KR20060123753A - 주파수 선택적 광 결합기-분리기 장치 - Google Patents

주파수 선택적 광 결합기-분리기 장치 Download PDF

Info

Publication number
KR20060123753A
KR20060123753A KR1020067010140A KR20067010140A KR20060123753A KR 20060123753 A KR20060123753 A KR 20060123753A KR 1020067010140 A KR1020067010140 A KR 1020067010140A KR 20067010140 A KR20067010140 A KR 20067010140A KR 20060123753 A KR20060123753 A KR 20060123753A
Authority
KR
South Korea
Prior art keywords
waveguide
frequency
elements
optical
frequency selective
Prior art date
Application number
KR1020067010140A
Other languages
English (en)
Inventor
앙리 베니스띠
에밀리 슈부브
Original Assignee
상뜨르 나쇼날 드 라 러쉐르쉬 샹띠피끄 (쎄엔알에스)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 상뜨르 나쇼날 드 라 러쉐르쉬 샹띠피끄 (쎄엔알에스) filed Critical 상뜨르 나쇼날 드 라 러쉐르쉬 샹띠피끄 (쎄엔알에스)
Publication of KR20060123753A publication Critical patent/KR20060123753A/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1221Basic optical elements, e.g. light-guiding paths made from organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • G02B2006/12078Gallium arsenide or alloys (GaAs, GaAlAs, GaAsP, GaInAs)
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12164Multiplexing; Demultiplexing

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)

Abstract

주파수 선택적 광 결합기-분리기 장치는 광학 결정 구조의 부품(10)을 구비하고 있고, 이 부품 내에는 광학 결정의 주기적 요소들(12)의 소수 행들을 가진 적어도 하나의 길이 방향 엣지를 구비하는 도파관(14)이 형성되어, 특히 도파관(14)의 폭 및/또는 광학 결정 요소들(12)의 공간 주기에 의해 결정되는 결합 주파수들에서 도파관(14)과 광학 결정의 외측 사이에 결합 영역을 형성한다.

