KR20060113579A - Automatic coating system of automotive lamps reflector coating and protective layer - Google Patents

Automatic coating system of automotive lamps reflector coating and protective layer Download PDF

Info

Publication number
KR20060113579A
KR20060113579A KR1020060089210A KR20060089210A KR20060113579A KR 20060113579 A KR20060113579 A KR 20060113579A KR 1020060089210 A KR1020060089210 A KR 1020060089210A KR 20060089210 A KR20060089210 A KR 20060089210A KR 20060113579 A KR20060113579 A KR 20060113579A
Authority
KR
South Korea
Prior art keywords
vacuum
coating
film
deposition chamber
vacuum deposition
Prior art date
Application number
KR1020060089210A
Other languages
Korean (ko)
Other versions
KR100671474B1 (en
Inventor
이인우
Original Assignee
한국진공주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37651754&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR20060113579(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 한국진공주식회사 filed Critical 한국진공주식회사
Priority to KR1020060089210A priority Critical patent/KR100671474B1/en
Publication of KR20060113579A publication Critical patent/KR20060113579A/en
Application granted granted Critical
Publication of KR100671474B1 publication Critical patent/KR100671474B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/28Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • Physical Vapour Deposition (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

A device for automatically coating a reflecting film and a protecting film of a vehicle lamp is provided to save the time and man power by performing etching and successively coating the metal reflecting film and the protecting film in one vacuum deposition chamber. The device for automatically coating a reflecting film and a protecting film of a vehicle lamp executes a first step of reforming the surface by activating the surface of plastic lamp base materials by exposing the surface to low pressure plasma; a second step of depositing an aluminum reflecting film in the predetermined thickness at high speed by sputtering which is caused by sucking argon gas and applying high output and high voltage, and using a magnetron sputter cathode; and a third step of coating the surface of the reflecting film with a protecting film by adopting a plasma CVD method applying super high pressure by MF(Medium Frequency) power to generate plasma and mixing the argon gas and hexamethyldisiloxane gas. The automatic coating device performs the three steps in one vacuum deposition chamber(1) in order. In addition, the automatic coating device executes a fourth step of processing a waterproof film in a plasma CVD method by self-discharge by using dry air.

Description

자동차 램프의 반사막과 보호막 자동 코팅장치{Automatic coating system of automotive lamps reflector coating and Protective layer}Automatic coating system of automotive lamps reflector coating and protective layer

도 1a는 본 발명의 코팅장치 전체시스템을 나타낸 정면사시도.Figure 1a is a front perspective view showing the entire coating system of the present invention.

도 1b는 본 발명의 코팅장치 전체시스템을 나타낸 배면사시도.Figure 1b is a rear perspective view showing the entire coating system of the present invention.

도 2a는 본 발명의 코팅장치의 플라즈마 전처리 및 플라즈마 중합(Polymerzation)부 시스템을 나타낸 사시도.Figure 2a is a perspective view showing a plasma pretreatment and plasma polymerization (Polymerzation) unit system of the coating apparatus of the present invention.

도 2b는 도 2A의 A-A'선 확대 단면예시도.FIG. 2B is an enlarged cross-sectional view of a line AA ′ of FIG. 2A; FIG.

도 3은 본 발명의 쳄버 내부에서 금속반사막을 스퍼터링하는 상태를 나타낸 예시도.Figure 3 is an exemplary view showing a state of sputtering a metal reflective film in the chamber of the present invention.

도 4a는 본 발명의 진공증착쳄버에 대한 요부사시도.Figure 4a is a perspective view of the vacuum deposition chamber of the present invention.

도 4b는 도 4A의 횡단면예시도.4B is a cross-sectional view of FIG. 4A.

도 5는 본 발명의 주밸브 일체형 진공쳄버에 대해 일부를 절개한 상태를 나타낸 확대사시도. 5 is an enlarged perspective view showing a state in which a part is cut in the main valve-integrated vacuum chamber of the present invention.

도 6은 본 발명의 주밸브 일체형 진공쳄버와 2개의 로딩문짝에 대한 요부확대사시도.6 is an enlarged perspective view of main parts of the main valve-integrated vacuum chamber and two loading doors of the present invention;

도 7은 본 발명의 스퍼터링 캐소드에 대한 확대 사시도로서 일부를 절개한 것임.7 is an enlarged perspective view of the sputtering cathode of the present invention, a part of which is cut away.

도 8은 본 발명의 스퍼터링 캐소드 고효율 냉각방법에 대한 작동상태를 나타낸 확대 단면예시도.Figure 8 is an enlarged cross-sectional view showing an operating state for the sputtering cathode high efficiency cooling method of the present invention.

도 9는 본 발명의 주밸브 일체형 진공쳄버의 플라즈마 씨브이디(Plasma CVD)를 위한 각 구성품의 배치에 대한 일부절개상태의 사시도.9 is a perspective view of a partially cutaway view of the arrangement of each component for plasma CVD of the main valve-integrated vacuum chamber of the present invention.

도 10a는 본 발명의 초저온 냉각 트랩 배치에 대한 일부 절개사시도.10A is a partial cutaway perspective view of an cryogenic cold trap arrangement of the present invention.

도 10b는 본 발명의 16인치 진공증착챔버의 냉동트랩과 22인치 초저온냉동트랩, 그리고 고진공유확산펌프(5)등 각각의 진공배기성능을 유기적으로 나타낸 그래프. Figure 10b is a graph showing organically the exhaust performance of each of the vacuum trap of the 16-inch vacuum deposition chamber of the present invention, the 22-inch cryogenic freezing trap, and the high-definition shared diffusion pump (5).

도 11은 본 발명의 진공증착챔버와 건조공기저장탱크의 연결상태를 나타낸 사시도. 11 is a perspective view showing a connection state of the vacuum deposition chamber and the dry air storage tank of the present invention.

본 발명은 자동차 램프의 반사막과 보호막 자동 코팅장치에 관한 것이다. The present invention relates to a reflective film and a protective film automatic coating apparatus of an automobile lamp.

보다 상세하게는 자동차 램프의 반사율과 내염수성을 향상시키기 위해 플라스틱으로 사출성형된 램프 모재에 스퍼터링(Sputtering)및 플라즈마 씨브이디<Plasma CVD(CHemical Vapor Deposition)>증착기술을 이용하여 안정적으로 진공 코팅할 수 있게 하되, 하나의 진공증착 챔버안에서 알루미늄 금속박막의 밀착력을 증대시키도록 표면개질을 하는 제1단계의 전처리공정과, 적어도 20초내에 1100Å의 막의 두께로 고속 코팅하는 제2단계인 반사막코팅공정, 상기 반사막의 표면에 보호 막을 코팅하는 제3단계 보호막 코팅 공정 및 이 외에도 필요에 따라 방수막을 형성하는 제4단계 공정에 이르기까지 일련의 공정이 순차적으로 신속하게 이루어질 수 있게함으로서 생산성극대화 및 상품성극대화와 원가절감효과를 극대화시킬 수 있게 하기 위한 것이다. More specifically, to improve reflectance and salt water resistance of automobile lamps, a stable vacuum coating is applied to a lamp base material which is injection-molded by plastic using sputtering and plasma chemical vapor deposition (PCVD) deposition techniques. A first step pretreatment step of surface modification to increase the adhesion of the aluminum metal thin film in one vacuum deposition chamber, and a second step of high-speed coating to a film thickness of 1100 kPa within at least 20 seconds. In order to maximize productivity and commerciality, a series of processes can be performed in a sequential order from the process, the third step of coating the protective film on the surface of the reflective film, and the fourth step of forming the waterproof film as necessary. This is to maximize the maximization and cost reduction effect.

잘알려진 바와 같이 현대산업사회의 기술이 고도화 및 고정밀화 됨에 따라 제조방법이나 가공장치 또는 생산설비 등에 있어서도 생산성향상과 고품질을 유도하기 위한 다양한 노력들이 시도되고 있으며, 특히 자동차 산업에 있어서는 국가의 기간산업으로서 더욱 더 생산성과 품질의 중요성이 더해 지고 있는 실정이다.As is well known, as the technology of the modern industrial society is advanced and high precision, various efforts are being made to induce improvement in productivity and high quality in manufacturing methods, processing equipment or production facilities, especially in the automobile industry. As a result, the importance of productivity and quality is increasing.

따라서 본 발명은 이러한 상황을 깊이 인식함으로서 특히 사출 성형된 플라스틱 자동차램프에 알루미늄 반사막과 보호막을 코팅 형성함에 있어서 공정절감으로 인한 시간과 인력을 크게 절감하여 생산성과 품질을 극대화시키고, 제조원가는 더욱 더 절감하여 경쟁력을 높이려는 것이다. Therefore, the present invention deeply recognizes such a situation, particularly in forming an aluminum reflective film and a protective film on an injection-molded plastic automobile lamp, thereby greatly reducing time and manpower due to process reduction, maximizing productivity and quality, and further reducing manufacturing costs. To increase competitiveness.

한편, 자동차램프에 반사막과 보호막을 코팅하는 종래의 방법을 살펴보면,On the other hand, looking at the conventional method of coating the reflective film and the protective film on the automotive lamp,

먼저, 사출금형을 통하여 소정형태의 플라스틱 램프를 사출 성형(제1공정)하고, 성형된 램프 표면에 화학약품으로 된 접착제를 스프레이로 도포(제2공정)한 뒤, 상기 제품에 80~180℃의 열풍으로 40분간 가열 및 건조(제3공정)시킨다음, 이를 쳄버형태로 구성된 진공증착기에 투입한 상태에서 증착기 내부를 고진공화시켜 저항가열방식으로 알루미늄 반사막을 진공 코팅(제4공정)하였다. 이어서 상기 공정을 통하여 알미늄반사막이 코팅된 제품 표면에 내염수성을 높이기 위해 염수에 강한 화학약품을 스프레이방식으로 도포하여 보호막을 형성(제5공정)하고, 마지막으 로 상기 제품에 60-80℃의 열풍을 20분가량 송풍건조(제6공정)시킴으로서 완성하였던 것이다.First, injection molding (first step) of a plastic lamp of a predetermined type through an injection mold, and applying a chemical adhesive to the surface of the molded lamp with a spray (second step), and then to the product 80 ~ 180 ℃ After heating and drying (the third step) for 40 minutes by hot air of, it was vacuum-coated (the fourth step) the aluminum reflection film by resistance heating method by high vacuuming the inside of the evaporator while putting it in a vacuum evaporator configured as a chamber. Subsequently, in order to increase salt water resistance on the surface of the aluminum reflecting film coated with the above process, a chemical resistant to salt water is applied by spraying to form a protective film (the fifth step). The hot air was blown and dried for about 20 minutes (stage 6).

한편, 상기한 일련의 공정을 거치는데 따른 소요시간을 살펴보면, 제1공정의 램프사출시 20초, 제2공정의 접착제도포시 8초, 제3공정에서 40분, 제4공정에서 15분, 제5공정에서 8초, 제6공정에서 20분이 소요됨으로서 제1공정에서 6공정에 이르는 시간이 총 60분 58초로 많은 시간이 소요된다. On the other hand, looking at the time required to go through the series of processes described above, 20 seconds when the lamp injection of the first process, 8 seconds when applying the adhesive of the second process, 40 minutes in the third process, 15 minutes in the fourth process, 8 seconds in the fifth process and 20 minutes in the sixth process, the time from the first process to the sixth process is 60 minutes and 58 seconds in total.

