KR20070001592A - Method for forming gate of semiconductor device - Google Patents

Method for forming gate of semiconductor device Download PDF

Info

Publication number
KR20070001592A
KR20070001592A KR1020050057168A KR20050057168A KR20070001592A KR 20070001592 A KR20070001592 A KR 20070001592A KR 1020050057168 A KR1020050057168 A KR 1020050057168A KR 20050057168 A KR20050057168 A KR 20050057168A KR 20070001592 A KR20070001592 A KR 20070001592A
Authority
KR
South Korea
Prior art keywords
gate
hard mask
forming
film
mask pattern
Prior art date
Application number
KR1020050057168A
Other languages
Korean (ko)
Inventor
오승철
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1020050057168A priority Critical patent/KR20070001592A/en
Publication of KR20070001592A publication Critical patent/KR20070001592A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • H01L21/28044Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • H01L29/4925Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement

Abstract

A method for fabricating a semiconductor device is provided to restraining generation of GIDL(Gate Induced Drain Leakage) current by forming lightly doped regions at edges of both sides of a gate poly silicon layer to reduce the electric field applied to a channel region corresponding to a gate region. A gate oxide layer(23) and a poly silicon layer(24) where a first conductive type impurity is ion-implanted are formed in turn on a semiconductor substrate(21). A hard mask pattern is formed on the poly silicon layer to form a gate(27). Second conductive type impurity is ion-implanted with a tilted angle into the poly silicon layer by using the hard mask pattern as an ion implantation barrier to form lightly doped regions at edges of both sides of the poly silicon layer part corresponding to a gate region. The poly silicon layer and the gate oxide layer are etched in turn by using the hard mask pattern as an etch barrier.

Description

반도체 소자의 게이트 형성방법{METHOD FOR FORMING GATE OF SEMICONDUCTOR DEVICE}METHOOD FOR FORMING GATE OF SEMICONDUCTOR DEVICE

도 1은 종래 기술에 따라 형성된 반도체 소자를 도시한 단면도. 1 is a cross-sectional view showing a semiconductor device formed according to the prior art.

도 2a 내지 도 2c는 본 발명의 실시예에 따른 반도체 소자의 게이트 형성방법을 설명하기 위한 공정별 단면도. 2A through 2C are cross-sectional views illustrating processes for forming gates of a semiconductor device in accordance with an embodiment of the present invention.

* 도면의 주요 부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

21 : 반도체기판 22 : 소자분리막21 semiconductor substrate 22 device isolation film

23 : 게이트산화막 24 : 폴리실리콘막23: gate oxide film 24: polysilicon film

25 : 금속실리사이드막 26 : 하드마스크 질화막25 metal silicide film 26 hard mask nitride film

27 : 게이트 28 : 스페이서27: gate 28: spacer

29 : 접합영역29: junction area

본 발명은 반도체 소자의 제조방법에 관한 것으로, 보다 상세하게는, 지아이디엘(GIDL : Gate Induced Drain Leakage) 커런트를 개선시킬 수 있는 반도체 소자의 게이트 형성방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for forming a gate of a semiconductor device capable of improving a gate induced drain leakage (GIDL) current.

반도체 소자의 고집적화에 따라 셀 트랜지스터의 채널 길이 및 접합영역 면적은 감소하고, 한편, 채널 및 접합영역으로의 도핑 농도는 증가하고 있는 추세이다. 이에 따라, 문턱전압(Vt)이 급격하게 줄어드는 단채널효과(Short Channel Effect)가 유발되고, 전계(Electric field) 증가에 따른 접합 누설전류 증가 현상이 유발되어, 소자 특성의 저하가 야기된다. The channel length and junction area area of the cell transistor are decreasing with increasing integration of semiconductor devices, while the doping concentration to the channel and junction areas is increasing. As a result, a short channel effect in which the threshold voltage Vt decreases rapidly is induced, and a junction leakage current increases due to an increase in an electric field, resulting in deterioration of device characteristics.