Description

주파수 선택적 광 결합기-분리기 장치{FREQUENCY SELECTIVE LIGHT COUPLING AND DECOUPLING DEVICE}
본 발명은 광학 결정 구조의 부품에 형성된 도파관을 포함하는 형태의 주파수 선택적 광 결합기-분리기 장치에 관한 것이다.
광학 결정(photonic crystal)은 강한 굴절율 대비를 가진 유전체 요소의 주기적인 배열이다. 2차원 광학 결정은 유전체 재료의 평행한 컬럼의 배열이나 유전체 기판에 형성된 평행한 원통형 홀의 배열에 의해 구성될 수 있다. 도파관은 컬럼이나 홀의 행을 생략하는 것에 의해 부품에 형성될 수 있다.
광학 결정 내의 도파관이 도파관 내의 기본 모드(fundamental mode)와 고차 모드(higher order mode) 간의 결합으로 인해 광학 밴드 갭(photonic band gap)이나 미니 스톱 밴드(Mini-Stop Band: MSB)를 제공하며, 이들 비전송 밴드의 주파수가 특히 광학 결정의 디멘젼 파라미터(dimensional parameter: 요소들의 주기, 디멘젼 및 형태, 채움 인자(fill factor), 기타)와 도파관의 폭에 의해 결정된다는 것은 특히, 2001년 3월 1일자 Physical Review B, Vol. 63, 113311에 게재된 S. Oliver, M. Rattier, H. Benisty, C. Weisbuch 등에 의한 논문 "1차원 시스템의 미니 스톱 밴드: 2차원 광학 결정의 채널 도파관 (Mini-stopbands of one-dimensional system: the channel waveguide in a two-dimensional photonic crystal)"에 의해 알려져 있다.
본 발명의 목적은 광학 결정에 형성된 도파관의 상기 특성을 이용해 주파수 선택적 광 결합기-분리기 장치를 제조하는 것이다.
이 목적을 위해, 본 발명은 주기적인 공간 분포를 가진 복수의 유전체 요소들(12)에 의해 구성되는 광학 결정 구조의 부품(10)을 포함하는 주파수 선택적 광 결합기-분리기 장치로서, 길이 방향 엣지들을 따라 연장되는 상기 요소들의 행들을 가진 도파관(14)은 상기 요소들의 적어도 한 개의 행의 부존재 및/또는 상기 도파관의 양측 상의 상기 요소들의 행들 간의 오프셋에 의해 형성되고, 상기 길이 방향 엣지들 중 적어도 한 개의 엣지에서, 상기 주기적으로 분포된 요소들의 행들의 수는, 상기 도파관의 얇은 엣지를 정의하고 결합 주파수들(f1 - f5)에 대해 상기 광학 결정(10)의 외측과 상기 도파관(14) 간에 결합 영역들(C1 - C5)을 형성하도록 감소되며, 각 영역은 상기 도파관의 기본 모드로 진행하는 광 신호에 대응하는 주파수에서 상기 도파관(14)으로부터 성분이 인출되는 것을 가능하게 하고/하거나 광 신호의 상기 주파수에서 상기 도파관으로 성분이 인입되는 것을 가능하게 하고, 상기 결합 주파수들(f1 - f5)은 상기 도파관의 MSB 또는 광학 밴드 갭 내에 있고 상기 도파관(14) 및 상기 도파관의 단부들 사이의 상기 광학 결정(10)의 디멘젼 파라미터들의 변화에 의해 정의되는, 주파수 선택적 광 결합기-분리기 장치를 제공한다.
광학 결정으로 형성된 도파관에서, 광학 밴드 갭 또는 MSB가 도파관의 기본 모드와 고차 모드 간의 결합에서 기인하고, 고차 모드가 도파관 옆에 놓인 광학 결정의 부분으로 상당히 깊게 침투할 수 있으므로, 결합 영역 내에서 도파관 옆의 광학 결정의 부분의 두께를 감소시킴으로써 - 즉, 상기 영역 내에서 광학 결정을 정의하는 주기적으로 분포된 유전체 요소들의 행들의 수를 감소시킴으로써 - 도파관으로부터 고차 모드의 신호를 인출하는 것이 가능하다.
따라서, 기본 모드에서 도파관으로부터 주파수 성분을 인출하는 것이 가능하고, 인출된 성분의 주파수는 도파관의 MSB 또는 광학 밴드 갭 내에 있다.
상기 주파수 성분이 인출되는 영역에서, 광학 결정의 얇은 엣지를 형성하는 상기 유전체 요소들의 열들의 수는 통상 적어도 2 내지 6 범위 내에 있다.
본 발명은 복수의 채널들을 가지고 있고 신호들을 서로 다른 주파수로 결합 또는 분리시키는 주파수 선택적 광 결합기-분리기 장치를 제공하는 것을 가능케 한다.
이 목적을 위해, 도파관의 폭은 도파관 단부들 사이에서 연속적으로 또는 계층적으로 변할 수 있다.
변형예에서, 광학 결정의 유전체 요소들의 공간 주기는 도파관 단부들 사이에서 연속적으로 혹은 계층적으로 변할 수 있다.
다른 변형예에서, 결합 주파수 및 결합 강도를 변화시키도록 도파관 단부들 사이에서 변하는 것은 광학 결정의 요소들의 모양 및 크기이다.
주파수 성분을 인출 또는 인입하기 위한 도파관 내의 각 결합 영역의 길이는 통상적으로 상기 유전체 요소들의 공간 주기의 수 십 배에 해당한다.
본 발명의 다른 특성에 따르면, 도파관의 얇은 엣지 상의 결합 영역을 형성하는 유전체 요소들의 행들은 도파관의 외측을 향해 수렴 또는 발산하는 렌즈를 구성하도록 변형된다.