따라서, 위의 공정에서 알 수 있는 바와 같이 무엇보다도 플라스틱으로 사출성형된 램프의 표면에 반사막과 보호막을 코팅 및 건조시키는데 걸리는 시간이 지나치게 과다 소요됨에 따라 생산성이 크게 뒤 떨어짐과 동시에 이를 공정별로 이동시켜가며 작업 및 관리하는데 필요한 인력 또한 과다 소요되고, 또 공정의 과다로 인한 시설투자비와 시설공간의 점유율이 매우 높은 등의 폐단도 따르게 된다.Therefore, as can be seen in the above process, as the time required for coating and drying the reflective film and the protective film on the surface of the plastic injection molded lamp is excessively excessive, productivity is greatly degraded and moved by the process. In addition, the manpower required for work and management is excessive, and due to the excessive process, the facility investment cost and the occupancy of the facility space are very high.

특히, 상기한 자동차 램프<헤드램프(Head Lamp), 리어램프(Rear Lamp), 포그램프(Fog Lamp) 등>는 대부분 유기고분자(플라스틱류로서 PC, BMC, PBT, PPC, ABS 등)재질로서, 종래의 방법에서는 플라스틱 램프 성형물에 전처리 및 보호막 코팅을 하고자 할 때 대기중에서 그대로 실시하도록 구성되어 있어 외부의 기온과 습도변화에 따라 제품의 코팅정도가 달라지기도 하여 코팅불량이 야기되는 등의 폐단도 따랐으며, 더불어 환경오염이 야기되는 폐단도 따를 수 밖에 없었다.In particular, the aforementioned automotive lamps (Head Lamp, Rear Lamp, Fog Lamp, etc.) are mostly organic polymers (PCs, BMC, PBT, PPC, ABS, etc.) as organic materials. In the conventional method, pre-treatment and protective film coating on the plastic lamp molding is performed in the air as it is, so that the degree of coating of the product may vary depending on the temperature and humidity of the exterior, resulting in poor coating. In addition, there were no choice but to follow the closure of environmental pollution.

다시 말하면, 상기한 종래의 방법에서는 챔버 안에서 하는 유일한 작업인 알루미늄 반사막을 코팅할 때 외에는 모두 대기중에서 스프레이방식으로 진행함에 따라 코팅 과정에서 대기중의 이물질이나 오염물질이 첨가되기도 하여 불량발생의 염 려가 크고, 또 화학약품을 취급하는 공정임에 따라 작업장의 공기오염이 심각하기 때문에 작업자의 건강을 항상 위협하게 되는 결점이 따를 수 밖에 없었으며, 더불어 코팅층이 견고하게 형성되지 못하여 상품성이 크게 떨어질 수 밖에 없는 등의 폐단도 따랐다는 것이다. In other words, in the conventional method described above, all of the aluminum coatings, which are the only operations performed in the chamber, are sprayed in the air, so that foreign matters or contaminants in the air may be added during the coating process. In addition, the process of handling chemicals has serious disadvantages that always threaten worker's health due to the serious air pollution in the workplace. In addition, the coating layer can not be formed firmly, and thus the product quality can be greatly reduced. There is no end, such as being alone.

본 발명은 전술한 종래의 제반문제점을 감안하여 발명한 것으로, 특히, 자동차용 램프에 전처리작업과 더불어 알루미늄반사막코팅 및 보호막을 코팅함에 있어서, 스퍼터링(Sputtering) 및 진공 플라즈마 CVD(CHemical Vapor Deposition)기술을 이용하여 보다 더 신속간편하면서도 안정적인 작업이 이루어지게 하고, 더불어 하나의 진공챔버에서 플라스틱 램프의 표면개질과, 알루미늄반사막코팅 및 보호막코팅 등 3가지 공정을 순차적이면서 연속적으로 수행할 수 있게 함으로서 제품생산에 따른 시간과 공정절감으로 인한 원가절감효과를 극대화시킴과 동시에 품질 극대화로 인한 상품성향상, 그리고 대기 등의 환경오염예방에 크게 일조하려는데 그 목적이 있는 것이다. The present invention has been made in view of the above-mentioned conventional problems, and in particular, in sputtering and vacuum plasma chemical vapor deposition (CVD) technology in coating an aluminum reflective film coating and a protective film together with a pretreatment work on an automobile lamp. The product can be produced more quickly and easily by using the product, and in addition, three processes such as surface modification of the plastic lamp, aluminum reflective film coating and protective film coating can be performed sequentially and continuously in one vacuum chamber. Its purpose is to maximize the cost-saving effect due to time and process savings, and to contribute to the improvement of product quality and prevention of environmental pollution such as air by maximizing quality.

본 발명은 플라스틱으로 사출 성형된 램프표면에 알미늄반사막코팅 및 보호막코팅을 함에 있어서, 하나의 챔버 안에서 제1단계로 플라스틱의 표면을 에칭(Etching)하고, 이어서 제2단계로 스퍼터 캐소드(Sputter Cathode)에 의한 고출력 고전압을 인가하여 알루미늄 금속 반사막을 초고속으로 코팅하며, 제3단계로는 상기 2단계에서 코팅된 알루미늄 금속 반사막 표면에 보호막을 코팅하는 등의 3가 지 공정이 단계적으로 이루어지게 하는 장치를 제공함에 그 특징이 있는 것이다.In the present invention, in the aluminum reflective film coating and the protective film coating on the lamp surface injection-molded with plastic, the surface of the plastic is etched in the first step in one chamber, and then the sputter cathode in the second step. By applying a high-output high voltage by the high-speed coating of the aluminum metal reflecting film, the third step is a device for three steps such as coating a protective film on the surface of the aluminum metal reflecting film coated in step 2 There is a feature in providing.

이하 자동차 램프의 반사막과 보호막을 코팅하는 본 발명의 장치에 대해 설명한다.Hereinafter, an apparatus of the present invention for coating a reflective film and a protective film of an automobile lamp will be described.

