CN106501900B - 一种波长可调的超紧凑一维光子晶体波分解复用器 - Google Patents

一种波长可调的超紧凑一维光子晶体波分解复用器 Download PDF

Info

Publication number
CN106501900B
CN106501900B CN201611250878.6A CN201611250878A CN106501900B CN 106501900 B CN106501900 B CN 106501900B CN 201611250878 A CN201611250878 A CN 201611250878A CN 106501900 B CN106501900 B CN 106501900B
Authority
CN
China
Prior art keywords
wavelength
photon
microcavity
passage
photonic crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611250878.6A
Other languages
English (en)
Other versions
CN106501900A (zh
Inventor
杨大全
陈鑫
王波
纪越峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Posts and Telecommunications
Original Assignee
Beijing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Posts and Telecommunications filed Critical Beijing University of Posts and Telecommunications
Priority to CN201611250878.6A priority Critical patent/CN106501900B/zh
Publication of CN106501900A publication Critical patent/CN106501900A/zh
Application granted granted Critical
Publication of CN106501900B publication Critical patent/CN106501900B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29395Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device configurable, e.g. tunable or reconfigurable

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本发明公开了一种波长可调的超紧凑一维光子晶体波分解复用器,包括主波导,光功率分束器和N个一维光子晶体波导微腔通道;光功率分束器将入射光功率平均分配至N个一维光子晶体波导微腔通道,一维光子晶体波导微腔通过引入缺陷来在光子禁带中引入导模,实现波长λ1至λN的光波输出,实现对入射光进行N个波长的解复用过程。

