 kV/cm 전계 인가시의 정전 용량).(Where C0 is the capacitance at the field, Cv is the capacitance at 1000 kV / cm).
제6항에 있어서,The method of claim 6, 상기 유전율은 50 이상 260 이하인 것을 특징으로 하는 복합 유전체 박막.The dielectric constant is a composite dielectric thin film, characterized in that 50 to 260 or less. 제6항에 있어서, The method of claim 6, 상기 유전 손실 tan δ가 0.03 미만인 것을 특징으로 하는 복합 유전체 박막.Wherein said dielectric loss tan δ is less than 0.03. 제6항에 있어서,The method of claim 6, 상기 박막의 두께는 3000Å 미만인 것을 특징으로 하는 복합 유전체 박막.The composite dielectric thin film, characterized in that the thickness of the thin film is less than 3000Å. Pb6Mg1Nb6O22로 표현되는 파이로클로어 상을 포함한 Ba1-xSrxTiO3의 복합 유전체 박막.A composite dielectric thin film of Ba1-xSrxTiO3 comprising a pyrochlore phase represented by Pb6Mg1Nb6O22. 제11항에 있어서,The method of claim 11, 상기 박막은 다음의 수식에 의해 정의되는 전계 가변율이 20 ~ 70%인 것을 The thin film has an electric field variable rate of 20 to 70% defined by the following equation.
Figure 112007070085810-PAT00010
Figure 112007070085810-PAT00010
특징으로 하는 복합 유전체 박막Composite dielectric thin film (여기서, C0는 무전계시의 정전 용량, Cv는 1000 kV/cm 전계 인가시의 정전 용량). (Where C0 is the capacitance at the field, Cv is the capacitance at 1000 kV / cm).
제11항에 있어서,The method of claim 11, 상기 유전율이 45 이상 260 이하인 것을 특징으로 하는 복합 유전체 박막.Composite dielectric thin film, characterized in that the dielectric constant is 45 or more and 260 or less. 제11항에 있어서,The method of claim 11, 상기 유전 손실 tan δ가 0.025 미만인 것을 특징으로 하는 복합 유전체 박막.The dielectric loss tan δ is less than 0.025. 제11항에 있어서,The method of claim 11, 상기 박막의 두께는 3000Å 미만인 것을 특징으로 하는 복합 유전체 박막.The composite dielectric thin film, characterized in that the thickness of the thin film is less than 3000Å. Pb-X-Nb-O (여기서 X는 Zn, Ni, Cu 및 Mg으로 이루어진 그룹 중에서 선택된 최소한 하나 이상을 포함)로 표현되는 소결체 타겟과 Ba-Sr-Ti-O 로 표현되는 소결체 타겟을 제공하는 단계;Providing a sintered compact target represented by Pb-X-Nb-O (where X includes at least one selected from the group consisting of Zn, Ni, Cu and Mg) and a sintered compact target represented by Ba-Sr-Ti-O step; 기판을 가열하는 단계; 및Heating the substrate; And 상기 타겟 물질을 동시 스퍼터하여 상기 기판에 Pb-X-Nb-O 박막을 포함한 Ba1-xSrxTiO3 박막을 형성하는 단계를 포함하는 복합 유전체 박막 형성 방법.Simultaneously sputtering the target material to form a Ba1-xSrxTiO3 thin film including a Pb-X-Nb-O thin film on the substrate. 제16항에 있어서,The method of claim 16, 상기 Pb-X-Nb-O 박막은 조성식 Pb6X1Nb6O22로 표현되는 파이로클로어 상과 Ba1-xSrxTiO3 강유전체인 것을 특징으로 하는 복합 유전체 박막 형성 방법.The Pb-X-Nb-O thin film is a pyrochlore phase and Ba1-xSrxTiO3 ferroelectric represented by the composition formula Pb6X1Nb6O22, characterized in that the composite dielectric thin film formation method. 제16항에 있어서,The method of claim 16, 상기 기판 가열 단계에서 기판 온도는 350 ∼ 600 ℃로 유지되는 것을 특징으로 하는 유전체 박막 형성 방법.In the substrate heating step, the substrate temperature is maintained at 350 ~ 600 ℃ characterized in that the dielectric thin film forming method. 제16항에 있어서,The method of claim 16, 상기 복합 유전체 박막을 동시 스퍼터하는 단계에서 아르곤에 대한 산소 가스의 혼합 비율은 10%로 유지되는 것을 특징으로하는 유전체 박막 형성 방법.And the mixing ratio of oxygen gas to argon is maintained at 10% in the sputtering of the composite dielectric thin film. 제16항에 있어서,The method of claim 16, 상기 복합 유전체 박막을 동시 스퍼터하는 단계에서 증착 압력은 10 mTorr로 유지되는 것을 특징으로 하는 유전체 박막 형성 방법.And depositing pressure is maintained at 10 mTorr in the step of simultaneously sputtering the composite dielectric thin film. 제16항에 있어서,The method of claim 16, 상기 복합 유전체 박막 형성 단계는 500 ℃ 이상의 온도에서 후열처리하는 단계를 더 포함하는 것을 특징으로 하는 유전체 박막 형성 방법.The composite dielectric thin film forming step further comprises the step of post-heat treatment at a temperature of 500 ℃ or more.
KR1020070098023A 2007-09-28 2007-09-28 Fabrication of bst-pb based pyroclore composite dielectric films for tunability KR20070108487A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020070098023A KR20070108487A (en) 2007-09-28 2007-09-28 Fabrication of bst-pb based pyroclore composite dielectric films for tunability
KR1020070108948A KR101013762B1 (en) 2007-09-28 2007-10-29 Fabrication of bst-pb based pyroclore composite dielectric films for tunability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070098023A KR20070108487A (en) 2007-09-28 2007-09-28 Fabrication of bst-pb based pyroclore composite dielectric films for tunability