본 발명은 도1a ~ 도11에서 보는 바와 같이, 자동차 램프의 전처리, 반사막코팅과 보호막 코팅 및 친수막코팅을 위한 진공분위기를 형성하고, 하나의 반응용기내에서 모든 공정을 처리할 수 있게 하되 주밸브가 일체형으로 되게 구성된 직경이 720~920mm의 진공증착챔버(1)와, 상기 진공증착챔버(1)의 후미에 연결장착되며 내부의 고진공형성을 위한 고진공 배기용 진공펌프인 고진공 유확산펌프(5)(펌핑능력은 22inch로서 17500L/sec임), 상기 진공증착챔버(1)내의 고진공형성전단계의 중진공 영역에서 빠른 속도로서 진공배기하기 위한 진공펌프인 메커니컬부스타펌프(6)(총배기능력은 3240㎥/Hr.60Hz×2대=6,480㎥/Hr.60Hz임)와, 상기 진공증착챔버(1) 내의 초기진공배기펌프로서 대기압에서부터 중진공까지 배기하는 용도로 사용되는 유회전진공펌프(7)(총배기능력은 8,000L/min×2대=16,000L/min)과, 진공증착챔버(1) 내부 진공시 수분과 동작오일(Oil)이 가장 크게 나쁜 영향을 끼치게 되며, 진공형성후에 대기압으로 밴트(vent)시 공기속에 함유된 수분이 진공챔버내부로 급속히 유입되어 진공챔버 내부의 표면에 달라붙게 됨으로서 재진공형성시에 이 수분의 영향에 의해 고진공배기시간이 많이소요되게 되는데, 이를 방지하기 위한 방안으로 설치되는 건조공기저장탱크(8)와, 진공증착챔버(1) 내부에 투입장착되는 자동차 램프모재인 플라스틱 제품표면에는 각종 가스 및 다량의 수분이 함유되어 있게 되는데, 이러한 가스 및 수분은 진공증착챔버(1) 내부의 진공배기시간이 많이 소요되게 하는 결정적인 원인이 되므로 상기 가스 및 수분을 급속하게 흡착시켜 진공배기속도를 배가시킴으로서 생산성을 극대화시키기 위해 사용되는 초저온 냉동기(9)와, 직류글로우방전(Glow discharge)을 이용한 음극에 타겟을, 양극에 처리하고자 하는 제품을 배치하여 10-2Torr~10-3 Torr의 Ar가스분위기에서 전극간에 수KV의 직류전압을 인가하여 전극간에 발생한 Ar의 글로우방전중의 Ar+가 타겟주변의 음극강하부로 가속되어서 타겟표면에 충돌하여 타겟원자를 스펏터하게 되며, 따라서 이러한 글로우방전을 발생시키기 위하여 사용되는 직류전원공급기(DC Power Supply)(10)와, MF Power의 일정한 전압(207V±5%)을 공급하기 위한 자동전압조정기(11)와, 스퍼터용 캐소드를 냉각하기 위한 것으로서 냉각효율을 극대화하고 순수를 사용하여 절연을 향상시켜 글로우방전시 챔버내부의 아크발생을 억제하기 위해 사용되는 냉각기(12)와, 상기 진공증착챔버(1)와 가까운 쪽에 설치하여 터치스크린과 PLC에 의해 장비전체의 운전을 수동 또는 자동으로 운전하기 위한 전기제어장치인 전기제어콘트롤 판넬(13)과, 진공증착쳄버(1)와 메카니컬부스타펌프(6), 그리고 유회전진공펌프(7)를 통해 진공배기를 하거나 고진공배기시에는 연결부를 차단하는 밸브인 러핑밸브(14, Roughing Valve)와, 주밸브(101)하부와 고진공유확산펌프(5)의 상부사이에 설치되어 유확산펌프오일의 역류방지와 진공내의 수분을 급속응축시켜 고진공배기속도를 향상시키기 위해 사용되는 22인치 초저온 냉동트랩(15)과, 진공증착챔버(1)와 16인치 진공증착챔버의 초저온냉동트랩(17)을 연결 또는 차단하는 진공밸브로서 고진공배기시에만 오픈되어 진공증착챔버(1)내의 수분을 급속 응축시 켜 고진공배기속도를 향상시키기 위해 사용되는 게이트밸브(16)와, 진공증착챔버(1)내의 고진공 배기시에 수분을 급속응축시켜 고진공배기속도를 향상시키기 위해 사용되는 진공증착챔버초저온 냉동트랩(17)과, 진공증착챔버(1)의 내부 양측에 장착구성되며 ITC(in chamber top coating:하나의 반응챔버로 모든공정을 연속적으로 코팅작업을 한다는 의미임)공정중 반사막코팅이 원활하게 이루어지도록 하는 전처리공정과 알루미늄반사막표면에 보호막과 경화막의 중합(Plasma Polymerzation)처리를 위한 2개의 전극인 글로우 방전 플라즈마 캐소드(18)와, ITC공정중 반사막코팅이 원활하게 이루어지도록 하는 전처리공정과 알루미늄반사막표면에 보호막과 경화막의 중합(Plasma Polymerzation)처리를 위한 2개의 전극에 플라즈마 발생용 엠에프 파워(MF Power)로부터 공급된 전압을 증폭시켜주는 전압증폭유니트(19)와, ITC공정중 반사막코팅이 원활하게 이루어지도록 하는 전처리공정과 알루미늄반사막표면에 보호막과 경화막의 중합(Plasma Polymerzation)처리를 위한 전압증폭유니트인 플라즈마 발생용 엠에프 파워(MF Power)(20)와, ITC공정중 반사막코팅이 원활하게 이루어지도록 하는 전처리공정과 알루미늄반사막표면에 보호막과 경화막의 중합(Plasma Polymerzation)처리를 위한 헥사메틸다이실록산<Hexamethyldisiloxane(HMDSO)>가스의 정밀유량을 제어하는 HMDSO유량조절계(21)와, ITC공정중 반사막코팅이 원활하게 이루어지도록 하는 전처리공정과 알루미늄반사막표면에 보호막과 경화막의 중합(Plasma Polymerzation)처리를 위한 Ar가스의 정밀유량제어를 위한 Ar가스유량조절계(22)와, ITC공정중 반사막코팅이 원활하게 이루어지도록 하는 전처리공정과 알루미늄반사막표면에 보호막과 경화막의 중 합(Plasma Polymerzation)처리를 위한 N2O가스유량제어를 위한 N2O가스유량조절계(23)와, 진공증착챔버(1)의 양측면에 장착되며 플라스틱모재에 알루미늄 반사막을 형성하게 되는 2개의 스퍼터링캐소드(24)와, 글로우방전 플라즈마 캐소드에 고전압을 공급하며 진공증착챔버(1)와 대기와의 고기밀을 유지하는 2개의 고전압 고진공용 피드쓰로우(25)와, 건조공기탱크에서 준비된 건조공기를 진공증차챔버(1)로 도입, 차단하는 고진공밸브인 밴트밸브(26, Vent Valve)와 콤프레셔에서 생산된 일반공기에서 수분을 제습하여 건조공기탱크(8)로 저장하는 건조공기발생기(27)로 이루어진다.1A to 11, the present invention forms a vacuum atmosphere for pretreatment of a vehicle lamp, a reflective coating and a protective coating, and a hydrophilic coating, and can process all processes in one reaction vessel, but the main valve Vacuum deposition chamber (1) having a diameter of 720 to 920 mm and configured to be integrally connected to the rear of the vacuum deposition chamber (1), and a high vacuum diffusion pump (5), which is a vacuum pump for high vacuum exhaust for high vacuum formation therein. Mechanical booster pump (6) (total exhaust capacity is 3240m3), which is a vacuum pump for evacuating at a high speed in the medium vacuum region of the high vacuum formation stage in the vacuum deposition chamber (1). / Hr. 60 Hz x 2 units = 6,480 m 3 / Hr. 60 Hz), and a rotary vacuum pump 7 (total vacuum pump) used as an initial vacuum exhaust pump in the vacuum deposition chamber 1 for exhausting air from atmospheric pressure to medium vacuum. Exhaust capacity is 8,000 L / min × 2 units = 16,000 L / min) and moisture and operating oil in the vacuum deposition chamber (1) are most adversely affected, and air is vented to atmospheric pressure after vacuum formation. As moisture contained in the inside rapidly enters the vacuum chamber and sticks to the surface of the vacuum chamber, high vacuum exhaust time is required due to the influence of moisture during re-vacuum formation. The air storage tank 8 and the plastic product surface, which is the automobile lamp base material which is placed and mounted inside the vacuum deposition chamber 1, contain various gases and a large amount of water, and the gas and moisture are contained in the vacuum deposition chamber 1. It is used to maximize productivity by doubling the vacuum exhaust rate by rapidly adsorbing the gas and moisture because it is a decisive cause of the internal vacuum exhaust time. Cryogenic refrigerator (9), a direct current glow discharge (Glow discharge) a direct current of a target to be negative, in placing the product to be treated to the anode 10 -2 Torr ~ 10 -3 Torr in the Ar gas atmosphere between the electrodes using KV Ar + during the glow discharge of Ar generated between the electrodes by applying a voltage is accelerated to the negative drop portion around the target, colliding with the target surface to scatter the target atom, and thus a DC power supply used to generate such a glow discharge. (DC Power Supply) 10, automatic voltage regulator 11 for supplying a constant voltage (207V ± 5%) of MF Power, and for cooling the cathode for sputtering, maximizing cooling efficiency and using pure water Cooler 12 used to improve the insulation to suppress arc generation inside the chamber during glow discharge, and installed near the vacuum deposition chamber 1, the entire equipment by the touch screen and PLC Vacuum control through the electric control control panel (13), a vacuum deposition chamber (1), a mechanical booster pump (6), and a rotary vacuum pump (7). In the case of high vacuum exhaust, a roughing valve (14), which is a valve to block the connection part, is installed between the lower part of the main valve 101 and the upper part of the high vacuum shared diffusion pump (5) to prevent the backflow of the oil diffusion pump oil and the vacuum. Vacuum valve that connects or blocks the 22-inch cryogenic freezing trap 15 used to rapidly condense moisture and improve the high vacuum exhaust rate, and the vacuum deposition chamber 1 and the cryogenic freezing trap 17 of the 16-inch vacuum deposition chamber. As a result, the gate valve 16, which is open only at high vacuum exhaust and rapidly condenses water in the vacuum deposition chamber 1, is used to improve the high vacuum exhaust speed, and the water is rapidly exhausted at high vacuum exhaust in the vacuum deposition chamber 1. condensation The vacuum deposition chamber used for improving the high vacuum exhaust speed and the cryogenic freezing trap 17 and the inside of the vacuum deposition chamber 1 are mounted on both sides and ITC (in chamber top coating) Glow discharge plasma cathode (18), which is a two-electrode for the pre-treatment process to ensure the coating film coating during the process and the polymerization process of the protective film and the cured film on the surface of the aluminum reflective film during the process; Amplification of the voltage supplied from the MF Power for plasma generation to two electrodes for the pretreatment process to ensure the reflective film coating during the ITC process and the polymerization and polymerization of the protective film and the cured film on the surface of the aluminum reflective film. Voltage amplification unit (19), and pretreatment process and aluminum reflection for smooth reflection coating during ITC process MF Power (20), which is a voltage amplification unit for the polymerization of the protective film and the cured film on the surface of the film, and the pretreatment process and the aluminum reflective film to make the reflective film coating smooth during the ITC process HMDSO flow control system (21) to control the precise flow of hexamethyldisiloxane (HMDSO) gas for the polymerization of the protective film and the cured film on the surface, and the reflective film coating during the ITC process Pretreatment process and Ar gas flow rate control system (22) for precise flow control of Ar gas for the polymerization of protective film and cured film on the surface of aluminum reflecting film, and pretreatment process for smooth reflection film coating during ITC process. N 2 O gas flow rate control for the N 2 O gas flow rate control for processing the sum (Plasma Polymerzation) of the protective film and the cured film on the aluminum reflective film (23), two sputtering cathodes (24) mounted on both sides of the vacuum deposition chamber (1) and forming an aluminum reflective film on the plastic base material, and a vacuum deposition chamber (1) and supplying a high voltage to the glow discharge plasma cathode. Two high voltage high vacuum feed throws (25) to keep the air tight to the atmosphere, and a high vacuum valve (26, Vent Valve), which introduces and blocks the dry air prepared in the dry air tank to the vacuum increase chamber (1). ) And a dry air generator (27) for dehumidifying moisture in the general air produced by the compressor and storing it in the dry air tank (8).

상기 진공증착챔버(1)에는 좌우 두개의 진공증착문짝(3)(2)이 구비되며, 이들 문짝은 닫았을 때 내부밀폐효과가 매우 커서 매우 신속정확하게 내부진공이 이루어지도록 하는 작용을하는데, 상기 진공증착문짝(3)(2)은 표면이 원호상으로 볼록하게 형성되고 내측에는 상하단 지지대(41)(42) 사이에 시편투입용증착지그(4)를 장착하며, 진공증착문짝(3)(2)의 표면 소정위치에는 내부 투시로 작업상황을 확인할 수 있도록 투시창(31)을 형성하였다. 상기한 시편투입용 증착지그(4)는 자동차램프의 코팅을 위해 지그에 로딩(Loading)하는 부품으로서 이는 차종에 따라 형상과 모양이 다소 차이가 난다.The vacuum deposition chamber (1) is provided with two left and right vacuum deposition doors (3) (2), and these doors have a function of making the internal vacuum very quickly and accurately because the internal sealing effect is very large when the doors are closed. The vacuum deposition doors (3) and (2) are convexly formed on the surface thereof, and inside the upper and lower supports (41, 42), a deposition jig (4) for specimen insertion is mounted, and the vacuum deposition doors (3) ( At a predetermined position on the surface of 2), a see-through window 31 was formed so that the working situation could be confirmed by internal perspective. The specimen injection deposition jig (4) is a part (Loading) for loading the jig for coating of the automotive lamp, which is somewhat different in shape and shape depending on the model.

또, 상기한 진공증착챔버(1)에는 상부에 1차진공(Roughing Exhaust)배기용 포트(102)와 반응가스를 도입하기 위한 2개의 혼합가스도입용포트(103)가 장착되고, 진공층착챔버(1)의 하단에는 시편투입용증착지그를 회전시키기 위한 모터축(도 시하지 않음)이 연결설치되며, 후미에 주밸브(101)가 장착된다.In addition, the vacuum deposition chamber 1 is equipped with a primary exhausting exhaust port 102 and two mixed gas introduction ports 103 for introducing a reaction gas thereon, and a vacuum deposition chamber 1. At the lower end of (1), a motor shaft (not shown) for rotating the test sample deposition jig is installed and the main valve 101 is mounted at the rear.

상기 플라스틱모재에 알루미늄 반사막을 형성하게 되는 2개의 스퍼터링캐소드(24)는 도7 및 도8에서 보는 바와 같이 백플레이트(241)의 두께를 2~3mm로 얇게 형성하고, 냉각수(243)를 2~2.3kg/㎠의 압력으로 공급순환시킴에 따라 수압에 의해 백플레이트가 풍선처럼 휘어 부풀면서 알루미늄타겟(242)에 밀착되게 됨으로서 플라즈마에 의해 알루미늄 타겟(242)이 스퍼터링시 고열이 발생하더라도 매우 신속하면서도 안정적으로 냉각시켜줄 수 있게 되어 증착효율을 극대화시킬 수 있게 된다. As shown in FIGS. 7 and 8, the two sputtering cathodes 24 forming the aluminum reflective film on the plastic base material form a thin thickness of the back plate 241 to 2 to 3 mm, and the cooling water 243 to 2 to 3. As the supply plate circulates at a pressure of 2.3 kg / cm 2, the back plate bends and swells like a balloon and is in close contact with the aluminum target 242, even though a high temperature occurs when the aluminum target 242 is sputtered by plasma. It is possible to cool stably to maximize the deposition efficiency.

