KR20060114368A - Method for activating surface of metal member - Google Patents

Method for activating surface of metal member Download PDF

Info

Publication number
KR20060114368A
KR20060114368A KR1020067016535A KR20067016535A KR20060114368A KR 20060114368 A KR20060114368 A KR 20060114368A KR 1020067016535 A KR1020067016535 A KR 1020067016535A KR 20067016535 A KR20067016535 A KR 20067016535A KR 20060114368 A KR20060114368 A KR 20060114368A
Authority
KR
South Korea
Prior art keywords
gas
furnace
hcn
metal member
metal
Prior art date
Application number
KR1020067016535A
Other languages
Korean (ko)
Other versions
KR100858598B1 (en
Inventor
가오루 호시노
마코토 미야시타
다카시 가와무라
도시코 도쓰카
히로시 에이라쿠
구니지 야시로
다쿠미 구로사와
Original Assignee
파커 네쓰쇼리 고교 가부시키카이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 파커 네쓰쇼리 고교 가부시키카이샤 filed Critical 파커 네쓰쇼리 고교 가부시키카이샤
Publication of KR20060114368A publication Critical patent/KR20060114368A/en
Application granted granted Critical
Publication of KR100858598B1 publication Critical patent/KR100858598B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

A method for activating the surface of a metal member, that is, activating a passivated coating film present in the surface of a high alloy steel member, which makes it difficult to effect a diffusion penetration treatment such as a gas nitriding method or a gas carburizing method for forming a nitrided layer, a carburized layer or a carburized and nitrided layer on the surface of a metal member, which method comprises using a gas generally used in a gas heat treatment, forming an HCN gas in a furnace through the utilization of a catalytic action of the surface of a metal to be treated and/or a material of the furnace, to thereby activate the passivated surface of the high alloy steel member. The above method is free from disadvantages such as the formation of deposits in a furnace, the wear of the wall surface in a furnace, and the necessity of the treatment for converting an exhaust gas to a harmless material, which have been problems in the case of a conventional activation treatment using a halogen compound, and thus can be advantageously used as a method for activating the surface of a metal member which is useful as a pretreatment for a diffusion penetration treatment.

Description

금속부재 표면의 활성화 방법{METHOD FOR ACTIVATING SURFACE OF METAL MEMBER}METHOD FOR ACTIVATING SURFACE OF METAL MEMBER}

본 발명은, 금속부재에 대해서, 질화나 침탄 등의 확산 침투처리를 실시하기 앞서, 금속부재 표면을 활성화시키는 금속부재의 사전처리 방법에 관한 것이다.The present invention relates to a metal member pretreatment method for activating a metal member surface prior to performing diffusion penetration treatment such as nitriding or carburization.

내마모성, 피로강도 등의 기계적 성질을 향상시킬 목적으로, 금속부재의 표면에 질화층 혹은 침탄층을 형성시키는 가스 질화법이나 가스 침탄법은, 철계 재료로 이루어지는 부재에 주로 널리 실시되고 있다.For the purpose of improving mechanical properties such as wear resistance and fatigue strength, gas nitriding or gas carburizing, in which a nitride layer or a carburized layer is formed on the surface of a metal member, is mainly widely applied to a member made of an iron-based material.

합금강, 특히 고합금강으로 이루어지는 부재 표면에, 이러한 처리를 실시할 때, 부재 표면에 존재하고 있는 부동태화 피막(산화물 등)에 의해, 질소나 탄소가 금속부재 표면 속에 침입 확산하는 것을 방해할 수 있어, 상기 부재의 처리 불량이나 처리 얼룩짐을 발생하는 것이 문제가 된다. 이 때문에 이러한 확산 침투처리에 앞서, 금속부재의 표면의 활성화 처리가 행해지고 있다. 상기 표면 활성화 처리로서 가장 널리 채용되고 있는 것은, 말코마이징(Malcomizing)처리로 대표되는 염화물계 화합물을 이용하는 방법이다. 염화물로서는 염화비닐수지, 염화암모늄, 염화 메틸렌 등이 사용되고 있다.When such a treatment is performed on a member surface made of alloy steel, particularly high alloy steel, the passivation coating (oxide, etc.) present on the member surface can prevent nitrogen or carbon from invading and diffusing into the metal member surface. It is a problem to generate the processing defect or the processing unevenness of the member. For this reason, the activation process of the surface of a metal member is performed before this diffusion penetration process. As the surface activation treatment, the most widely adopted method is to use a chloride compound represented by malcomizing treatment. As the chloride, vinyl chloride resin, ammonium chloride, methylene chloride and the like are used.

상기 염화물은, 처리로 중에 금속부재와 함께 넣어져서 가열된다. 상기 가 열에 의해 이러한 염화물이 분해하여 HCl이 생성되고, 상기 생성된 HCl이 금속부재 표면의 부동태화 피막을 파괴(변성)하여 표면을 활성화시켜, 다음 공정의 질화나 침탄 등의 확산 침투처리를 확실하게 하고 있다.The said chloride is put together with a metal member in a process furnace, and is heated. The chloride decomposes by heating, and HCl is produced, and the generated HCl breaks down (denatures) the passivation film on the surface of the metal member to activate the surface, thereby ensuring diffusion penetration treatment such as nitriding or carburizing in the next step. I'm letting you.

그러나, 상기와 같이 염화물에 의한 금속부재의 표면 활성화는, 분해 생성한 HCl이 벽돌이나 금속으로 이루어지는 노(爐)내 벽면을 손모(損耗)시킬 뿐만 아니라, 가스 질화나 가스 연질화(gas softnitriding)에 있어서는, 분위기 가스인 암모니아와 반응하여 염화암모늄을 생성하고, 상기 염화암모늄이 노내나 배기계통에 퇴적하여 장애의 원인이 될 뿐만 아니라, 금속부재(워크) 표면에 잔존하여 상기 부재의 내식성이나 피로강도의 저하 등을 초래하고 있다.However, as described above, surface activation of the metal member by chloride not only damages the wall surface of the furnace in which the HCl generated by decomposition is made of brick or metal, but also gas nitriding or gas softnitriding. In the present invention, ammonium chloride is produced by reacting with ammonia, which is an atmospheric gas, and the ammonium chloride accumulates in the furnace and the exhaust system to cause an obstacle, as well as remaining on the surface of the metal member (work) to prevent corrosion and fatigue of the member. It is causing a decrease in strength.

근래, 상기 염화물을 이용하는 방법을 대신하는 방법으로서, 같은 할로겐족에 속하는 불소화합물(NF3)에 의한 금속부재 표면의 활성화 방법이 실용화되어 있다(예를 들면, 특허문헌 1). 상기 NF3은 가열에 의해 분해되어 불소를 생성하여, 생성한 불소가 금속부재 표면의 부동태화 피막을 불화물막으로 바꾸어 금속부재 표면을 활성화하고 있다. 그러나, 불소화합물(NF3)에 의한 금속부재 표면의 활성화법에서는, 배기가스중에 포함되는 NF3이나 HF의 무해화에 고도의 처리가 필요하여, 해당 방법의 보급에 방해가 되고 있다.In recent years, as an alternative to the method of using a chloride, a fluoride compound which belongs to the same halogen group (NF 3) activation of the surface of the metal member by the method is put into practical use (for example, Patent Document 1). The NF 3 is decomposed by heating to generate fluorine, thereby activating the metal member surface by converting the passivation film on the surface of the metal member into a fluoride film. However, in the method of activating the surface of the metal member by the fluorine compound (NF 3 ), a high degree of treatment is required for the detoxification of NF 3 and HF contained in the exhaust gas, which hinders the spread of the method.

상기 할로겐화물을 이용하는 금속부재 표면의 활성화 방법에는 노내 퇴적물의 문제, 노내 벽면의 손모, 혹은 배기가스의 무해화 처리 설비를 필요로 하는 등의 과제가 있다. 이러한 배경으로부터 할로겐화물을 이용하지 않는 금속부재 표면 의 활성화 방법에 대한 개발이 진행되고 있다.The method of activating the surface of the metal member using the halide has problems such as problems of deposits in the furnace, damage to the walls of the furnace, and the need for a detoxification treatment facility of the exhaust gas. Against this background, the development of a method of activating the surface of a metal member without using a halide is in progress.

특허문헌 2에 기재된 암모니아 가스 질화 방법은, 아세톤의 열분해에 의해 생성하는 환원성 래디컬과 CO를 워크인 고크롬 합금동 부재표면에서 생성시킴으로써, 합금강 부재 표면의 부동태화 피막을 환원 활성화하는 방법이다. 이 방법에 의하면, 가열된 고크롬 합금강 부재 표면에서 아세톤이 하기 (1)식에 따라 열분해하여, 환원성 래디컬과 CO가 고크롬 합금부재 표면에서 생성된다.The ammonia gas nitriding method of patent document 2 is a method of reducing activation of the passivation film on the surface of an alloy steel member by producing | generating the reducing radical and CO which are produced | generated by pyrolysis of acetone on the surface of the high chromium alloy copper member which is a workpiece | work. According to this method, acetone thermally decomposes on the surface of the heated high chromium alloy steel member according to the following formula (1), and reducing radicals and CO are produced on the surface of the high chromium alloy member.

2(CH3)CO→2CH3·+CO … (1)2 (CH 3 ) CO → 2CH 3. + CO... (One)

금속부재 표면의 산화막(MO)은 하기 (2) 식으로 환원된다. The oxide film MO on the surface of the metal member is reduced by the following formula (2).

5MO+2CH3·→5M+2CO+3H2O … (2)5MO + 2CH 3. → 5M + 2CO + 3H 2 O... (2)

고크롬 합금강 부재의 표면 산화막의 주성분은 Cr2O3이므로Since the main component of the surface oxide film of the high chrome alloy steel member is Cr 2 O 3

5Cr2O3+6CH3·→10Cr+6CO+9H2O … (3)5Cr 2 O 3 + 6CH 3. → 10Cr + 6CO + 9H 2 O... (3)

상기 (1)∼(3)식에 따라 생성한 CO는 분위기 가스인 암모니아와 반응하여 하기 (4)식에 따라 HCN을 생성한다.CO generated according to the above formulas (1) to (3) reacts with ammonia which is an atmosphere gas to generate HCN according to the following formula (4).

CO+NH3→HCN+H2O … (4)CO + NH 3 → HCN + H 2 O... (4)

상기 (4)식에서 생성한 HCN은, 하기의 반응에 의해 고크롬 합금부재 표면의 부동태화 피막을 환원한다.HCN produced by the above formula (4) reduces the passivation film on the surface of the high chromium alloy member by the following reaction.

Cr2O3+6HCN→2Cr(CN3)+3H2O … (5)Cr 2 O 3 + 6HCN → 2Cr (CN 3 ) + 3H 2 O... (5)

생성한 Cr(CN)3의 C와 N은, 고크롬 합금부재 표면 속에 확산하여, 침탄과 질 화에 기여하고 상기 부재표면에 잔류물은 생기지 않는다.C and N of the resulting Cr (CN) 3 diffuse into the surface of the high chromium alloy member, contributing to carburization and nitriding, and no residue is formed on the surface of the member.

이에 대하여 상기 염화물에 의한 고크롬 합금강 부재 표면의 활성화 반응은 하기 (6)식에서 표시된다.On the other hand, the activation reaction of the surface of the high chromium alloy steel member by the said chloride is represented by following formula (6).

Cr2O3+6HCl→2CrCl3+3H2O … (6)Cr 2 O 3 + 6HCl → 2CrCl 3 + 3H 2 O... (6)

상기 크롬 염화물이 부재 표면에 잔류하여, 부재의 부식의 원인물질이 된다.The chromium chloride remains on the surface of the member, causing the member to corrode.

특허문헌 1 : 일본 특허공개공보 평성3-44457호 Patent Document 1: Japanese Patent Publication No. Pyeongseong 3-44457

특허문헌 2 : 일본 특허출원공보 평성9-38341호Patent Document 2: Japanese Patent Application Publication Pyeongseong 9-38341

이상과 같이, 특허문헌 2에 기재된 방법은, 특허문헌 1에 기재된 염화물에 의한 금속부재 표면의 활성화 방법의 문제점을 원리적으로 해결한 점에서 뛰어나다. 그러나, 특허문헌 2에 기재된 방법은, 상온 상압에서 액체의 아세톤을 이용하므로, 아세톤 증기를 도입하는 장치를 필요로 하여, 아세톤의 유량 제어가 용이하지 않기 때문에, 균일한 활성표면을 갖는 금속부재를 얻는 것이 어렵다고 하는 결점이 있다.As mentioned above, the method of patent document 2 is excellent in the point which solved the problem of the activation method of the surface of the metal member by the chloride of patent document 1 in principle. However, since the method described in Patent Document 2 uses acetone of liquid at normal temperature and normal pressure, an apparatus for introducing acetone vapor is required, and since the flow rate control of acetone is not easy, a metal member having a uniform active surface is used. There is a drawback that it is difficult to obtain.

상기 과제를 해결하기 위해, 본 발명자들은 취급에 문제가 있는 아세톤을 대신하여, 상온 상압에서 기체인 화합물을 이용하는 방법의 개발에 매진하여 본 발명을 완성하였다.MEANS TO SOLVE THE PROBLEM In order to solve the said subject, the present inventors focused on the development of the method of using the compound which is gas at normal temperature and normal pressure instead of the acetone which has a problem in handling, and completed this invention.

즉, 본 발명의 구성은 하기와 같다.That is, the structure of this invention is as follows.

1. 상온 상압에서 기체인 탄소공급 화합물과 암모니아를 필수성분으로 하는 혼합기체를 가열로내에서 300℃ 이상으로 가열하여, 상기 가열혼합기체 내에서 금속부재, 금속제 노내벽 혹은 금속제 치구의 촉매작용에 의해 HCN을 생성시켜, 생성한 HCN을 금속부재의 표면에 작용시키는 것을 특징으로 하는 금속부재 표면의 활성화 방법.1. A mixed gas containing a carbon supply compound, which is a gas at room temperature, and ammonia as an essential component, is heated to 300 ° C. or higher in a heating furnace to catalyze the action of a metal member, a metal furnace wall, or a metal jig in the heated mixed gas. By generating HCN, and causing the generated HCN to act on the surface of the metal member.

2. 탄소공급 화합물이, 아세틸렌, 에틸렌, 프로판, 부탄 및 일산화탄소로부터 선택된 하나 이상의 화합물인 상기 1에 기재된 금속부재 표면의 활성화 방법.2. The method for activating the surface of a metal member according to 1 above, wherein the carbon supply compound is at least one compound selected from acetylene, ethylene, propane, butane and carbon monoxide.

3. 금속제 노내벽 혹은 금속제 치구가, Fe, Ni, CO, Cu, Cr, Mo, Nb, V, Ti 및 Zr로부터 선택된 하나 이상의 금속을 함유하는 상기 1에 기재된 금속부재 표면의 활성화 방법.3. The method of activating the surface of a metal member according to 1 above, wherein the metal furnace inner wall or the metal jig contains at least one metal selected from Fe, Ni, CO, Cu, Cr, Mo, Nb, V, Ti, and Zr.

4. 노내에서 발생시키는 HCN 농도가, 100mg/㎥ 이상이고, 노내 분위기 가스의 노점이 5℃ 이하인 상기 1에 기재된 금속부재 표면의 활성화 방법. 4. The method of activating the surface of the metal member according to 1 above, wherein the HCN concentration generated in the furnace is 100 mg / m 3 or more, and the dew point of the atmosphere gas in the furnace is 5 ° C. or less.

[발명의 효과][Effects of the Invention]

본 발명에 의하면, 금속부재의 표면에 질화층, 침탄층 혹은 침탄 질화층을 형성시키는 가스 질화법, 가스 침탄법 등의 확산 침투처리를 곤란하게 하고 있는 고합금강부재의 표면 부동태화 피막을, 가스열처리에서 통상으로 취급되고 있는 가스류를 이용하여, 피처리금속 및/ 또는 금속제 노재(爐材) 표면의 촉매작용을 이용하여, 노내에서 HCN가스를 생성시켜, 부동태화하고 있는 고합금강 부재의 표면을 활성화시킴으로써, 종래, 할로겐화물에 의한 활성화 처리에서 문제였던 노내 퇴적물, 노내 벽면의 손모, 또는 배기가스의 무해화 처리 등의 폐해를 수반하지 않는, 확산 침투처리의 전단계 처리로서 유용한 금속부재 표면의 활성화 처리법을 제공할 수 있다.According to the present invention, a surface passivating film of a high alloy steel member which makes it difficult to diffuse infiltration treatment such as a gas nitriding method or a gas carburizing method for forming a nitride layer, a carburized layer or a carburized nitride layer on the surface of a metal member, The surface of the high-alloyed steel member which is produced by passivating HCN gas in the furnace by catalyzing the surface of the metal to be processed and / or the metal furnace material using the gas streams normally handled in heat treatment. By activating the surface of the metal member, which is useful as a pre-stage treatment of diffusion penetration treatment, which does not involve harmful effects such as internal deposits of the furnace, damage to the walls of the furnace, or detoxification of the exhaust gas, which have been a problem in the activation process by halides. Activation treatments can be provided.

다음에, 발명을 실시하기 위한 최선의 형태를 들어 본 발명을 더욱 자세하게 설명한다.Next, the present invention will be described in more detail with reference to the best mode for carrying out the invention.

상기 특허문헌 2에 의하면, 상기 (1)식의 아세톤의 열분해로 생성한 CH3·(메틸 래디컬)은 금속부재 표면의 산화막을 환원한다. 상기 (1)과 (2)식에서 생성한 CO는, 분위기 가스의 암모니아와 금속표면에서 반응하여 HCN을 생성한다. HCN은 상기 (5)식에 의해서 금속 산화막에 작용한다.According to the patent document 2, CH 3 · (methyl radicals) generated by thermal decomposition of the acetone in the formula (1) is reduction of the oxide film on the surface of the metal member. The CO produced by the above formulas (1) and (2) reacts with ammonia in the atmospheric gas on the metal surface to generate HCN. HCN acts on the metal oxide film by the formula (5).

