JP4861703B2 - Method for activating metal member surface - Google Patents

Method for activating metal member surface Download PDF

Info

Publication number
JP4861703B2
JP4861703B2 JP2005517113A JP2005517113A JP4861703B2 JP 4861703 B2 JP4861703 B2 JP 4861703B2 JP 2005517113 A JP2005517113 A JP 2005517113A JP 2005517113 A JP2005517113 A JP 2005517113A JP 4861703 B2 JP4861703 B2 JP 4861703B2
Authority
JP
Japan
Prior art keywords
gas
furnace
hcn
metal member
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005517113A
Other languages
Japanese (ja)
Other versions
JPWO2005068679A1 (en
Inventor
薫 星野
誠 宮下
隆司 河村
敏子 戸塚
宏 永楽
國治 八代
巧 黒澤
Original Assignee
パーカー熱処理工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パーカー熱処理工業株式会社 filed Critical パーカー熱処理工業株式会社
Priority to JP2005517113A priority Critical patent/JP4861703B2/en
Publication of JPWO2005068679A1 publication Critical patent/JPWO2005068679A1/en
Application granted granted Critical
Publication of JP4861703B2 publication Critical patent/JP4861703B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

本願発明は、金属部材に対して、窒化や浸炭などの拡散浸透処理を施すに先立って、金属部材表面を活性化させる金属部材の前処理方法に関する。   The present invention relates to a pretreatment method for a metal member that activates the surface of the metal member prior to performing diffusion permeation treatment such as nitriding or carburizing on the metal member.

耐摩耗性、疲労強度などの機械的性質を向上させる目的で、金属部材の表面に窒化層あるいは浸炭層を形成させるガス窒化法やガス浸炭法は、鉄系材料からなる部材を主に広く実施されている。   In order to improve mechanical properties such as wear resistance and fatigue strength, gas nitriding and gas carburizing methods that form a nitrided or carburized layer on the surface of metal members are mainly widely used for members made of iron-based materials. Has been.

合金鋼、特に高合金鋼からなる部材表面に、これらの処理を施す際、部材表面に存在している不動態化皮膜(酸化物など)により、窒素や炭素の金属部材表面中への浸入拡散が妨げられ、上記部材の処理不良や処理ムラを発生することが問題となる。このためこれらの拡散浸透処理に先立ち、金属部材の表面の活性化処理が行われている。該表面活性化処理として最も広く採用されているのは、マルコマイジング処理に代表される塩化物系化合物を用いる方法である。塩化物としては塩化ビニル樹脂、塩化アンモニウム、塩化メチレンなどが使用されている。   When these treatments are applied to the surface of a member made of alloy steel, especially high alloy steel, nitrogen and carbon penetrate and diffuse into the surface of the metal member due to the passivation film (oxide, etc.) present on the member surface. This hinders the processing of the above-mentioned members and causes problems. For this reason, the activation process of the surface of a metal member is performed prior to these diffusion penetration processes. The most widely adopted surface activation treatment is a method using a chloride compound typified by a marcomizing treatment. As the chloride, vinyl chloride resin, ammonium chloride, methylene chloride or the like is used.

上記塩化物は、処理炉中に金属部材とともに入れられて加熱される。該加熱によりこれらの塩化物が分解してHClが生成し、該生成したHClが金属部材表面の不動態化皮膜を破壊(変性)して表面を活性化させ、次工程の窒化や浸炭などの拡散浸透処理を確実なものとしている。   The chloride is heated together with a metal member in a processing furnace. These chlorides are decomposed by the heating to generate HCl, and the generated HCl destroys (denatures) the passivation film on the surface of the metal member to activate the surface, such as nitriding or carburizing in the next step. Ensures diffusion and infiltration treatment.

しかしながら、上記の如き塩化物による金属部材の表面活性化は、分解生成したHClがレンガや金属からなる炉内壁面を損耗させるだけでなく、ガス窒化やガス軟窒化においては、雰囲気ガスであるアンモニアと反応して塩化アンモニウムを生成し、該塩化アンモニウムが炉内や排気系に堆積してトラブルの原因となるだけでなく、金属部材(ワーク)表面に残存して該部材の耐食性や疲労強度の低下などをもたらしている。   However, the surface activation of the metal member by the chloride as described above not only causes the cracked and generated HCl to wear out the inner wall surface of the furnace made of brick or metal, but also in ammonia gas, which is an atmospheric gas, in gas nitriding and gas soft nitriding. To produce ammonium chloride, which accumulates in the furnace and exhaust system and causes troubles, and remains on the surface of the metal member (workpiece) to prevent corrosion resistance and fatigue strength of the member. This is causing a decline.

近年、前記塩化物を用いる方法に代わる方法として、同じハロゲン族に属するフッ素化合物(NF3)による金属部材表面の活性化方法が実用化されている(例えば、特許文献1)。上記NF3は加熱により分解されてフッ素を生成し、生成したフッ素が金属部材表面の不動態化皮膜をフッ化物膜に変えて金属部材表面を活性化している。しかしながら、フッ素化合物(NF3)による金属部材表面の活性化法では、排ガス中に含まれるNF3やHFの無害化に高度な処理が必要であり、当該方法の普及の妨げとなっている。In recent years, a metal member surface activation method using a fluorine compound (NF 3 ) belonging to the same halogen group has been put into practical use as an alternative to the method using chloride (for example, Patent Document 1). The NF 3 is decomposed by heating to generate fluorine, and the generated fluorine changes the passivation film on the surface of the metal member to a fluoride film to activate the surface of the metal member. However, the method for activating a metal member surface with a fluorine compound (NF 3 ) requires advanced treatment for detoxifying NF 3 and HF contained in the exhaust gas, which hinders the spread of the method.

前記ハロゲン化物を用いる金属部材表面の活性化方法には炉内堆積物の問題、炉内壁面の損耗、あるいは排ガスの無害化処理設備を要するなどの課題がある。このような背景からハロゲン化物を用いない金属部材表面の活性化方法の開発が進められている。   The activation method of the metal member surface using the halide has problems such as a problem of deposits in the furnace, wear of the inner wall surface of the furnace, or a facility for detoxifying the exhaust gas. From such a background, the development of the activation method of the metal member surface which does not use a halide is advanced.

特許文献2に記載のアンモニアガス窒化方法は、アセトンの熱分解により生成する還元性ラジカルとCOとをワークである高クロム合金鋼部材表面で生成させることにより、合金鋼部材表面の不動態化皮膜を還元活性化する方法である。この方法によれば加熱された高クロム合金鋼部材表面でアセトンが下記(1)式に従って熱分解し、還元性ラジカルとCOが高クロム合金部材表面で生成される。
2(CH3)CO→2CH3・+CO ・・・(1)
金属部材表面の酸化膜(MO)は下記(2)式で還元される。
5MO+2CH3・→5M+2CO+3H2O ・・・(2)
高クロム合金鋼部材の表面酸化膜の主成分はCr23であるので
5Cr23+6CH3・→10Cr+6CO+9H2O ・・・(3)
上記(1)〜(3)式に従って生成したCOは雰囲気ガスであるアンモニアと反応して下記(4)式に従いHCNを生成する。
CO+NH3→HCN+H2O ・・・(4)
上記(4)式で生成したHCNは、下記の反応により高クロム合金部材表面の不動態化皮膜を還元する。
Cr23+6HCN→2Cr(CN)3+3H2O ・・・(5)
生成したCr(CN)3のCとNは、高クロム合金部材表面中に拡散し、浸炭と窒化に寄与して上記部材表面に残留物は生じない。
In the ammonia gas nitriding method described in Patent Document 2, a reducing radical generated by pyrolysis of acetone and CO are generated on the surface of a high chromium alloy steel member, which is a workpiece, thereby forming a passivated film on the surface of the alloy steel member. This is a method for reducing and activating. According to this method, acetone is thermally decomposed according to the following equation (1) on the surface of the heated high chromium alloy steel member, and reducing radicals and CO are generated on the surface of the high chromium alloy member.
2 (CH 3 ) CO → 2CH 3 · + CO (1)
The oxide film (MO) on the surface of the metal member is reduced by the following equation (2).
5MO + 2CH 3- > 5M + 2CO + 3H 2 O (2)
Since the main component of the surface oxide film of the high chromium alloy steel member is Cr 2 O 3 , 5Cr 2 O 3 + 6CH 3 · → 10Cr + 6CO + 9H 2 O (3)
The CO produced according to the above formulas (1) to (3) reacts with ammonia as the atmospheric gas to produce HCN according to the following formula (4).
CO + NH 3 → HCN + H 2 O (4)
The HCN produced by the above formula (4) reduces the passivated film on the surface of the high chromium alloy member by the following reaction.
Cr 2 O 3 + 6HCN → 2Cr (CN) 3 + 3H 2 O (5)
C and N of the produced Cr (CN) 3 diffuse into the surface of the high chromium alloy member, contribute to carburizing and nitriding, and no residue is generated on the member surface.