특히, 상기 접합 누설전류는 채널과 접합영역이 접하는 지점에서 매우 크게 발생하게 되는데, 이것은 상기 채널과 접합영역이 접하는 지점에서 큰 전계가 걸리기 때문이다. 이러한 채널과 접합영역의 오버랩(overlap) 지점에서 유발되는 전류 누설 현상의 대표적인 예로 GIDL(Gate Induced Drain Leakage) 커런트를 들수 있다. In particular, the junction leakage current is generated very large at the point where the channel and the junction region contact each other, because a large electric field is applied at the point where the channel and the junction region contact. A representative example of the current leakage phenomenon that occurs at the overlap point of the channel and the junction region is GIDL (Gate Induced Drain Leakage) current.

상기 GIDL을 비롯한 접합 누설전류는 소자의 리프레쉬 시간을 감소시키는 주요 요인으로서, 소자의 고집적화와 신뢰성 향상을 위해서는 반드시 해결해야 하는 과제이다. The junction leakage current including the GIDL is a major factor for reducing the refresh time of the device, which is a problem that must be solved for high integration and improved reliability of the device.

도 1은 종래 기술에 따라 형성된 반도체 소자를 도시한 단면도로서, 이를 참조하여 그 제조방법 및 문제점을 설명하도록 한다. 1 is a cross-sectional view showing a semiconductor device formed according to the prior art, with reference to this to explain the manufacturing method and problems.

먼저, 소자분리막(2)이 구비된 반도체기판(1) 상에 게이트산화막(3), 도핑된 폴리실리콘막(4), 텅스텐 실리사이드막(5) 및 하드마스크 질화막(6)을 차례로 형성하고, 이어서, 상기 막들(6, 5, 4, 3)을 차례로 패터닝하여 게이트(7)를 형성한다. First, a gate oxide film 3, a doped polysilicon film 4, a tungsten silicide film 5, and a hard mask nitride film 6 are sequentially formed on the semiconductor substrate 1 having the device isolation film 2. Subsequently, the films 6, 5, 4 and 3 are sequentially patterned to form a gate 7.

그 다음, 상기 게이트(7)를 포함하는 기판 결과물 상에 산화막 및 질화막을 증착한 후, 이들을 이방성 식각하여 게이트(7)의 측벽에 스페이서(8)를 형성하고, 이어, 게이트(8) 양측 기판 영역에 불순물 이온주입을 행하여 노출된 기판 내에 소오스/드레인 접합영역(9)을 형성한다. Then, an oxide film and a nitride film are deposited on the substrate product including the gate 7, and then anisotropically etched to form a spacer 8 on the sidewall of the gate 7, and then on both sides of the gate 8. Impurity ion implantation is performed in the region to form a source / drain junction region 9 in the exposed substrate.

이후, 도시하지는 않았으나, 공지의 후속 공정을 진행하여 반도체 소자를 완성한다. Thereafter, although not shown, a semiconductor device is completed by performing a well-known subsequent process.

그러나, 상기한 종래 기술에 따른 반도체 소자에서는, 앞서 언급한 바와 같이, 고집적화에 따라 접합 면적 대비 도핑 농도가 증가함에 따라 게이트산화막(3) 하부 기판에 형성되는 채널영역과 접합영역(9)이 접하는 지점에 전계 집중현상이 증가하고, 이로 인해, GIDL 효과가 증가하여 소자의 리프레쉬 특성이 열화된다는 문제점이 발생한다.However, in the above-described semiconductor device according to the related art, as described above, the channel region formed in the lower substrate of the gate oxide film 3 and the junction region 9 are in contact with each other as the doping concentration increases with respect to the junction area due to high integration. The field concentration at the point increases, which causes a problem that the GIDL effect is increased to degrade the refresh characteristics of the device.

따라서, 본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 고집적 소자에서의 GIDL 커런트를 효과적으로 억제할 수 있는 반도체 소자의 제조방법을 제공함에 그 목적이 있다. Accordingly, an object of the present invention is to provide a method for manufacturing a semiconductor device capable of effectively suppressing GIDL current in a highly integrated device.

상기와 같은 목적을 달성하기 위한 본 발명의 반도체 소자의 게이트 형성방법은, 반도체기판 상에 게이트산화막과 제1도전형 불순물이 이온주입된 폴리실리콘막을 차례로 형성하는 단계; 상기 폴리실리콘막 상에 게이트 형성을 위한 하드마스크 패턴을 형성하는 단계; 상기 하드마스크 패턴을 이온주입 장벽으로 이용해서 상기 폴리실리콘막 내에 제2도전형 불순물을 경사 이온주입하여 게이트 영역에 해당하는 폴리실리콘막 부분의 양측 가장자리 각각에 저농도로 도핑된 영역을 형성시키 는 단계; 및 상기 하드마스크 패턴을 식각장벽으로 이용해서 폴리실리콘막과 게이트산화막을 차례로 식각하는 단계를 포함한다.A method of forming a gate of a semiconductor device of the present invention for achieving the above object comprises the steps of sequentially forming a gate oxide film and a polysilicon film implanted with a first conductivity type impurity on a semiconductor substrate; Forming a hard mask pattern for forming a gate on the polysilicon layer; Forming a lightly doped region on each of both edges of the polysilicon film portion corresponding to the gate region by obliquely implanting a second conductive impurity into the polysilicon film using the hard mask pattern as an ion implantation barrier. ; And etching the polysilicon layer and the gate oxide layer in sequence using the hard mask pattern as an etch barrier.

여기서, 상기 경사 이온주입은 기판을 180°회전시키면서 2회 수행한다. Here, the gradient ion implantation is performed twice while rotating the substrate 180 °.

또한, 상기한 본 발명의 반도체 소자의 게이트 형성방법은, 상기 제1도전형 불순물이 이온주입된 폴리실리콘막을 형성하는 단계 후, 그리고, 상기 폴리실리콘막 상에 게이트 형성을 위한 하드마스크 패턴을 형성하는 단계 전, 상기 폴리실리콘막 상에 금속실리사이드막 또는 금속막을 형성하는 단계를 더 포함한다.In addition, the gate forming method of the semiconductor device of the present invention, after the step of forming a polysilicon film implanted with the first conductive type impurity, and then forming a hard mask pattern for the gate formation on the polysilicon film The method may further include forming a metal silicide film or a metal film on the polysilicon film.

(실시예)(Example)

이하, 첨부된 도면에 의거하여 본 발명의 바람직한 실시예를 보다 상세하게 설명하도록 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 2a 내지 도 2c는 본 발명의 실시예에 따른 반도체 소자의 제조방법을 설명하기 위한 공정별 단면도이다.2A through 2C are cross-sectional views of processes for describing a method of manufacturing a semiconductor device according to an embodiment of the present invention.

도 2a를 참조하면, 공지의 STI(Shallow Trench Isolation) 공정에 따라 소자분리막(22)들이 형성된 반도체기판(21) 상에 게이트절연막으로서 게이트산화막(23)을 형성한다. Referring to FIG. 2A, the gate oxide layer 23 is formed as a gate insulating layer on the semiconductor substrate 21 on which the isolation layers 22 are formed, according to a known shallow trench isolation (STI) process.

그런다음, 상기 게이트산화막(23) 상에 제1도전형 불순물이 이온주입된 폴리실리콘막(24)을 600∼700Å 두께로 형성한다. 이어서, 상기 폴리실리콘막(24) 상에 게이트의 저저항을 구현하기 위하여 텅스텐 실리사이드막과 같은 금속실리사이드막(25)을 형성한다. Thereafter, a polysilicon film 24 into which the first conductivity type impurity is ion-implanted is formed on the gate oxide film 23 to a thickness of 600 to 700 Å. Subsequently, a metal silicide layer 25 such as a tungsten silicide layer is formed on the polysilicon layer 24 to realize low resistance of the gate.