본 발명자들은 아세톤의 열분해로 생성하는 CH3·과 HCN(또 하나의 열분해 생성물인 CO와 분위기 가스의 암모니아와의 반응생성물)은, 상기 (2)식과 (5)식의 비교로부터 부동태화 피막에의 작용에 있어서 유사하고, CH3·과 HCN의 양쪽의 존재는, 고크롬 합금강부재 표면의 활성화의 충분조건이지만, 반드시 필요조건은 아닌 것이라고 추정하며, HCN에 착안하여 금속표면에서의 HCN 생성 방법의 개발과 HCN에 의한 금속부재 표면의 활성화 효과의 확인에 매진하였다.The inventors of the present invention suggest that CH 3 and HCN (reaction products of CO, which is another pyrolysis product, and ammonia of an atmospheric gas,) produced by pyrolysis of acetone are added to the passivation film from the comparison of equations (2) and (5). It is assumed that the presence of both CH 3 and HCN is a sufficient condition for activation of the surface of the high chromium alloy steel member, but it is not necessarily a requirement. The development and the confirmation of the activation effect of the surface of the metal member by HCN.

질화 분위기 가스(NH3:N2=몰비 1:1)와 상온 상압에서 기체인 각종의 탄소함유 화합물로부터 선택한 가스를 노내가 SUS310S제의 머플로(muffle furnace)에 도입하여 550℃로 가열하여, HCN의 생성에 대해서 조사하였다. 그 결과, 일산화탄소, 이산화탄소, 아세틸렌, 에틸렌, 프로판, 부탄이 각각 암모니아와의 조합으로, 분명하게 HCN을 생성하는 것이 확인되었다.A gas selected from a nitriding atmosphere gas (NH 3 : N 2 = molar ratio 1: 1) and various carbon-containing compounds which are gas at room temperature and normal pressure is introduced into a muffle furnace made of SUS310S, and heated to 550 ° C. The production of HCN was investigated. As a result, it was confirmed that carbon monoxide, carbon dioxide, acetylene, ethylene, propane and butane each produced HCN clearly in combination with ammonia.

이에 대해서 머플로의 내벽을 벽돌제의 노를 대신한 것 이외는, 상기와 같은 실험을 실시하여 HCN의 생성량을 분석한 결과, 모든 케이스에서 HCN은 검출되지 않았다. 이것으로부터 암모니아와 이들 가스에 의한 HCN 생성반응에는, 금속표면의 촉매작용이 필수 조건인 것이 분명해졌다.On the other hand, except that the inner wall of the muffle furnace was replaced with a brick furnace, HCN was not detected in all cases as a result of analyzing the amount of HCN produced by the above experiment. From this, it became clear that the catalysis of the metal surface is an essential condition for the HCN formation reaction by ammonia and these gases.

암모니아와 상기 탄소함유 화합물에 의한 HCN 생성반응은 각각 하기의 식으로 표시할 수 있다.HCN production reaction by ammonia and the carbon-containing compound can be represented by the following formula, respectively.

NH3+CO→HCN+H2O … (7)NH 3 + CO → HCN + H 2 O... (7)

2NH3+2CO2→2HCN+H2O+O2 … (8) 2NH 3 + 2CO 2 → 2HCN + H 2 O + O 2 … (8)

2NH3+C2H2→2HCN+3H2 … (9)2NH 3 + C 2 H 2 → 2HCN + 3H 2 . (9)

2NH3+C2H4→2HCN+4H2 … (10) 2 NH 3 + C 2 H 4 → 2HCN + 4H 2 . 10

3NH3+C3H8→3HCN+7H2 … (11)3NH 3 + C 3 H 8 → 3HCN + 7H 2 … (11)

4NH3+C4H10→4HCN+9H2 … (12)4NH 3 + C 4 H 10 → 4HCN + 9H 2 … (12)

질화 분위기 가스(NH3:N2=몰비 1:1)와 각종의 탄소함유 화합물로부터 선택한 가스와의 반응에 의한 HCN의 생성량의 비교는, 질화 분위기 가스(NH3:N2=몰비 1:1)에 대하여 각각의 탄소함유 화합물을 당량비로 1% 함유시키고, 내벽이 SUS310S제의 머플로에 도입하고, 550℃에 30분간 가열하여, 상기 (7)∼(12)식의 반응을 행하게 하였다. 그 결과, 각각의 탄소함유 화합물에 의한 HCN 생성량은 하기의 순서이었다.The comparison of the amount of HCN produced by the reaction between the nitriding atmosphere gas (NH 3 : N 2 = molar ratio 1: 1) and the gas selected from various carbon-containing compounds is performed by the nitriding atmosphere gas (NH 3 : N 2 = molar ratio 1: 1). Each carbon-containing compound was contained in an equivalent ratio of 1%, and the inner wall was introduced into a muffle made of SUS310S, heated at 550 ° C. for 30 minutes to carry out the reactions of formulas (7) to (12). As a result, the amount of HCN produced by each carbon-containing compound was in the following order.

C2H2>CO>C2H4>C4H10>C3H8>CO2 C 2 H 2 >CO> C 2 H 4 > C 4 H 10 > C 3 H 8 > CO 2

질화 분위기 가스와의 반응에서 HCN을 생성하는 것이 확인된 이들 탄소함유 화합물에 대해서, 질화처리의 초기 단계에 이들 화합물의 각각을 가열로내에 도입하여 활성화 작용이 있는지 없는지에 대해서 SUS304 판재를 이용하여 평가하였다. 그 결과, C2H2, CO, C2H4, C4H10 및 C3H8은, 탄소함유 화합물을 도입하지 않는 컨트롤된 질화처리와 비교하여, 상기 SUS304 판재에 대해 질화 균일성 및 질소침입에 의한 중량 증가에서 분명한 효과가 확인되었다. 이에 대해 CO2를 이용한 경우는 균일 질화성 및 시험편의 중량증가 중 어느 것에 있어서도 컨트롤된 질화처리와 차이가 없고, CO2에 대해서는 상기 SUS304 판재의 표면에 대해서 활성화 작용은 확인되지 않았다.For those carbon-containing compounds that were found to produce HCN in reaction with a nitriding atmosphere gas, each of these compounds was introduced into the furnace at the initial stage of nitriding treatment to evaluate whether or not there was an activating action using SUS304 plate. It was. As a result, C 2 H 2 , CO, C 2 H 4 , C 4 H 10 and C 3 H 8 are characterized in that the uniformity of nitriding and nitridation of the SUS304 sheet is compared with the controlled nitriding treatment without introducing a carbon-containing compound. Obvious effects were found in weight gain by nitrogen infiltration. On the other hand, in the case of using CO 2 , there was no difference from the controlled nitriding treatment in any of the uniform nitriding property and the weight increase of the test piece, and no activation activity was observed on the surface of the SUS304 sheet for CO 2 .

노내에서 CO2의 도입에 의해 HCN이 생성되는 것에도 불구하고, 상기 SUS304판재의 표면에 대해서 활성화 작용을 얻을 수 없는 것은, 상기 (8)식의 HCN 생성반응의 부생성물인 O2와 H2O의 산화작용에 의한 상기 SUS304 판재의 표면의 재산화에 의한 것이라고 추정된다. CO에 대해서는, 상술한 바와 같이 HCN을 생성하지만, 이것은 암모니아와 CO를 포함하는 RX가스가 존재하는 가스 연질화 분위기에서 스테인레스강이 균일하게 질화되지 않는 현상과 모순되지만, 상기 모순은 이하의 이유에 의한다고 생각할 수 있다. 여기서, RX가스란 탄화수소가스(예를 들면, 프로판가스, 부탄가스, 천연가스)와 공기를 거의 화학 당량으로 혼합하여, 1000℃로 유지한 촉매층 중에서 분해시켜 CO, H2(N2)를 주성분으로 하고 소량의 CO2와 H2O를 포함하는 가스로 하여 침탄 가스로서 널리 이용되고 있는 가스이다.Despite the fact that HCN is generated by the introduction of CO 2 in the furnace, it is not possible to obtain an activation action on the surface of the SUS304 sheet, which is O 2 and H 2 which are by-products of the HCN formation reaction of the formula (8). It is assumed that this is due to the reoxidation of the surface of the SUS304 sheet material by the oxidation action of O. As for CO, HCN is produced as described above, but this contradicts the phenomenon that stainless steel is not uniformly nitrided in a gas soft-nitriding atmosphere in which RX gas containing ammonia and CO is present, but the above contradiction is caused by the following reasons. I can think of it. Here, RX gas is a mixture of hydrocarbon gas (e.g., propane gas, butane gas, natural gas) and air in almost chemical equivalent weight, decomposed in a catalyst layer maintained at 1000 ° C, and CO, H 2 (N 2 ) as a main component. and the gas is widely used as a small amount of the carburizing gas and a gas containing CO 2 and H 2 O.

가스 연질화의 대표적인 조성인 NH3:RX가스=몰비 1:1에 포함되는 CO는, 용량비로 약 10%이다. 따라서 가스 연질화로 내에는 금속부재 표면의 활성화에 필요한 HCN은 충분히 존재한다고 추정되지만, 노점이 제어되어 있지 않은 RX가스에는 상당량의 H2O(2용량% 전후)와 0.5용량% 전후의 CO2가 존재하기 때문에, 이들의 산화작용에 의해 활성화된 상기 SUS304 판재의 표면이 재산화되어, 상기 판재 표면 중에 질소의 침입을 방해되고 있다고 판단된다.CO contained in NH 3 : R x gas = molar ratio 1: 1, which is a typical composition of gas soft nitriding, is about 10% in capacity ratio. Therefore, it is assumed that HCN necessary for the activation of the surface of the metal member is sufficiently present in the gas soft nitriding furnace. However, RX gas having no dew point control has a considerable amount of H 2 O (around 2% by volume) and a CO 2 of about 0.5% by volume. Since it exists, the surface of the said SUS304 board | plate material activated by these oxidation reactions is reoxidized, and it is judged that the invasion of nitrogen in the said board | plate material surface is interrupted.

따라서, 금속부재 표면의 활성화를 위한 탄소공급 화합물로서 CO가스를 선택하는 경우, RX가스가 아니라, 단독의 CO가스를 이용하는 것이 바람직하다. 그러나, 본 발명에 있어서의 CO가스의 필요 주입량은, 가스 연질화 분위기의 1/10(용량) 정도이기 때문에, RX가스중의 H2O나 CO2의 영향이 낮아지므로, RX가스를 CO원으로서 이용할 수 있는 경우도 있을 수 있다.Therefore, when CO gas is selected as the carbon supply compound for activation of the surface of the metal member, it is preferable to use a single CO gas instead of RX gas. However, since the required injection amount of CO gas in the present invention is about 1/10 (capacity) of the gas soft-nitriding atmosphere, the influence of H 2 O and CO 2 in the RX gas is reduced, so that RX gas is It may be used as a case.

상기 (7)∼(12)의 반응식의 우변의 식으로부터 판단하여 시안 생성작용이 있는 이들 화합물 중에서 CO2의 경우의 부생성물의 산화작용이 가장 높고, 이어서 CO이고, 탄화수소 화합물은 모두 환원성 수소를 생성한다. 따라서 재산화를 방지하기 위해서는 탄소공급 화합물로서 탄화수소 화합물을 선택하는 것이 바람직하다.Judging from the equation on the right side of the reaction formulas (7) to (12) above, among these compounds having cyanogenic function, the oxidation of by-products in the case of CO 2 is the highest, and then CO, and all hydrocarbon compounds are reducing hydrogen. Create Therefore, in order to prevent reoxidation, it is preferable to select a hydrocarbon compound as a carbon supply compound.

본 발명에 의한 합금강부재 표면의 활성화 작용은 HCN에 의한 것이다. 상기 활성화 효과는 노내 분위기 중의 HCN 농도에 의존한다. 만족하는 활성화 작용을 얻기 위한 HCN의 적정한 농도는 100~30,000mg/㎥의 범위이다. HCN의 농도가 100mg/㎥ 미만에서는 상기 활성화 작용을 기대할 수 없다. 한편, HCN의 농도가 30,000mg/㎥ 초과에서는 상기 활성화 효과가 포화되어, 경제적으로 불리해질 뿐만 아니라, 탄소공급 화합물의 열분해에 의한 슈팅(sooting, 노내에서의 카본생성)이 일어나므로 바람직하지 않다.The activation action of the surface of the alloy steel member according to the present invention is due to HCN. The activation effect depends on the HCN concentration in the furnace atmosphere. The appropriate concentration of HCN to obtain a satisfactory activation action is in the range of 100 to 30,000 mg / m 3. If the concentration of HCN is less than 100 mg / m 3, the above activation cannot be expected. On the other hand, when the concentration of HCN is more than 30,000 mg / m 3, the activating effect is saturated, which is not only economically disadvantageous, but also sooting due to thermal decomposition of the carbon feed compound, which is not preferable.

또한, 노내 분위기 가스의 노점은 5℃ 이하인 것이 바람직하다. 상기 노점이 5℃보다 높으면 HCN가스에 의해 활성화된 금속표면이 분위기중의 H2O에 의해 재산화되어 다시 부동태화한다.Moreover, it is preferable that the dew point of in-furnace atmospheric gas is 5 degrees C or less. If the dew point is higher than 5 DEG C, the metal surface activated by HCN gas is reoxidized by H 2 O in the atmosphere and passivated again.

본 발명의 방법에 있어서 환경 측면에서의 이점은, 상기 반응식(5)에서 설명되어 있는 바와 같이, 금속부재 표면의 활성화에 기여한 HCN이 부재 표면 내에 넣어져 부재의 질화, 침탄에 기여하여 부재 표면에 잔류물을 남기지 않는 것과 함께, 반응에 기여하지 않고 배기가스로서 배출되는 HCN은 질화장치에 부속되어 있는 암모니아 연소장치로 용이하게 연소 무해화할 수 있어, 새로운 부가적 설비는 불필요하다는 점이다.In the method of the present invention, an advantage in terms of environment is that HCN, which contributes to the activation of the metal member surface, is put into the member surface and contributes to nitriding and carburizing of the member, as described in the reaction formula (5). In addition to leaving no residue, HCN, which does not contribute to the reaction and is discharged as exhaust gas, can easily be burned and harmless by the ammonia combustion device attached to the nitriding device, and no new additional equipment is necessary.

본 발명의 새로운 장점은 질화처리 프로세스상의 원활한 공정진행에 의한 질화처리 시간의 단축이다. 금속부재의 가스 질화는 통상 하기와 같은 스케줄로 행하여진다.A new advantage of the present invention is the shortening of the nitriding treatment time by the smooth process progression in the nitriding treatment process. Gas nitriding of a metal member is normally performed on the following schedule.

금속부재를 노내에 세트하고, 노내의 대기를 진공 퍼지 혹은 질소 가스 치환한 후 질화 분위기 가스(NH3+N2)를 시간당 노내 용적의 1~10배량 도입하면서, 금속부재의 질화처리 온도까지 승온 후 일정온도로 유지한다. 처리중 노내압은 대기압 +0.5kPa 정도로 압력밸브에 의해서 유지하고, 압출된 배기가스는 배기가스 연소장치로 연소 분해된다.The metal member is placed in the furnace, and the atmosphere in the furnace is vacuum purged or replaced with nitrogen gas, followed by introducing a nitrogen atmosphere gas (NH 3 + N 2 ) 1 to 10 times the volume of the furnace, thereby raising the temperature to the nitriding treatment temperature of the metal member. Maintain constant temperature after The furnace pressure during the process is maintained by the pressure valve at about +0.5 kPa at atmospheric pressure, and the extruded exhaust gas is burned and decomposed by the exhaust gas combustion device.

상기 특허문헌 1에 나타나는 불소계 가스에 의한 방법에서는, 일본 특허 제 2501925호 명세서의 실시예에 기재되어 있는 바와 같이, 불소계 가스를 도입하여 부재의 활성화 처리를 실시한 후, 불화계 가스를 배기하고 나서 질화 분위기 가스를 노내에 도입할 필요가 있다.In the method with the fluorine-type gas shown by the said patent document 1, as described in the Example of Unexamined-Japanese-Patent No. 2501925, after carrying out the activation process of a member by introducing a fluorine-type gas, it nitrates after exhausting a fluoride-type gas. It is necessary to introduce atmospheric gas into the furnace.

이에 대하여 본 발명에서는 금속부재를 질화처리 온도로 승온하는 공정에서, 질화 분위기 가스 중에 탄소공급 화합물을 도입하고, HCN을 발생시켜서 금속부재 표면을 활성화하고, 그 후 탄소공급 화합물의 도입을 정지함으로써 질화공정에 그대로 이행할 수 있다. 이에 따라 질화공정의 처리시간이 대폭으로 단축되는 것과 함께, 활성화로부터 질화공정으로 이행할 때에 종래의 처리에서 문제가 되고 있었던 금속부재 표면의 재산화 현상을 근본적으로 해소할 수 있다.In the present invention, on the other hand, in the step of raising the temperature of the metal member to the nitriding treatment temperature, the carbon supply compound is introduced into the nitriding atmosphere gas, HCN is generated to activate the surface of the metal member, and then the introduction of the carbon supply compound is stopped. The process can be carried out as it is. As a result, the treatment time of the nitriding process can be significantly shortened, and the reoxidation phenomenon of the surface of the metal member, which has been a problem in the conventional treatment when transitioning from the activation to the nitriding process, can be solved fundamentally.

본 발명의 기술적 특징 및 효과는 상기와 같다. 이하에, 본 발명의 바람직한 실시형태를 설명한다. 본 발명에서 사용하는 처리로는, 내벽이 금속제인 것이 바람직하지만, 내벽이 금속제가 아니라도, 처리되는 금속부재가 HCN의 촉매가 되고, 또한, 금속부재를 노내에서 유지하는 치구가 금속제이면 좋다. 상기 금속제 내벽, 금속부재, 치구를 구성하는 금속으로서는, 예를 들면, Fe, Ni, CO, Cu, Cr, Mo, Nb, V, Ti 및 Zr로부터 선택된 하나 이상의 금속을 함유하는 것이 바람직하다.The technical features and effects of the present invention are as described above. EMBODIMENT OF THE INVENTION Below, preferable embodiment of this invention is described. As the treatment used in the present invention, it is preferable that the inner wall is made of metal, but even if the inner wall is not made of metal, the metal member to be treated may be a catalyst of HCN, and the jig for holding the metal member in the furnace may be made of metal. As a metal which comprises the said metal inner wall, a metal member, and a jig | tool, it is preferable to contain at least 1 metal chosen from Fe, Ni, CO, Cu, Cr, Mo, Nb, V, Ti, and Zr, for example.

본 발명의 방법에서 표면 활성화 처리되는 금속부재로서는, 냉간 금형용 강, 열간 금형용 강, 플라스틱 금형용 강, 고속도 공구강, 분말 고속도 공구강, 크롬몰리브덴강, 마르에이징강, 오스테나이트계 스테인레스강, 페라이트계 스테인레스강, 마르텐사이트계 스테인레스강, 마르텐사이트계 내열강, 오스테나이트계 내열강 또는 니켈기초합금 등을 들 수 있고, 이들 금속부재는 상기 처리로 내에서 적당한 치구에 의해 통상의 방법에 따라 놓여져서 표면 활성화 처리된다Examples of the metal member to be surface activated in the method of the present invention include cold die steel, hot die steel, plastic die steel, high speed tool steel, powder high speed tool steel, chromium molybdenum steel, maraging steel, austenitic stainless steel, and ferritic stainless steel. And martensitic stainless steels, martensitic heat resistant steels, austenitic heat resistant steels, and nickel based alloys. These metal members are placed in accordance with a conventional method by an appropriate jig in the treatment furnace and subjected to surface activation.

상기 노 내에 공급하는 표면처리용 기체는 상온 상압에서 기체인 탄소공급 화합물과 암모니아로서, 각각 전용 봄베로부터 노내에 공급된다. 이러한 기체는 금속부재를 노내에 세트하여, 노내의 대기를 진공퍼지 혹은 질소가스로 치환한 후 노내에 질화 분위기 가스(암모니아 단독 또는 암모니아+질소가스 혹은 암모니아+질소가스+수소가스)를 도입하여, 환원 분위기를 확립한 후 승온을 개시하여 본 발명의 탄소공급 화합물을 도입한다. 암모니아 가스와 탄소공급 화합물은, 노내에서 300℃ 이상으로 가열되면 금속표면의 촉매작용에 의해 HCN을 생성한다. 질화 분위기 가스인 암모니아의 유량과 도입하는 탄소공급 화합물의 유량비는 1:0.0001~1:0.1의 범위내로 해야 한다. 탄소공급 화합물의 유량비가 1:0.0001보다 낮은 경우에서는 HCN의 생성량이 낮기 때문에 활성화 효과를 얻을 수 없다. 탄소공급 화합물의 유량비가 1:0.1 초과에서는 활성화 효과가 포화되어 경제적으로 불리하게 된다.The surface treatment gas supplied into the furnace is a carbon supply compound and ammonia, which are gases at normal temperature and pressure, and are supplied into the furnace from a dedicated bomb. The gas is placed in a furnace, and the atmosphere in the furnace is replaced with a vacuum purge or nitrogen gas, followed by introduction of a nitriding atmosphere gas (ammonia alone or ammonia + nitrogen gas or ammonia + nitrogen gas + hydrogen gas) into the furnace. After establishing a reducing atmosphere, the temperature is started to introduce the carbon feed compound of the present invention. The ammonia gas and the carbon supply compound, when heated to 300 ° C. or higher in the furnace, form HCN by catalysis of the metal surface. The flow rate ratio of ammonia, which is a nitriding atmosphere gas, and the flow rate of the carbon feed compound to be introduced should be within the range of 1: 0.0001 to 1: 0.1. If the flow rate ratio of the carbon supply compound is lower than 1: 0.0001, the activating effect cannot be obtained because the amount of HCN is low. If the flow rate ratio of the carbon feed compound is greater than 1: 0.1, the activation effect is saturated, which is economically disadvantageous.

탄소공급 화합물은 상기와 같이 아세틸렌, 에틸렌, 프로판, 부탄 및 일산화탄소로부터 선택된 하나 이상의 가스상 화합물이며, 상기와 같이 암모니아 함유 가스와 동시에 처리로 내에 공급할 수도 있다. 상기 암모니아 함유 가스의 노내 온도가 약 300℃에 이른 시점에서 탄소공급 화합물의 도입을 개시하는 것이 탄소공급 화합물의 효율적인 이용상 바람직하지만, 노내 분위기 중의 탄소공급 화합물 농도를 조기에 상승시켜 처리시간을 단축시키기 위해서는 승온개시와 동시에 탄소공급 화합물을 도입하여 초기 단계부터 HCN 생성을 도모하는 것이 바람직하다.The carbon supply compound is one or more gaseous compounds selected from acetylene, ethylene, propane, butane and carbon monoxide as described above, and may be supplied into the treatment furnace simultaneously with the ammonia-containing gas as described above. Initiating the introduction of the carbon supply compound when the furnace temperature of the ammonia-containing gas reaches about 300 ° C. is preferable for the efficient use of the carbon supply compound. However, the concentration of the carbon supply compound in the furnace atmosphere is increased early to shorten the treatment time. In order to achieve the HCN production from the initial stage, it is preferable to introduce a carbon supply compound at the same time as the temperature rise starts.

도 1은 본 발명에서 사용하는 처리로의 구조를 나타내는 도면.BRIEF DESCRIPTION OF THE DRAWINGS The figure which shows the structure of the process furnace used by this invention.

도 2는 실시예 1의 시험편의 절단면에 대한 현미경 사진.2 is a micrograph of a cut surface of a test piece of Example 1. FIG.

도 3은 비교예 1의 시험편의 절단면에 대한 현미경 사진.3 is a micrograph of a cut surface of a test piece of Comparative Example 1. FIG.

[부호의 설명][Description of the code]

1 : 머플로 2 : 외부케이스1: muffle furnace 2: outer case

3 : 히터 4 : 내부 용기(retort) 3: heater 4: internal container (retort)

5 : 가스 도입관 6 : 배기관5 gas introduction pipe 6 exhaust pipe

7 : 모터 8 : 팬7: motor 8: fan

9 : 금속제 치구 10 : 가스 안내통9: metal jig 10: gas guide tube

11 : 역깔대기(inverted funnel) 12 : 진공펌프 11 inverted funnel 12 vacuum pump

13 : 배기가스 연소장치 14 : 탄소공급 화합물 가스 봄베13 exhaust gas combustion device 14 carbon supply compound gas cylinder

15 : 암모니아 가스 봄베 16 : 질소가스 봄베 15: ammonia gas cylinder 16: nitrogen gas cylinder

17 : 수소가스 봄베 18 : 유량계17: hydrogen gas cylinder 18: flow meter

19 : 가스 제어밸브19 gas control valve

이하, 실시예 및 비교예를 들어 본 발명을 더욱 구체적으로 설명한다. 한편, 이하의 실시예 및 비교예는 도 1에 나타내는 구조의 처리로를 이용하여 실시하였다. 도 1에 있어서 1이 머플로, 2는 그 외부케이스, 3이 히터, 4는 내부 용기(retort), 5는 가스도입관, 6은 배기관, 7은 모터, 8은 팬, 9는 금속제 치구, 10은 가스 안내통, 11은 역깔대기(inverted funnel), 12는 진공펌프, 13은 배기가스 연소장치, 14는 탄소공급 화합물 가스 봄베, 15는 암모니아 가스 봄베, 16은 질소가스 봄베, 17은 수소가스 봄베, 18은 유량계, 19는 가스 제어밸브이다.Hereinafter, an Example and a comparative example are given and this invention is demonstrated further more concretely. In addition, the following Example and the comparative example were implemented using the processing furnace of the structure shown in FIG. In Fig. 1, 1 is a muffle, 2 is an outer case, 3 is a heater, 4 is an inner container, 5 is a gas introduction pipe, 6 is an exhaust pipe, 7 is a motor, 8 is a fan, 9 is a metal jig, 10 is gas guide, 11 is inverted funnel, 12 is vacuum pump, 13 is exhaust gas combustor, 14 is carbon gas compound gas cylinder, 15 is ammonia gas cylinder, 16 is nitrogen gas cylinder, 17 is hydrogen A gas cylinder, 18 is a flow meter and 19 is a gas control valve.

[실시예 1]Example 1

도 1에 나타낸 내용적 100L의 SUS310S 머플로를 이용하여 상기 노내에 SUS304 판재를 세트하여 NH3 가스와 N2 가스를, 200L/H의 유속으로 보내, 실온으로부터 550℃로 75분 승온하였다. 도중 분위기 온도가 100℃가 된 시점(승온개시부터 18분후)에서 아세틸렌가스 2L/H의 주입을 개시하였다. 550℃로 승온 후 2시간 분위기 온도를 유지하여, 이 시점에서 아세틸렌 가스의 주입을 정지하는 한편, NH3가스와 N2가스를 550℃로 4시간 더 흐르게 하여 질화를 진행시킨 후, 가열을 정지하고 N2가스만을 계속 흐르게 하여 노냉하고, 분위기 온도가 100℃ 이하가 된 시점에서 노내의 시험편을 꺼냈다.To Figure internal volume 100L N 2 gas and NH 3 gas was set to a SUS304 plate by using the SUS310S Muffle in the furnace shown in Figure 1, to send a flow rate of 200L / H, and the temperature was raised to 550 ℃ 75 minutes from room temperature. The injection of 2 L / H of acetylene gas was started when the atmospheric temperature became 100 degreeC (18 minutes after the start of temperature rising). After raising the temperature to 550 ° C., the temperature of the atmosphere was maintained for 2 hours. At this point, the injection of acetylene gas was stopped, while the NH 3 gas and the N 2 gas were further flowed at 550 ° C. for 4 hours, and then the heating was stopped. Only the N 2 gas was kept flowing, and the furnace was cooled, and the test piece in the furnace was taken out when the ambient temperature became 100 ° C or lower.

또한, 노내로부터의 배기가스를 분기하고, 배기가스의 일부를 2질량% 가성소 다 수용액에 흡수시켜 HCN 분석을 실시하였다. HCN 흡수액의 분석결과로부터, 아세틸렌 가스 주입기간의 노내 분위기 중의 평균 HCN농도는 8,000mg/㎥이었다. SUS304 시험편의 질화처리 전후의 중량증가를 측정한 바 20g/㎡이었다. SUS304 시험편을 절단 및 연마하여 마블액(Marble's solution)으로 에칭하여 광학현미경으로 절단면을 관찰한 바, 50㎛의 균일한 두께의 질화층이 형성되어 있었다(도 2에 배율 500배의 현미경 사진을 나타낸다). 빅커스 경도계로 상기 시험편의 표면경도를 5점 측정한 바 어느 값이나 Hv=1200~1250의 사이에 분포하고 있었다.In addition, the exhaust gas from the furnace was branched, and a part of the exhaust gas was absorbed into a 2 mass% caustic soda solution to conduct HCN analysis. From the analysis results of the HCN absorbent liquid, the average HCN concentration in the furnace atmosphere during the acetylene gas injection period was 8,000 mg / m 3. The weight gain before and after nitriding treatment of the SUS304 test piece was measured to be 20 g / m 2. The SUS304 test piece was cut and polished, etched with a Marble's solution, and the cut surface was observed with an optical microscope. A nitride layer having a uniform thickness of 50 μm was formed (FIG. 2 shows a microscope photograph with a magnification of 500 times. ). When 5 points of surface hardness of the said test piece were measured with the Vickers hardness tester, the value was distributed between Hv = 1200-1250.

[실시예 2]Example 2

실시예 1에서 사용한 머플로내에 SUS304 판재를 세트하고 NH3가스와 N2가스를 각각 200L/H의 유속으로 보내 실온으로부터 550℃로 75분 승온하였다. 도중에 분위기 온도가 100℃가 된 시점(온도상승 개시부터 18분 후)에서, 프로판가스 5L/H의 주입을 개시하였다. 550℃로 승온 후 2시간 분위기 온도를 유지하여, 이 시점에서 프로판가스의 주입을 정지하는 한편, NH3가스와 N2가스를 550℃에서 4시간 더 흐르게 하여 질화를 진행시킨 후, 가열을 정지하고 N2가스만을 계속 흐르게 하여 노냉하고 분위기 온도가 100℃이하가 된 지점에서 노내의 시험편을 꺼냈다.Example Set the SUS304 plate in a muffle furnace used in the first and sent to the flow rate of the NH 3 gas and N 2 gas respectively, 200L / H, and the mixture was heated 75 minutes from room temperature to 550 ℃. The injection of propane gas 5L / H was started when the atmospheric temperature became 100 degreeC (18 minutes after the start of temperature rise) on the way. After raising the temperature to 550 ° C., the temperature of the atmosphere was maintained for 2 hours. At this point, the propane gas was stopped, while the NH 3 gas and the N 2 gas were further flowed at 550 ° C. for 4 hours, and then the heating was stopped. and flow continues only N 2 gas to the furnace cooling to ambient temperature the specimen was taken out of the furnace of greater than 100 ℃ point.

또한, 노내로부터의 배기가스를 분기하여, 배기가스의 일부를 2질량% 가성소다 수용액에 흡수시켜 HCN분석을 실시하였다. HCN 흡수액의 분석결과로부터, 프로판가스 주입기간의 노내 분위기 중의 평균 HCN농도는 400mg/㎥이었다. SUS304 시험편의 질화처리 전후의 중량증가를 측정한 바 18g/㎡이었다. SUS304 시험편을 절 단 및 연마하고 마블액으로 에칭하여 절단면을 광학현미경으로 관찰한 바, 45㎛의 균일한 두께의 질화층이 형성되어 있었다. 빅커스 경도계로, 상기 시험편의 표면경도를 5점 측정한 바, 어느 값이나 Hv=1200~1250의 사이에 분포하고 있었다.In addition, the exhaust gas from the furnace was branched, and a part of the exhaust gas was absorbed into a 2% by mass aqueous solution of caustic soda for HCN analysis. From the analysis results of the HCN absorption liquid, the average HCN concentration in the furnace atmosphere during propane gas injection period was 400 mg / m 3. The weight increase before and after nitriding treatment of the SUS304 test piece was measured to be 18 g / m 2. The SUS304 test piece was cut and polished, etched with a marble solution, and the cut surface was observed with an optical microscope. A nitride layer having a uniform thickness of 45 µm was formed. When 5 points | pieces of the surface hardness of the said test piece were measured with the Vickers hardness meter, any value was distributed between Hv = 1200-1250.

[실시예 3]Example 3

실시예 1에서 사용한 머플로내에 SUS304 판재를 세트하고 NH3가스와 N2가스를 각각 200L/H의 유속으로 보내어 실온으로부터 550℃로 75분 승온하였다. 도중에 분위기 온도가 100℃가 된 시점(승온개시부터 18분 후)에서 CO가스 5L/H의 주입을 개시하였다. 550℃로 승온 후 2시간 분위기 온도를 유지하여, 이 시점에서 CO가스의 주입을 정지하는 한편, NH3가스와 N2가스를 550℃에서 4시간 더 흐르게 하여 질화를 진행시킨 후, 가열을 정지하고 N2가스만을 계속 흐르게 하여 노냉하고 분위기 온도가 100℃이하가 된 지점에서 노내의 시험편을 꺼냈다.Example 1 sets a SUS304 plate in a muffle furnace used in and sent to the flow rate of the NH 3 gas and N 2 gas respectively, 200L / H, and the mixture was heated 75 minutes from room temperature to 550 ℃. The injection of CO gas 5L / H was started in the middle (at 18 minutes after the start of temperature rising) when the atmospheric temperature became 100 degreeC. After raising the temperature to 550 ° C., the temperature of the atmosphere was maintained for 2 hours. At this point, the injection of CO gas was stopped, and the nitriding was continued by flowing NH 3 gas and N 2 gas at 550 ° C. for 4 hours, and then the heating was stopped. and flow continues only N 2 gas to the furnace cooling to ambient temperature the specimen was taken out of the furnace of greater than 100 ℃ point.

또한, 노내로부터의 배기가스를 분기하고, 배기가스의 일부를 2질량% 가성소다 수용액에 흡수시켜 HCN분석을 실시하였다. HCN 흡수액의 분석결과로부터, CO가스 주입기간의 노내 분위기 중의 평균 HCN농도는 1,000mg/㎥에 이르고 있었다. SUS304 시험편의 질화처리 전후의 중량증가를 측정한 바, 18g/㎡이었다. SUS304 시험편을 절단 및 연마하고 마블액으로 에칭하여 절단면을 광학현미경으로 관찰한 바, 45㎛의 균일한 두께의 질화층이 형성되어 있었다. 빅커스 경도계로, 상기 시험편의 표면경도를 5점 측정한 바, 어느 값이나 Hv=1200~1250의 사이에서 분포하고 있었다.In addition, the exhaust gas from the furnace was branched, and a part of the exhaust gas was absorbed into a 2% by mass aqueous solution of caustic soda for HCN analysis. From the analysis results of the HCN absorbent liquid, the average HCN concentration in the furnace atmosphere during the CO gas injection period reached 1,000 mg / m 3. It was 18 g / m <2> when the weight increase before and after nitriding treatment of the SUS304 test piece was measured. The SUS304 test piece was cut and polished, etched with a marble liquid, and the cut surface was observed with an optical microscope. A nitride layer having a uniform thickness of 45 µm was formed. When 5 points | pieces of the surface hardness of the said test piece were measured with the Vickers hardness meter, any value was distributed between Hv = 1200-1250.

[실시예 4]Example 4

실시예 1에서 사용한 머플로내에 SUS304 판재를 세트하고 NH3가스와 N2가스를 각각 200L/H의 유속으로 보내어 실온으로부터 550℃로 75분 승온하였다. 도중에 분위기 온도가 100℃가 된 시점(승온개시부터 18분 후)에서 C2H4가스 5L/H의 주입을 개시하였다. 550℃로 승온 후 2시간 분위기 온도를 유지하여, 이 시점에서 C2H4가스의 주입을 정지하는 한편, NH3가스와 N2가스를 550℃에서 4시간 더 흐르게 하여 질화를 진행시킨 후, 가열을 정지하고 N2가스만을 계속 흐르게 하여 노냉하고 분위기 온도가 100℃이하가 된 지점에서 노내의 시험편을 꺼냈다.Example 1 sets a SUS304 plate in a muffle furnace used in and sent to the flow rate of the NH 3 gas and N 2 gas respectively, 200L / H, and the mixture was heated 75 minutes from room temperature to 550 ℃. During the ambient temperature with a 100 ℃ time (after 18 minutes from the start of the temperature elevation) it was added to initiate the injection of C 2 H 4 gas 5L / H in. After raising the temperature to 550 ° C., the temperature of the atmosphere was maintained for 2 hours, and the injection of C 2 H 4 gas was stopped at this point, while the NH 3 gas and N 2 gas were further flowed at 550 ° C. for 4 hours to further carry out nitriding. The heating was stopped and only the N 2 gas was continued to flow, and the test piece in the furnace was taken out at the point where the furnace was cooled and the ambient temperature became 100 ° C or lower.

또한, 노내로부터의 배기가스를 분기하고, 배기가스의 일부를 2질량% 가성소다 수용액에 흡수시켜 HCN 분석을 실시하였다. HCN 흡수액의 분석결과로부터, C2H4가스 주입기간의 노내 분위기 중의 평균 HCN농도는 1,200mg/㎥에 이르고 있었다. SUS304 시험편의 질화처리 전후의 중량증가를 측정한 바, 18g/㎡이었다. SUS304 시험편을 절단 및 연마하고 마블액으로 에칭하여 절단면을 광학현미경으로 관찰한 바, 45㎛의 균일한 두께의 질화층이 형성되어 있었다. 빅커스 경도계로, 상기 시험편의 표면경도를 5점 측정한 바, 어느 값이나 Hv=1200~1250의 사이에 분포하고 있었다.In addition, the exhaust gas from the furnace was branched, and a part of the exhaust gas was absorbed into a 2 mass% aqueous solution of caustic soda for HCN analysis. From the analysis results of the HCN absorbent liquid, the average HCN concentration in the furnace atmosphere during the C 2 H 4 gas injection period reached 1,200 mg / m 3. It was 18 g / m <2> when the weight increase before and after nitriding treatment of the SUS304 test piece was measured. The SUS304 test piece was cut and polished, etched with a marble liquid, and the cut surface was observed with an optical microscope. A nitride layer having a uniform thickness of 45 µm was formed. When 5 points | pieces of the surface hardness of the said test piece were measured with the Vickers hardness meter, any value was distributed between Hv = 1200-1250.

[실시예 5]Example 5

실시예 1에서 사용한 머플로내에 SUS304 판재를 세트하고 NH3가스와 N2가스 를 각각 200L/H의 유속으로 보내어 실온으로부터 550℃로 75분 승온하였다. 도중에 분위기 온도가 100℃가 된 시점(승온개시부터 18분 후)에서 C4H10가스 5L/H의 주입을 개시하였다. 550℃로 승온 후 2시간 분위기 온도를 유지하여, 이 시점에서 C4H10가스의 주입을 정지하는 한편, NH3가스와 N2가스를 550℃에서 4시간 더 흐르게 하여 질화를 진행시킨 후, 가열을 정지하고 N2가스만을 계속 흐르게 하여 노냉하고 분위기 온도가 100℃이하가 된 지점에서 노내의 시험편을 꺼냈다.Example 1 sets a SUS304 plate in a muffle furnace used in and sent to the flow rate of the NH 3 gas and N 2 gas respectively, 200L / H, and the mixture was heated 75 minutes from room temperature to 550 ℃. The atmosphere during the temperature is 100 ℃ time (after 18 minutes from the start of the temperature elevation) was added to initiate the injection of C 4 H 10 gas 5L / H in. After raising the temperature to 550 ° C., the temperature was maintained for 2 hours, and the injection of the C 4 H 10 gas was stopped at this point, while the NH 3 gas and the N 2 gas were further flowed at 550 ° C. for 4 hours, and then nitriding was carried out. The heating was stopped and only the N 2 gas was continued to flow, and the test piece in the furnace was taken out at the point where the furnace was cooled and the ambient temperature became 100 ° C or lower.

또한, 노내로부터의 배기가스를 분기하고, 배기가스의 일부를 2질량% 가성소다 수용액에 흡수시켜 HCN 분석을 실시하였다. HCN 흡수액의 분석결과로부터, C4H10가스 주입기간의 노내 분위기 중의 평균 HCN 농도는 600mg/㎥에 이르고 있었다. SUS304 시험편의 질화처리 전후의 중량증가를 측정한 바, 18g/㎡이었다. SUS304 시험편을 절단 및 연마하고 마블액으로 에칭하여 절단면을 광학현미경으로 관찰한 바, 45㎛의 균일한 두께의 질화층이 형성되어 있었다. 빅커스 경도계로, 상기 시험편의 표면경도를 5점 측정한 바 어느 값이나 Hv=1200∼1250의 사이에 분포하고 있었다.In addition, the exhaust gas from the furnace was branched, and a part of the exhaust gas was absorbed into a 2 mass% aqueous solution of caustic soda for HCN analysis. From the analysis results of the HCN absorbent liquid, the average HCN concentration in the furnace atmosphere during the C 4 H 10 gas injection period reached 600 mg / m 3. It was 18 g / m <2> when the weight increase before and after nitriding treatment of the SUS304 test piece was measured. The SUS304 test piece was cut and polished, etched with a marble liquid, and the cut surface was observed with an optical microscope. A nitride layer having a uniform thickness of 45 µm was formed. When 5 points | pieces of the surface hardness of the said test piece were measured with the Vickers hardness meter, any value was distributed between Hv = 1200-1250.

[비교예 1]Comparative Example 1

실시예 1에서 사용한 머플로내에 SUS304 판재를 세트하고 NH3가스와 N2가스를 각각 200L/H의 유속으로 보내어 실온으로부터 550℃로 75분 승온하였다. 550℃로 승온 후 6시간 분위기 온도를 유지하여, NH3가스와 N2가스를 계속 흐르게 하여 질화를 진행시킨 후, 가열을 정지하고 N2가스만을 계속 흐르게 하여 노냉하고 분위기 온도가 100℃ 이하가 된 지점에서 노내의 시험편을 꺼냈다.Example 1 sets a SUS304 plate in a muffle furnace used in and sent to the flow rate of the NH 3 gas and N 2 gas respectively, 200L / H, and the mixture was heated 75 minutes from room temperature to 550 ℃. After raising the temperature to 550 ° C., the temperature was maintained for 6 hours, and the NH 3 gas and the N 2 gas were continuously flowed to proceed with nitriding. Then, the heating was stopped and only the N 2 gas was continued to be cooled, and the atmosphere temperature was 100 ° C. or lower. At that point, the test piece in the furnace was taken out.

노내로부터의 배기가스를 분기하고, 배기가스의 일부를 2질량% 가성소다 수용액에 흡수시켜 HCN분석을 실시하였다. HCK 흡수액을 분석결과, HCN은 전혀 검출되지 않고 노내 분위기중에는 HCN은 전혀 존재하지 않았던 것이 확인되었다. SUS304 시험편의 질화처리 전후의 중량증가를 측정한 바, 10g/㎡이었다. SUS304 시험편을 절단 및 연마하고 마블액으로 에칭하고 절단하여 절단면을 광학현미경으로 관찰한 바, 8∼18㎛의 불균일한 두께의 질화층이 형성되어 있었다(도 3에 배율 500배의 현미경 사진을 나타낸다). 빅커스 경도계로 상기 시험편의 표면경도를 5점 측정한 바, Hv=500∼1100과 크게 변동하여 절대치도 실시예와 비교하여 낮은 값을 나타내었다.The exhaust gas from the furnace was branched, and a part of the exhaust gas was absorbed into a 2% by mass aqueous solution of caustic soda for HCN analysis. As a result of analyzing the HCK absorbent liquid, HCN was not detected at all and it was confirmed that HCN was not present at all in the furnace atmosphere. It was 10 g / m <2> when the weight increase before and after nitriding treatment of the SUS304 test piece was measured. The SUS304 test piece was cut and polished, etched and cut with a marble solution, and the cut surface was observed by an optical microscope. A nitride layer having a non-uniform thickness of 8 to 18 µm was formed (shown in FIG. ). When five points of surface hardness of the test piece were measured by a Vickers hardness tester, the surface value of the test piece was greatly changed from Hv = 500 to 1100, and the absolute value thereof was lower than that of the example.

본 발명에 의하면, 금속부재의 표면에 질화층, 침탄층 혹은 침탄 질화층을 형성시키는 가스 질화법, 가스 침탄법 등의 확산 침투처리를 곤란하게 하고 있는 고합금강부재의 표면 부동태화 피막을, 가스 열처리로 통상으로 취급되어 있는 가스류를 이용하여 피처리 금속 및/ 또는 금속제 노재 표면의 촉매작용을 이용하여, 노내에 있어서 HCN 가스를 생성시켜, 부동태화하고 있는 고합금강부재의 표면을 활성화시키는 것에 의해 종래, 할로겐화물에 의한 활성화 처리에서 문제이었던 노내 퇴적물, 노내벽면의 손모, 또는 배기가스의 무해화 처리 등의 폐해를 수반하지 않 는, 확산 침투처리의 전단계 처리로서 유용한 금속부재 표면의 활성화 처리법을 제공할 수 있다.According to the present invention, a surface passivating film of a high alloy steel member which makes it difficult to diffuse infiltration treatment such as a gas nitriding method or a gas carburizing method for forming a nitride layer, a carburized layer or a carburized nitride layer on the surface of a metal member, By using a gas flow which is usually treated by heat treatment, catalyzing the surface of the metal and / or metal furnace material to generate HCN gas in the furnace to activate the surface of the passivating high alloy steel member. Thus, the method of activation of the surface of a metal member, which is useful as a pre-stage treatment of diffusion penetration treatment, which does not involve detriment such as in-house sediment, abrasion of the inner wall surface, or detoxification of exhaust gas, which has conventionally been a problem in the activation treatment by halides. Can be provided.