Publications (1)

Publication Number Publication Date
KR20070108487A true KR20070108487A (en) 2007-11-12

Family

ID=39063284

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020070098023A KR20070108487A (en) 2007-09-28 2007-09-28 Fabrication of bst-pb based pyroclore composite dielectric films for tunability
KR1020070108948A KR101013762B1 (en) 2007-09-28 2007-10-29 Fabrication of bst-pb based pyroclore composite dielectric films for tunability

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020070108948A KR101013762B1 (en) 2007-09-28 2007-10-29 Fabrication of bst-pb based pyroclore composite dielectric films for tunability

Country Status (1)

Country Link
KR (2) KR20070108487A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101439970A (en) * 2008-12-17 2009-05-27 电子科技大学 Bismuth-based dielectric material for microwave tuning and preparation thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102344884B1 (en) * 2014-11-25 2021-12-29 삼성전자주식회사 Multi-qubit coupling
US10062516B2 (en) 2016-11-23 2018-08-28 Samsung Electro-Mechanics Co., Ltd. Thin-film ceramic capacitor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980019771A (en) * 1996-09-03 1998-06-25 변재동 A capacitor for DRAM having an insulating layer in a defect inside the dielectric thin film and a method of manufacturing the same
KR100591931B1 (en) * 2005-03-07 2006-06-20 고경현 Electric field tunable pb-based pyrochlore dielectric thin films and process for making
KR100781964B1 (en) * 2005-12-02 2007-12-06 한국과학기술연구원 Embedded capacitor and method of fabricating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101439970A (en) * 2008-12-17 2009-05-27 电子科技大学 Bismuth-based dielectric material for microwave tuning and preparation thereof

Also Published As

Publication number Publication date
KR101013762B1 (en) 2011-02-14
KR20070110237A (en) 2007-11-16

Similar Documents

Publication Publication Date Title
CN102858691B (en) There is the perovskite material of the dielectric properties that negatively charged ion controls, film capacitor device and manufacture method thereof
WO2002056669A2 (en) Thin film dielectric composite materials
GB2349272A (en) Piezoelectric paste and piezoelectric film and piezoelectric part using the same
Yu et al. Effect of oxygen pressure on preferential orientation, microstructure and functional properties of Bi1. 5MgNb1. 5O7 thin films prepared by pulsed laser deposition
TW202035332A (en) Dielectric film and electronic component
EP3382727A1 (en) Oxynitride thin film and capacitance element
KR20070108487A (en) Fabrication of bst-pb based pyroclore composite dielectric films for tunability
US5948216A (en) Method for making thin film tantalum oxide layers with enhanced dielectric properties and capacitors employing such layers
JP7188438B2 (en) Dielectric compositions and electronic components
EP3382726A1 (en) Oxynitride thin film and capacitance element
Borderon et al. Mn-Doped Ba 0.8 Sr 0.2 TiO 3 Thin Films for Energy Storage Capacitors
KR100591931B1 (en) Electric field tunable pb-based pyrochlore dielectric thin films and process for making
CN1635592A (en) High dielectric and reduction resistant ceramic material and prepared ceramic capacitor
Lu et al. Effects of Tb doping on structural and electrical properties of 47 (Ba0. 7Ca0. 3) TiO3–0.53 Ba (Zr0. 2Ti0. 8) O3 thin films at various annealing temperature by pulsed laser deposition
US11274363B2 (en) Method of forming a sputtering target
EP2762462B1 (en) Method of forming a target and depositing doped dielectric films by sputtering
CN104637675B (en) Dielectric combination, dielectric film and electronic unit
WO2020246363A1 (en) Dielectric film, capacitor using same, and dielectric film production method
Hong et al. High-permittivity and low-loss dielectric tunable pyrochlore thin films deposited by radio frequency magnetron sputtering from a lead zinc niobate target
Xinghua et al. Progress of (Sr, Ba) TiO 3 ferroelectric thin film and tunability
JPH07172984A (en) Production of dielectric thin film and apparatus therefor
Salak et al. Relaxor behavior of the 0.9 BaTiO3–0.1 La (Mg1/2Ti1/2) O3 solid solution
JP3631570B2 (en) Dielectric thin film and ceramic capacitor
JPH0610926B2 (en) Dielectric film manufacturing method
Kong et al. Pulsed Laser Deposition of LaAlO3-Ba0. 5Sr0. 5TiO3 Thin Films for Tunable Device Applications