본 발명에서는, 상기한 바와 같이 게이트의 저저항을 구현할 목적으로 금속 실리사이드막을 형성하였지만, 목적에 따라서는, 금속실리사이드막 대신 텅스텐질화막과 텅스텐막의 적층막을 형성할 수도 있다.In the present invention, the metal silicide film is formed for the purpose of realizing the low resistance of the gate as described above, but depending on the purpose, a laminated film of tungsten nitride film and tungsten film may be formed instead of the metal silicide film.

그런다음, 상기 금속실리사이드막(25) 상에 하드마스크 질화막(26)을 형성하고, 이어서, 상기 하드마스크 질화막(26) 상에 게이트 형성을 위한 감광막패턴(미도시)을 형성한다. Thereafter, a hard mask nitride layer 26 is formed on the metal silicide layer 25, and then a photoresist pattern (not shown) for gate formation is formed on the hard mask nitride layer 26.

도 2b를 참조하면, 상기 감광막패턴(미도시)을 식각장벽으로 이용해서 상기 하드마스크 질화막(26)을 패터닝하고, 계속해서, 상기 하드마스크 질화막(26) 패턴을 식각장벽으로 이용하여 금속실리사이드막(25)을 식각한다. Referring to FIG. 2B, the hard mask nitride layer 26 is patterned using the photoresist pattern (not shown) as an etch barrier, and then a metal silicide layer is formed using the hard mask nitride layer 26 as an etch barrier. Etch (25).

그런다음, 상기 패터닝된 하드마스크 질화막(26)과 금속실리사이드막(25)을 이온주입 장벽으로 이용해서 상기 폴리실리콘막(24) 내에 제2도전형 불순물을 경사 이온주입하되, 기판을 180°회전시키면서 2회 경사 이온주입하여, 게이트 영역에 해당하는 폴리실리콘막(24) 부분의 양측 가장자리(도 2b의 A영역) 각각에 저농도로 도핑된 영역을 형성시킨다. Then, by using the patterned hard mask nitride layer 26 and the metal silicide layer 25 as an ion implantation barrier, a second conductive impurity is implanted into the polysilicon layer 24 while rotating the substrate by 180 °. In this manner, the doped regions are inclined twice to form lightly doped regions at both edges (region A in FIG. 2B) of the polysilicon film 24 corresponding to the gate region.

이때, 상기 폴리실리콘막(24)이 n형 불순물로 도핑된 폴리실리콘막인 경우, 상기 경사 이온주입시에는 보론과 같은 p형 불순물을 이온주입하여 게이트 영역에 해당하는 폴리실리콘막 부분 양측 가장자리의 n형 불순물 농도를 낮춰준다. In this case, when the polysilicon layer 24 is a polysilicon layer doped with n-type impurities, the p-type impurities such as boron may be ion-implanted during the inclined ion implantation so that the edges of both sides of the polysilicon layer corresponding to the gate region may be Lower the n-type impurity concentration.

도 2c를 참조하면, 상기 패터닝된 하드마스크 질화막(26)과 금속실리사이드막(25)을 식각장벽으로 이용해서, 폴리실리콘막(24)과 게이트산화막(23)을 차례로 식각하여 게이트(27)를 형성한다. Referring to FIG. 2C, using the patterned hard mask nitride layer 26 and the metal silicide layer 25 as an etch barrier, the polysilicon layer 24 and the gate oxide layer 23 are sequentially etched to form the gate 27. Form.

그런다음, 상기 게이트(27)를 포함하는 기판 결과물 상에 산화막 및 질화막 을 증착한 후, 이들을 이방성 식각하여 게이트(27)의 측벽에 스페이서(28)를 형성하고, 이어, 상기 스페이서(28)와 게이트(27)를 이온주입장벽으로 이용해서 기판 내에 제1도전형 불순물을 고농도로 이온주입하여 소오스/드레인 접합영역(29)을 형성한다.Then, an oxide film and a nitride film are deposited on the substrate product including the gate 27, and then anisotropically etched to form a spacer 28 on the sidewall of the gate 27, and then the spacer 28 and the spacer 28. A source / drain junction region 29 is formed by using a gate 27 as an ion implantation barrier to ion implant a high concentration of first conductive impurities into the substrate.

본 발명에서는, 상기한 바와 같이, 경사 이온주입에 의해 게이트 폴리실리콘막(24) 양측 가장자리 각각에 저농도 도핑영역이 형성되므로, 그 부분에 대응하는 채널 영역에 인가되는 전계가 감소하여, 채널과 접합영역(29)간의 오버랩(overlap) 지점에서의 GIDL 커런트 발생이 효과적으로 억제된다. 이에 따라, 소자의 리프레쉬 특성이 향상되는 효과를 얻을 수 있다. In the present invention, as described above, the lightly doped region is formed at each of the edges of the gate polysilicon film 24 by the inclined ion implantation, so that the electric field applied to the channel region corresponding to the portion is reduced, thereby joining the channel. The generation of GIDL current at the overlap point between the areas 29 is effectively suppressed. As a result, the effect of improving the refresh characteristics of the device can be obtained.

이후, 도시하지는 않았으나, 공지의 후속 공정을 차례로 수행하여 본 발명의 반도체 소자를 완성한다. Subsequently, although not shown, the semiconductor device of the present invention is completed by sequentially performing subsequent known processes.

이상, 여기에서는 본 발명을 특정 실시예에 관련하여 도시하고 설명하였지만, 본 발명이 그에 한정되는 것은 아니며, 이하의 특허청구의 범위는 본 발명의 정신과 분야를 이탈하지 않는 한도 내에서 본 발명이 다양하게 개조 및 변형될 수 있다는 것을 당업계에서 통상의 지식을 가진 자가 용이하게 알 수 있다.As mentioned above, although the present invention has been illustrated and described with reference to specific embodiments, the present invention is not limited thereto, and the following claims are not limited to the scope of the present invention without departing from the spirit and scope of the present invention. It can be easily understood by those skilled in the art that can be modified and modified.

이상에서와 같이, 본 발명은 반도체 소자의 게이트 형성시, 게이트 폴리실리콘막 양측 가장자리 각각에 저농도 도핑영역을 형성함으로써, 그 부분에 대응하는 채널 영역에 인가되는 전계를 감소시켜, GIDL(Gate Induced Drain Leakage) 커런트 발생을 억제할 수 있다. 이에 따라, 본 발명의 방법을 따르면, 소자의 리프레쉬 특 성이 향상되는 효과를 얻을 수 있다.As described above, the present invention forms a low concentration doped region at each of both edges of the gate polysilicon film during gate formation of the semiconductor device, thereby reducing the electric field applied to the channel region corresponding to the portion, thereby reducing the gate induced drain (GIDL). Leakage) It can suppress the occurrence of current. Accordingly, according to the method of the present invention, the effect of improving the refresh characteristics of the device can be obtained.

Claims (3)