이것은 특히 도파관으로부터 인출된 주파수 성분에 대응하는 광 신호를 센서 상에 집속시키거나, 반대로 결합 영역을 통해 도파관으로 인입되는 주파수 성분에 대응하는 광 신호를 도파관 내측에 집속시키는 것을 가능하게 한다.
본 발명의 또 다른 특성에 따르면, 예컨대 집적 광 다이오드와 같은 적어도 한 개의 검출기는 도파관의 기본 모드에서 진행하는 광 신호로부터 인출되는 주파수 성분을 검출하도록 도파관 외측의 결합 영역을 따라 위치한다.
따라서, 도파관의 기본 모드에서 진행하는 신호의 (광학 밴드 갭 내의) 주파수 성분을 모니터하는 것은 용이하다.
본 발명의 장치의 도파관 외측의 결합 영역을 따라 복수의 광 검출기를 위치시킴으로써, 기본 모드에서 도파관으로 인입하는 광 신호의 MSB 또는 광 밴드 갭들 내에 있는 다양한 주파수 성분들을 검출하는 것이 가능하다.
상기 장치를 레이저 다이오드의 배면에 결합시킴으로써, 다이오드에 의해 방사되는 레이저 빔의 주파수를 검출 및 모니터하는 것이 가능하다.
이것은 동조 가능한 레이저 다이오드에 의해 방사되는 레이저 빔의 주파수를 모니터 및 제어하는 것을 가능하게 한다.
본 발명의 장치는 또한 광학 결정의 도파관으로 주파수 성분들을 결합하는데 사용될 수 있고, 이에 따라 상기 주파수 성분들을 다중화하는 장치를 구성하는 것을 가능케 한다.
다중화에 사용되는 본 발명의 장치는 유사한 주파수의 두 광 신호들 - 그 중 하나는 진폭, 주파수 또는 위상 변조된 정보를 운반한다 - 을 헤테로다인하도록 작용할 수 있다. 도파관 내에서, 신호들은 그 후 선형적으로 혼합된다. 도파관 단부에 위치한 광 다이오드에 의해, 신호의 주파수들 간의 차이에서 전기적 신호를 검출하는 것이 가능하며, 이에 따라, 신호들 중 하나에 의해 운반되는 정보가 검출되는 것을 가능케 한다.
도1, 도2 및 도3은 본 발명의 결합기-분해기의 다양한 실시예를 도시한 다이어그램이다.
도4는 집속 렌즈가 형성된 본 발명의 장치를 도시한 다이어그램이다.
도5는 발산 렌즈가 형성된 본 발명의 장치의 다이어그램이다.
도6 및 도7은 광 신호의 주파수 성분들을 검출하기 위한 본 발명의 장치의 다이어그램이다.
도8은 다중화기로 사용되는 본 발명의 장치의 다이어그램이다.
도9는 방사되는 레이저 빔의 주파수를 검출하기 위한 레이저 다이오드와 결합된 본 발명의 장치의 다이어그램이다.
도10은 방사되는 레이저 빔의 주파수를 검출 및 제어하기 위한 동조 가능한 레이저 다이오드와 결합된 본 발명의 장치의 다이어그램이다.
도11은 본 발명의 장치의 실시예를 도시하는 다이어그램이다.
도12는 도11 장치의 다양한 아웃렛 채널들에 의해 도파관으로부터 인출되는 주파수 성분들의 곡선들을 도시한 다이어그램이다.
예시로 제시된 이하 기재를 읽고 첨부된 도면을 참조하면, 본 발명은 더 잘 이해될 수 있으며 본 발명의 다른 특징, 세부 사항 및 장점은 더욱 명확하게 보일 것이다.
먼저, 본 발명의 장치의 세 실시예의 다이어그램인 도1, 도2 및 도3을 참조한다.
상기 장치는, 예를 들어 3에 근접한 굴절율을 가진 유전체 혹은 반도체 기판에 형성된 원통형 홀(12)의 행과 같은, 주기적 분포를 가진 유전체 요소들의 배열에 의해 구성되는 광학 결정 구조 부품(10)을 본질적으로 포함한다.
이 방식으로 제조된 광학 결정은 유전체 요소들(12)의 공간 주기(a)의 수 백 배 크기의 길이와 공간 주기(a)의 10 배에서 수 십 배 범위 내에 놓일 수 있는 폭을 가진 장방형 직사각형의 형태이다. 다중 모드 종축 도파관(14)은 적어도 유전체 요소들(12)의 한 개의 행의 부재 - 생략된 행들의 수는 통상적으로 2 내지 6 범위 내에 놓인다 - 에 의해 부품(10) 내에 형성된다.
도파관은 다른 방식, 예컨대 광학 결정의 두 부분들을 분리하고 두 부분들을 도파관의 축에 따라/따르거나 결정면에 수직한 방향으로 시프트시키는 것에 의해, 광학 결정 내에 형성될 수 있고, 도파관 축상의 오프셋은 0에서부터 반 주기까지의 범위 내에서 임의 값을 가진다.
더욱 일반적으로, 도파관은 광학 결정의 두 부분들 사이에서 주기적 요소들의 부재에 의해 형성될 수 있다.
도파관(14)이 광학 결정 내에서 주기적 요소들(12)의 한 개 이상의 생략된 행들로 제조될 때, 도파관 내에서 복수의 모드들이 공존할 수 있고, 진행 신호의 파장의 스케일에서 도파관 단부들의 강한 주기성은 이들 모드들을 상호 결합 - 즉, 모드들은 상호 회절된다 - 시킨다. 모드 결합은 광학 결정 및 도파관의 특성인 파라미터들의 함수로 결정되는 정확한 주파수에서 발생하고 이것은 그 효과의 완전한 발생을 위해 소정 수의 공간 주기들을 요구하는데, 여기서 상기 수는 주기들의 수 십 배일 수 있고 결합 강도 및 결합될(혹은 분해될) 광의 일부에 의존한다.
두 모드들이 매우 다른 종류일 때, 고차 모드는 도파관(14)의 결합 영역 옆의 광학 결정의 부분으로 상당히 깊숙히 침투할 수 있다. 이 영역 내의 광학 결정의 폭을 감소시키는 것에 의해 - 즉 이 영역 내의 광학 결정 옆의 요소들(12)의 행들의 수를 감소시키는 것에 의해 - 도파관으로부터 고차 모드의 인출을 촉진하는 것이 가능한데, 여기서 상기 모드는 그 에너지 흐름을 도파관에 사실상 수직한 방 향으로 향하게 하기 쉽다.