또, 본 발명에 있어서, 도10b의 도표에서 보는 바와 같이 16인치 진공증착챔버의 냉동트랩(17)은 수분을 처리하는 능력이 약 20,500L/sec이며, 22인치 초저온 냉동트랩(15)은 수분을 처리할 수 있는 능력이 약25,230L/sec이다. 또, 고진공 유확산펌프(5)는 배기능력이 17500L/sec(Air기준)인점에 비해 추가로 2개의 초저온 냉동트랩(15)에 의해 크라이오 펌핑(Cryo Pumping)능력이 45,000/L/sec(H2O기준)여서 진공배기능력이 획기적으로 향상되었다.In addition, in the present invention, as shown in the diagram of Fig. 10B, the freezing trap 17 of the 16-inch vacuum deposition chamber has a capacity of about 20,500 L / sec to process moisture, and the 22-inch cryogenic freezing trap 15 has moisture. The ability to handle is about 25,230 L / sec. In addition, the high vacuum oil diffusion pump 5 has an additional cryogenic pumping capacity of 45,000 / L / sec by two cryogenic refrigeration traps 15, compared to 17500 L / sec air standard. H 2 O standard), the vacuum exhaust capacity has been significantly improved.

한편, 진공에는 수분과 동작오일이 가장크게 나쁜 영향을 끼치게 되는데, 이는 진공형성후에 대기압으로 밴트(Vent)시에 공기 속에 함유된 수분이 진공챔버내로 급속히 유입이 되어 진공챔버내부의 표면에 달라붙어 재진공형성시에 이 수분의 영향으로 고진공배기시간이 많이 소요되게 된다. On the other hand, vacuum and moisture have the biggest adverse effect. This is because after the vacuum is formed, the moisture contained in the air at the time of the vent is rapidly introduced into the vacuum chamber and adheres to the surface inside the vacuum chamber. The effect of this moisture on revacuum formation leads to a high vacuum exhaust time.

특히, 위와 같은 현상은 자동차 부품생산에 필요한 양산장비에는 생산성에 악영향을 끼치게 되며 이러한 불합리한 사항을 본 발명에서는 도11에서보는 바와 같이 드라이에어유닛(27)을 통해 수분을 99%이상 제습시켜서 된 청정공기를 다른 공정 진행중에 드라이에어탱크(8)에 저장해 두었다가 진공증착챔버(1)의 밴트(Vent)시에 고압밸브(29)가 열리고 진공밸브(26)를 통해 진공증착챔버(1)로 공급되어 아래 그래프에서 보는 바와 같이 밴트(Vent)시간 단축은 물론 재진공배기시에 고진공배기시간이 획기적으로 단축되에 함으로서 생산성향상이 유도될 수 있도록 하였다.In particular, the above phenomenon will adversely affect the productivity of the mass production equipment required for the production of automotive parts. In the present invention, such unreasonable matters are cleaned by dehumidifying more than 99% of moisture through the dry air unit 27 as shown in FIG. The air is stored in the dry air tank 8 during another process and the high pressure valve 29 opens at the vent of the vacuum deposition chamber 1 and is supplied to the vacuum deposition chamber 1 through the vacuum valve 26. As shown in the graph below, not only short vent time but also high vacuum exhaust time during re-vacuum exhaust can be drastically shortened to improve productivity.

Figure 112006066548975-PAT00001
Figure 112006066548975-PAT00001

이와 같이 구성된 본 발명을 이용하여 자동차램프에 반사막 및 보호막을 형성하는 과정에 대해 설명하면 다음과 같다.Referring to the process of forming a reflective film and a protective film on a vehicle lamp using the present invention configured as described above are as follows.

먼저 본 발명의 장치를 이용하여 자동차 램프에 반사막과 보호막을 형성함에 있어서는 램프 종류에 따라 코팅공정을 달리하게 되는데, 자동차램프의 하우징(재질이 ABS, PC)과 리어베젤(Rear Vessel, 재질:PC), 포그램프(Fog Lamp, 재질:PC, ABS), 실내, 도어 등(재질:ABS)등은 다음의 A공정을 통해 코팅하고, 반사경(재질:BMC), 프론트베젤(재질:PC), 포그램프(재질:알루미늄 다이캐스팅) 등을 다음의 B공정을 이용하여 코팅한다.First, in forming a reflective film and a protective film on an automobile lamp using the apparatus of the present invention, the coating process is different depending on the type of lamp, the housing of the automobile lamp (ABS, PC) and the rear bezel (Material: PC) ), Pog Lamp (Material: PC, ABS), Indoor, Door, etc. (Material: ABS) are coated through the following A process, Reflector (Material: BMC), Front Bezel (Material: PC), A photogram (material: aluminum die casting) and the like are coated using the following B process.

A 공정에 대해 설명하면,When we talk about process A,

사출기를 통하여 플라스틱으로 된 램프를 사출 성형하는 단계로서 20초가 소요됨 → 상기 본 발명의 장치를 이용하여 3단계 또는 4단계 코팅작업을 하되 플라즈마 씨브이디(Plasma CVD)전처리 한 후 알루미늄반사막을 스퍼터링하고, 이어서 플라즈마 씨브이 보호막 코팅(필요에 따라 상기 보호막 코팅후 플라즈마 씨브이디 친수막 코팅을 함)하는 단계로서 4분34초(여름을 포함한 4계절 평균치임)가 소요됨 It takes 20 seconds as a step of injection molding a lamp made of plastic through an injection molding machine → The coating process is performed in three or four steps using the apparatus of the present invention, but after plasma CVD pretreatment, the aluminum reflective film is sputtered. Next, the plasma seed is coated with a protective film (if necessary, the plasma seeded hydrophilic film is coated), which takes 4 minutes and 34 seconds (an average of four seasons including summer).

B공정에 대해 설명하면,When we explain process B,

사출기를 통하여 플라스틱으로 된 램프를 사출성형하는 단계로서 20초가 소요됨 → 상기 램프의 알미늄반사막을 코팅하고자 하는 부분에 알미늄금속막과의 접착력을 높이기 위해 화학약품으로 된 접착제를 스프레이방식으로 도포하는 베이스 코팅단계로서 8초가 소요됨 → 열풍건조기를 이용하여 80~180℃의 열풍으로 건조하는 단계로서 40분이 소요됨 → 상기 본 발명의 장치를 이용하여 3단계 또는 4단계 코팅작업을 하되 플라즈마 씨브이디(Plasma CVD)전처리 한 후 알루미늄반사막을 스퍼터링하고, 이어서 플라즈마 씨브이 보호막 코팅(필요에 따라 상기 보호막 코팅후 플라즈마 씨브이디 친수막 코팅을 함)하는 단계로서 4분 40초 소요됨.It takes 20 seconds as a step of injection molding a lamp made of plastic through an injection molding machine. → Base coating for spraying an adhesive made of chemicals to the aluminum reflective film to increase the adhesion to the aluminum reflective film of the lamp. It takes 8 seconds as a step → It takes 40 minutes as a step of drying with hot air of 80 ~ 180 ℃ using a hot air dryer → Plasma CVD is performed in three or four steps using the apparatus of the present invention. After the pretreatment, sputtering of the aluminum reflecting film, followed by 4 minutes 40 seconds as a plasma seed protective coating (coating the plasma CD hydrophilic coating after the protective coating, if necessary).

따라서 종래의 방법에 의한 코팅시간과 대비하여 보면, 종래에는 사출에서 코팅완성까지 소요되는 시간이 물품의 구분없이 무려 60분 58초가 소요되었지만 본 발명의 장치를 이용하는 경우에는 A공정인 경우 31.4초가 소요되어 종래보다 무려 116배의 생산성이 향상되고, B공정인 경우 40분 40초가 소요되어 종래 대배 1.5배 의 생산성이 향상되었다. Therefore, in comparison with the coating time according to the conventional method, it takes about 60 minutes and 58 seconds without any classification of the article from the injection to the completion of the coating in the prior art, but it takes 31.4 seconds in the case of A process using the apparatus of the present invention As a result, productivity of 116 times is improved compared to the conventional one, and in the case of B process, 40 minutes and 40 seconds are required, so that the productivity of 1.5 times the conventional size is improved.

이하 본 발명을 보다 더 구체적으로 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail.

먼저 자동차 램프를 시료투입용지그(4)에 장착한뒤 진공증착챔버(1)에 닫아 밀폐시킨다.First, the vehicle lamp is mounted on the sample input jig 4 and then closed by closing the vacuum deposition chamber 1.

다음에는 전기제어콘트롤판넬(13)의 스타트스위치를 온(ON)하여 러핑밸브(14)가 열리면 로터리진공펌프(7)와 메카니컬 브스터펌프(6)에 의해 진공증착쳄버(1) 내의 진공도를 2×10-2Torr까지 자동으로 배기한다. 그 다음에 Ar가스를 자동유량조절계(MFC)(18)와 공급배관을 통해 170~230Sccm을 공급하고, 동시에 헥사메틸다이실록산<Hexamethyldisiloxane(HMDSO)>가스를 자동유량조절계(MFC)(21)와 공급배관을 통해 100~160Sccm을 공급하고, 동시에 N2O가스를 자동유량조절계(MFC)(23)와 공급배관을 통해 100~135Sccm을 공급한다. 혼합가스를 공급하면서 메커니컬브스타펌프(6)의 모터를 인버터로 제어하면서 진공도를 2×10-2Torr로 일정하게 유지하면서 플라즈마 발생용 엠에프 파워공급기(20)와 전압증폭유니트(19)를 통해 플라즈마 캐소드(18)에 주파수 40KHz, 전압 3600-4200V로 20-35초간 인가한다. 이때 플라즈마 캐소드(18)간의 전압을 인가하면 글로우방전 플라즈마상태가 되어 음극으로부터 양극긍로 향하여 전자가 튀어나간다. 평균 자유거리가 짧을 경우 전자는 별로 가속되지 않으면서 분자와 충돌하여 산란된다. 압력을 낮추면 전자의 평균자유거리가 길어지며 바로 분자의 이온화 포텐셜에 까지 가속된 전자가 분자에 충돌하게 되면 분자가 이온화됨과 동시에 전자가 방출된다. 방출된 전자는 또 다시 가속이 되어 다른 분자를 이온화한다.Next, when the roughing valve 14 is opened by turning the start switch of the electric control control panel 13 on, the vacuum degree in the vacuum deposition chamber 1 is reduced by the rotary vacuum pump 7 and the mechanical booster pump 6. Automatic exhaust to 2 × 10 -2 Torr. Ar gas is then supplied through an automatic flow control system (MFC) 18 and a supply pipe to supply 170 to 230 Sccm, and at the same time, hexamethyldisiloxane (HMDSO) gas and an automatic flow control system (MFC) 21 are supplied. 100 ~ 160Sccm is supplied through the supply pipe, and at the same time, N 2 O gas is supplied through the automatic flow control system (MFC) 23 and 100 ~ 135Sccm through the supply pipe. While supplying the mixed gas, while maintaining the vacuum level at 2 × 10 -2 Torr while controlling the motor of the mechanical star pump (6) with an inverter, the MFP power supply (20) and the voltage amplification unit (19) for plasma generation are The plasma cathode 18 is applied at a frequency of 40KHz and a voltage of 3600-4200V for 20-35 seconds. At this time, when a voltage between the plasma cathodes 18 is applied, a glow discharge plasma is generated and electrons are emitted from the cathode toward the anode positive. If the average free distance is short, the electrons are scattered due to collision with molecules without much acceleration. When the pressure is lowered, the average free distance of electrons is increased, and when electrons accelerated to the ionization potential of the molecule collide with the molecules, the molecules are ionized and electrons are released. The emitted electrons are accelerated again to ionize other molecules.