Description

一种波长可调的超紧凑一维光子晶体波分解复用器
技术领域
本发明涉及一种波长可调的超紧凑一维光子晶体波分解复用器,属于光子晶体微纳集成技术领域。
背景技术
近年来,波分复用技术(WDM)在通信领域中得到了广泛应用,而作为该技术关键器件的波分解复用器,也成为了目前研究的热点。关于波分解复用器的研究设计主要包括半导体解复用器(文献1.Yusuke Nasu,Kei Watanabe,Mikitaka Itoh,等.Ultrasmall100GHz 40-Channel VMUX/DEMUX Based on Single-Chip 2.5%-ΔPLC[J].LightwaveTechnology Journal of,2009,27(12):2087-2094.),光栅解复用器(文献2.T.Shibata,T.Hoshino,A.Takahashi,H.Masuda,and Y.Sugimoto,"Wavelength divisiondemultiplexer using polymer optical waveguide and diffraction grating,"inOptical Fiber Communication Conference,Technical Digest(CD)(Optical Societyof America,2004),paper MF34)和光子晶体解复用器。
光子晶体是一种由不同折射率的周期性介质周期性排列而成的人工微结构,不同于以往利用全反射方式来引导和传输光子的原理,光子晶体利用其具有特有的光子带隙特性能够性阻断特定频率的光子在其中传播,并且可以通过引入缺陷的方法在来从光子禁带中获得导模,使光波可以在缺陷中以缺陷模式传播。由于光子晶体结构拥有体积小、易于集成、功耗低小等特点,在光计算机、集成芯片、光通信等领域有广阔广泛的应用前景。近年来,各种各样的光子晶体器件被源源不断地提出,例如光子晶体波导,光子晶体光纤,光子晶体传感器,光子晶体波分解复用器等等。其中光子晶体波分解复用器由于其具有易集成、低功耗等特点,得到了广泛关注。
目前光子晶体波分解复用器的结构绝大多数都是基于二维光子晶体,主要利用自准直效应(文献3.Chen X,Qiang Z,Zhao D,et al.Polarization-independent dropfilters based on photonic crystal self-collimation ring resonators.[J].OpticsExpress,2009,17(22):19808-13.),多模干涉效应(文献4.Park I,Lee S G,Lee E H.Aphotonic crystal multimode interference wavelength demultiplexer[J].ProcSpie,2006,14(11):4923-7.),微流子注入技术(文献5.Chang C H,Young WB.Fabrication of the plastic component for photonic crystal using microinjection molding[J].Microsystem Technologies,2010,16(6):941-946.),反射微腔结构(文献6.Balaji V R,Murugan M,Robinson S.Optimization of DWDM DemultiplexerUsing Regression Analysis[J].Journal of Nanomaterials,2016,2016(9850457):1-10)等原理,但是对于一维光子晶体结构的应用研究少之又少。相比于二维光子晶体,一维光子晶体结构具有易于集成,体积小,应用灵活等特点。本发明正是基于一维光子晶体结构,设计了一种波长可调、结构紧凑的波分解复用器。
发明内容
本发明的目的是为了解决上述问题,针对二维光子晶体波分解复用器占用面积偏大,结构不紧凑,不易于片上集成及结构设计比较复杂等问题,提出了一种基于一维光子晶体微腔的结构简单紧凑、易于实现片上集成且通道波长可调的N通道波分解复用器。
本发明的一种波长可调的超紧凑一维光子晶体波分解复用器,包括主波导,光功率分束器和N个一维光子晶体波导微腔通道,光功率分束器实现将入射光功率平均分配至N个通道,一维光子晶体波导微腔通过引入缺陷来在光子禁带中引入导模,实现对应波长的光波输出。从而使整个结构实现对入射光进行N个波长的解复用过程。
本发明的优点在于:
与传统集成器件相比,本发明的一维光子晶体器件具有体积小,功耗小,功率低,易集成等特点。
与同类二维光子晶体器件相比,本一维光子晶体器件具有以下优点:
(1)本发明结构非常紧凑,整个波分解复用器尺寸大约为~N×10μm×0.5μm,要远小于同类器件,相比于二维光子晶体结构,更加利于片上集成;
(2)本发明应用简单灵活,每个一维光子晶体波导微腔结构只需调节微腔长度(Lc)这一个参数便可实现不同波长的输出,而且各一维光子晶体波导微腔通道间相互独立。如果需要调整某个输出的波长值,只需要更换对应通道的波导微腔,而无需对整个器件结构进行大幅调整。从而实现波长可调。
附图说明
图1是波长可调的超紧凑一维光子晶体波分解复用器的实现示意图。
图2是5通道一维光子晶体波分解复用器的模型示意图。
图3是一维光子晶体波导微腔结构示意图。
图4是5通道波分解复用器5个通道输出的综合透射图。
具体实施方式
下面将结合附图和实施例对本发明作进一步的详细说明。
本发明的一种波长可调的超紧凑一维光子晶体波分解复用器,如图1所示,包括主波导,光功率分束器(1×N)和N个一维光子晶体波导微腔通道,光功率分束器实现将入射光功率平均分配至N个通道,一维光子晶体波导微腔通过引入缺陷来在光子禁带中引入导模,实现对应波长(λ1至λN)的光波输出。从而使整个结构实现对入射光进行N个波长的解复用过程。
实施例:
一个5通道的一种波长可调的超紧凑一维光子晶体波分解复用器,其具体实现结构如图1所示。光源首先进入一段矩形输入波导,经过传输后送入光功率分束器,将光功率平均分配,一分为五后进入5个一维光子晶体波导微腔通道,如图2所示,该解复用器由五段一维光子晶体波导微腔组成。
所述的一维光子晶体波导微腔通道,介质为硅,其折射率为3.46,背景介质为空气,其折射率为1.0。
5段一维光子晶体波导微腔通道的具体结构如图3所示,它们的共同点为①整个波导长度为10μm,宽度为0.5μm,厚度为0.22μm;②一般空气孔之间的距离(即晶格常数)为a=350nm;③均含有14个空气孔,且这14个空气孔关于中心线对称;④以前7个空气孔为例(后7个与之关于中心线对称),前三个空气孔(锥形孔)半径分别为65nm、80nm、95nm,后四个空气孔半径均为r=85nm。
它们的不同点在于,最靠近中心线的两个空气孔(即第7、8个孔)之间的距离不为固定值a,而用微腔长度Lc表示,所述的5段一维光子晶体波导微腔通道拥有不同的Lc值。当经过复用的光波通过该一维光子晶体波导微腔通道结构后,由于光子禁带效应及引入缺陷形成导模,只会有单一波长的光能通过该一维光子晶体波导微腔通道,并被探测器于尾端检测到。
并且通过研究发现,通过改变微腔长度Lc,就可以相应调节该通道的输出波长λ(5通道分别对应图2中的λ15)。当满足Lc长度在325nm到525nm之间时,对应通道输出波长λ与之近似满足线性关系,即λ≈Lc+900nm。
利用三维有限时域差分法(3D-FDTD),分别选取5个合适的微腔长度Lc,通过数值模拟计算得到了5通道输出的透射图,如图4所示,其横坐标为波长,纵坐标为透射谱。通过透射图可以看出,每个通道的透射图都有1个明显的谐振峰,且5个谐振峰对应波长值不同。从而说明该发明能够在输出端获得5个不同波长的光波,即能够对复用的入射光实现1分5的解复用。