도1 내지 도3에 도시된 본 발명의 장치들에서, 도파관(14)은 일면에서는 비교적 많은 수의 유전체 요소(12)의 행들에 의해, 다른면에서는 작은 수의 요소들(12)의 행들에 의해 정의되고, 화살표(16)로 표시된 것 처럼, 고차 모드들을 결합 영역들로부터 이 행들을 통해 인출되도록 한다.
이 작은 수의 행들은 잘 정의된 고차 모드를 유지할 필요성 - 이에 따라, 도파관의 단부에 대해 소정의 폭을 요구한다 - 과 도파관의 상기 단부를 통과할 때 이 모드의 광에 의한 손실 사이의 절충이다.
도1에 도시된 본 발명의 장치는 5개의 결합 영역들(C1 - C5)를 가지고 있는데, 이들은 실질적으로 동일한 길이를 가지고 있지만 유전체 요소(12)의 주기가 서로 다르다. 영역 C1에서 이 주기는 a이고, 영역 C2에서는 이것이 0.8a이고, 영역 C3에서는 이것이 1.2a이고, 영역 C4에서는 이것이 0.9a이고, 영역 C5에서는 이것이 1.1a이다. 이 결합 영역들은 결합 주파수들 f1 - f5에 대응한다. 이 주파수들은 유전체 요소들(12)의 주기에 반비례하므로, 가장 긴 주기를 가진 영역 C3은 가장 낮은 결합 주파수 f5를 가지게 되는 반면, 0.8a이라는 가장 짧은 주기를 가진 결합 영역 C2는 가장 높은 결합 주파수 f1을 가지게 된다.
주파수들 f1 - f5에서 성분들을 가진 광 신호들이 기본 모드에서 도파관(14)의 단부로 인입할 때, 이 신호들의 주파수 성분들은 주파수 순서 f3, f1, f5, f2 및 f4대로 결합 영역들 C1 내지 C5에 의해 인출된다.
도2에서 도식적으로 도시된 실시예에서, 부품(10)은 동일한 결합 영역들 C1 내지 C5를 가지고 있지만 이들은 유전체 요소들(12)의 분포에 대한 공간 주기가 증가하는 순서로(즉, 도파관(14)의 입구 및 출구 사이에서 C2 - C4 - C1 - C5 - C3 순서로) 도파관의 종축 단부들 사이에서 형성된다.
주파수들 f1 내지 f5에서 성분들을 가진 광 신호들이 기본 모드에서 도파관(14)의 입력으로 인입할 때, 입구 및 출구 사이에서 도파관으로부터 인출되는 주파수 성분들은 f1, f2, f3, f4 및 f5 순서이다.
도3의 실시예에서, 부품(10)은 동일한 주기a로 분포되는 광학 결정의 유전체 요소들(12)을 가지고 있는 동일한 길이의 4개의 결합 영역들 C1, C2, C3 및 C4를 가지고 있고, 이 결합 영역들은 도파관의 입구에서의 결합 영역 C1로부터 도파관의 출구에서의 결합 영역 C4까지 감소하는 도파관(14)의 폭에 의해 서로 다르게 된다. 도시된 바와 같이, 도파관(14)은 결합 영역 C1에서 폭 w 를, 결합 영역 C2에서 폭 0.98w를, 결합 영역 C3에서 폭 0.96w를, 결합 영역 C4에서 폭 0.94를 가지고 있다. 이 폭의 작은 변화들로 인해 신호가 한 결합 영역에서 다음 영역으로 갈 때 사실상 반사가 되지 않아 매우 양호한 전송이 가능하다.
이 결합 영역들은 결합 주파수들 f1, f2, f3 및 f4에 대응하고, 이 주파수들은 f1에서 f4까지 증가한다.
주파수 f1 내지 f4에서 성분들을 가진 광 신호들이 기본 모드에서 도파관(14)의 입구로 인입될 때, 주파수 f1의 성분은 결합 영역 C1 내의 도파관으로부터 인출되고, 주파수 f2의 성분은 결합 영역 C2 내의 도파관으로부터 인출되고, 주파수 f3의 성분은 결합 영역 C3 내의 도파관으로부터 인출되고, 주파 수 f4의 성분은 결합 영역 C4로부터 인출된다.
당연하게도, 광학 결정의 유전체 요소들(12)의 공간 분포의 주기를 변화시키는 것이 가능하고, 이와 동시에 도파관(14)의 폭을 변화시키는 것도 가능하다.
공간 주기 및 폭은 도1 내지 도3에 도시된 것처럼 계층적으로 변하거나 혹은 연속적으로 변하게 만들어질 수 있다.
본 발명의 장치가 도1 내지 도3에 도시된 것처럼 분리에 사용될 때, 도파관(14)의 얇은 엣지를 형성하는 광학 결정(10)의 부분은 결합 영역 C에서 렌즈를 포함하는 것이 바람직하고, 렌즈는 장치가 광을 분해하는데 사용되는지 혹은 광을 결합하는데 사용되는지에 따라 도파관의 외측을 향해 발산하거나 수렴한다.
도4에서, 광학 결정(10) 내에 형성된 도파관(14)은 유전체 요소들(12)의 두 개의 행들에 의해 그것의 얇은 엣지를 따라 정의되고, 행들 중 적어도 하나는 도파관(14)의 외측을 향하는 집속 렌즈로 작용하는 렌즈(18)를 구성하도록 변형된다.
도시된 실시예에서, 유전체 요소들(12)의 외측 행은 결합 영역 C의 중간에 있는 상기 요소들의 내측 행에 대해 가로 거리 b까지 근접하여 L2/8df와 동일한 초점 거리 D의 집속 렌즈를 구성하는데, 여기서 L은 유전체 요소들(12)의 외측 행의 변형된 영역의 길이이고, b는 상기 행의 가로 변형이고, f는 광학 결정의 채움 인자(fill factor)이다. 이것은 길이 L이 22㎛와 동일하고, 변형 b가 0.5㎛와 동일하고, 채움 인자가 0.3과 동일할 때 100㎛의 초점 거리를 생성한다.
도5에 도시된 바와 같이, 도파관의 외측을 향해 발산하는 렌즈(20)는 결합 영역 내의 도파관(14)의 얇은 엣지를 형성하는 요소들(12)의 외측 행(들) 반대 방향으로의 변형에 의해 형성되고, 상기 발산 렌즈는 외측으로부터 렌즈(20)에 대응하는 결합 영역으로 인입하는 주파수 성분을 도파관의 내측을 향해 집속한다.
도6은 부품(10)의 예컨대 얇은 엣지를 따라 배열되는 집적 광 다이오드들과 같은 일련의 검출기들(22)을 구비한 본 발명의 장치의 다이어그램이고, 각 검출기(22)는 해당 결합 영역 C1, C2, C3, C4 또는 C5와 함께 레지스터 내에 위치하고, 얇은 엣지의 요소들(12)의 행들은 시준 광(collimated light)을 각 광 검출기(22)로 운반하도록 형성되고, 상기 빔은 도파관(14)의 대응 영역 내의 기본 모드와 고차 모드 사이에서 결합 주파수 성분을 포함한다.
도7은 유사한 배치를 도시하고 있으나, 여기서 광 검출기들(22)에 대면하도록 위치한 도파관(14)의 얇은 길이 방향 엣지를 정의하는 유전체 요소들(12)의 행들은 결합 영역들 C1 - C5 내의 도파관으로부터 인출되는 주파수 성분들(26)을 광 검출기들 상에 집속하기 위한 집속 렌즈들(18)을 구비하고 있다.
도8은 주파수 선택적 광 결합과, 서로 다른 주파수 성분들을 도파관으로 다중화시키는데 사용되는 본 발명의 장치를 도시하고 있다.
도시된 실시예에서, 장치는 각기 결합 주파수들 f1, f2, f3, f4 및 f5의 5개 결합 영역들 C1, C2, C3, C4 및 C5을 구비하고 있다.
이 결합 주파수들에서 성분들을 가지는 광 신호들(30)이 부품(10)의 얇은 엣지를 향할 때, 신호들(30)의 주파수 성분 f1은 결합 영역 C1 내의 도파관으로 인입되고, 신호들(30)의 주파수 성분 f2는 결합 영역 C2 내의 도파관으로 인입되고, 나 머지 성분들도 같은 방식으로 인입되며, 결합 영역 C5에서 하류가 되도록 도파관(14)은 주파수들 f1, f2, f3, f4 및 f5에서 광 신호들(30)의 성분들의 선형 혼합을 포함한다.
따라서, 광 신호들 각각이 도파관의 얇은 엣지의 적당한 부분을 향할 때, 도파관(14)의 기본 모드에서 부품(10)의 다양한 결합 영역들의 결합 주파수들에 대응하는 각각의 주파수들을 가진 복수의 광 신호들을 결합하는 것이 가능하다.
도파관(14)의 기본 모드와의 결합을 촉진하기 위해, 도파관의 이 얇은 엣지 부분들은 도5에 도시된 것과 같은 발산 렌즈들(20)을 가질 수 있다.
도9는 본 발명의 장치를, 본 발명의 장치의 부품(10)을 배면에 위치시킨 레이저 다이오드(32)에 의해 방사되는 빔의 주파수를 모니터하는데 적용하는 것을 도시하고 있고, 이 부품은 예컨대 주파수들 f1 내지 f5를 위한 5개의 결합 영역들 C1 내지 C5를 포함한다. 만약 다이오드(32)에 의해 방사되는 레이저 빔이 주파수 f2에 있다면, 주파수 f2의 광 신호는 도시된 것처럼 레이저 다이오드(32)의 배면으로부터 기본 모드에서 도파관으로 인입될 수 있다.
주파수 f2의 이 신호는 레이저 빔의 주파수와 동일하거나 상기 주파수에 매우 근접한 결합 주파수 f2의 결합 영역 C2에서 고차 모드로 결합되어, 고차 모드의 신호가 결합 영역 C2 내의 도파관의 얇은 엣지를 통과할 수 있고 상기 결합 영역과 결합된 광 검출기(22)에 의해 검출될 수 있다.
도10에서 도식적으로 도시된 바와 같이, 동조 가능한 레이저 다이오드(32)의 방사 주파수를 모니터 및 제어하는데 본 발명의 장치를 사용하는 것도 가능하다.
이 실시예에서, 레이저 다이오드(32)의 배면에 위치한 장치는 두 개의 얇은 엣지들 사이의 도파관(14)을 사용해 형성된 상술한 형태의 - 즉, 주기적 요소들(12)의 소수 행들로 이루어진 단부들을 가진 - 부품(10)을 포함하고 있다.
예를 들어, 장치는 결합 주파수들 f2-δf, f2+δf, f3-δf, 및 f3+δf에 각기 대응하는 4개의 결합 영역들 C1, C2, C3 및 C4를 구비하고 있다.
집적 광 다이오드들과 같은 광 검출기들(22, 22')은 도파관(14)을 따라 부품(10)의 양면 상에 배열되어 있고, 각 광 다이오드(22)는 결합 영역들 C1 내지 C4에 결합되어 있고, 각 광 다이오드(22')는 결합 영역들의 쌍 C1 및 C2 혹은 C3 및 C4에 각기 결합되어 있다.
광 다이오드들(22')에 의해 출력되는 신호들은 레이저 다이오드(32)에 의해 방사되는 주파수 f2 또는 f3의 비정세 모니터에 사용될 수 있는데, 레이저 다이오드는 광 다이오드들(22') 중의 하나로부터의 출력 신호에서 최대를 찾는 것에 의해 동조되고, 광 다이오드(22')로부터의 출력 신호들은 주파수 f2-δf 및 f2+δf의 신호들을 수신하는 광 다이오드들(22) 사이 혹은, 주파수 f3-δf 및 f3+δf의 신호들을 수신하는 광 다이오드들(22) 사이의 차분 측정(differential measurements)에 기초하는 정세 모니터링(fine monitoring)에 사용된다.
본 발명 장치의 실시예는 도11을 참조해 이하 기술된다.
이 실시예에서, 부품(10)은 두께 e = 450 nm이고 굴절율 n = 3.33을 가진 GaInAsP의 코아층을 포함하는 도광 수직 헤테로 구조(light-guiding vertical heterostructure)이고, 코아는 보다 낮은 굴절율 n = 3.17을 가진 InP의 두 개의 제한층들에 의해 둘러싸여 있다. 광학 결정들의 삼각형 배열들은 헤테로 구조를 통해 식각되며, 홀들의 평균 깊이는 약 2㎛이다. 이 구조들의 공기 내의 채움 인자는 40%이다. 홀들(22)의 삼각형 배열의 주기 a는 380nm이다. 도파관(14)은 홀들의 세 개의 행들을 생략하는 것에 의해 이 부품 내에 형성되어 있고 이것은 홀들(22)의 네 개의 행들의 폭에 대응하는 단부들 사이의 폭을 나타내며, 이 폭은 도11에서 주어진 값들 사이, 즉 4.05a (√3)/2에서 3.95a (√3)/2까지의 값들 사이에서 도파관(14)의 일단으로부터 타단까지 연속적으로 변한다.
도파관의 길이 방향 엣지들 중 하나는 8개 행들의 홀들(22)을 가지고 있고 이에 따라 8a (√3)/2의 폭을 가지며, 도파관(14)의 다른 길이 방향 엣지는 3개 행들의 홀들을 가지고 있고 이에 따라 3a (√3)/2의 폭을 가진다.
6개의 출구 채널들(36)은 반사기로 기능하고 광 신호들을 상호 격리시키는 에어 트렌치들(air trenches: 38)에 의해 부품 내에서 정의되며, 그들 사이에서 넓은 도파관들이 형성된다.
도파관(14)의 길이는 주기 a의 300배이고 출구 채널들(36)의 길이는 10㎛이다.
도12에는 출구 채널들(36)에서 검출된 광 신호들의 세기를 나타내는 곡선이 도식적으로 도시되어 있다.
이 세기 곡선은 스펙트럼 폭(spectral width) 150nm인 중심 주파수(center wavelength) 1.55㎛를 가진 도파관 입구에서의 입사광에 대응한다. 이 실시예에서, 광은 수직 헤테로 구조 내에 포함된 활성층을 광학적으로 펌핑하는 것에 의해 생성 된다. 이 광은 도파관(14)의 기본 모드와 결합하고, 제1 출구 채널(36)에 대응하는 제1 결합 영역을 통해 진행하고, 1610nm 근방의 광의 스펙트럼 부분은 차수 5의 모드에 결합되고 제1 출구 채널(36)으로 진행한다.
대응 스펙트럼은 도12에서 40으로 표시되어 있고, 제1 출구 채널(36)에서 검출된 신호는 높은 정규화 주파수(normalized frequency)를 위해 입사광으로부터의 간섭을 포함하는 것을 확인할 수 있다.
제2 출력 채널(36)에서, 광은 기본 모드가 보다 좁은 도파관(14)의 부분에서 차수 5의 모드와 결합하는 결과로서 검출되며, 이에 따라 결합 주파수는 도파관의 시작에서보다 더욱 높아진다. 제2 출구 채널(36)에서 검출되는 신호는 도12에서 42로 표시된다.
도12에 도시된 다른 스펙트럼 44, 46, 48 및 50은 다른 출구 채널, 즉 채널 3 내지 채널 6에서 검출된 신호들에 대응한다.
도12에 도시된 스펙트럼을 참조하면, 0.1a (√3)/2와 동일한 도파관 폭의 전체 변화에 대해 50nm의 파장 시프트가 있는 것을 확인할 수 있는데, 이것은 채널1 및 채널6에서 검출된 신호들의 파장들 사이의 차분에 의해 주어지는 것이다. 실제로 이 측정은 예측된 이론 값에 대응한다.
본 발명의 장치들의 디멘젼 특성들은 이하 기재된 방식으로 실시되도록 결정될 수 있다. 첫 째, 광학 결정 도파관의 변형이 없이 얇은 측면이 없는 버젼으로 섹션의 주파수 밴드들을 모델링하는 하는 것이 가능하다. 이것은 평면파 개발(planewave development)이나 알려진 다른 방법, 예를 들어 정세도(fineness) - 차분(difference) - 시간(time) - 영역(domain) (FDTD) 시뮬레이션에 의해 수행될 수 있다. 도파관들 내의 허용된 밴드들과 이와 관련된 모드들은 본 기술분야의 숙련된 자에게 공지되어 있다.
따라서, 기본 모드와 고차 모드 간의 상호작용력은 아래 관계식을 적용해 두 개의 모드들 사이의 미니 스톱 밴드 Δω를 사용하여 정량화된다.
K = 4c/Δω(nga+ngb)
여기서, K는 결합 상수, c는 광속, nga 및 ngb는 모드 a 및 모드b의 그룹 굴절율들이다.
길이 L의 균일한 섹션에 대해 한 모드의 파동에서 다른 모드의 파동으로의 전이도 Tc는 다음과 같이 주어진다.
Tc = 1 - 1/cosh2(KL)
Figure 112006036392812-PCT00001
1 - exp (-2KL)
이 식은 큰 L에 대한 것이고, 여기서 cosh는 하이퍼볼릭 코사인이다. 이것은 소망의 전이율의 함수로 L을 선택하는 것을 가능하게 한다.
전술한 바와 같이, 도파관 내의 결합 주파수를 변화시키기 위해, 도파관의 폭 및/또는 주기적 요소들(12)의 공간 주기를 변화시키는 것이 가능하며, 예컨대 부품 내에 형성된 홀들의 형태를 변화시키고 (원형, 타원형, 삼각형, .. 기타 형태) 그들의 크기를 변화시키는 것에 의해, 이 요소들의 형태 및/또는 크기를 변화시키는 것도 가능하다. 이 변형은 도파관 사이의 행들 중 오직 하나에만 적용할 수 있으며 이것에 인접한 행에 적용할 필요는 없다.