이러한 공정에 의해 다음과 같은 이상적인 데이터로서 표면에칭 및 접착력을 향상시키는 플라즈마 씨브이디(Plasma CVD) 증착법으로 가능케 하였다.This process enabled the plasma CVD deposition method to improve the surface etching and adhesion with the following ideal data.

Plastic 모재의 재질 Plastic base material ABSABS PCPC 접촉각 (°)Contact angle (°) 표면장력 (mN/m)Surface tension (mN / m) 밀착력 (X-Cut)Adhesion (X-Cut) 접촉각 (°)Contact angle (°) 표면장력 (mN/m)Surface tension (mN / m) 밀착력 (X-Cut)Adhesion (X-Cut) Plastic모재의 표면개질 전Before surface modification of plastic base material 68.468.4 42.542.5 NGNG 81.681.6 35.535.5 NGNG Ar Gas로 Plasma CVD 표면개질 후After surface modification of Plasma CVD with Ar Gas 3535 6262 OKOK 3232 6262 OKOK O2 Gas로 Plasma CVD 표면개질 후After surface modification of plasma CVD with O2 gas 1111 7171 OKOK 5.55.5 7171 OKOK

<박막의 밀착력은 코팅면의 1mm간격으로 Cross Cut한후 3M 610 Tape로 밀착시킨 후 강하게 잡아당겨 박막의 박리현상을 관찰함. 표면장력측정기:DSA100(KRUSS사)> <Adhesion of thin film is cross cut at 1mm interval of coating surface, and then adhered with 3M 610 Tape and pulled out strongly to observe peeling phenomenon of thin film. Surface Tension Meter: DSA100 (KRUSS)>

한편, 스퍼터링(Sputtering)은 도3에서 보는 바와 같이 고에너르기의 입자를 타겟(Target)에 조사할 때에 타겟 구성원자가 타겟표면으로부터 방출되어지는 현상을 말하는데, 이는 직류글로우방전을 이용한 기본적인 방법으로 음극에 타겟을, 양극에 기판(Substrate)을 배치한다. 10-2Torr - 10-3Torr의 Ar가스 분위기로 전극간에 600~800V의 직류전압을 인가하여 전극간에 발생한 Ar의 글로우방전중의 Ar+가 타겟주변의 음극강하부로 가속되어 타겟표면에 충돌하여 타겟의 원자를 스퍼터(Sputter)한다.On the other hand, sputtering (Sputtering) refers to the phenomenon that the target member is released from the target surface when irradiating the target (Target) particles of high energy, as shown in Figure 3, which is a basic method using a direct current glow discharge The substrate is placed on the anode at the target. In the Ar gas atmosphere of 10 -2 Torr-10 -3 Torr, the DC voltage of 600 ~ 800V is applied between the electrodes, so that Ar + during the glow discharge of Ar generated between the electrodes is accelerated to the cathode drop around the target and collides with the target surface. Sputter the atoms of the target.

특히 전극간의 전계에 대해서 직교하는 자계를 인가하여 마그네트론 방전에 의한 타겟주변은 다량의 이온을 만들어 증착속도를 높인다.In particular, by applying a magnetic field orthogonal to the electric field between the electrodes, a large amount of ions are generated around the target by the magnetron discharge, thereby increasing the deposition rate.

그리고 본 발명에 있어서 2개의 스퍼터링캐소드(24)는 도 7과 도 8에서 보는 바와 같은 구조로 되어 알루미늄타겟(241)이 120℃이하의 온도로 유지되도록 냉각성능이 극대화되게 함으로서 온도의 영향을 받지않게 되어 자동차 램프의 반사막 및 보호막을 코팅하는 공정에 있어서 획기적인 생산성을 이룰 수 있게 하였고, 특히 반사막을 코팅함에 있어서 아래도표에서 보는 바와 같이 제품의 가장깊은 곳을 기준으로 하여도 800Å이상을 성막하는데 스퍼터시간을 감압시간포함하여 30초에 가능하게 하였다.In the present invention, the two sputtering cathodes 24 have a structure as shown in FIGS. 7 and 8, so that the cooling performance is maximized so that the aluminum target 241 is maintained at a temperature of 120 ° C. or less, thereby not affected by temperature. This makes it possible to achieve remarkable productivity in the process of coating the reflective and protective films of automobile lamps. In particular, in the coating of the reflective film, as shown in the table below, the film is sputtered to form more than 800Å even at the deepest point of the product. The time was enabled in 30 seconds including the decompression time.

Figure 112006066548975-PAT00002
Figure 112006066548975-PAT00002

즉, 종래에는 타겟냉각용 백플레이트가 8-12mm로 두꺼워서 알루미늄 타겟 및 백플레이트가 완전한 평면도(0.001mm이하)로 가공되지 않고서는 접촉면적이 작아서 열전도가 나빠져 냉각의 효율이 크게 떨어지게 되고, 또, 폭이 4인치이고 길이가 54인치이며, 두께가 8-12mm인 알루미늄 또는 동판의 평면도를 0.001mm이하로 가공한다는 것은 현실적으로 불가능하며 따라서 종래의 캐소드는 적은 파워를 인가하면서 시간을 길게 할 수 밖에 없으므로 증착효율을 향상시키는 데는 한계가 따를 수 밖에 없었던 것이지만 도8에서 보는 바와 같이 본 발명에서는 백플레이트를 2-3mm로 얇게 형성한 상태에서 냉각수의 수압을 2-2.3Kg/㎠로 공급함으로서 수압에 의해 백플레이트가 풍선처럼 둥그렇게 부풀면서 알루미늄 타겟에 완전하게 밀착되게 되며, 따라서 아래 도표에서 보는 바와 같이 열교환효율이 뛰어나 냉각성능이 극대화된다는 것이다.That is, in the related art, the target cooling backplate is 8-12mm thick, so that the aluminum target and the backplate are not processed to a perfect plan view (0.001mm or less), so that the contact area is small and the heat conduction is poor, which greatly reduces the cooling efficiency. It is practically impossible to process a flat surface of aluminum or copper plate 4 inches wide and 54 inches long and 8-12 mm thick to less than 0.001 mm. Therefore, conventional cathodes have a long time while applying less power. In order to improve the deposition efficiency, there was no limit, but as shown in FIG. 8, in the present invention, by supplying the water pressure of the cooling water at 2-2.3Kg / cm2 in the state in which the back plate was formed as thin as 2-3mm, The backplate swells like a balloon and comes in tight contact with the aluminum target, so see the diagram below. As it is excellent in heat exchange efficiency, the cooling performance is maximized.

(냉각수를 2-2.3Kg/㎠로 공급하여주면, 전체의 면압에 의해 백플레이트가 풍선처럼 휘어지면서 타겟의 면형상 그대로 달라붙는 역할을 하여 밀착력이 뛰어나 열교환을 극대화시키는 작용으로 고속냉각을 실현하였다. 그러므로 아래 도표에서 보는 바와 같이 종래(B부분)와 비교하면 증착효율이 약 4배이상 향상됨)(If the cooling water is supplied at 2-2.3Kg / ㎠, the back plate bends like a balloon due to the total surface pressure and sticks to the surface of the target as it is, thereby providing high adhesion and maximizing heat exchange. Therefore, as shown in the chart below, the deposition efficiency is improved by about 4 times compared with the conventional (part B).

Figure 112006066548975-PAT00003
Figure 112006066548975-PAT00003

A는 본 발명의 캐소드로서 냉각효율을 감안하여 120KW로 연속인가한 경우 A is the cathode of the present invention when continuously applied at 120 KW in consideration of cooling efficiency

B는 종래의 캐소드로서 냉각효율을 감안하여 40KW로 연속인가한 경우를 나타낸 것이다.B shows a case where the conventional cathode is continuously applied at 40 KW in consideration of cooling efficiency.

따라서 플라스틱성형 램프표면에 알루미늄 반사막 코팅이 매우 안정적이고도 신속하게 이루어지게 되는 것이다.  Therefore, the aluminum reflective coating on the surface of the plastic molding lamp is very stable and quick.

그리고, 상기와 같이 코팅된 반사막은 반사율과 휘도가 뛰어나지만 상기 알루미늄은 공기속에 존재하는 수분이나 염분에 약하기 때문에 반사율과 휘도, 수명을 저하시키게 된다. 따라서 이를 보호하기 위하여 보호막을 코팅하여야 한다. In addition, the reflective film coated as described above is excellent in reflectance and brightness, but the aluminum is weak in moisture or salt present in the air, thereby decreasing the reflectance, brightness and lifetime. Therefore, a protective film should be coated to protect it.

보호막의 코팅에는 여러가지 방법이 있으나, 종래에는 알미늄 반사막의 진공코팅후에 대기중에서 UV도장 및 건조방식으로 보호막을 코팅하였으나, 이는 생산성이 떨어짐과 동시에 환경오염 및 불순물혼입 등으로 상품의 품질이 떨어지게 되어 본 발명에서는 진공증착챔버내에서 이루어지게 한다.Although there are various methods of coating the protective film, conventionally, after vacuum coating of the aluminum reflective film, the protective film was coated in the air by UV coating and drying method, but this decreased the productivity and the quality of the product due to the environmental pollution and the incorporation of impurities. In the invention it is made in a vacuum deposition chamber.

본 발명의 진공증착쳄버(1)내에서 알루미늄 반사막을 코팅한 뒤에는 도2b 및 도9에서보는 바와 같이 즉시 유량조절밸브(21,22,23)에 의해 불활성가스와 모노머가스를 동시에 주입하면서 메카니컬브스타펌프(6)와 인버터제어에 의해 진공도를 2×10-2Torr로 정확하게 유지시킨다. 이어서 플라즈마발생용 엠에프파워(20)에 의해 엠에프 파워(MF Power)를 인가(40KHz.600V)하고, 전압증폭유니트(19)에 의해 진공증착쳄버(1) 내부의 플라즈마 캐소드(18)에 3600V~4200V범위로 플라즈마를 형성시켜 CVD(Chemical Vapour Deposition)로서 보호막을 성막한다.After coating the aluminum reflecting film in the vacuum deposition chamber 1 of the present invention, as shown in FIGS. 2B and 9, the mechanical valve is immediately injected while inert gas and monomer gas are simultaneously injected by the flow control valves 21, 22, and 23. By the star pump 6 and the inverter control, the vacuum degree is accurately maintained at 2 x 10 -2 Torr. Subsequently, MF Power is applied (40KHz.600V) by the plasma generation MFC power 20, and the voltage amplification unit 19 is applied to the plasma cathode 18 inside the vacuum deposition chamber 1. Plasma is formed in the range of 3600V to 4200V to form a protective film as CVD (Chemical Vapor Deposition).

위와 같은 조건하에서 보호막(내화학성이 우수한 SiOx막)이 자동차램프에 (품질기준치는 300Å이상) 450Å을 성막하는데는 아래도표에서 보는 바와 같이 55초이내의 짧은 시간이 소요되었다. Under the above conditions, it took a short time of less than 55 seconds for the protective film (SiOx film with excellent chemical resistance) to form 450 Å (quality standard value over 300 치는) on the automotive lamp.

Figure 112006066548975-PAT00004
Figure 112006066548975-PAT00004

한편, 본발명의 진공증착쳄버(1)의 구성에 대해 다시한번 언급하면 도4a의 요부사시도에서 보는 바와 같이 수직원형 베치타잎으로 후미에 주밸브(101)가 일체로 되게 구성된 것이고, 양측면에는 스퍼터링 캐소드(24)와 플라즈마 캐소드(18)가 장착 구성되며, 정면 양측에는 좌우 번갈아가며 닫을 수 있도록 두 개의 진공증착문짝(2)(3)을 장착하되, 상기 각각의 진공증착문짝(2)(3)은 표면이 라운드 형으로 형성되고 내측에는 시편투입용증착지그(4)의 상하단 중심부가 지지되어 닫았을 때 진공증착챔버(1) 바닥에 장착된 모터(도시하지 않음)에 의해 회전되는 구조로 구성됨과 동시에 상기 시편투입용증착지그(4)가 진공증착챔버(1) 내부의 중앙에 위치하게 끔 형성되어 있다.On the other hand, once again referring to the configuration of the vacuum deposition chamber (1) of the present invention, as shown in the main portion of Fig. 4a, the vertical valve is formed of the main valve 101 in the rear integrally, the sputtering cathode on both sides 24 and a plasma cathode 18 are mounted, and two vacuum deposition doors 2 and 3 are mounted on both sides of the front side so as to be alternately closed left and right, and the vacuum deposition doors 2 and 3 respectively. The silver surface is formed in a round shape and rotated by a motor (not shown) mounted on the bottom of the vacuum deposition chamber 1 when the upper and lower centers of the sample deposition deposition jig 4 are supported and closed. At the same time, the specimen deposition jig 4 is formed so as to be located in the center of the vacuum deposition chamber 1.

또, 상기 두개의 진공증착문짝(2)(3)은 어느 한쪽이 진공증착챔버(1)에 닫친뒤 전처리 및 반사막코팅, 보호막코팅이 이루어지는 과정에서 다른 한쪽의 진공증착문짝은 대기상태로 되게 됨으로 이때 대기 상태인 진공증착문짝의 시편투입용증착지그(4)에 에 알미늄코팅 및 보호막을 형성하고자 하는 램프를 장착 대기시키면 된다. 따라서 두개의 진공증착챔버(1)는 번갈아가면서 항상 작업상태 및 작업대기상태를 유지할 수 있게 되며 대기시간 중에 코팅 및 보호막 작업이 이루어진 제품의 분리 및 새로운 제품의 장착이 이루어질 수 있게되어 시간손실을 예방할 수 있게 되므로 양산이 매우 용이하게 이루어지는 것이다. In addition, the two vacuum deposition doors (2) and (3) are closed in one of the vacuum deposition chamber (1), and the other vacuum deposition door in the process of the pre-treatment, reflecting film coating, protective film coating is to be in the standby state At this time, the lamp to be formed with aluminum coating and a protective film on the deposition jig for sample input of the vacuum deposition door in the standby state may be mounted. Therefore, the two vacuum deposition chambers (1) alternately maintain the working state and the working state at all times, and during the waiting time, the coating and the protective film work can be separated and the new product can be installed to prevent time loss. Since it can be mass-produced very easily.

본 발명을 이용하여 위 공정을 전체적으로 제어하는 순서를 정리하여 보면 표에서 보는 바와 같다.Using the present invention to summarize the order of controlling the above process as shown in the table.

* PC재질 기준* PC material standard

* 작업장의 조건 : 온도 25℃이하, 습도 50%이하, 봄 가을 및 겨울 기준.* Conditions in the workplace: Temperature 25 ℃ or below, Humidity 50% or below, Spring, Autumn and Winter.

*제품종류: 크기는 베절390L×170W×100H(mm), 24개 투입시* Product type: size is 390L × 170W × 100H (mm), when 24

순서order 공정명Process Name 공정의 주요내용Main contents of the process 시간time 1One 공정시작(Start)Process Start 자동모드로 스타트스위치 누름Press start switch in auto mode 2sec2sec 22 1차 진공배기 (Va. Pumping)Primary Vacuum Exhaust (Va. Pumping) Rotary 및 Booster Pump에 의한 진공배기 Atm에서 2×10-2Torr까지 배기Vacuum exhaust by Rotary and Booster Pump Exhaust up to 2 × 10 -2 Torr from Atm 30sec30sec 33 전처리 (Glow Discharge)Glow Discharge Ar+HMDSO+N2O가스를 MFC를 통해 공급한다. 진공도를 2×10-2Torr로 유지시킨다. MF Power를 인가하여 표면개질처리한다.Ar + HMDSO + N2O gas is supplied via MFC. The degree of vacuum is maintained at 2 × 10 −2 Torr. Surface modification treatment is applied by applying MF Power. 35sec35sec 44 고진공배기 (Fine Pumping)Fine Pumping 유확산고진공펌프와 챔버 초저온 Cryo Coil에 의한 5×10-5Torr까지 쾌속배기Rapid exhaust to 5 × 10 -5 Torr by diffusion diffusion high vacuum pump and chamber cryogenic Cryo Coil 35sec35sec 55 알미늄증착 (AL Sputtering)Aluminum Sputtering Ar가스를 MFC를 통해 공급하면서 진공도를 5×10-3Torr로 유지시킨다. 두개의 캐소드에 두개의 Power로서 DC 120KW를 인가하여 증착한다.The vacuum is maintained at 5 x 10 -3 Torr while Ar gas is supplied through the MFC. DC 120KW is applied as two powers to two cathodes and deposited. 30sec30sec 66 보호막코팅(Plasma Polymerzation)Plasma Polymerzation Ar+HMDSO+N2O가스를 MFC를 통해 공급한다. 진공도를 2×10-2Torr로 유지시킨다. MF Power를 인간하여 Plasma CVD로서 코팅Ar + HMDSO + N 2 O gas is supplied via MFC. The degree of vacuum is maintained at 2 × 10 −2 Torr. Human MF Power is coated as Plasma CVD 60sec60sec 77 경화막코팅 (Post Treatment)Curing Film Coating (Post Treatment) Ar+N2O가스를 MFC를 통해 공급한다. 진공도를 2×10-2Torr로 유지시킨다. MF Power를 인간하여 Plasma CVD로서 코팅Ar + N 2 O gas is supplied via MFC. The degree of vacuum is maintained at 2 × 10 −2 Torr. Human MF Power is coated as Plasma CVD 20sec20sec 88 진공해제(Vent)Vacuum release (Vent) 신속한 진공해제와 챔버 오염을 줄이기 위해 별도의 압력용기에 Dry Air를 매사이클마다 준비하여 건조한 공기를 급속으로 공급한다.Dry air is prepared every cycle to supply dry air rapidly in order to quickly release vacuum and reduce chamber contamination. 3sec3sec 99 시료투입, 취출 (Load & Unload)Sample input, take out (Load & Unload) 좌우 문짝을 번갈아가면서 작업된 제품을 취출하고, 다음 작업할 겻을 미리 준비하여 투입한다. 제품의 투입, 취출은 공정진행시간에 준비한다.Take out the product by alternating the left and right doors, and prepare and insert the next work. Input and take out of the product should be prepared at the time of processing. 3sec3sec 1공정처리시간1 process time 218sec(3분38초)218 sec (3:38 sec)

본 발명은 위와 같은 공정에 따라 자동차 램프 표면에 금속반사막을 견고하게 코팅하기 위한 표면개질과 금속반사막 코팅 및 보호막 코팅(이후에도 방수막 코팅을 더 할 수도 있음)이 하나의 진공증착챔버(1)안에서 모두 이루어지게 되는 것이다. According to the above process, the surface modification and metal reflective coating and the protective coating (which may further be added to the waterproof coating) for coating the metal reflective film on the surface of the automobile lamp in accordance with the above process in one vacuum deposition chamber 1 All will be done.

상술한 바와 같이 본 발명은 하나의 진공증착챔버(1) 내에서 에칭, 금속반사막, 보호막(이외에도 방수막을 더 형성할 수도 있음)을 순차적으로 매우 신속간편하게 코팅할 수 있게 하는 장치를 제공함으로서 시간과 인력절감효과가 극대화되 고, 더불어 상품성이 극대화됨은 물론 양산 또한 용이하여 원가절감효과가 극대화되며, 특히 환경오염예방에 크게 기여하는 등의 특징이 따르게 되는 매우 유용한 발명인 것이다.As described above, the present invention provides a device that enables the rapid and easy coating of an etching, a metal reflective film, and a protective film (which may further form a waterproof film) in one vacuum deposition chamber 1 in a very quick and easy manner. It is a very useful invention that maximizes the cost savings effect, maximizes the merchandise, and facilitates mass production, thus maximizing the cost savings effect, especially contributing to the prevention of environmental pollution.

Claims (6)

자동차 램프의 전처리, 반사막코팅과 보호막 코팅 및 친수막코팅을 위한 진공분위기를 형성하며, 주밸브(101)가 일체형으로 되게 구성된 진공증착챔버(1);와, A vacuum deposition chamber (1) configured to form a vacuum atmosphere for pretreatment of an automobile lamp, a reflective coating and a protective coating, and a hydrophilic coating, and the main valve 101 is integrally formed; 상기 진공증착챔버(1)의 후미에 연결장착되며 내부의 고진공형성을 위한 고진공 배기용 진공펌프인 고진공 유확산펌프(5); A high vacuum diffusion pump 5 connected to the rear of the vacuum deposition chamber 1 and being a high vacuum exhaust vacuum pump for forming a high vacuum therein; 상기 진공증착챔버(1)내의 고진공형성 전단계의 중진공 영역에서 빠른 속도로서 진공배기하기 위한 진공펌프인 메커니컬부스타펌프(6);와, A mechanical booster pump (6), which is a vacuum pump for evacuating at a high speed in the middle vacuum region before the high vacuum formation stage in the vacuum deposition chamber (1); 상기 진공증착챔버(1) 내의 초기진공배기펌프로서 대기압에서부터 중진공까지 배기하는 용도로 사용되는 유회전진공펌프(7);A flow rotary vacuum pump (7) used as an initial vacuum exhaust pump in the vacuum deposition chamber (1) for exhausting air from atmospheric pressure to medium vacuum; 진공증착챔버(1) 내부에 투입 장착되는 자동차 램프모재인 플라스틱 제품표면에는 각종 가스 및 다량의 수분이 함유되어 있게 되는데, 이러한 가스 및 수분은 진공증착챔버(1) 내부의 진공배기시간이 많이 소요되게 하는 결정적인 원인이 되므로 상기 가스 및 수분을 급속하게 흡착시켜 진공배기속도를 배가시킴으로서 생산성을 극대화시키기 위해 사용되는 초저온 냉동기(9);와, The plastic product surface, which is the automobile lamp base material which is put and installed inside the vacuum deposition chamber 1, contains various gases and a large amount of moisture, and this gas and moisture require a lot of vacuum exhaust time inside the vacuum deposition chamber 1. Ultra low temperature freezer (9) is used to maximize the productivity by doubling the vacuum exhaust speed by rapidly adsorbing the gas and moisture to be a decisive cause to make; And, 직류 글로우방전(Glow discharge)을 이용한 음극에 타겟을, 양극에 처리하고자 하는 제품(Subrate)을 배치하여 10-2Torr~10-3 Torr의 Ar가스분위기에서 전극간에 수KV의 직류전압을 인가하여 전극간에 발생한 Ar의 글로우방전중의 Ar+가 타겟주변의 음극강하부로 가속되어서 타겟표면에 충돌하여 타겟원자를 스펏터하게 되며, 따 라서 이러한 글로우방전을 발생시키기 위하여 사용되는 직류전원공급기(DC Power Uupply)(10);와, The target is placed on the cathode using DC glow discharge, and the product (Subrate) to be treated is placed on the anode, and a DC voltage of several KV is applied between the electrodes in an Ar gas atmosphere of 10 -2 Torr to 10 -3 Torr. Ar + during the Glow discharge of Ar generated between the electrodes accelerates to the cathode drop around the target and collides with the target surface to scatter the target atom. Therefore, a DC power supply used to generate such a glow discharge is used. (10); and, MF Power의 일정한 전압(207V±5%)을 공급하기 위한 자동전압조정기(11);와, Automatic voltage regulator 11 for supplying a constant voltage (207V ± 5%) of MF Power; And, 진공증착챔버(1) 내부에 장착구성되는 스퍼터링 캐소드(24)를 냉각하기 위한 것으로서 냉각효율을 극대화하고 순수를 사용하여 절연을 향상시켜 글로우방전시 챔버내부의 아크발생을 억제하기 위해 사용되는 냉각기(12);와, The cooler used to cool the sputtering cathode 24 mounted inside the vacuum deposition chamber 1 to maximize the cooling efficiency and to improve insulation by using pure water to suppress arcing in the chamber during glow discharge. 12); 상기 진공증착챔버(1)와 가까운 쪽에 설치하여 터치스크린과 PLC에 의해 장비전체의 운전을 수동 또는 자동으로 운전하기 위한 전기제어장치인 전기제어콘트롤 판넬(13);과, An electric control control panel 13 installed near the vacuum deposition chamber 1, which is an electric control device for manually or automatically operating the entire apparatus by a touch screen and a PLC; 진공증착쳄버(1)와 메카니컬부스타펌프(6), 그리고 유회전진공펌프(7)를 통해 진공배기를 하거나 고진공배기시에는 연결부를 차단하는 밸브인 러핑밸브(14, Roughing Valve);와, Roughing valve (14, Roughing Valve) which is a valve for disconnecting the vacuum in the exhaust or high vacuum exhaust through the vacuum deposition chamber (1), mechanical booster pump (6), and flow vacuum pump (7); 주밸브(101)하부와 고진공유확산펌프(5)의 상부사이에 설치되어 유확산펌프오일의 역류방지와 진공내의 수분을 급속응축시켜 고진공배기속도를 향상시키기 위해 사용되는 22인치의 초저온 냉동트랩(15);과, A 22-inch cryogenic refrigeration trap installed between the lower part of the main valve 101 and the upper part of the high vacuum sharing diffusion pump 5 is used to prevent the backflow of oil diffusion pump oil and to rapidly condense moisture in the vacuum to improve the high vacuum exhaust speed. 15); and, 진공증착챔버(1)와 진공증착챔버초저온 냉동트랩(17)을 연결 또는 차단하는 진공밸브로서 고진공배기시에만 오픈되어 진공증착챔버(1)내의 수분을 급속 응축시켜 고진공배기속도를 향상시키기 위해 사용되는 게이트밸브(16);와, It is a vacuum valve that connects or blocks the vacuum deposition chamber 1 and the vacuum deposition chamber cryogenic trap 17, and is opened only during high vacuum exhaust to rapidly condense moisture in the vacuum deposition chamber 1 to improve high vacuum exhaust velocity. Gate valve 16; 진공증착챔버(1)내의 고진공 배기시에 수분을 급속응축시켜 고진공배기속도를 향상시키기 위해 사용되는 16인치 진공증착챔버초저온 냉동트랩(17);과, 16-inch vacuum deposition chamber ultra low temperature refrigeration trap (17) used to rapidly condense moisture during high vacuum exhaust in the vacuum deposition chamber (1); and ITC(in chamber top coating)공정중 반사막코팅이 원활하게 이루어지도록 하는 전처리공정과 알루미늄반사막표면에 보호막과 경화막의 중합(Plasma Polymerzation)처리를 위한 2개의 전극에 플라즈마 발생용 엠에프 파워(MF Power)로부터 공급된 전압을 증폭시켜주는 전압증폭유니트(19);와, Pretreatment process for smooth reflection film coating during ITC (in chamber top coating) process and plasma electrode for plasma polymerizing treatment of protective film and cured film on aluminum reflective film surface. A voltage amplification unit 19 for amplifying a voltage supplied from the; ITC공정중 반사막코팅이 원활하게 이루어지도록 하는 전처리공정과 알루미늄반사막표면에 보호막과 경화막의 중합(Plasma Polymerzation)처리를 위한 전압증폭유니트인 플라즈마 발생용 엠에프 파워(MF Power)(20);와, Pre-treatment process to facilitate the coating of the reflective film during the ITC process and MF Power 20 for plasma generation, which is a voltage amplification unit for the polymerization of the protective film and the cured film on the surface of the aluminum reflective film. ITC공정중 반사막코팅이 원활하게 이루어지도록 하는 전처리공정과 알루미늄반사막표면에 보호막과 경화막의 중합(Plasma Polymerzation)처리를 위한 헥사메틸다이실록산<Hexamethyldisiloxane(HMDSO)>가스의 정밀유량을 제어하는 헥사메틸다이실록산 유량조절계(21);와, Hexamethyldisiloxane (HMDSO) to control the flow rate of hexamethyldisiloxane (HMDSO) for pretreatment to ensure smooth coating of the ITC process and for the polymerization of the protective film and the cured film on the surface of the aluminum reflecting film. Siloxane flow regulator 21; and, ITC공정중 반사막코팅이 원활하게 이루어지도록 하는 전처리공정과 알루미늄반사막표면에 보호막과 경화막의 중합(Plasma Polymerzation)처리를 위한 Ar가스의 정밀유량제어를 위한 Ar가스유량조절계(22);와, Ar gas flow rate control system 22 for pre-treatment process for smooth coating of reflective film during ITC process, and precise flow control of Ar gas for the processing of Plasma Polymerzation of protective film and cured film on the surface of aluminum reflecting film; ITC공정중 반사막코팅이 원활하게 이루어지도록 하는 전처리공정과 알루미늄반사막표면에 보호막과 경화막의 중합(Plasma Polymerzation)처리를 위한 N2O가스유량제어를 위한 N2O가스유량조절계(23);와,N 2 O gas flow control system (23) for the N 2 O gas flow rate control for the pre-treatment process to ensure the reflective film coating during the ITC process and the plasma polymerzation treatment of the protective film and the cured film on the surface of the aluminum reflective film; 글로우방전 플라즈마 캐소드에 고전압을 공급하며 진공증착챔버(1)와 대기와의 고기밀을 유지하는 2개의 고전압 고진공용 피드쓰로우(25);와, Two high voltage high vacuum feed throws 25 for supplying a high voltage to the glow discharge plasma cathode and maintaining a high airtight between the vacuum deposition chamber 1 and the atmosphere; 건조공기탱크에서 준비된 건조공기를 진공증차챔버(1)로 도입, 차단하는 고진공밸브인 밴트밸브(26, Vent Valve);와, Vent valve 26, which is a high vacuum valve for introducing and blocking the dry air prepared in the dry air tank into the vacuum increase chamber 1; 콤프레셔에서 생산된 일반공기에서 수분을 제습하여 건조공기탱크(8)로 저장하는 건조공기발생기(27)로 이루어짐을 특징으로 하는 자동차 램프의 반사막과 보호막 자동 코팅장치.Reflective film and protective film automatic coating device for a car lamp, characterized in that made of a dry air generator (27) for dehumidifying moisture in the general air produced in the compressor to dry air tank (8). 제1항에 있어서,The method of claim 1, 진공증착챔버(1)의 내부 양측에 ITC(in chamber top coating)공정중 반사막코팅이 원활하게 이루어지도록 하는 전처리공정과 알루미늄반사막표면에 보호막과 경화막의 중합(Plasma Polymerzation)처리를 위한 2개의 전극인 글로우 방전 플라즈마 캐소드(18)를 장착하고, 상기 플라즈마 캐소드(18)와 방향을 달리 하여 진공증착챔버(1)의 내부 양측면 소정위치에 플라스틱모재에 알루미늄 반사막을 형성하게 되는 2개의 스퍼터링캐소드(24)를 장착구성함을 특징으로 하는 자동차 램프의 반사막과 보호막 자동 코팅장치.It is a pretreatment process for smooth reflection film coating during both ITC (in chamber top coating) process inside the vacuum deposition chamber 1 and two electrodes for the polymerization of the protective film and the plastic film on the surface of the aluminum reflective film. Two sputtering cathodes 24 equipped with a glow discharge plasma cathode 18 to form an aluminum reflective film on a plastic base material at predetermined positions on both sides of the vacuum deposition chamber 1 in a direction different from the plasma cathode 18. Reflective film and protective film automatic coating device of a car lamp, characterized in that the mounting configuration. 제2항에 있어서,The method of claim 2, 플라스틱으로 사출 성형된 통상의 자동차램프를, Ordinary automobile lamp injection molded from plastic, 하나의 진공증착챔버(1) 안에서 제1단계로 플라스틱의 표면을 에칭(Etching)하고, Etching the surface of the plastic in the first step in one vacuum deposition chamber 1, 제2단계로 스퍼터링 캐소드(Sputtering Cathode)(24)에 의한 고출력 고전압 을 인가하여 알루미늄 금속 반사막을 초고속으로 코팅하며, In the second step, by applying a high output high voltage by the sputtering cathode (24), the aluminum metal reflective film is coated at a very high speed, 제3단계로는 상기 2단계에서 코팅된 알루미늄 금속 반사막 표면에 보호막을 코팅하는 등의 3가지 공정이 단계적으로 신속하게 이루어지게 함을 특징으로 하는 자동차 램프의 반사막과 보호막 자동 코팅장치.In the third step, the three-step process such as coating a protective film on the surface of the aluminum metal reflective film coated in the second step is carried out in a quick step by step, the automatic coating film and protective film of the automotive lamp. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2, 진공증착챔버(1) 입구 좌우측에 표면이 원호상으로 볼록하게 형성되고 내측에는 상하단 지지대(41)(42) 사이에 시편투입용증착지그(4)가 장착되며, 진공증착문짝(3)(2)의 표면 소정위치에 투시창(31)을 형성하여 두개의 진공증착문짝(3)과(2)를 번갈아가며 사용과 대기상태가 되도록 함을 특징으로 하는 자동차 램프의 반사막과 보호막 자동 코팅장치.On the right and left sides of the vacuum deposition chamber (1) inlet, the surface is formed convexly convex, and the deposition jig (4) for specimen insertion is mounted between the upper and lower supports (41, 42) inside, and the vacuum deposition door (3) (2). Reflective film and protective film automatic coating device for a car lamp, characterized in that to form a viewing window (31) at a predetermined position of the surface to alternate between the two vacuum deposition doors (3) and (2). 제2항에 있어서,The method of claim 2, 상기 플라스틱모재에 알루미늄 반사막을 형성하게 되는 스퍼터링캐소드(24)는 백플레이트(241)의 두께를 2~3mm로 얇게 형성하고, 냉각수(243)를 2~2.3kg/㎠의 압력으로 공급순환시킴에 따라 수압에 의해 백플레이트가 풍선처럼 휘어 부풀면서 알루미늄타겟(242)의 이면에 밀착되게 됨으로서 플라즈마에 의해 알루미늄 타겟(242)이 스퍼터링시 고열이 발생하더라도 매우 신속하면서도 안정적으로 냉각시켜줄 수 있게 함을 특징으로 하는 자동차 램프의 반사막과 보호막 자동 코팅장치.Sputtering cathode 24 to form an aluminum reflective film on the plastic base material to form a thin thickness of the back plate 241 to 2 ~ 3mm, and to circulate the supply of cooling water 243 at a pressure of 2 ~ 2.3kg / ㎠ Accordingly, the back plate bends and swells like a balloon while being in close contact with the back surface of the aluminum target 242, thereby allowing the aluminum target 242 to be cooled very quickly and stably even when high heat occurs during sputtering by plasma. Reflector and protective film automatic coating device for automobile lamps. 제1항에 있어서, The method of claim 1, 진공증착챔버(1)에서 고진공상태에서 반사막 및 보호막을 코팅작업을 한 뒤 대기압으로 밴트(vent)시 공기속에 함유된 수분이 진공챔버내부로 급속히 유입되어 진공챔버 내부의 표면에 달라붙게 됨으로서 재진공형성시에 이 수분의 영향에 의해 고진공배기시간이 많이소요되는 현상을 방지하기 위해 건조공기저장탱크(8)를 연결설치하고 이를 밴트밸브(26)를 거쳐 주밸브(101)에 연결구성함을 특징으로 하는 자동차 램프의 반사막과 보호막 자동 코팅장치.In the vacuum deposition chamber (1) after coating the reflective film and the protective film in a high vacuum state, when vented to atmospheric pressure (moisture) contained in the air rapidly flows into the inside of the vacuum chamber is stuck to the surface inside the vacuum chamber to re-vacuum In order to prevent the phenomenon that high vacuum exhaust time is required by the influence of moisture at the time of formation, the dry air storage tank 8 is connected and installed, and it is connected to the main valve 101 via the vane valve 26. Reflective film and protective film automatic coating device of automobile lamp.
KR1020060089210A 2006-09-14 2006-09-14 Automatic coating system of automotive lamps reflector coating and Protective layer KR100671474B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060089210A KR100671474B1 (en) 2006-09-14 2006-09-14 Automatic coating system of automotive lamps reflector coating and Protective layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060089210A KR100671474B1 (en) 2006-09-14 2006-09-14 Automatic coating system of automotive lamps reflector coating and Protective layer