これに対し前記塩化物による高クロム合金鋼部材表面の活性化反応は下記(6)式で表される。
Cr23+6HCl→2CrCl3+3H2O ・・・(6)
上記クロム塩化物が部材表面に残留し、部材の腐食の原因物質となる。
特開平3−44457号公報 特願平9−38341号公報
On the other hand, the activation reaction of the high chromium alloy steel member surface by the chloride is expressed by the following formula (6).
Cr 2 O 3 + 6HCl → 2CrCl 3 + 3H 2 O (6)
The chromium chloride remains on the surface of the member and becomes a causative substance of the member.
JP-A-3-44457 Japanese Patent Application No. 9-38341

以上のように、特許文献2に記載の方法は、特許文献1に記載の塩化物による金属部材表面の活性化方法の問題点を原理的に解決した点で優れている。しかしながら、特許文献2に記載の方法は、常温常圧で液体のアセトンを用いるので、アセトン蒸気を導入する装置を必要とし、アセトンの流量制御が容易でないことから、均一な活性表面を有する金属部材を得ることが難しいという欠点がある。   As described above, the method described in Patent Document 2 is excellent in that the problem of the method for activating a metal member surface with chloride described in Patent Document 1 is solved in principle. However, since the method described in Patent Document 2 uses liquid acetone at room temperature and normal pressure, it requires a device for introducing acetone vapor, and the flow rate of acetone is not easy, so a metal member having a uniform active surface. There is a drawback that it is difficult to obtain.

上記課題を解決するため、本発明者らは取り扱いに問題のあるアセトンに代わり、常温常圧で気体である化合物を用いる方法の開発に取り組み本発明を完成した。
すなわち、本発明の構成は下記の通りである。
1.常温常圧で気体である炭素供給化合物とアンモニアとを必須成分とする混合気体を加熱炉内で300℃以上に加熱し、該加熱混合気体中で金属部材、金属製炉内壁あるいは金属製治具の触媒作用によりHCNを生成させ、生成したHCNを金属部材の表面に作用させることを特徴とする金属部材表面の活性化方法。
In order to solve the above problems, the present inventors have completed the present invention by developing a method that uses a compound that is a gas at normal temperature and pressure instead of acetone, which has a problem in handling.
That is, the configuration of the present invention is as follows.
1. A mixed gas containing a carbon supply compound that is a gas at normal temperature and pressure and ammonia as essential components is heated to 300 ° C. or higher in a heating furnace, and in the heated mixed gas, a metal member, a metal furnace inner wall, or a metal jig A method for activating a surface of a metal member, characterized in that HCN is produced by the catalytic action of and the produced HCN is allowed to act on the surface of the metal member.

2.炭素供給化合物が、アセチレン、エチレン、プロパン、ブタンおよび一酸化炭素から選択された一つ以上の化合物である前記1に記載の金属部材表面の活性化方法。 2. 2. The method for activating a surface of a metal member according to 1, wherein the carbon supply compound is one or more compounds selected from acetylene, ethylene, propane, butane, and carbon monoxide.

3.金属製炉内壁あるいは金属製治具が、Fe、Ni、Co、Cu、Cr、Mo、Nb、V、TiおよびZrから選択された一つ以上の金属を含有する前記1に記載の金属部材表面の活性化方法。 3. The metal member surface according to 1 above, wherein the metal furnace inner wall or the metal jig contains one or more metals selected from Fe, Ni, Co, Cu, Cr, Mo, Nb, V, Ti, and Zr. Activation method.

4.炉内において発生させるHCN濃度が、100mg/m3以上であり、炉内雰囲気ガスの露点が5℃以下である前記1に記載の金属部材表面の活性化方法。4). 2. The method for activating a metal member surface as described in 1 above, wherein the HCN concentration generated in the furnace is 100 mg / m 3 or more and the dew point of the atmosphere gas in the furnace is 5 ° C. or less.

本発明によれば、金属部材の表面に窒化層、浸炭層あるいは浸炭窒化層を形成させるガス窒化法、ガス浸炭法などの拡散浸透処理を困難ならしめている高合金鋼部材の表面不動態化皮膜を、ガス熱処理で通常に扱われているガス類を用い、被処理金属および/または金属製炉材表面の触媒作用を利用して、炉内においてHCNガスを生成させ、不動態化している高合金鋼部材の表面を活性化させることにより、従来、ハロゲン化物による活性化処理で問題であった炉内堆積物、炉内壁面の損耗、さらには排ガスの無害化処理などの弊害を伴わない、拡散浸透処理の前段処理として有用な金属部材表面の活性化処理法を提供することができる。   According to the present invention, the surface passivating film of a high alloy steel member in which diffusion permeation treatment such as gas nitriding method, gas carburizing method or the like for forming a nitrided layer, carburized layer or carbonitrided layer on the surface of a metal member is difficult The HCN gas is generated in the furnace using the gas normally treated in the gas heat treatment, and the catalytic action of the surface of the metal to be treated and / or the metal furnace material is used to passivate the gas. By activating the surface of the alloy steel member, conventionally, there are no harmful effects such as deposits in the furnace, wear on the wall surface of the furnace, and exhaust gas detoxification treatment, which has been a problem in the activation treatment with halides. It is possible to provide an activation treatment method for the surface of a metal member that is useful as a pre-treatment of the diffusion permeation treatment.

次に発明を実施するための最良の形態を挙げて本発明をさらに詳しく説明する。
前記特許文献2によれば、前記(1)式のアセトンの熱分解で生成したCH3・(メチルラジカル)は金属部材表面の酸化膜を還元する。前記(1)と(2)式で生成したCOは、雰囲気ガスのアンモニアと金属表面で反応してHCNを生成する。HCNは前記(5)式に従って金属酸化膜に作用する。
Next, the present invention will be described in more detail with reference to the best mode for carrying out the invention.
According to Patent Document 2, CH 3 .multidot. (Methyl radical) generated by the thermal decomposition of acetone in the formula (1) reduces the oxide film on the surface of the metal member. The CO produced by the equations (1) and (2) reacts with the atmosphere gas ammonia on the metal surface to produce HCN. HCN acts on the metal oxide film according to the equation (5).

本発明者らはアセトンの熱分解で生成するCH3・とHCN(もう一つの熱分解生成物であるCOと雰囲気ガスのアンモニアとの反応生成物)は、前記(2)式と(5)式の比較から不動態化皮膜への作用において類似しており、CH3・とHCNの両方の存在は、高クロム合金鋼部材表面の活性化の十分条件ではあるが、必ずしも必要条件ではないものと推定し、HCNに着目して金属表面でのHCN生成方法の開発と、HCNによる金属部材表面の活性化効果の確認に取り組んだ。The inventors of the present invention used CH 3 · and HCN (reaction product of CO, which is another thermal decomposition product, and ammonia in the atmospheric gas) generated by the thermal decomposition of acetone, as expressed by the above formulas (2) and (5). From the comparison of formulas, the effect on the passivation film is similar, and the presence of both CH 3. And HCN is a sufficient condition for activation of the surface of the high chromium alloy steel member, but it is not necessarily a necessary condition. Therefore, focusing on HCN, we worked on the development of HCN generation method on the metal surface and confirmation of the activation effect on the metal member surface by HCN.

窒化雰囲気ガス(NH3:N2=モル比1:1)と常温常圧で気体である各種の炭素含有化合物から選択したガスを炉内がSUS310S製のマッフル炉に導入して550℃に加熱し、HCNの生成について調べた。その結果、一酸化炭素、二酸化炭素、アセチレン、エチレン、プロパン、ブタンがそれぞれアンモニアとの組み合わせで、明らかにHCNを生成することが確認された。A gas selected from nitriding atmosphere gas (NH 3 : N 2 = molar ratio 1: 1) and various carbon-containing compounds that are gases at normal temperature and pressure is introduced into a muffle furnace made of SUS310S and heated to 550 ° C. Then, the production of HCN was examined. As a result, it was confirmed that carbon monoxide, carbon dioxide, acetylene, ethylene, propane and butane each clearly produced HCN in combination with ammonia.

これに対しマッフル炉の内壁をレンガ製の炉に代えた以外は、上記と同じ実験を実施してHCNの生成量を分析した結果、すべてのケースでHCNは検出されなかった。このことからアンモニアとこれらガスとによるHCN生成反応には、金属表面の触媒作用が必須条件であることが明らかとなった。   On the other hand, except that the inner wall of the muffle furnace was replaced with a brick furnace, the same experiment as described above was performed and the amount of HCN produced was analyzed. As a result, HCN was not detected in all cases. From this, it became clear that the catalytic action of the metal surface is an essential condition for the HCN generation reaction by ammonia and these gases.

アンモニアと前記炭素含有化合物によるHCN生成反応はそれぞれ下記の式で表すことができる。
NH3+CO→HCN+H2O ・・・(7)
2NH3+2CO2→2HCN+H2O+O2 ・・・(8)
2NH3+C22→2HCN+3H2 ・・・(9)
2NH3+C24→2HCN+4H2 ・・・(10)
3NH3+C38→3HCN+7H2 ・・・(11)
4NH3+C410→4HCN+9H2 ・・・(12)
The HCN generation reaction by ammonia and the carbon-containing compound can be expressed by the following formulas, respectively.
NH 3 + CO → HCN + H 2 O (7)
2NH 3 + 2CO 2 → 2HCN + H 2 O + O 2 (8)
2NH 3 + C 2 H 2 → 2HCN + 3H 2 (9)
2NH 3 + C 2 H 4 → 2HCN + 4H 2 (10)
3NH 3 + C 3 H 8 → 3HCN + 7H 2 (11)
4NH 3 + C 4 H 10 → 4HCN + 9H 2 (12)

窒化雰囲気ガス(NH3:N2=モル比1:1)と各種の炭素含有化合物から選択したガスとの反応によるHCNの生成量の比較は、窒化雰囲気ガス(NH3:N2=モル比1:1)に対しそれぞれの炭素含有化合物を当量比で1%含有させ、内壁がSUS310S製のマッフル炉に導入し、550℃に30分間加熱して、前記(7)〜(12)式の反応を行なわせた。その結果、それぞれの炭素含有化合物によるHCN生成量は下記の順であった。
22>CO>C24>C410>C38>CO2
Nitriding atmosphere gas (NH 3: N 2 = 1: 1 mole ratio) and comparison of the amount of HCN by the reaction of gas selected from various carbon-containing compounds of the nitriding atmosphere gas (NH 3: N 2 = mole ratio 1: 1) each carbon-containing compound is contained in an equivalent ratio of 1%, the inner wall is introduced into a muffle furnace made of SUS310S, heated to 550 ° C. for 30 minutes, and the formulas (7) to (12) The reaction was carried out. As a result, the amount of HCN produced by each carbon-containing compound was in the following order.
C 2 H 2 >CO> C 2 H 4 > C 4 H 10 > C 3 H 8 > CO 2

窒化雰囲気ガスとの反応でHCNを生成することが確認されたこれらの炭素含有化合物について、窒化処理の初期段階にこれら化合物のそれぞれを加熱炉内に導入し活性化作用があるか否かについてSUS304板材を用いて評価した。その結果、C22、CO、C24、C410およびC38は、炭素含有化合物を導入しないコントロールの窒化処理と比較し、上記SUS304板材において窒化均一性ならびに窒素浸入による重量増加において明らかな効果が認められた。これに対しCO2を用いた場合は均一窒化性および試験片の重量増のいずれにおいてもコントロールの窒化処理と差がなく、CO2については上記SUS304板材の表面に対して活性化作用は認められなかった。Regarding these carbon-containing compounds that have been confirmed to generate HCN by reaction with a nitriding atmosphere gas, each of these compounds is introduced into a heating furnace at the initial stage of nitriding treatment to determine whether or not there is an activation action. Evaluation was performed using a plate material. As a result, C 2 H 2 , CO, C 2 H 4 , C 4 H 10, and C 3 H 8 are more uniform in nitriding and nitrogen intrusion in the SUS304 plate material than in the control nitriding treatment in which no carbon-containing compound is introduced. A clear effect was observed in the weight increase due to. On the other hand, when CO 2 is used, there is no difference from the control nitriding treatment in both uniform nitriding property and increase in the weight of the test piece, and CO 2 has an activation effect on the surface of the SUS304 plate material. There wasn't.

炉内においてCO2の導入によりHCNが生成するにもかかわらず、上記SUS304板材の表面に対して活性化作用が得られないのは、前記(8)式のHCN生成反応の副生成物であるO2とH2Oの酸化作用による上記SUS304板材の表面の再酸化によるものと推定される。COについては、上述のようにHCNを生成するが、このことはアンモニアと、COを含むRXガスとが存在するガス軟窒化雰囲気でステンレス鋼が均一に窒化されない現象と矛盾するが、該矛盾は以下の理由によると考えられる。ここでRXガスとは炭化水素ガス(例えばプロパンガス、ブタンガス、天然ガス)と空気をほぼ化学当量で混合し、1000℃に保った触媒層の中で分解させCO、H2(N2)を主成分とし少量のCO2とH2Oを含むガスのことで浸炭ガスとして広く用いられているガスである。It is a by-product of the HCN generation reaction of the above formula (8) that the activation action is not obtained on the surface of the SUS304 plate material even though HCN is generated by introducing CO 2 in the furnace. It is presumed to be due to re-oxidation of the surface of the SUS304 plate material due to the oxidizing action of O 2 and H 2 O. Regarding CO, HCN is generated as described above. This contradicts the phenomenon in which stainless steel is not uniformly nitrided in a gas soft nitriding atmosphere in which ammonia and RX gas containing CO exist. The reason is considered as follows. Here, the RX gas is a mixture of hydrocarbon gas (for example, propane gas, butane gas, natural gas) and air at a substantially chemical equivalent, and decomposes in a catalyst layer maintained at 1000 ° C. to decompose CO, H 2 (N 2 ). It is a gas that contains a small amount of CO 2 and H 2 O as a main component and is widely used as a carburizing gas.

ガス軟窒化の代表的な組成であるNH3:RXガス=モル比1:1に含まれるCOは、容量比で約10%である。従ってガス軟窒化炉内には金属部材表面の活性化に必要なHCNは十分存在すると推定されるが、露点を制御されていないRXガスには相当量のH2O(2容量%前後)と0.5容量%前後のCO2が存在することから、これらの酸化作用により活性化された上記SUS304板材の表面が再酸化され、上記板材表面中への窒素の浸入が妨げられていると判断される。CO contained in NH 3 : RX gas = molar ratio 1: 1, which is a typical composition of gas soft nitriding, is about 10% by volume. Therefore, it is estimated that there is enough HCN necessary for activation of the metal member surface in the gas nitrocarburizing furnace, but a considerable amount of H 2 O (around 2% by volume) is included in the RX gas whose dew point is not controlled. Since about 0.5% by volume of CO 2 is present, it is judged that the surface of the SUS304 plate material activated by these oxidation actions is reoxidized, and the penetration of nitrogen into the plate material surface is prevented. Is done.

従って金属部材表面の活性化のための炭素供給化合物としてCOガスを選択する場合、RXガスではなく、単独のCOガスを用いることが望ましい。しかしながら、本発明におけるCOガスの必要注入量は、ガス軟窒化雰囲気の1/10(容量)程度であるから、RXガス中のH2OやCO2の影響が低くなるので、RXガスをCO源として利用できるケースもあり得る。Therefore, when CO gas is selected as the carbon supply compound for activating the metal member surface, it is desirable to use a single CO gas instead of the RX gas. However, since the required injection amount of CO gas in the present invention is about 1/10 (capacity) of the gas soft nitriding atmosphere, the influence of H 2 O and CO 2 in the RX gas is reduced. In some cases, it can be used as a source.

前記(7)〜(12)の反応式の右辺の式から判断してシアン生成作用のあるこれらの化合物の中でCO2の場合の副生成物の酸化作用が最も高く、次いでCOであり、炭化水素化合物はいずれも還元性の水素を生成する。従って再酸化を防ぐためには炭素供給化合物として炭化水素化合物を選択することが望ましい。Judging from the formulas on the right side of the reaction formulas (7) to (12), the by-product oxidation action in the case of CO 2 is the highest among these compounds having a cyanogenic action, followed by CO. All hydrocarbon compounds generate reducible hydrogen. Therefore, it is desirable to select a hydrocarbon compound as the carbon supply compound in order to prevent reoxidation.

本発明による合金鋼部材表面の活性化作用はHCNによるものである。上記活性化効果は炉内雰囲気中のHCN濃度に依存する。満足する活性化作用を得るためのHCNの適正な濃度は100〜30,000mg/m3の範囲である。HCNの濃度が100mg/m3未満では上記活性化作用を期待することができない。一方、HCNの濃度が30,000mg/m3超では上記活性化効果が飽和し、経済的に不利となるだけでなく、炭素供給化合物の熱分解によるスーティング(炉内でのカーボン生成)が起こるので好ましくない。
また、炉内雰囲気ガスの露点は5℃以下であることが好ましい。上記露点が5℃よりも高いとHCNガスにより活性化された金属表面が雰囲気中のH2Oにより再酸化され再び不動態化する。
The activation action of the alloy steel member surface according to the present invention is due to HCN. The activation effect depends on the HCN concentration in the furnace atmosphere. The appropriate concentration of HCN for obtaining a satisfactory activating effect is in the range of 100 to 30,000 mg / m 3 . If the concentration of HCN is less than 100 mg / m 3 , the above activation effect cannot be expected. On the other hand, if the concentration of HCN exceeds 30,000 mg / m 3 , the activation effect is saturated, which is not only economically disadvantageous, but also sooting (carbon generation in the furnace) due to thermal decomposition of the carbon supply compound. Since it happens, it is not preferable.
The dew point of the furnace atmosphere gas is preferably 5 ° C. or less. When the dew point is higher than 5 ° C., the metal surface activated by the HCN gas is reoxidized by H 2 O in the atmosphere and passivated again.

本発明の方法における環境面での利点は、前記反応式(5)で説明されているように、金属部材表面の活性化に寄与したHCNが部材表面中に取り込まれて部材の窒化、浸炭に寄与し部材表面に残留物を残さないとともに、反応に寄与せずに排ガスとして排出されるHCNは窒化装置に付属しているアンモニア燃焼装置で容易に燃焼無害化することができ、新たな付加的設備は不要である点である。   The environmental advantage of the method of the present invention is that, as explained in the reaction formula (5), the HCN that contributes to the activation of the metal member surface is taken into the member surface and is used for nitriding and carburizing the member. HCN that contributes and does not leave any residue on the surface of the member and is discharged as exhaust gas without contributing to the reaction can be easily detoxified with the ammonia combustion device attached to the nitriding device, and a new additional The equipment is unnecessary.

本発明のさらなる利点は窒化処理プロセス上のスムースな工程進行による窒化処理時間の短縮である。金属部材のガス窒化は通常下記のようなスケジュールで行われる。   A further advantage of the present invention is a reduction in nitriding time due to smooth progress of the nitriding process. Gas nitriding of a metal member is usually performed according to the following schedule.

金属部材を炉内にセットし、炉内の大気を真空パージあるいは窒素ガス置換した後窒化雰囲気ガス(NH3+N2)を時間当たり炉内容積の1〜10倍量導入しながら、金属部材の窒化処理温度まで昇温後一定温度に維持する。処理中炉内圧は大気圧+0.5kPa程度に圧力弁によって維持し、押し出された排ガスは排ガス燃焼装置で燃焼分解される。The metal member was set in the furnace, and after the atmosphere in the furnace was vacuum purged or replaced with nitrogen gas, a nitriding atmosphere gas (NH 3 + N 2 ) was introduced 1 to 10 times the furnace volume per hour while After the temperature is raised to the nitriding temperature, it is maintained at a constant temperature. During the treatment, the pressure in the furnace is maintained at about atmospheric pressure + 0.5 kPa by a pressure valve, and the exhaust gas pushed out is burned and decomposed by an exhaust gas combustion device.

前記特許文献1に示されるフッ素系ガスによる方法では、日本特許第2501925号明細書の実施例に記載されているように、フッ化系ガスを導入して部材の活性化処理を実施した後、フッ化系ガスを排気してから窒化雰囲気ガスを炉内に導入する必要がある。   In the method using the fluorine-based gas disclosed in Patent Document 1, as described in the example of Japanese Patent No. 2501925, after introducing the fluorinated gas and performing the activation treatment of the member, It is necessary to introduce the nitriding atmosphere gas into the furnace after exhausting the fluorinated gas.

これに対し本発明では金属部材を窒化処理温度に昇温する工程で、窒化雰囲気ガス中に炭素供給化合物を導入し、HCNを発生させて金属部材表面を活性化し、その後炭素供給化合物の導入を停止することで窒化工程へそのまま移行することができる。これにより窒化工程の処理時間が大幅に短縮されるとともに、活性化から窒化工程に移行する際に従来の処理で問題となっていた金属部材表面の再酸化現象を原理的に解消することができる。   In contrast, in the present invention, in the step of raising the temperature of the metal member to the nitriding temperature, a carbon supply compound is introduced into the nitriding atmosphere gas, HCN is generated to activate the surface of the metal member, and then the carbon supply compound is introduced. By stopping, it is possible to shift to the nitriding process as it is. As a result, the processing time of the nitriding step is greatly shortened, and the reoxidation phenomenon on the surface of the metal member, which has been a problem in the conventional processing when shifting from the activation to the nitriding step, can be solved in principle. .

本発明の技術的特徴および効果は上記の通りである。以下に本発明の好ましい実施形態を説明する。本発明で使用する処理炉は、内壁が金属製であることが好ましいが、内壁が金属製でなくても、処理される金属部材がHCNの触媒となり、また、金属部材を炉内で保持する治具が金属製であればよい。上記金属製内壁、金属部材、治具を構成する金属としては、例えば、Fe、Ni、Co、Cu、Cr、Mo、Nb、V、TiおよびZrから選択された一つ以上の金属を含有することが好ましい。   The technical features and effects of the present invention are as described above. Hereinafter, preferred embodiments of the present invention will be described. In the treatment furnace used in the present invention, the inner wall is preferably made of metal, but even if the inner wall is not made of metal, the metal member to be treated becomes an HCN catalyst, and the metal member is held in the furnace. The jig may be made of metal. Examples of the metal constituting the metal inner wall, metal member, and jig include one or more metals selected from Fe, Ni, Co, Cu, Cr, Mo, Nb, V, Ti, and Zr. It is preferable.

本発明の方法で表面活性化処理される金属部材としては、冷間金型用鋼、熱間金型用鋼、プラスチック金型用鋼、高速度工具鋼、粉末高速度工具鋼、クロムモリブデン鋼、マルエージング鋼、オーステナイト系ステンレス鋼、フェライト系ステンレス鋼、マルテンサイト系ステンレス鋼、マルテンサイト系耐熱鋼、オーステナイト系耐熱鋼さらにはニッケル基超合金などが挙げられ、これらの金属部材は前記処理炉内において適当な治具によって常法に従って載置されて表面活性化処理される。   Examples of the metal member to be surface activated by the method of the present invention include cold mold steel, hot mold steel, plastic mold steel, high speed tool steel, powder high speed tool steel, and chromium molybdenum steel. , Maraging steel, austenitic stainless steel, ferritic stainless steel, martensitic stainless steel, martensitic heat resistant steel, austenitic heat resistant steel, nickel-base superalloy, and the like. In the inside, it is placed according to a conventional method by a suitable jig and subjected to surface activation treatment.

前記炉内に供給する表面処理用気体は常温常圧で気体である炭素供給化合物とアンモニアであり、それぞれ専用のボンベから炉内に供給される。これらの気体は金属部材を炉内にセットし、炉内の大気を真空パージあるいは窒素ガスで置換したのち炉内に窒化雰囲気ガス(アンモニア単独またはアンモニア+窒素ガスあるいはアンモニア+窒素ガス+水素ガス)を導入して、還元雰囲気を確立した後昇温を開始し本発明の炭素供給化合物を導入する。アンモニアガスと炭素供給化合物は、炉内で300℃以上に加熱されると金属表面の触媒作用によりHCNを生成する。窒化雰囲気ガスであるアンモニアの流量と導入する炭素供給化合物の流量比は1:0.0001〜1:0.1の範囲内とすべきである。炭素供給化合物の流量比が1:0.0001より低い場合ではHCNの生成量が低いため活性化効果が得られない。炭素供給化合物の流量比が1:0.1超では活性化効果が飽和し経済的に不利となる。   The gas for surface treatment supplied into the furnace is a carbon supply compound and ammonia which are gases at normal temperature and pressure, and each is supplied into the furnace from a dedicated cylinder. These gases are set in a furnace with a metal member, and the atmosphere in the furnace is purged with vacuum or replaced with nitrogen gas, and then the nitriding atmosphere gas (ammonia alone or ammonia + nitrogen gas or ammonia + nitrogen gas + hydrogen gas) After establishing the reducing atmosphere, the temperature rise is started and the carbon supply compound of the present invention is introduced. When ammonia gas and the carbon supply compound are heated to 300 ° C. or higher in the furnace, HCN is generated by the catalytic action of the metal surface. The ratio of the flow rate of ammonia as the nitriding atmosphere gas and the flow rate of the carbon feed compound to be introduced should be in the range of 1: 0.0001 to 1: 0.1. When the flow ratio of the carbon supply compound is lower than 1: 0.0001, the activation effect cannot be obtained because the amount of HCN produced is low. When the flow rate ratio of the carbon supply compound exceeds 1: 0.1, the activation effect is saturated, which is economically disadvantageous.

炭素供給化合物は前記の通りアセチレン、エチレン、プロパン、ブタンおよび一酸化炭素から選択された一つ以上のガス状化合物であり、前記の通りアンモニア含有ガスと同時に処理炉内に供給することもできる。前記アンモニア含有ガスの炉内温度が約300℃に達した時点で炭素供給化合物の導入を開始することが炭素供給化合物の効率的な利用上は好ましいが、炉内雰囲気中の炭素供給化合物濃度を早期に上昇させて処理時間を短縮させるためには昇温開始と同時に炭素供給化合物を導入し初期段階からのHCN生成を図ることが望ましい。   The carbon supply compound is one or more gaseous compounds selected from acetylene, ethylene, propane, butane and carbon monoxide as described above, and can be supplied into the processing furnace simultaneously with the ammonia-containing gas as described above. It is preferable for the efficient use of the carbon supply compound that the introduction of the carbon supply compound is preferably started when the temperature of the ammonia-containing gas in the furnace reaches about 300 ° C., but the concentration of the carbon supply compound in the furnace atmosphere is reduced. In order to shorten the treatment time by raising the temperature early, it is desirable to introduce a carbon supply compound at the same time as the temperature rise is started and to generate HCN from the initial stage.

以下実施例および比較例を挙げて本発明をさらに具体的に説明する。なお、以下の実施例および比較例は図1に示す構造の処理炉を用いて行なった。図1において1がマッフル炉、2はその外殻、3がヒータ、4は内容器(レトルト)、5はガス導入管、6は排気管、7はモータ、8はファン、9は金属製の治具、10はガス案内筒、11は陣傘、12は真空ポンプ、13は排ガス燃焼装置、14は炭素供給化合物ガスボンベ、15はアンモニアガスボンベ、16は窒素ガスボンベ、17は水素ガスボンベ、18は流量計、19はガスの制御弁である。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. The following examples and comparative examples were carried out using a processing furnace having the structure shown in FIG. In FIG. 1, 1 is a muffle furnace, 2 is its outer shell, 3 is a heater, 4 is an inner container (retort), 5 is a gas introduction pipe, 6 is an exhaust pipe, 7 is a motor, 8 is a fan, and 9 is a metal. Jig, 10 is a gas guide cylinder, 11 is an umbrella, 12 is a vacuum pump, 13 is an exhaust gas combustion device, 14 is a carbon supply compound gas cylinder, 15 is an ammonia gas cylinder, 16 is a nitrogen gas cylinder, 17 is a hydrogen gas cylinder, and 18 is a flow rate. A total of 19 is a gas control valve.

〔実施例1〕
図1に示した内容積100LのSUS310Sマッフル炉を用い、該炉内にSUS304板材をセットしNH3ガスとN2ガスをそれぞれ200L/Hの流速で送り込み、室温から550℃に75分で昇温した。途中雰囲気温度が100℃になった時点(昇温開始から18分後)でアセチレンガス2L/Hの注入を開始した。550℃に昇温後2時間雰囲気温度を維持し、この時点でアセチレンガスの注入を停止する一方で、NH3ガスとN2ガスを550℃でさらに4時間流して窒化を進行させた後、加熱を止めN2ガスだけを流し続けて炉冷し、雰囲気温度が100℃以下になったところで炉内の試験片を取り出した。
[Example 1]
The SUS310S muffle furnace with an internal volume of 100 L shown in FIG. 1 is used, SUS304 plate material is set in the furnace, NH 3 gas and N 2 gas are fed at a flow rate of 200 L / H, and the temperature is increased from room temperature to 550 ° C. in 75 minutes. Warm up. The injection of acetylene gas 2 L / H was started when the ambient temperature reached 100 ° C. (18 minutes after the start of temperature increase). After the temperature was raised to 550 ° C., the atmospheric temperature was maintained for 2 hours. At this point, acetylene gas injection was stopped, while NH 3 gas and N 2 gas were allowed to flow at 550 ° C. for an additional 4 hours to advance nitriding. The heating was stopped and only the N 2 gas was allowed to flow to cool the furnace. When the ambient temperature reached 100 ° C. or lower, the test piece in the furnace was taken out.

また、炉内からの排ガスを分岐し、排ガスの一部を2質量%苛性ソーダ水溶液に吸収させてHCN分析を実施した。HCN吸収液の分析結果から、アセチレンガス注入期間の炉内雰囲気中の平均HCN濃度は8,000mg/m3であった。SUS304試験片の窒化処理前後の重量増を測定したところ20g/m2であった。SUS304試験片を切断および研磨しマーブル液でエッチングして光学顕微鏡で切断面を観察したところ、50μmの均一な厚さの窒化層が形成されていた(図2に倍率500倍の顕微鏡写真を示す)。ビッカース硬度計で上記試験片の表面硬度を5点測定したところいずれの値もHv=1200〜1250の間に分布していた。Further, the exhaust gas from the furnace was branched, and a part of the exhaust gas was absorbed in a 2% by mass aqueous caustic soda solution to perform HCN analysis. From the analysis result of the HCN absorption liquid, the average HCN concentration in the furnace atmosphere during the acetylene gas injection period was 8,000 mg / m 3 . The weight increase of the SUS304 test piece before and after nitriding was measured and found to be 20 g / m 2 . A SUS304 test piece was cut and polished, etched with a marble solution, and the cut surface was observed with an optical microscope. As a result, a nitrided layer having a uniform thickness of 50 μm was formed (FIG. 2 shows a photomicrograph at a magnification of 500 times). ). When the surface hardness of the test piece was measured at 5 points using a Vickers hardness tester, all values were distributed between Hv = 1200 and 1250.

〔実施例2〕
実施例1で使用したマッフル炉内にSUS304板材をセットしNH3ガスとN2ガスをそれぞれ200L/Hの流速で送り込み室温から550℃に75分で昇温した。途中雰囲気温度が100℃になった時点(昇温開始から18分後)でプロパンガス5L/Hの注入を開始した。550℃に昇温後2時間雰囲気温度を維持し、この時点でプロパンガスの注入を停止する一方で、NH3ガスとN2ガスを550℃でさらに4時間流して窒化を進行させた後、加熱を止めてN2ガスだけを流し続けて炉冷し雰囲気温度が100℃以下になったところで炉内の試験片を取り出した。
[Example 2]
SUS304 plate material was set in the muffle furnace used in Example 1, NH 3 gas and N 2 gas were fed at a flow rate of 200 L / H, respectively, and the temperature was raised from room temperature to 550 ° C. in 75 minutes. At the time when the ambient temperature reached 100 ° C. (18 minutes after the start of temperature increase), injection of propane gas 5 L / H was started. After the temperature was raised to 550 ° C., the ambient temperature was maintained for 2 hours. At this point, the injection of propane gas was stopped, while NH 3 gas and N 2 gas were allowed to flow at 550 ° C. for an additional 4 hours to advance nitriding, The heating was stopped and only N 2 gas was allowed to flow and the furnace was cooled. When the ambient temperature reached 100 ° C. or lower, the test piece in the furnace was taken out.

また、炉内からの排ガスを分岐し、排ガスの一部を2質量%苛性ソーダ水溶液に吸収させてHCN分析を実施した。HCN吸収液の分析結果から、プロパンガス注入期間の炉内雰囲気中の平均HCN濃度は400mg/m3であった。SUS304試験片の窒化処理前後の重量増を測定したところ18g/m2であった。SUS304試験片を切断および研磨しマーブル液でエッチングして切断面を光学顕微鏡で観察したところ、45μmの均一な厚さの窒化層が形成されていた。ビッカース硬度計で上記試験片の表面硬度を5点測定したところ、いずれの値もHv=1200〜1250の間に分布していた。Further, the exhaust gas from the furnace was branched, and a part of the exhaust gas was absorbed in a 2% by mass aqueous caustic soda solution to perform HCN analysis. From the analysis result of the HCN absorption liquid, the average HCN concentration in the furnace atmosphere during the propane gas injection period was 400 mg / m 3 . The weight increase of the SUS304 test piece before and after nitriding was measured and found to be 18 g / m 2 . When the SUS304 test piece was cut and polished, etched with a marble liquid, and the cut surface was observed with an optical microscope, a nitride layer having a uniform thickness of 45 μm was formed. When the surface hardness of the test piece was measured at 5 points using a Vickers hardness tester, all values were distributed between Hv = 1200 and 1250.

〔実施例3〕
実施例1で使用したマッフル炉内にSUS304板材をセットしNH3ガスとN2ガスをそれぞれ200L/Hの流速で送り込み室温から550℃に75分で昇温した。途中雰囲気温度が100℃になった時点(昇温開始から18分後)でCOガス5L/Hの注入を開始した。550℃に昇温後2時間雰囲気温度を維持し、この時点でCOガスの注入を停止する一方で、NH3ガスとN2ガスを550℃でさらに4時間流して窒化を進行させた後、加熱を止めてN2ガスだけを流し続けて炉冷し雰囲気温度が100℃以下になったところで炉内の試験片を取り出した。
Example 3
SUS304 plate material was set in the muffle furnace used in Example 1, NH 3 gas and N 2 gas were fed at a flow rate of 200 L / H, respectively, and the temperature was raised from room temperature to 550 ° C. in 75 minutes. The injection of 5 L / H of CO gas was started when the ambient temperature reached 100 ° C. (18 minutes after the start of temperature increase). After the temperature was raised to 550 ° C., the atmospheric temperature was maintained for 2 hours. At this point, CO gas injection was stopped, while NH 3 gas and N 2 gas were allowed to flow at 550 ° C. for an additional 4 hours to proceed nitriding, The heating was stopped and only N 2 gas was allowed to flow and the furnace was cooled. When the ambient temperature reached 100 ° C. or lower, the test piece in the furnace was taken out.

また、炉内からの排ガスを分岐し、排ガスの一部を2質量%苛性ソーダ水溶液に吸収させてHCN分析を実施した。HCN吸収液の分析結果から、COガス注入期間の炉内雰囲気中の平均HCN濃度は1,000mg/m3に達していた。SUS304試験片の窒化処理前後の重量増を測定したところ、18g/m2であった。SUS304試験片を切断および研磨しマーブル液でエッチングして切断面を光学顕微鏡で観察したところ、45μmの均一な厚さの窒化層が形成されていた。ビッカース硬度計で上記試験片の表面硬度を5点測定したところいずれの値もHv=1200〜1250の間に分布していた。Further, the exhaust gas from the furnace was branched, and a part of the exhaust gas was absorbed in a 2% by mass aqueous caustic soda solution to perform HCN analysis. From the analysis results of the HCN absorption liquid, the average HCN concentration in the furnace atmosphere during the CO gas injection period reached 1,000 mg / m 3 . It was 18 g / m < 2 > when the weight increase before and behind the nitridation process of a SUS304 test piece was measured. When the SUS304 test piece was cut and polished, etched with a marble liquid, and the cut surface was observed with an optical microscope, a nitride layer having a uniform thickness of 45 μm was formed. When the surface hardness of the test piece was measured at 5 points using a Vickers hardness tester, all values were distributed between Hv = 1200 and 1250.

〔実施例4〕
実施例1で使用したマッフル炉内にSUS304板材をセットしNH3ガスとN2ガスをそれぞれ200L/Hの流速で送り込み室温から550℃に75分で昇温した。途中雰囲気温度が100℃になった時点(昇温開始から18分後)でC24ガス5L/Hの注入を開始した。550℃に昇温後2時間雰囲気温度を維持し、この時点でC24ガスの注入を停止する一方で、NH3ガスとN2ガスを550℃でさらに4時間流して窒化を進行させた後、加熱を止めてN2ガスだけを流し続けて炉冷し雰囲気温度が100℃以下になったところで炉内の試験片を取り出した。
Example 4
SUS304 plate material was set in the muffle furnace used in Example 1, NH 3 gas and N 2 gas were fed at a flow rate of 200 L / H, respectively, and the temperature was raised from room temperature to 550 ° C. in 75 minutes. The injection of 5 L / H of C 2 H 4 gas was started when the ambient temperature reached 100 ° C. (18 minutes after the start of temperature increase). Maintaining the ambient temperature for 2 hours after raising the temperature to 550 ° C., at this point, the injection of C 2 H 4 gas is stopped, while NH 3 gas and N 2 gas are allowed to flow at 550 ° C. for an additional 4 hours to advance nitriding. After that, the heating was stopped and only the N 2 gas was allowed to flow, and the furnace was cooled. When the ambient temperature became 100 ° C. or lower, the test piece in the furnace was taken out.

また、炉内からの排ガスを分岐し、排ガスの一部を2質量%苛性ソーダ水溶液に吸収させてHCN分析を実施した。HCN吸収液の分析結果から、C24ガス注入期間の炉内雰囲気中の平均HCN濃度は1,200mg/m3に達していた。SUS304試験片の窒化処理前後の重量増を測定したところ、18g/m2であった。SUS304試験片を切断および研磨しマーブル液でエッチングして切断面を光学顕微鏡で観察したところ、45μmの均一な厚さの窒化層が形成されていた。ビッカース硬度計で上記試験片の表面硬度を5点測定したところ、いずれの値もHv=1200〜1250の間に分布していた。Further, the exhaust gas from the furnace was branched, and a part of the exhaust gas was absorbed in a 2% by mass aqueous caustic soda solution to perform HCN analysis. From the analysis result of the HCN absorption liquid, the average HCN concentration in the furnace atmosphere during the C 2 H 4 gas injection period reached 1200 mg / m 3 . It was 18 g / m < 2 > when the weight increase before and behind the nitridation process of a SUS304 test piece was measured. When the SUS304 test piece was cut and polished, etched with a marble liquid, and the cut surface was observed with an optical microscope, a nitride layer having a uniform thickness of 45 μm was formed. When the surface hardness of the test piece was measured at 5 points using a Vickers hardness tester, all values were distributed between Hv = 1200 and 1250.

〔実施例5〕
実施例1で使用したマッフル炉内にSUS304板材をセットしNH3ガスとN2ガスをそれぞれ200L/Hの流速で送り込み室温から550℃に75分で昇温した。途中雰囲気温度が100℃になった時点(昇温開始から18分後)でC410ガス5L/Hの注入を開始した。550℃に昇温後2時間雰囲気温度を維持し、この時点でC410ガスの注入を停止する一方で、NH3ガスとN2ガスを550℃でさらに4時間流して窒化を進行させた後、加熱を止めてN2ガスだけを流し続けて炉冷し雰囲気温度が100℃以下になったところで炉内の試験片を取り出した。
Example 5
SUS304 plate material was set in the muffle furnace used in Example 1, NH 3 gas and N 2 gas were fed at a flow rate of 200 L / H, respectively, and the temperature was raised from room temperature to 550 ° C. in 75 minutes. The injection of 5 L / H of C 4 H 10 gas was started when the ambient temperature reached 100 ° C. (18 minutes after the start of temperature increase). The ambient temperature is maintained for 2 hours after the temperature is raised to 550 ° C. At this point, the injection of C 4 H 10 gas is stopped, while NH 3 gas and N 2 gas are allowed to flow at 550 ° C. for an additional 4 hours to advance nitriding. After that, the heating was stopped and only the N 2 gas was allowed to flow, and the furnace was cooled. When the ambient temperature became 100 ° C. or lower, the test piece in the furnace was taken out.

また、炉内からの排ガスを分岐し、排ガスの一部を2質量%苛性ソーダ水溶液に吸収させてHCN分析を実施した。HCN吸収液の分析結果から、C410ガス注入期間の炉内雰囲気中の平均HCN濃度は600mg/m3に達していた。SUS304試験片の窒化処理前後の重量増を測定したところ、18g/m2であった。SUS304試験片を切断および研磨しマーブル液でエッチングして切断面を光学顕微鏡で観察したところ、45μmの均一な厚さの窒化層が形成されていた。ビッカース硬度計で上記試験片の表面硬度を5点測定したところいずれの値もHv=1200〜1250の間に分布していた。Further, the exhaust gas from the furnace was branched, and a part of the exhaust gas was absorbed in a 2% by mass aqueous caustic soda solution to perform HCN analysis. From the analysis result of the HCN absorption liquid, the average HCN concentration in the furnace atmosphere during the C 4 H 10 gas injection period reached 600 mg / m 3 . It was 18 g / m < 2 > when the weight increase before and behind the nitridation process of a SUS304 test piece was measured. When the SUS304 test piece was cut and polished, etched with a marble liquid, and the cut surface was observed with an optical microscope, a nitride layer having a uniform thickness of 45 μm was formed. When the surface hardness of the test piece was measured at 5 points using a Vickers hardness tester, all values were distributed between Hv = 1200 and 1250.

〔比較例1〕
実施例1で使用したマッフル炉内にSUS304板材をセットしNH3ガスとN2ガスをそれぞれ200L/Hの流速で送り込み室温から550℃に75分で昇温した。550℃に昇温後6時間雰囲気温度を維持し、NH3ガスとN2ガスを流し続けて窒化を進行させた後、加熱を止めてN2ガスだけを流し続けて炉冷し雰囲気温度が100℃以下になったところで炉内の試験片を取り出した。
[Comparative Example 1]
SUS304 plate material was set in the muffle furnace used in Example 1, NH 3 gas and N 2 gas were fed at a flow rate of 200 L / H, respectively, and the temperature was raised from room temperature to 550 ° C. in 75 minutes. After raising the temperature to 550 ° C. and maintaining the ambient temperature for 6 hours, the NH 3 gas and the N 2 gas are kept flowing and the nitriding is continued. Then, the heating is stopped and only the N 2 gas is kept flowing and the furnace is cooled. When the temperature became 100 ° C. or lower, the test piece in the furnace was taken out.

炉内からの排ガスを分岐し、排ガスの一部を2質量%苛性ソーダ水溶液に吸収させてHCN分析を実施した。HCN吸収液を分析結果、HCNは全く検出されず炉内雰囲気中にはHCNは全く存在しなかったことが確認された。SUS304試験片の窒化処理前後の重量増を測定したところ、10g/m2であった。SUS304試験片を切断および研磨しマーブル液でエッチングして切断面を光学顕微鏡で観察したところ、8〜18μmの不均一な厚さの窒化層が形成されていた(図3に倍率500倍の顕微鏡写真を示す)。ビッカース硬度計で上記試験片の表面硬度を5点測定したところHv=500〜1100と大きく変動し絶対値も実施例と比較して低い値を示した。The exhaust gas from the furnace was branched, and a part of the exhaust gas was absorbed in a 2% by mass aqueous caustic soda solution for HCN analysis. As a result of analysis of the HCN absorption liquid, it was confirmed that no HCN was detected and no HCN was present in the furnace atmosphere. The increase in weight of the SUS304 test piece before and after nitriding was measured and found to be 10 g / m 2 . When the SUS304 test piece was cut and polished, etched with a marble solution, and the cut surface was observed with an optical microscope, a non-uniform thickness of 8 to 18 μm was formed (FIG. 3 shows a microscope with a magnification of 500 times). Show the photo). When the surface hardness of the test piece was measured at 5 points using a Vickers hardness tester, it varied greatly as Hv = 500 to 1100, and the absolute value was also lower than that of the example.

本発明によれば、金属部材の表面に窒化層、浸炭層あるいは浸炭窒化層を形成させるガス窒化法、ガス浸炭法などの拡散浸透処理を困難ならしめている高合金鋼部材の表面不動態化皮膜を、ガス熱処理で通常に扱われているガス類を用い、被処理金属および/または金属製炉材表面の触媒作用を利用して、炉内においてHCNガスを生成させ、不動態化している高合金鋼部材の表面を活性化させることにより、従来、ハロゲン化物による活性化処理で問題であった炉内堆積物、炉内壁面の損耗、さらには排ガスの無害化処理などの弊害を伴わない、拡散浸透処理の前段処理として有用な金属部材表面の活性化処理法を提供することができる。   According to the present invention, the surface passivating film of a high alloy steel member in which diffusion permeation treatment such as gas nitriding method, gas carburizing method or the like for forming a nitrided layer, carburized layer or carbonitrided layer on the surface of a metal member is difficult The HCN gas is generated in the furnace using the gas normally treated in the gas heat treatment, and the catalytic action of the surface of the metal to be treated and / or the metal furnace material is used to passivate the gas. By activating the surface of the alloy steel member, conventionally, there are no harmful effects such as deposits in the furnace, wear on the wall surface of the furnace, and exhaust gas detoxification treatment, which has been a problem in the activation treatment with halides. It is possible to provide an activation treatment method for the surface of a metal member that is useful as a pre-treatment of the diffusion permeation treatment.

本発明において使用する処理炉の構造を示す図。The figure which shows the structure of the processing furnace used in this invention. 実施例1の試験片の切断面の顕微鏡写真Micrograph of cut surface of test piece of Example 1 比較例1の試験片の切断面の顕微鏡写真Micrograph of cut surface of test piece of Comparative Example 1

符号の説明Explanation of symbols

1:マッフル炉
2:外殻
3:ヒータ
4:内容器(レトルト)
5:ガス導入管
6:排気管
7:モータ
8:ファン
9:金属製の治具
10:ガス案内筒
11:陣傘
12:真空ポンプ
13:排ガス燃焼装置
14:炭素供給化合物ガスボンベ
15:アンモニアガスボンベ
16:窒素ガスボンベ
17:水素ガスボンベ
18:流量計
19:ガスの制御弁
1: Muffle furnace 2: Outer shell 3: Heater 4: Inner vessel (retort)
5: Gas introduction pipe 6: Exhaust pipe 7: Motor 8: Fan 9: Metal jig 10: Gas guide cylinder 11: Umbrella 12: Vacuum pump 13: Exhaust gas combustion device 14: Carbon supply compound gas cylinder 15: Ammonia gas cylinder 16: Nitrogen gas cylinder 17: Hydrogen gas cylinder 18: Flow meter 19: Gas control valve

Claims (5)

常温常圧で気体である炭化水素化合物とアンモニアとを必須成分とする混合気体を加熱炉内で300℃以上に加熱し、該加熱混合気体中で金属部材、金属製炉内壁あるいは金属製治具の触媒作用によりHCNを生成させ、生成したHCNを金属部材の表面の不動態化皮膜に作用させることを特徴とする金属部材表面の活性化方法。A mixed gas containing a hydrocarbon compound that is a gas at normal temperature and pressure and ammonia as essential components is heated to 300 ° C. or higher in a heating furnace, and in the heated mixed gas, a metal member, a metal furnace inner wall, or a metal jig A method for activating a surface of a metal member, characterized in that HCN is generated by the catalytic action of and the generated HCN is allowed to act on a passivation film on the surface of the metal member. 炭化水素化合物が、アセチレン、エチレン、プロパンおよびブタンから選択された一つ以上の化合物である請求項1に記載の金属部材表面の活性化方法。 Hydrocarbon compounds, acetylene, ethylene, method for activating the surface of the metal member according to claim 1 which is one or more compounds selected or propane and pigs down al. 金属製炉内壁あるいは金属製治具が、Fe、Ni、Co、Cu、Cr、Mo、Nb、V、TiおよびZrから選択された一つ以上の金属を含有する請求項1に記載の金属部材表面の活性化方法。  The metal member according to claim 1, wherein the metal furnace inner wall or the metal jig contains one or more metals selected from Fe, Ni, Co, Cu, Cr, Mo, Nb, V, Ti, and Zr. Surface activation method. 炉内において発生させるHCN濃度が、100mg/m3以上であり、炉内雰囲気ガスの露点が5℃以下である請求項1に記載の金属部材表面の活性化方法。2. The method for activating a metal member surface according to claim 1, wherein the HCN concentration generated in the furnace is 100 mg / m 3 or more and the dew point of the atmosphere gas in the furnace is 5 ° C. or less. 常温常圧で気体である炭化水素化合物とアンモニアとを必須成分とする混合気体を加熱炉内で加熱する温度が、300℃〜550℃である請求項1に記載の金属部材表面の活性化方法。2. The method for activating a surface of a metal member according to claim 1, wherein the temperature at which a mixed gas containing a hydrocarbon compound that is a gas at normal temperature and pressure and ammonia as essential components is heated in a heating furnace is 300 ° C. to 550 ° C. 3. .
JP2005517113A 2004-01-20 2005-01-19 Method for activating metal member surface Active JP4861703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005517113A JP4861703B2 (en) 2004-01-20 2005-01-19 Method for activating metal member surface

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004012328 2004-01-20
JP2004012328 2004-01-20
JP2005517113A JP4861703B2 (en) 2004-01-20 2005-01-19 Method for activating metal member surface
PCT/JP2005/000607 WO2005068679A1 (en) 2004-01-20 2005-01-19 Method for activating surface of metal member

Publications (2)

Publication Number Publication Date
JPWO2005068679A1 JPWO2005068679A1 (en) 2007-12-27
JP4861703B2 true JP4861703B2 (en) 2012-01-25

Family

ID=34792370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005517113A Active JP4861703B2 (en) 2004-01-20 2005-01-19 Method for activating metal member surface

Country Status (7)

Country Link
US (1) US20070204934A1 (en)
EP (1) EP1707646B1 (en)
JP (1) JP4861703B2 (en)
KR (1) KR100858598B1 (en)
CN (1) CN1910303B (en)
DE (1) DE602005015934D1 (en)
WO (1) WO2005068679A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022107753A1 (en) 2020-11-18 2022-05-27 パーカー熱処理工業株式会社 Method and apparatus for treating metallic member

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006233261A (en) * 2005-02-24 2006-09-07 Nippon Techno:Kk Gas nitriding method
KR100902169B1 (en) * 2007-07-24 2009-06-10 쳉-시엔 리우 Method for improvement of hardness of martensite type stainless surface
EP2278038A1 (en) 2009-07-20 2011-01-26 Danmarks Tekniske Universitet (DTU) A method of activating an article of passive ferrous or non-ferrous metal prior to carburizing, nitriding and/or nitrocarburizing
DK2462253T3 (en) 2009-08-07 2021-05-31 Swagelok Co COOLING AT LOW TEMPERATURE UNDER LOW VACUUM
US8961711B2 (en) 2010-05-24 2015-02-24 Air Products And Chemicals, Inc. Method and apparatus for nitriding metal articles
CN102168269A (en) * 2011-03-16 2011-08-31 广州有色金属研究院 Method for preparing accelerated carburizing plasma nitrocarburizing and titanium carbonitride composite membrane layer
KR101245564B1 (en) * 2011-05-06 2013-03-20 주식회사 삼락열처리 Gas Nitriding Heat Treatment of the Stainless steel, Heat resisting steel and High alloy steel
DK2804965T3 (en) 2012-01-20 2020-12-14 Swagelok Co Simultaneous flow of activating gas at low temperature carburization
TWI548778B (en) * 2014-02-11 2016-09-11 國立臺灣大學 Method for treating stainless steel surface and stainless steel treating system
JP6357042B2 (en) * 2014-07-18 2018-07-11 株式会社日本テクノ Gas soft nitriding method and gas soft nitriding apparatus
JP6516238B2 (en) * 2015-03-30 2019-05-22 日鉄ステンレス株式会社 Austenitic stainless steel and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51105938A (en) * 1975-02-28 1976-09-20 Fujikoshi Kk Ko chutetsuno teionshintanchitsukashorihoho
JPS5729574A (en) * 1980-05-02 1982-02-17 Boc Ltd Austenite cementation nitration for iron metals
JPH10219418A (en) * 1997-02-06 1998-08-18 Nippon Bell Parts Kk Method for nitriding high-chromium alloy steel with gaseous ammonia
JP2000178710A (en) * 1998-12-10 2000-06-27 Nippon Techno:Kk Method of carburizing and carbonitriding treatment

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1984411A (en) * 1933-06-08 1934-12-18 Du Pont Method of case hardening
US2095565A (en) * 1936-11-18 1937-10-12 Electro Alloys Company Carburizing box
DE851810C (en) * 1943-06-19 1952-10-09 Bergwerksverband Zur Verwertun Cementing of objects made of iron, steel and their alloys
US2404060A (en) * 1944-02-03 1946-07-16 Westinghouse Electric Corp High temperature furnace
US3281517A (en) * 1963-11-19 1966-10-25 Melpar Inc Vacuum furnace
CA933073A (en) * 1969-06-25 1973-09-04 H. Podgurski Harry Method for maintaining nitriding atmosphere
JPS52145344A (en) * 1976-05-31 1977-12-03 Daido Steel Co Ltd Method of preparing atmosphere gas for soft nitriding
US4145232A (en) * 1977-06-03 1979-03-20 Union Carbide Corporation Process for carburizing steel
US4175986A (en) * 1978-10-19 1979-11-27 Trw Inc. Inert carrier gas heat treating control process
JPH05202464A (en) * 1992-01-27 1993-08-10 Parker Netsushiyori Kogyo Kk Method for partially nitriding parts
KR100277156B1 (en) * 1995-03-29 2001-01-15 스기야마 미 찌오 Method and Equipment for Vacuum Carburization and Products of Carburization

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51105938A (en) * 1975-02-28 1976-09-20 Fujikoshi Kk Ko chutetsuno teionshintanchitsukashorihoho
JPS5729574A (en) * 1980-05-02 1982-02-17 Boc Ltd Austenite cementation nitration for iron metals
JPH10219418A (en) * 1997-02-06 1998-08-18 Nippon Bell Parts Kk Method for nitriding high-chromium alloy steel with gaseous ammonia
JP2000178710A (en) * 1998-12-10 2000-06-27 Nippon Techno:Kk Method of carburizing and carbonitriding treatment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022107753A1 (en) 2020-11-18 2022-05-27 パーカー熱処理工業株式会社 Method and apparatus for treating metallic member
KR20230088445A (en) 2020-11-18 2023-06-19 파커 네쓰쇼리 고교 가부시키카이샤 Metal member processing method and processing device

Also Published As

Publication number Publication date
EP1707646A1 (en) 2006-10-04
CN1910303A (en) 2007-02-07
WO2005068679A1 (en) 2005-07-28
CN1910303B (en) 2010-05-12
EP1707646B1 (en) 2009-08-12
KR100858598B1 (en) 2008-09-17
EP1707646A4 (en) 2008-09-03
JPWO2005068679A1 (en) 2007-12-27
US20070204934A1 (en) 2007-09-06
KR20060114368A (en) 2006-11-06
DE602005015934D1 (en) 2009-09-24

Similar Documents

Publication Publication Date Title
JP4861703B2 (en) Method for activating metal member surface
JP5826748B2 (en) Method of activating ferrous or non-ferrous metal passive products prior to carburizing, nitriding and / or carbonitriding
JP5132553B2 (en) Carburizing method in hydrocarbon gas
CN112575284B (en) Enhanced activation of self-passivating metals
JPH089766B2 (en) Steel nitriding method
CA2740709C (en) Method and apparatus for nitriding metal articles
WO2005075705A1 (en) Method for surface treatment of metal material
JP2000178710A (en) Method of carburizing and carbonitriding treatment
US6328819B1 (en) Method and use of an apparatus for the thermal treatment, in particular nitriding treatment, of metal workpieces
JP2021042398A (en) Nitrided steel member, and method and apparatus for manufacturing the same
JP6543213B2 (en) Surface hardening method and surface hardening apparatus
JP2005232518A (en) Surface hardening treatment method for engine valve
JP5758278B2 (en) Nitriding method
JP2005036279A (en) Surface hardening method for steel, and metallic product obtained thereby
JP2006233261A (en) Gas nitriding method
JPH10306364A (en) Gas nitrosulphurizing method and device
KR20200049304A (en) Low-Temperature Carburizing Method by Controlling Carbon Potential
JPH10219418A (en) Method for nitriding high-chromium alloy steel with gaseous ammonia
JP2001011630A (en) Formation of carbon thin film
US11492693B2 (en) Pre-treatment process of a surface of a metallic substrate
JP2023028533A (en) Nitrided steel member, and manufacturing method of nitrided steel member
JP6072530B2 (en) Soft nitriding method
KR20050009965A (en) Process for nitriding of mechanical steel component
JP2005200695A (en) Gas carburizing method
KR20200049306A (en) Low-Temperature Carburizing Method Using Native Oxide Removal Gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111107

R150 Certificate of patent or registration of utility model

Ref document number: 4861703

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250