반도체기판 상에 게이트산화막과 제1도전형 불순물이 이온주입된 폴리실리콘막을 차례로 형성하는 단계; Sequentially forming a gate oxide film and a polysilicon film ion-implanted with a first conductive impurity on a semiconductor substrate; 상기 폴리실리콘막 상에 게이트 형성을 위한 하드마스크 패턴을 형성하는 단계; Forming a hard mask pattern for forming a gate on the polysilicon layer; 상기 하드마스크 패턴을 이온주입 장벽으로 이용해서 상기 폴리실리콘막 내에 제2도전형 불순물을 경사 이온주입하여 게이트 영역에 해당하는 폴리실리콘막 부분의 양측 가장자리 각각에 저농도로 도핑된 영역을 형성시키는 단계; 및Using the hard mask pattern as an ion implantation barrier to form a lightly doped region on each side edge of the polysilicon film portion corresponding to the gate region by oblique ion implantation of a second conductive impurity into the polysilicon film; And 상기 하드마스크 패턴을 식각장벽으로 이용해서 폴리실리콘막과 게이트산화막을 차례로 식각하는 단계;를 포함하는 것을 특징으로 하는 반도체 소자의 게이트 형성방법. And sequentially etching the polysilicon layer and the gate oxide layer by using the hard mask pattern as an etch barrier. 제 1 항에 있어서, 상기 제1도전형 불순물이 이온주입된 폴리실리콘막을 형성하는 단계 후, 그리고, 상기 폴리실리콘막 상에 게이트 형성을 위한 하드마스크 패턴을 형성하는 단계 전, 상기 폴리실리콘막 상에 금속실리사이드막 또는 금속막을 형성하는 단계를 더 포함하는 것을 특징으로 하는 반도체 소자의 게이트 형성방법. The polysilicon layer of claim 1, further comprising after forming the polysilicon layer into which the first conductivity type impurity is ion-implanted, and before forming the hard mask pattern for gate formation on the polysilicon layer. Forming a metal silicide film or a metal film in the gate forming method of a semiconductor device characterized in that it further comprises. 제 1 항에 있어서, 상기 경사 이온주입은 기판을 180°회전시키면서 2회 수 행하는 것을 특징으로 하는 반도체 소자의 게이트 형성방법. The method of claim 1, wherein the inclined ion implantation is performed twice while rotating the substrate 180 °.
KR1020050057168A 2005-06-29 2005-06-29 Method for forming gate of semiconductor device KR20070001592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050057168A KR20070001592A (en) 2005-06-29 2005-06-29 Method for forming gate of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050057168A KR20070001592A (en) 2005-06-29 2005-06-29 Method for forming gate of semiconductor device

Publications (1)

Publication Number Publication Date
KR20070001592A true KR20070001592A (en) 2007-01-04

Family

ID=37868956

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050057168A KR20070001592A (en) 2005-06-29 2005-06-29 Method for forming gate of semiconductor device

Country Status (1)

Country Link
KR (1) KR20070001592A (en)

Similar Documents

Publication Publication Date Title
US7534707B2 (en) MOS Transistors having inverted T-shaped gate electrodes and fabrication methods thereof
JP4783050B2 (en) Semiconductor device and manufacturing method thereof
JP2004241755A (en) Semiconductor device
KR100608368B1 (en) Method of manufacturing semiconductor device
US6569750B2 (en) Method for forming device isolation film for semiconductor device
US10418461B2 (en) Semiconductor structure with barrier layers
KR100596444B1 (en) Semiconductor device and method for manufacturing the same
US20070105295A1 (en) Method for forming lightly-doped-drain metal-oxide-semiconductor (LDD MOS) device
JPH10200097A (en) Semiconductor and fabrication method thereof
KR101063690B1 (en) semiconductor device and fabricating method thereof
US6987038B2 (en) Method for fabricating MOS field effect transistor
KR100463044B1 (en) Method of manufacturing semiconductor device
KR20070001592A (en) Method for forming gate of semiconductor device
US6720224B2 (en) Method for forming transistor of semiconductor device
KR100917819B1 (en) Method for manufacturing of high voltage semiconductor device
JP2007027176A (en) Semiconductor device and manufacturing method thereof
KR100311177B1 (en) A method of fabricating semiconductor device
KR100943133B1 (en) Transistor of semiconductor device and forming method thereof
KR101231229B1 (en) Method for manufacturing transistor in semiconductor device
KR100772115B1 (en) Method of manufacturing mosfet device
KR100679810B1 (en) Semiconductor device prohibited from penetration of boron, and manufacturing method thereof
KR101052864B1 (en) Method of manufacturing semiconductor device
KR100778862B1 (en) Semiconductor device and method for manufacturing the same
JP2004253707A (en) Semiconductor device, and manufacturing method thereof
KR20020071214A (en) Semiconductor Device Having Borderless Contact and Method for Fabricating the Same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application