Claims (4)

상온 상압에서 기체인 탄소공급 화합물과 암모니아를 필수성분으로 하는 혼합기체를 가열로내에서 300℃ 이상으로 가열하고, 상기 가열혼합기체중에서 금속부재, 금속제 노(爐) 내벽 혹은 금속제 치구의 촉매작용에 의해 HCN을 생성시켜, 생성한 HCN을 금속부재의 표면에 작용시키는 것을 특징으로 하는 금속부재 표면의 활성화 방법.At a normal temperature and pressure, a mixed gas containing a carbon supply compound and ammonia as an essential component is heated to 300 ° C. or higher in a heating furnace, and the catalytic action of a metal member, a metal furnace inner wall, or a metal jig in the heated mixed gas is performed. By generating HCN, and causing the generated HCN to act on the surface of the metal member. 제 1 항에 있어서, 탄소공급 화합물이, 아세틸렌, 에틸렌, 프로판, 부탄 및 일산화탄소로부터 선택된 하나 이상의 화합물인 금속부재 표면의 활성화 방법. The method of claim 1, wherein the carbon supply compound is at least one compound selected from acetylene, ethylene, propane, butane and carbon monoxide. 제 1 항에 있어서, 금속제 노내벽 혹은 금속제 치구가, Fe, Ni, CO, Cu, Cr, Mo, Nb, V, Ti 및 Zr로부터 선택된 하나 이상의 금속을 함유하는 금속부재 표면의 활성화 방법. The method of activating a metal member surface according to claim 1, wherein the metal furnace inner wall or the metal jig contains at least one metal selected from Fe, Ni, CO, Cu, Cr, Mo, Nb, V, Ti, and Zr. 제 1 항에 있어서, 노내에서 발생시키는 HCN농도가, 100mg/㎥이상이고, 노내 분위기 가스의 노점이 5℃ 이하인 금속부재 표면의 활성화 방법.The method of activating a surface of a metal member according to claim 1, wherein the HCN concentration generated in the furnace is 100 mg / m 3 or more, and the dew point of the atmosphere gas in the furnace is 5 ° C. or less.
KR1020067016535A 2004-01-20 2005-01-19 Method for activating surface of metal member KR100858598B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004012328 2004-01-20
JPJP-P-2004-00012328 2004-01-20

Publications (2)

Publication Number Publication Date
KR20060114368A true KR20060114368A (en) 2006-11-06
KR100858598B1 KR100858598B1 (en) 2008-09-17

Family

ID=34792370

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020067016535A KR100858598B1 (en) 2004-01-20 2005-01-19 Method for activating surface of metal member

Country Status (7)

Country Link
US (1) US20070204934A1 (en)
EP (1) EP1707646B1 (en)
JP (1) JP4861703B2 (en)
KR (1) KR100858598B1 (en)
CN (1) CN1910303B (en)
DE (1) DE602005015934D1 (en)
WO (1) WO2005068679A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100902169B1 (en) * 2007-07-24 2009-06-10 쳉-시엔 리우 Method for improvement of hardness of martensite type stainless surface
KR101245564B1 (en) * 2011-05-06 2013-03-20 주식회사 삼락열처리 Gas Nitriding Heat Treatment of the Stainless steel, Heat resisting steel and High alloy steel

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006233261A (en) * 2005-02-24 2006-09-07 Nippon Techno:Kk Gas nitriding method
EP2278038A1 (en) 2009-07-20 2011-01-26 Danmarks Tekniske Universitet (DTU) A method of activating an article of passive ferrous or non-ferrous metal prior to carburizing, nitriding and/or nitrocarburizing
CA2771090C (en) * 2009-08-07 2017-07-11 Swagelok Company Low temperature carburization under soft vacuum
US8961711B2 (en) 2010-05-24 2015-02-24 Air Products And Chemicals, Inc. Method and apparatus for nitriding metal articles
CN102168269A (en) * 2011-03-16 2011-08-31 广州有色金属研究院 Method for preparing accelerated carburizing plasma nitrocarburizing and titanium carbonitride composite membrane layer
WO2013109415A1 (en) 2012-01-20 2013-07-25 Swagelok Company Concurrent flow of activating gas in low temperature carburization
TWI548778B (en) * 2014-02-11 2016-09-11 國立臺灣大學 Method for treating stainless steel surface and stainless steel treating system
JP6357042B2 (en) * 2014-07-18 2018-07-11 株式会社日本テクノ Gas soft nitriding method and gas soft nitriding apparatus
JP6516238B2 (en) * 2015-03-30 2019-05-22 日鉄ステンレス株式会社 Austenitic stainless steel and method for producing the same
TWI798885B (en) 2020-11-18 2023-04-11 日商帕卡熱處理工業股份有限公司 Metal component processing method and processing device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1984411A (en) * 1933-06-08 1934-12-18 Du Pont Method of case hardening
US2095565A (en) * 1936-11-18 1937-10-12 Electro Alloys Company Carburizing box
DE851810C (en) * 1943-06-19 1952-10-09 Bergwerksverband Zur Verwertun Cementing of objects made of iron, steel and their alloys
US2404060A (en) * 1944-02-03 1946-07-16 Westinghouse Electric Corp High temperature furnace
US3281517A (en) * 1963-11-19 1966-10-25 Melpar Inc Vacuum furnace
CA933073A (en) * 1969-06-25 1973-09-04 H. Podgurski Harry Method for maintaining nitriding atmosphere
JPS51105938A (en) 1975-02-28 1976-09-20 Fujikoshi Kk Ko chutetsuno teionshintanchitsukashorihoho
JPS52145344A (en) * 1976-05-31 1977-12-03 Daido Steel Co Ltd Method of preparing atmosphere gas for soft nitriding
US4145232A (en) * 1977-06-03 1979-03-20 Union Carbide Corporation Process for carburizing steel
US4175986A (en) * 1978-10-19 1979-11-27 Trw Inc. Inert carrier gas heat treating control process
ZA812776B (en) 1980-05-02 1982-07-28 African Oxygen Ltd Heat treatment of metals
JPH05202464A (en) * 1992-01-27 1993-08-10 Parker Netsushiyori Kogyo Kk Method for partially nitriding parts
DE69613822T3 (en) * 1995-03-29 2008-02-28 Jh Corp., Niwa METHOD FOR VACUUM CHILLING, USE OF A VACUUM CHILLING DEVICE AND RECIPROCATED STEEL PRODUCTS
JPH10219418A (en) 1997-02-06 1998-08-18 Nippon Bell Parts Kk Method for nitriding high-chromium alloy steel with gaseous ammonia
JP3960697B2 (en) * 1998-12-10 2007-08-15 株式会社日本テクノ Carburizing and carbonitriding methods

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100902169B1 (en) * 2007-07-24 2009-06-10 쳉-시엔 리우 Method for improvement of hardness of martensite type stainless surface
KR101245564B1 (en) * 2011-05-06 2013-03-20 주식회사 삼락열처리 Gas Nitriding Heat Treatment of the Stainless steel, Heat resisting steel and High alloy steel

Also Published As

Publication number Publication date
CN1910303A (en) 2007-02-07
KR100858598B1 (en) 2008-09-17
EP1707646B1 (en) 2009-08-12
EP1707646A4 (en) 2008-09-03
JPWO2005068679A1 (en) 2007-12-27
JP4861703B2 (en) 2012-01-25
CN1910303B (en) 2010-05-12
DE602005015934D1 (en) 2009-09-24
US20070204934A1 (en) 2007-09-06
WO2005068679A1 (en) 2005-07-28
EP1707646A1 (en) 2006-10-04

Similar Documents

Publication Publication Date Title
KR100858598B1 (en) Method for activating surface of metal member
JP2012533687A (en) Method of activating ferrous or non-ferrous metal passive products prior to carburizing, nitriding and / or carbonitriding
WO2005075705A1 (en) Method for surface treatment of metal material
JPH0356304B2 (en)
JP4947932B2 (en) Metal gas nitriding method
JP2000178710A (en) Method of carburizing and carbonitriding treatment
JP2021042398A (en) Nitrided steel member, and method and apparatus for manufacturing the same
US6328819B1 (en) Method and use of an apparatus for the thermal treatment, in particular nitriding treatment, of metal workpieces
Caliari et al. An investigation into the effects of different oxy-nitrocarburizing conditions on hardness profiles and corrosion behavior of 16MnCr5 steels
JP2004332074A (en) Carburizing method
JP6543213B2 (en) Surface hardening method and surface hardening apparatus
KR101245564B1 (en) Gas Nitriding Heat Treatment of the Stainless steel, Heat resisting steel and High alloy steel
JP5758278B2 (en) Nitriding method
JP2005232518A (en) Surface hardening treatment method for engine valve
JP2005036279A (en) Surface hardening method for steel, and metallic product obtained thereby
KR100837789B1 (en) Nitriding treatment method
JP2009299122A (en) Nitriding-quenching method, heater for nitriding-quenching and nitriding-quenching apparatus
KR20200049304A (en) Low-Temperature Carburizing Method by Controlling Carbon Potential
KR100530767B1 (en) Process for nitriding of mechanical steel component
JPH10219418A (en) Method for nitriding high-chromium alloy steel with gaseous ammonia
US11492693B2 (en) Pre-treatment process of a surface of a metallic substrate
JP5837282B2 (en) Surface modification method
JP2023028533A (en) Nitrided steel member, and manufacturing method of nitrided steel member
JP2001011630A (en) Formation of carbon thin film
JPS58174572A (en) Gas soft nitriding method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B601 Maintenance of original decision after re-examination before a trial
E801 Decision on dismissal of amendment
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20071227

Effective date: 20080731

S901 Examination by remand of revocation
GRNO Decision to grant (after opposition)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130509

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140610

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150615

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160830

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180612

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190813

Year of fee payment: 12