Claims (11)

  1. 주기적인 공간 분포를 가진 복수의 유전체 요소들(12)에 의해 구성되는 광학 결정 구조의 부품(10)을 포함하는 주파수 선택적 광 결합기-분리기 장치로서, 길이 방향 엣지들을 따라 연장되는 상기 요소들의 행들을 가진 도파관(14)은 상기 요소들의 적어도 한 개의 행의 부존재 및/또는 상기 도파관의 양측 상의 상기 요소들의 행들 간의 오프셋에 의해 형성되는, 상기 주파수 선택적 광 결합기-분리기 장치에 있어서,
    상기 길이 방향 엣지들 중 적어도 한 개의 엣지에서, 상기 주기적으로 분포된 요소들의 행들의 수는, 상기 도파관의 얇은 엣지를 정의하고 결합 주파수들(f1 - f5)에 대해 상기 광학 결정(10)의 외측과 상기 도파관(14) 간에 결합 영역들(C1 - C5)을 형성하도록 감소되며, 각 영역은 상기 도파관의 기본 모드로 진행하는 광 신호에 대응하는 주파수에서 상기 도파관(14)으로부터 성분이 인출되는 것을 가능하게 하고/하거나 광 신호의 상기 주파수에서 상기 도파관으로 성분이 인입되는 것을 가능하게 하고, 상기 결합 주파수들(f1 - f5)은 상기 도파관의 MSB 또는 광학 밴드 갭 내에 있고 상기 도파관(14) 및 상기 도파관의 단부들 사이의 상기 광학 결정(10)의 디멘젼 파라미터들의 변화에 의해 정의되는 것을 특징으로 하는, 주파수 선택적 광 결합기-분리기 장치.
  2. 제1항에 있어서, 상기 결합 영역(C1 - C5)의 얇은 엣지의 상기 주기적으로 분포된 요소들(12)의 행들의 수는 2 내지 6의 범위 내에 있는 것을 특징으로 하는, 주파수 선택적 광 결합기-분리기 장치.
  3. 제1항 또는 제2항에 있어서, 상기 도파관(14)의 폭은 그것의 단부들 사이에서 연속적으로 또는 계층적으로 변하는 것을 특징으로 하는, 주파수 선택적 광 결합기-분리기 장치.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 광학 결정의 요소들(12)의 공간 주기(a)는 상기 도파관(14)의 단부들 사이에서 연속적으로 또는 계층적으로 변하는 것을 특징으로 하는, 주파수 선택적 광 결합기-분리기 장치.
  5. 제3항 또는 제4항에 있어서, 상기 도파관(14)의 폭 또는 상기 광학 결정의 요소들(12)의 공간 주기(a)는 상기 광학 결정(10)의 상기 요소들(12)의 주기들의 수십배에 해당하는 상기 도파관의 길이에 걸쳐 일정한 것을 특징으로 하는, 주파수 선택적 광 결합기-분리기 장치.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서, 상기 주기적 요소들의 크기 및/또는 형태는 상기 도파관의 단부들 사이에서 변하는 것을 특징으로 하는, 주파수 선택적 광 결합기-분리기 장치.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서, 상기 도파관의 외측을 향해 수렴 또는 발산하는 렌즈들(18, 20)은 상기 결합 영역들(C1 - C5) 내에서 상기 도파관의 얇은 엣지의 요소들(12)의 행들을 변형시키는 것에 의해 상기 도파관을 따라 형성되는 것을 특징으로 하는, 주파수 선택적 광 결합기-분리기 장치.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서, 예컨대 집적 광 다이오드(22)와 같은 적어도 한 개의 검출기는 상기 도파관의 기본 모드로 진행하는 광 신호로부터 인출되는 주파수 성분을 검출하도록 상기 도파관(14)의 얇은 엣지 외측의 결합 영역(C1 - C5) 내에 위치하는 것을 특징으로 하는, 주파수 선택적 광 결합기-분리기 장치.
  9. 제8항에 있어서, 예컨대 집적 광 다이오드들(22, 22')과 같은 복수의 검출기들은 상기 도파관의 기본 모드로 진행하는 광 신호의 주파수 성분을 검출하도록 상기 도파관(14)의 얇은 길이 방향 엣지(들)를 따라 배열되는 것을 특징으로 하는, 주파수 선택적 광 결합기-분리기 장치.
  10. 제8항 또는 제9항에 있어서, 레이저 다이오드(32)에 의해 방사되는 주파수를 검출 또는 모니터하도록 상기 레이저 다이오드, 특히 튜너블 타입의 레이저 다이오드와 결합되어 있는 것을 특징으로 하는 주파수 선택적 광 결합기-분리기 장치.
  11. 제1항 내지 제7항 중 어느 한 항에 있어서, 상기 광학 결정의 얇은 엣지를 통해 상기 도파관(14)으로 인입되는 광 신호들(30)을 다중화하는 수단을 구성하는 것을 특징으로 하는 주파수 선택적 광 결합기-분리기 장치.
KR1020067010140A 2003-10-30 2004-10-22 주파수 선택적 광 결합기-분리기 장치 KR20060123753A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0312752 2003-10-30
FR0312752A FR2861854B1 (fr) 2003-10-30 2003-10-30 Dispositif de couplage-decouplage de lumiere selectif en frequence

Publications (1)

Publication Number Publication Date
KR20060123753A true KR20060123753A (ko) 2006-12-04

Family

ID=34429766

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020067010140A KR20060123753A (ko) 2003-10-30 2004-10-22 주파수 선택적 광 결합기-분리기 장치

Country Status (7)

Country Link
US (1) US7295744B2 (ko)
EP (1) EP1678540B1 (ko)
JP (1) JP4782692B2 (ko)
KR (1) KR20060123753A (ko)
CA (1) CA2544276C (ko)
FR (1) FR2861854B1 (ko)
WO (1) WO2005043205A1 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2861854B1 (fr) * 2003-10-30 2006-01-13 Centre Nat Rech Scient Dispositif de couplage-decouplage de lumiere selectif en frequence
US20060177225A1 (en) * 2005-02-04 2006-08-10 Cisco Technology, Inc. Sideband filtering of directly modulated lasers with feedback loops in optical networks
FR2942046B1 (fr) 2009-02-12 2011-03-11 Centre Nat Rech Scient Systeme et equipement de detection optique de particules a eventail de decouplage de l'information optique, procede de fabrication correspondant
FR2971344A1 (fr) * 2011-02-09 2012-08-10 Univ Bordeaux 1 Dispositif de cristaux photoniques.
USD758372S1 (en) 2013-03-13 2016-06-07 Nagrastar Llc Smart card interface
US9888283B2 (en) 2013-03-13 2018-02-06 Nagrastar Llc Systems and methods for performing transport I/O
USD864968S1 (en) 2015-04-30 2019-10-29 Echostar Technologies L.L.C. Smart card interface
CN106094119B (zh) * 2016-08-01 2018-11-27 南京邮电大学 基于光子晶体的三模式模分复用与解复用器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5343542A (en) * 1993-04-22 1994-08-30 International Business Machines Corporation Tapered fabry-perot waveguide optical demultiplexer
US6093246A (en) * 1995-09-08 2000-07-25 Sandia Corporation Photonic crystal devices formed by a charged-particle beam
US5559912A (en) * 1995-09-15 1996-09-24 International Business Machines Corporation Wavelength-selective devices using silicon-on-insulator
GB9710062D0 (en) * 1997-05-16 1997-07-09 British Tech Group Optical devices and methods of fabrication thereof
DE19720784A1 (de) * 1997-05-17 1998-11-26 Deutsche Telekom Ag Integrierte optische Schaltung
US20010012149A1 (en) * 1997-10-30 2001-08-09 Shawn-Yu Lin Optical elements comprising photonic crystals and applications thereof
JP3349950B2 (ja) * 1998-03-20 2002-11-25 日本電気株式会社 波長分波回路
JP3925769B2 (ja) * 2000-03-24 2007-06-06 関西ティー・エル・オー株式会社 2次元フォトニック結晶及び合分波器
US6618535B1 (en) * 2001-04-05 2003-09-09 Nortel Networks Limited Photonic bandgap device using coupled defects
US6891993B2 (en) * 2001-06-11 2005-05-10 The University Of Delaware Multi-channel wavelength division multiplexing using photonic crystals
JP3729134B2 (ja) * 2002-01-29 2005-12-21 松下電器産業株式会社 光ピックアップ用2波長半導体レーザ光源
FR2841658B1 (fr) * 2002-06-26 2004-10-22 Centre Nat Rech Scient Dispositif de couplage optique directionnel et selectif en longueur d'onde
FR2861854B1 (fr) * 2003-10-30 2006-01-13 Centre Nat Rech Scient Dispositif de couplage-decouplage de lumiere selectif en frequence

Also Published As

Publication number Publication date
JP4782692B2 (ja) 2011-09-28
WO2005043205A1 (fr) 2005-05-12
JP2007510179A (ja) 2007-04-19
FR2861854A1 (fr) 2005-05-06
CA2544276A1 (fr) 2005-05-12
CA2544276C (fr) 2013-02-12
EP1678540A1 (fr) 2006-07-12
US20070098345A1 (en) 2007-05-03
EP1678540B1 (fr) 2013-12-04
US7295744B2 (en) 2007-11-13
FR2861854B1 (fr) 2006-01-13

Similar Documents

Publication Publication Date Title
US6188819B1 (en) Wavelength dividing circuit
US6775448B2 (en) Optical device
US6738551B2 (en) Two-dimensional photonic crystal, and multiplexer/demultiplexer using the same
US20160116680A1 (en) Light coupling structure and optical device including a grating coupler
AU751846B2 (en) Optical devices and methods of fabrication thereof
US7894699B2 (en) Photonic based interconnects for interconnecting multiple integrated circuits
US8369665B2 (en) Hybrid guided-mode resonance filter and method employing distributed bragg reflection
US7295744B2 (en) Frequency-selective light coupler-decoupler device
US7116878B2 (en) Optical waveguide structure
US20040264902A1 (en) Optical waveguide structure
US20090103863A1 (en) Multi-channel ring-resonator based wavelength-division-multiplexing optical device
KR20040073317A (ko) 2차원 포토닉 결정 중의 공진기와 파장 분합파기
EP1521987B1 (en) Photonic crystal waveguide
CN1488079A (zh) 平坦化光相位阵列通带的分段波导
Benisty et al. Photonic-crystal demultiplexer with improved crosstalk by second-order cavity filtering
JP4171326B2 (ja) 2次元フォトニック結晶中の共振器と波長分合波器
JP4457296B2 (ja) 光遅延回路、集積光素子および集積光素子の製造方法
US7796849B2 (en) Spatial separation of optical frequency components using photonic crystals
US10684415B1 (en) Optical transceiver
Martinelli et al. Analysis and optimization of compact demultiplexer monitor based on photonic-crystal waveguide
US7110641B2 (en) Device for directional and wavelength-selective optical coupling
EP1362251B1 (en) Integrated circuit photonic signal matrix
US20130119270A1 (en) Wavelength division devices, multi-wavelength light generators and optical biosensor systems using the same
JPS584986A (ja) 分波光検出器
CN106501900B (zh) 一种波长可调的超紧凑一维光子晶体波分解复用器

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application