Claims (4)

1.一种波长可调的一维光子晶体波分解复用器,包括主波导,光功率分束器和N个一维光子晶体波导微腔通道;
光功率分束器将入射光功率平均分配至N个一维光子晶体波导微腔通道,一维光子晶体波导微腔通过引入缺陷来在光子禁带中引入导模,每一个一维光子晶体波导微腔的导模对应一个波长,实现波长λ1至λN的光波输出,实现对入射光进行N个波长的解复用过程。
2.根据权利要求1所述的一种波长可调的一维光子晶体波分解复用器,所述的一维光子晶体波导微腔通道,介质为硅,折射率为3.46,背景介质为空气,折射率为1.0。
3.根据权利要求1所述的一种波长可调的一维光子晶体波分解复用器,所述的一维光子晶体波导微腔通道具体为:
波导长度为10μm,宽度为0.5μm,厚度为0.22μm,波导含有14个空气孔,14个空气孔关于中心线对称,前7个空气孔中,前三个空气孔半径分别为65nm、80nm、95nm;后四个空气孔半径均为r=85nm,7个空气孔之间的距离为a=350nm,中心线两侧的两个空气孔之间的距离为Lc。
4.根据权利要求3所述的一种波长可调的一维光子晶体波分解复用器,所述的Lc在325nm到525nm之间时,Lc与输出波长的关系为:
λ≈Lc+900nm。
CN201611250878.6A 2016-12-30 2016-12-30 一种波长可调的超紧凑一维光子晶体波分解复用器 Active CN106501900B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611250878.6A CN106501900B (zh) 2016-12-30 2016-12-30 一种波长可调的超紧凑一维光子晶体波分解复用器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611250878.6A CN106501900B (zh) 2016-12-30 2016-12-30 一种波长可调的超紧凑一维光子晶体波分解复用器

Publications (2)

Publication Number Publication Date
CN106501900A CN106501900A (zh) 2017-03-15
CN106501900B true CN106501900B (zh) 2017-08-25

Family

ID=58333646

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611250878.6A Active CN106501900B (zh) 2016-12-30 2016-12-30 一种波长可调的超紧凑一维光子晶体波分解复用器

Country Status (1)