Publications (2)

Publication Number Publication Date
KR20060113579A true KR20060113579A (en) 2006-11-02
KR100671474B1 KR100671474B1 (en) 2007-01-19

Family

ID=37651754

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060089210A KR100671474B1 (en) 2006-09-14 2006-09-14 Automatic coating system of automotive lamps reflector coating and Protective layer

Country Status (1)

Country Link
KR (1) KR100671474B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100932694B1 (en) * 2009-03-24 2009-12-21 한국진공주식회사 Device and method for coating multi-layer thin film
CN111286705A (en) * 2018-12-06 2020-06-16 北京华业阳光新能源有限公司 Double-chamber three-station multi-target co-sputtering magnetron sputtering coating equipment
CN113502461A (en) * 2021-07-29 2021-10-15 合肥科晶材料技术有限公司 System and method for preparing thin film material used by combining ALD (atomic layer deposition) and CVD (chemical vapor deposition)
KR102327316B1 (en) * 2021-10-14 2021-11-17 에이치앤케이(주) Surface vacuum deposition method of reflector for air conditioner sterilization with improved UV-ultraviolet reflectance and vacuum deposition device therefor
CN114134468A (en) * 2021-12-03 2022-03-04 海珀(滁州)材料科技有限公司 Machining process for preventing point discharge during vacuum sputtering

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101076715B1 (en) * 2009-03-16 2011-10-26 제이와이테크놀로지(주) Apparatus for treating surface of product using plasma
KR101170332B1 (en) 2012-02-28 2012-08-01 인터테크 주식회사 Apparatus for plasma coating equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4851095A (en) * 1988-02-08 1989-07-25 Optical Coating Laboratory, Inc. Magnetron sputtering apparatus and process
KR200183869Y1 (en) * 1999-12-31 2000-06-01 이금영 Apparatus for automatic coating of screening using plasma
KR100375131B1 (en) * 2000-12-29 2003-03-10 한독진공 주식회사 A vacuum coating apparatus for coating a metallic film on a plastic material and a coating method thereof
JP2003253428A (en) * 2002-03-07 2003-09-10 Sanyo Shinku Kogyo Kk Method and system for film deposition onto resin substrate
KR20050000612A (en) * 2003-06-24 2005-01-06 김철원 A vacuum evaporation coating apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100932694B1 (en) * 2009-03-24 2009-12-21 한국진공주식회사 Device and method for coating multi-layer thin film
CN111286705A (en) * 2018-12-06 2020-06-16 北京华业阳光新能源有限公司 Double-chamber three-station multi-target co-sputtering magnetron sputtering coating equipment
CN111286705B (en) * 2018-12-06 2024-05-03 北京华业阳光新能源有限公司 Double-chamber three-station multi-target co-sputtering magnetron sputtering coating equipment
CN113502461A (en) * 2021-07-29 2021-10-15 合肥科晶材料技术有限公司 System and method for preparing thin film material used by combining ALD (atomic layer deposition) and CVD (chemical vapor deposition)
KR102327316B1 (en) * 2021-10-14 2021-11-17 에이치앤케이(주) Surface vacuum deposition method of reflector for air conditioner sterilization with improved UV-ultraviolet reflectance and vacuum deposition device therefor
CN114134468A (en) * 2021-12-03 2022-03-04 海珀(滁州)材料科技有限公司 Machining process for preventing point discharge during vacuum sputtering

Also Published As

Publication number Publication date
KR100671474B1 (en) 2007-01-19

Similar Documents

Publication Publication Date Title
KR100671474B1 (en) Automatic coating system of automotive lamps reflector coating and Protective layer
US7884032B2 (en) Thin film deposition
JP6458118B2 (en) Reactive sputter deposition of dielectric films.
EP0859070B1 (en) Coating of inside of vacuum chambers
CN1386105A (en) Dual degas/cool loadlock cluster tool
TWI470111B (en) Filming apparatus and filming method
CN105200381A (en) Anode field assisted magnetron sputtering coating apparatus
US6258218B1 (en) Method and apparatus for vacuum coating plastic parts
KR101442912B1 (en) Vacuum film forming method and vacuum film forming apparatus
US20040121086A1 (en) Thin film depositing method and apparatus
JP3773320B2 (en) Film forming apparatus and film forming method
US20030111342A1 (en) Sputter coating apparatus
CN114086143A (en) Substrate coating process
JPS63145771A (en) Sputtering target
JP4137611B2 (en) Method for forming laminated film
WO2005007728A1 (en) Continuous surface-treating apparatus for three-dimensional shape of polymer and continuous surface-treating method thereof
CN114672783B (en) Continuous vacuum coating system, functional unit and operation method thereof
KR100583475B1 (en) Vacuum plasma sputtering apparatus
KR20150030366A (en) Method for depositing coating film for improving wear reistance and weatherproof of uv rays of polycarbonate and the polycarbonate having deposit coating film by the method
KR100384449B1 (en) Manufacturing method of Al films having good adhesion
Grünwald et al. Integration of plasma pre-treatment, metallization, and plasma polymerization for improved aluminium mirror quality in large-scale car lighting production
KR20030016546A (en) In-line sputtering system
JPH0598424A (en) Method for coating plastic workpiece with metal layer
KR20150051250A (en) method of manufacturing multilayer thin film and electronic product
KR100672248B1 (en) Continuous metal thin layer depositing apparatus for three-dimensional shape of polymer and continuous metal thin layer depositing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
O035 Opposition [patent]: request for opposition
O132 Decision on opposition [patent]
O074 Maintenance of registration after opposition [patent]: final registration of opposition
J121 Written withdrawal of request for trial
J204 Request for invalidation trial [patent]
J301 Trial decision

Free format text: TRIAL NUMBER: 2012100000108; TRIAL DECISION FOR INVALIDATION REQUESTED 20120111

Effective date: 20121031

Free format text: TRIAL DECISION FOR INVALIDATION REQUESTED 20120111

Effective date: 20121031

J206 Request for trial to confirm the scope of a patent right
J204 Request for invalidation trial [patent]
J121 Written withdrawal of request for trial
J204 Request for invalidation trial [patent]
J206 Request for trial to confirm the scope of a patent right
J301 Trial decision

Free format text: TRIAL NUMBER: 2013100001381; TRIAL DECISION FOR CONFIRMATION OF THE SCOPE OF RIGHT_DEFENSIVE REQUESTED 20130527

Effective date: 20140331

J2X1 Appeal (before the patent court)

Free format text: TRIAL NUMBER: 2014200003095; CONFIRMATION OF THE SCOPE OF RIGHT_DEFENSIVE

Free format text: CONFIRMATION OF THE SCOPE OF RIGHT_DEFENSIVE

J121 Written withdrawal of request for trial
J121 Written withdrawal of request for trial
J302 Written judgement (patent court)

Free format text: JUDGMENT (PATENT COURT) FOR CONFIRMATION OF THE SCOPE OF RIGHT_DEFENSIVE REQUESTED 20140429

Effective date: 20141205

Free format text: TRIAL NUMBER: 2014200003095; JUDGMENT (PATENT COURT) FOR CONFIRMATION OF THE SCOPE OF RIGHT_DEFENSIVE REQUESTED 20140429

Effective date: 20141205

FPAY Annual fee payment

Payment date: 20150108

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160108

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170105

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180103

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20190107

Year of fee payment: 13