Country Link
CN (1) CN106501900B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1459649A (zh) * 2002-05-17 2003-12-03 日本板硝子株式会社 利用一维光子晶体的光学元件及利用其的分光装置
CN1643416A (zh) * 2002-03-26 2005-07-20 独立行政法人科学技术振兴机构 二维光子晶体光复用器/解复用器
CN102062898A (zh) * 2010-11-19 2011-05-18 浙江工业大学 基于光纤到户应用的光子晶体三重波分复用器
CN102116905A (zh) * 2011-01-07 2011-07-06 南京邮电大学 基于多模干涉的二维光子晶体四波长波分复用器
CN103091777A (zh) * 2013-02-19 2013-05-08 上海理工大学 多滤波峰可调谐带通滤波器及调节方法
US9063354B1 (en) * 2012-02-07 2015-06-23 Sandia Corporation Passive thermo-optic feedback for robust athermal photonic systems

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1643416A (zh) * 2002-03-26 2005-07-20 独立行政法人科学技术振兴机构 二维光子晶体光复用器/解复用器
CN1459649A (zh) * 2002-05-17 2003-12-03 日本板硝子株式会社 利用一维光子晶体的光学元件及利用其的分光装置
CN102062898A (zh) * 2010-11-19 2011-05-18 浙江工业大学 基于光纤到户应用的光子晶体三重波分复用器
CN102116905A (zh) * 2011-01-07 2011-07-06 南京邮电大学 基于多模干涉的二维光子晶体四波长波分复用器
US9063354B1 (en) * 2012-02-07 2015-06-23 Sandia Corporation Passive thermo-optic feedback for robust athermal photonic systems
CN103091777A (zh) * 2013-02-19 2013-05-08 上海理工大学 多滤波峰可调谐带通滤波器及调节方法

Also Published As

Publication number Publication date
CN106501900A (zh) 2017-03-15

Similar Documents

Publication Publication Date Title
Fallahi et al. Four-channel optical demultiplexer based on hexagonal photonic crystal ring resonators
Kannaiyan et al. Investigation of 2D-photonic crystal resonant cavity based WDM demultiplexer
CN109407209B (zh) 一种基于模式转换器和布拉格波导光栅的光波分模分混合复用解复用器
CN105137623A (zh) 基于光子晶体非对易单向波导的波分解复用器
CN101252407B (zh) 基于二维光子晶体的波分解复用器
Rashki Novel design for photonic crystal ring resonators based optical channel drop filter
Shi et al. Novel ultracompact triplexer based on photonic crystal waveguides
Divya et al. Two-dimensional photonic crystal ring resonator-based channel drop filter for CWDM application
CN105911646B (zh) 一种基于光子晶体的波分模分混合复用解复用器及方法
Sreenivasulu et al. Photonic crystal ring resonator-based four-channel dense wavelength division multiplexing demultiplexer on silicon on insulator platform: design and analysis
CN100565257C (zh) 基于二维光子晶体的可重构光上下路复用器
Ghasemi et al. Design and simulation of all optical multiplexer based on one-dimensional photonic crystal for optical communications systems
Martinelli et al. Analysis and optimization of compact demultiplexer monitor based on photonic-crystal waveguide
CN101825745B (zh) 利用微流体注入技术且波长可调的二维光子晶体解复用器
CN106501900B (zh) 一种波长可调的超紧凑一维光子晶体波分解复用器
Balaji et al. Integrated 25 GHz and 50 GHz spectral line width dense wavelength division demultiplexer on single photonic crystal chip
CN108061927B (zh) 一种光子晶体波分模分混合复用解复用器及方法
Rakhshani et al. Design and optimization of photonic crystal triplexer for optical networks
CN106094119B (zh) 基于光子晶体的三模式模分复用与解复用器
Mahmoud et al. Channel drop filter for CWDM systems
Ji et al. An eight-channel wavelength-mode-division (de) multiplexer based on photonic crystals
CN110941048B (zh) 基于多模干涉原理的高消光比粗波分复用/解复用器
Park et al. Photonic crystal-based GE-PON triplexer using point defects
CN103529513B (zh) 一种光子晶体微腔共振波长的调节方法
Labbani et al. New Design of a modified Y-branch demultiplexer based on photonic crystal resonant cavities and directional couplers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant