KR20060094734A - Cao added magnesium and magnesium alloys and their manufacturing method thereof - Google Patents

Cao added magnesium and magnesium alloys and their manufacturing method thereof Download PDF

Info

Publication number
KR20060094734A
KR20060094734A KR1020050016143A KR20050016143A KR20060094734A KR 20060094734 A KR20060094734 A KR 20060094734A KR 1020050016143 A KR1020050016143 A KR 1020050016143A KR 20050016143 A KR20050016143 A KR 20050016143A KR 20060094734 A KR20060094734 A KR 20060094734A
Authority
KR
South Korea
Prior art keywords
magnesium
calcium oxide
magnesium alloy
cao
alloy
Prior art date
Application number
KR1020050016143A
Other languages
Korean (ko)
Other versions
KR100681539B1 (en
Inventor
김세광
김영직
이진규
윤영옥
조형호
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR1020050016143A priority Critical patent/KR100681539B1/en
Publication of KR20060094734A publication Critical patent/KR20060094734A/en
Application granted granted Critical
Publication of KR100681539B1 publication Critical patent/KR100681539B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

본 발명은 산화칼슘(CaO)이 첨가된 마그네슘(Mg) 합금 및 그의 제조방법에 관한 것으로서, 보다 상세하게는 마그네슘 또는 마그네슘 합금에 산화칼슘(CaO)을 첨가하여 발화온도(Ignition Temperature)가 크게 향상되어 난연성 특성을 지니고, 마그네슘 또는 마그네슘 합금의 용해시 사용되는 SF6 등의 보호가스 사용을 극단적으로 줄이는 친환경적인 동시에, 산화칼슘의 입자 강화 효과에 의하여 마그네슘 복합재로서 기계적 특성의 향상을 도모하며, 더욱이 우수한 내산화성과 우수한 크립(Creep) 특성으로 고온 특성이 향상된, 즉, 난연성, 내산화성, 고온특성, 친환경성, 우수한 기계적 특성을 지닌 마그네슘 합금과 그 제조방법에 관한 것이다.The present invention relates to a magnesium (Mg) alloy to which calcium oxide (CaO) is added and to a method of manufacturing the same, and more particularly, to increase the ignition temperature by adding calcium oxide (CaO) to magnesium or magnesium alloy. It is environmentally friendly, has extremely flame-retardant properties, dramatically reduces the use of protective gases such as SF 6 used for dissolving magnesium or magnesium alloys, and improves mechanical properties as magnesium composites by the particle strengthening effect of calcium oxide. The present invention relates to a magnesium alloy having a high temperature property, that is, flame retardancy, oxidation resistance, high temperature property, environmental friendliness, and excellent mechanical properties due to excellent oxidation resistance and excellent creep properties, and a manufacturing method thereof.

본 발명에 따른 마그네슘 합금은 순수 마그네슘 또는 모든 마그네슘 합금에 0.0001 내지 30 중량%의 산화칼슘(CaO)이 함유된 마그네슘 합금으로, 발화온도, 기계적 특성, 내산화성 및 그리고 고온 크리프 특성을 크게 높인 것이다. The magnesium alloy according to the present invention is a magnesium alloy containing 0.0001 to 30% by weight of calcium oxide (CaO) in pure magnesium or all magnesium alloys, and greatly increases the ignition temperature, mechanical properties, oxidation resistance, and high temperature creep properties.

마그네슘, 마그네슘 합금, 산화칼슘(CaO), 난연성, 고온 크리프(Creep), 내산화성, 친환경성, 복합재료 Magnesium, Magnesium Alloy, Calcium Oxide (CaO), Flame Retardant, High Temperature Creep, Oxidation Resistance, Eco-Friendly, Composite Materials

Description

산화칼슘이 첨가된 마그네슘 합금 및 그의 제조방법{CaO Added Magnesium and Magnesium Alloys and their Manufacturing Method Thereof}CaO Added Magnesium and Magnesium Alloys and their Manufacturing Method Thereof}

도 1은 본 발명에 따른 마그네슘 합금의 제조방법을 나타내는 블럭도;1 is a block diagram showing a method of manufacturing a magnesium alloy according to the present invention;

도 2는 본 발명의 일실시예에 따른 산화칼슘이 첨가된 다이캐스팅용 AZ91D 마그네슘 합금의 상온에서의 경도 및 고온에서의 경도를 나타내는 그래프; 및2 is a graph showing the hardness at room temperature and the hardness at high temperature of the die casting AZ91D magnesium alloy to which calcium oxide is added according to an embodiment of the present invention; And

도 3은 본 발명의 일실시예에 따른 산화칼슘이 첨가된 다이캐스팅용 AZ91D 마그네슘 합금의 대기 분위기와 질소 분위기에서의 발화온도를 나타내는 그래프이다.Figure 3 is a graph showing the ignition temperature in the atmosphere and nitrogen atmosphere of the die casting AZ91D magnesium alloy with calcium oxide added according to an embodiment of the present invention.

본 발명은 산화칼슘(CaO)이 첨가된 마그네슘(Mg) 합금 및 그의 제조방법에 관한 것으로서, 보다 상세하게는 마그네슘 또는 마그네슘 합금에 산화칼슘(CaO)을 첨가하여 발화온도(Ignition Temperature)가 크게 향상되어 난연성 특성을 지니고, 마그네슘 또는 마그네슘 합금의 용해시 사용되는 SF6 등의 보호가스 사용을 극단적으로 줄이는 친환경적인 동시에, 산화칼슘의 입자 강화 효과에 의하여 마그네슘 복합재로서 기계적 특성의 향상을 도모하며, 더욱이 우수한 내산화성과 우수한 크립 (Creep) 특성으로 고온 특성이 향상된, 즉, 난연성, 내산화성, 고온특성, 친환경성, 우수한 기계적 특성을 지닌 마그네슘 합금과 그 제조방법에 관한 것이다.The present invention relates to a magnesium (Mg) alloy to which calcium oxide (CaO) is added and to a method of manufacturing the same, and more particularly, to increase the ignition temperature by adding calcium oxide (CaO) to magnesium or magnesium alloy. It is environmentally friendly, has extremely flame-retardant properties, dramatically reduces the use of protective gases such as SF6 used in the dissolution of magnesium or magnesium alloys, and improves mechanical properties as magnesium composites due to the particle strengthening effect of calcium oxide. The present invention relates to a magnesium alloy having improved high temperature characteristics due to oxidation resistance and excellent creep properties, that is, flame retardancy, oxidation resistance, high temperature characteristics, environmental friendliness, and excellent mechanical properties.

상기 마그네슘 및 마그네슘 합금(이하 마그네슘 합금)을 제조하기 위한 과정에서의 마그네슘 합금의 용탕은 쉽게 발화되는 특성을 가지고 있다.The molten magnesium alloy in the process for producing the magnesium and magnesium alloy (hereinafter referred to as magnesium alloy) has the property of easily ignited.

따라서, 이러한 마그네슘 합금 용탕의 발화를 방지하는 방법으로 용제(Flux)의 사용과 보호가스의 사용이 제안되고 있다.Therefore, the use of a flux (Flux) and the use of a protective gas has been proposed as a method of preventing the ignition of such magnesium alloy molten metal.

상기 용제(Flux)는 용탕과 산소와의 반응차단으로 조업 중 발화를 방지하는 역할을 하는 것으로, 용제의 조성은 MgCl2, KCl 및 기타 금속염화물의 혼합물이며, 경우에 따라서는 소량의 CaF2 와 MgO를 포함하기도 한다.The solvent (Flux) serves to prevent ignition during operation by blocking the reaction between the molten metal and oxygen, the composition of the solvent is a mixture of MgCl 2 , KCl and other metal chlorides, and in some cases a small amount of CaF 2 and It may also contain MgO.

상기 보호가스는 용탕 표면 산화막의 치밀화 및 특성 변화등에 의하여 노출 용탕면적을 최소화함으로써 용탕을 보호하는 역할을 하며, 보호가스 종류로는 SO2, CO2, 비활성기체, SF6, HFC-134a, Novec™612 및 이들의 혼합 가스등을 들 수 있다.The protective gas serves to protect the molten metal by minimizing the exposed molten metal surface by densification of the molten metal oxide film and the change of properties. The protective gas types include SO 2 , CO 2 , inert gas, SF 6 , HFC-134a, and Novec. ™ 612 and mixtures thereof.

그러나, 상술한 용제의 사용은 마그네슘 용탕과 용제와의 반응에 의해 용탕 일부가 손실될 뿐만 아니라, 주조 과정에서 반응 생성물이 유입되어 최종 제품의 기계적 특성과 내식 특성을 떨어뜨린다.However, the use of the solvent described above not only causes a loss of a part of the melt due to the reaction between the molten magnesium and the solvent, but also causes the reaction product to flow in the casting process, thereby degrading the mechanical and corrosion resistance properties of the final product.

또한, 보호가스로 이용되는 SO2 가스는 인체에 유해하며, 철제 장비를 부식시켜 장비의 수명을 단축시키는 문제점을 안고 있어 사용에 제한이 되고 있으며, 특히, SF6 가스는 FWP(Global Warming Potential)가 23,900로 온실가스로 분류되고 있는 가스 중 가장 그 효과가 큰 가스이다.In addition, SO 2 gas used as a protective gas is harmful to the human body, has a problem of reducing the life of the equipment by corroding the steel equipment, has been limited to use, in particular, SF 6 gas is a global warming potential (FWP) Is the most effective of the gases classified as greenhouse gases at 23,900.

또한, 대기 중에서 분해되지 않고 남아 있는 기간으로 볼 때 이산화탄소 및 프레온 가스등이 약 100년으로 추정되는 반면, SF6 가스는 3,200년으로 극히 오랜기간 분해되지 않고 대기 중에 잔존하기 때문에 연간 방출되는 양이 작더라도 오랜 기간 누적되면 그 파장이 엄청난 가스이다.In addition, while carbon dioxide and freon gas are estimated to be about 100 years in terms of their remaining periods without being decomposed in the atmosphere, SF 6 gas is 3,200 years. Even if it accumulates for a long time, its wavelength is a huge gas.

따라서, 지구온난화를 억제할 수 있는 마그네슘 용탕 보호방법으로는 첨가원소를 이용하여 마그네슘 용탕 자체의 산화를 근본적으로 억제하는 기술을 개발하는 것이며, 이를 통하여 보호가스의 사용을 극단적으로 줄이는 동시어 합금 자체의 난연성을 도모하여 공정 및 사용중의 발화를 억제하는 것이 요구된다.Therefore, the magnesium molten metal protection method that can suppress global warming is to develop a technology that fundamentally suppresses the oxidation of magnesium molten metal by using additional elements, thereby simultaneously reducing the use of protective gas. It is desired to achieve flame retardancy and to suppress ignition during the process and use.

보통, 마그네슘에 첨가원소인 칼슘(Ca)등을 첨가하게 되면 고온에서도 마그네슘 용탕의 산화 및 발화가 억제되는 것으로 알려져 있다.In general, when calcium (Ca) and the like are added to magnesium, it is known that oxidation and ignition of the molten magnesium are suppressed even at high temperatures.

그러나, 베릴륨 또는 칼슘이 첨가된 마그네슘 합금은 첨가소재의 가격이 비싸고, 첨가 소재를 대기 중에서 다루기가 쉽지 않으며, 기계적 성질과 내식성에서 기존합금보다 특성이 떨어지는 문제점을 가지고 있다.However, magnesium alloy with beryllium or calcium added is expensive, the added material is not easy to handle the air in the air, the mechanical properties and corrosion resistance has a problem inferior to conventional alloys.

한편, 기존의 마그네슘 복합재료는 SiC 및 Al2O3 등의 강화상으로 용탕단조 및 용탕교반법의 공정을 통하여 제조되었다.On the other hand, the existing magnesium composite material was produced through the process of forging and stirring the molten metal in the reinforcement phase, such as SiC and Al2O3.

금속기 복합재료는 단일 재료에 비해 비강도, 비강성 그리고 내마모성이 우수하고 열팽창 계수가 낮은 특성을 지니고 있으며, 특히 입자 강화 금속기 복합재료는 강화상이 세라믹 입자이기 때문에 재료의 등방성, 제조단가, 재활용성 등에 있어서 섬유나 휘스커 강화 복합재료보다 우위에 있다.Metal-based composites have better specific strength, specific stiffness and wear resistance than single materials, and have a lower coefficient of thermal expansion. Particularly, the reinforced metal-based composites are ceramic particles, so the isotropy, manufacturing cost, and recyclability It is superior to fiber or whisker reinforced composites.

산화칼슘이 첨가된 마그네슘 합금은 산화칼슘의 입자성에 의하여 복합재료로서의 기계적 특성을 향상 또한 도모할 수 있다.The magnesium alloy to which calcium oxide was added can also improve the mechanical properties as a composite material by the particle | grains of calcium oxide.

따라서, 본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로, 산화칼슘(CaO)을 마그네슘 및 마그네슘 합금에 첨가하여 합금의 난연성을 도모하고 및 보호가스의 사용을 억제하는 친환경적 용해기술을 확보하는 동시에 합금의 기계적 특성, 내산화성 및 고온 크리프(Creep) 특성을 향상시킨 마그네슘 합금 및 그의 제조방법을 제공하는데 그 목적이 있다.Therefore, the present invention has been made to solve the above problems, by adding calcium oxide (CaO) to magnesium and magnesium alloys to promote the flame retardancy of the alloy and to secure an environmentally friendly dissolution technology to suppress the use of protective gases At the same time, an object of the present invention is to provide a magnesium alloy and a method of manufacturing the alloy which improves the mechanical properties, oxidation resistance and high temperature creep properties of the alloy.

상기와 같은 목적을 달성하기 위한 본 발명에 의한 산화칼슘(CaO)이 포함된 마그네슘 합금은, 순수 마그네슘 또는 모든 마그네슘 합금에 0.0001 내지 30 중량%의 산화칼슘(CaO)이 함유된 것을 특징으로 한다. Magnesium alloy containing calcium oxide (CaO) according to the present invention for achieving the above object is characterized in that the pure magnesium or all magnesium alloy contains 0.0001 to 30% by weight of calcium oxide (CaO).

또한, 산화칼슘(CaO)이 첨가된 마그네슘 합금의 제조방법은, 주조공정에 의해 순수 마그네슘 또는 모든 마그네슘 합금에 산화칼슘이 첨가된 마그네슘 합금을 제조함에 있어서, 상기 순수 마그네슘 또는 모든 마그네슘 합금을 도가니에 장입하여 보호가스 분위기에서 600 내지 800℃의 온도로 용해하는 제 1단계(100)와; 상기 제 1단계(100)후에 0.0001 내지 30 중량%의 산화칼슘(CaO)을 첨가하여 교반하는 제 2단계(200)와; 상기 제 2단계(200)후에 300분 이하의 후교반을 하는 제 3단계(300); 및 상기 후교반된 마그네슘 합금을 600 내지 750℃의 온도에서 주형 속에 넣어 주조공정을 통하여 빌렛 또는 주조품 또는 주조품을 제조하는 제 4단계를 포함하는 것을 특징으로 한다. In addition, the method for producing a magnesium alloy to which calcium oxide (CaO) is added is a method of manufacturing a magnesium alloy in which calcium oxide is added to pure magnesium or all magnesium alloys by a casting process. Charging and dissolving at a temperature of 600 to 800 ° C. in a protective gas atmosphere; A second step (200) of stirring by adding 0.0001 to 30% by weight of calcium oxide (CaO) after the first step (100); A third step (300) of performing post-stirring for less than 300 minutes after the second step (200); And a fourth step of preparing the billet or the cast or cast through the casting process by putting the post-stirred magnesium alloy into a mold at a temperature of 600 to 750 ° C.

그리고, 상기 주형은 금형, 세라믹형 및 그라파이트형 중 어느 하나인 것을 특징으로 하며, 상기 주조공정은 중력주조 또는 연속주조인 것을 특징으로 한다.The mold may be any one of a mold, a ceramic mold and a graphite mold, and the casting process may be gravity casting or continuous casting.

이하, 본 발명을 실시예에 의거하여 상세히 설명하면 다음과 같다. Hereinafter, the present invention will be described in detail with reference to Examples.

본 발명의 실시예에서 사용된 공정은 중력주조공정(Gravity Casting)이며, 사용된 마그네슘은 AZ91D 마그네슘 합금이다.The process used in the embodiment of the present invention is Gravity Casting, and the magnesium used is AZ91D magnesium alloy.

상기 AZ91D 마그네슘 합금은 마그네슘(Mg)을 주재로 하고, 여기에 알루미늄(Al) 8.3 ~ 9.7중량%, 아연(Zn) 0.35 ~ 1.0중량%, 망간(Mn) 0.15 ~ 0.5중량% 및 기타 미량의 불가피한 불순물이 포함되어 이루어진 것으로서, 고강도를 요구하는 자동차 부품 주조재의 제조에 널리 사용되는 합금이다.The AZ91D magnesium alloy is based on magnesium (Mg), including 8.3 to 9.7 wt% of aluminum (Al), 0.35 to 1.0 wt% of zinc (Zn), 0.15 to 0.5 wt% of manganese (Mn), and other inevitable traces. An impurity is included and is an alloy widely used in the manufacture of castings for automobile parts requiring high strength.

상기 AZ91D 마그네슘 합금은 본 발명의 일실시예일 뿐이며, 본 발명에 의해 얻어지는 산화칼슘(CaO)이 첨가된 고기능, 난연성 마그네슘 합금은 상기 AZ91D 마그네슘 합금뿐만 아니라 모든 마그네슘 합금 및 Mg 99.999 중량%의 순수 마그네슘에 산화칼슘이 첨가되어도 같은 효과를 얻을 수 있다.The AZ91D magnesium alloy is only one embodiment of the present invention, and the high-performance, flame-retardant magnesium alloy to which calcium oxide (CaO) is added according to the present invention is added to all magnesium alloys and Mg 99.999 wt% pure magnesium as well as the AZ91D magnesium alloy. The same effect can be obtained even if calcium oxide is added.

첨부 도면 중, 도 1은 본 발명에 따른 마그네슘 합금의 제조방법을 나타내는 블럭도이다.1 is a block diagram showing a method for producing a magnesium alloy according to the present invention.

상기 도면에 의하면, 본 발명에 의한 산화칼슘(CaO)이 첨가된 마그네슘 합금의 제조는, 순수 마그네슘 또는 모든 마그네슘 합금을 도가니에 장입하여 보호가스 분위기에서 600 내지 800℃의 온도로 용해하는 제 1단계(100)와, 상기 제 1단계 (100)후에 0.0001 내지 30 중량%의 산화칼슘(CaO)을 첨가하여 교반하는 제 2단계(200)와, 상기 제 2단계(200)후에 300분 이하의 후교반을 하는 제 3단계(300), 및 상기 후교반된 마그네슘 합금을 600 내지 750℃의 온도에서 주형 속에 넣어 주조공정을 통하여 빌렛 또는 주조품을 제조하는 제 4단계(400)에 의해 제조된다. According to the drawings, the preparation of magnesium alloy added with calcium oxide (CaO) according to the present invention, the first step of charging pure magnesium or all magnesium alloy in the crucible and dissolving at a temperature of 600 to 800 ℃ in a protective gas atmosphere (100), and after the first step (100), a second step (200) of stirring by adding 0.0001 to 30% by weight of calcium oxide (CaO), and after 300 minutes or less after the second step (200) A third step (300) of stirring, and the post-stirred magnesium alloy is put into a mold at a temperature of 600 to 750 ℃ is produced by a fourth step (400) of manufacturing a billet or cast through a casting process.

상기와 같은 제조 방법에 의해서 0.0001 내지 30 중량%의 산화칼슘(CaO)이 첨가된 마그네슘 합금을 얻을 수 있게 된다.By the above production method, it is possible to obtain a magnesium alloy to which 0.0001 to 30% by weight of calcium oxide (CaO) is added.

여기서, 상기 제 1단계(100)에서 사용되는 보호가스는 SF6, SO2, HFC-134a, CO2, 및 이들의 혼합 가스를 사용하여도 좋다.Here, the protective gas used in the first step 100 is SF 6 , SO 2, HFC-134a, CO 2, and it may be a mixed gas thereof.

또한, 상기 제 1단계(100)의 도가니는 철제 도가니 외에 그라파이트 또는 세라믹 도가니를 사용하여도 좋다.In addition, the crucible of the first step 100 may be a graphite or ceramic crucible in addition to the iron crucible.

상기 제 2단계(200)에서의 첨가되는 산화칼슘(CaO)은 다양한 형태로 첨가될 수 있으나 분말의 형태가 우선되며, 분말은 입자의 크기가 500㎛미만인 것이 바람직하며, 산화칼슘(CaO)의 온도는 500℃미만인 것이 바람직하다. Calcium oxide (CaO) added in the second step 200 may be added in various forms, but the form of the powder is preferred, the powder is preferably a particle size of less than 500㎛, calcium oxide (CaO) of It is preferable that temperature is less than 500 degreeC.

첨가되는 산화칼슘(CaO)의 조성비는 0.0001 내지 30중량%가 바람직하며, 보통 합금을 제조함에 있어 첨가되는 성분의 조성비가 30중량%가 넘을 경우에는 주재(主材)의 물성(Property)이 사라질 염려가 있다.The composition ratio of calcium oxide (CaO) to be added is preferably 0.0001 to 30% by weight, and in the manufacture of an alloy, when the composition ratio of the added component is more than 30% by weight, the properties of the main material will disappear. There is concern.

상기 제 4단계(400)에서 주형은 금형, 세라믹형 또는 그라파이트형 중에서 어느 것을 사용하여도 무방하다.In the fourth step 400, the mold may be any one of a mold, a ceramic type, and a graphite type.

한편, 주조공정은 용융금속을 주형 속으로 주입하여 주형 안에서 금속을 응 고시켜 원하는 형상을 얻는 제조 방식이다.On the other hand, the casting process is a manufacturing method in which molten metal is injected into a mold to solidify the metal in the mold to obtain a desired shape.

상기 제 4단계(400)에서 사용되는 주조방식은 중력 주조 또는 연속 주조방식이 사용된다.As the casting method used in the fourth step 400, gravity casting or continuous casting is used.

첨부 도면 중, 도 2는 본 발명의 일실시예에 따른 산화칼슘이 첨가된 다이캐스팅용 AZ91D 마그네슘 합금의 상온에서의 경도 및 고온에서의 경도를 나타내는 그래프이고, 도 3은 본 발명의 일실시예에 따른 산화칼슘이 첨가된 다이캐스팅용 AZ91D 마그네슘 합금의 대기 분위기와 질소 분위기에서의 발화온도를 나타내는 그래프이다. In the accompanying drawings, Figure 2 is a graph showing the hardness at room temperature and the hardness at high temperature of the die casting AZ91D magnesium alloy with calcium oxide added according to an embodiment of the present invention, Figure 3 is an embodiment of the present invention It is a graph showing the ignition temperature in the atmosphere and nitrogen atmosphere of the AZ91D magnesium alloy for die casting added calcium oxide according to.

상기 도면 중, 도 2에 나타내는 그래프를 살펴보면, 산화칼슘(CaO)의 첨가량에 따른 마그네슘 합금의 경도(Hardness) 특성을 나타내며, 상온(25℃)에서의 경도 특성은 산화칼슘(CaO)의 첨가량에 따른 특성치가 향상됨을 알 수 있다.Referring to the graph shown in FIG. 2, the hardness characteristics of the magnesium alloy according to the addition amount of calcium oxide (CaO) are shown, and the hardness characteristic at room temperature (25 ° C.) is added to the addition amount of calcium oxide (CaO). It can be seen that the characteristic value is improved.

상기 도면 중, 도 3에 나타내는 그래프를 살펴보면, 산화칼슘(CaO)의 첨가량에 따른 마그네슘 합금의 발화(Ignition)특성을 나타내며, 산화칼슘(CaO)의 첨가량에 따라 발화온도가 크게 향상됨을 알 수 있다.Referring to the graph shown in FIG. 3, the graph shows the ignition characteristics of the magnesium alloy according to the amount of calcium oxide (CaO) added, and the ignition temperature is greatly improved according to the amount of calcium oxide (CaO) added. .

이상에서 설명한 바와 같이, 본 발명에 따른 산화칼슘이 첨가된 마그네슘 합금 및 그의 제조방법에 의하면, 합금의 난연성을 도모하고 청정 용해기술을 확보할 수 있으며, 합금의 기계적 특성과 내산화성 그리고 고온 크리프 특성을 크게 높인 청정 고강도 난연성 고온 마그네슘 합금을 얻을 수 있다. As described above, according to the magnesium alloy to which calcium oxide is added according to the present invention and a method for producing the same, it is possible to achieve flame retardancy of the alloy and to secure a clean dissolution technology, and to provide mechanical and oxidation resistance and high temperature creep characteristics It is possible to obtain a clean high strength flame retardant high temperature magnesium alloy greatly increased.

Claims (6)

순수 마그네슘에 0.0001 내지 30 중량%의 산화칼슘(CaO)이 함유된 것을 특징으로 하는 마그네슘 합금.Magnesium alloy, characterized in that the pure magnesium contains 0.0001 to 30% by weight of calcium oxide (CaO). 모든 마그네슘 합금에 0.0001 내지 30 중량%의 산화칼슘(CaO)이 함유된 것을 특징으로 하는 마그네슘 합금.Magnesium alloy, characterized in that all magnesium alloy contains 0.0001 to 30% by weight of calcium oxide (CaO). 상기 제 1항 또는 제 2항에 있어서,The method according to claim 1 or 2, 상기 산화칼슘(CaO)은 분말인 것으로 입자의 크기가 500㎛미만인 것을 특징으로 하는 마그네슘 합금.The calcium oxide (CaO) is a magnesium alloy, characterized in that the particle size is less than 500㎛. 주조공정에 의해 순수 마그네슘 또는 모든 마그네슘 합금에 산화칼슘이 첨가된 마그네슘 합금을 제조함에 있어서,In the manufacture of magnesium alloy in which calcium oxide is added to pure magnesium or all magnesium alloys by a casting process, 상기 순수 마그네슘 또는 모든 마그네슘 합금을 도가니에 장입하여 보호가스 분위기에서 600 내지 800℃의 온도로 용해하는 제 1단계;A first step of charging the pure magnesium or all magnesium alloy into a crucible and dissolving it at a temperature of 600 to 800 ° C. in a protective gas atmosphere; 상기 제 1단계후에 0.0001 내지 30 중량%의 산화칼슘(CaO) 분말을 첨가하여 교반하는 제 2단계;A second step of adding and stirring 0.0001 to 30% by weight of calcium oxide (CaO) powder after the first step; 상기 제 2단계후에 300분 이하의 후교반을 하는 제 3단계;A third step of performing post stirring less than 300 minutes after the second step; 상기 후교반된 마그네슘 합금을 600 내지 750℃의 온도에서 주형 속에 넣어 주조공정을 통하여 빌렛 또는 주조품을 제조하는 제 4단계를 포함하는 것을 특징으로 하는 산화칼슘(CaO)이 첨가된 마그네슘 합금의 제조방법.And a fourth step of preparing the billet or cast product through a casting process by putting the post-stirred magnesium alloy into a mold at a temperature of 600 to 750 ° C. . 상기 제 4항에 있어서,The method of claim 4, 상기 주형은 금형, 세라믹형 및 그라파이트형 중 어느 하나인 것을 특징으로 하는 산화칼슘(CaO)이 첨가된 마그네슘 합금의 제조방법.The mold is a method of producing a magnesium alloy to which calcium oxide (CaO) is added, characterized in that any one of a mold, a ceramic type and a graphite type. 상기 제 4항에 있어서,The method of claim 4, 상기 주조공정은 중력주조 또는 연속주조인 것을 특징으로 하는 산화칼슘(CaO)이 첨가된 마그네슘 합금의 제조방법.The casting process is a method of producing a magnesium alloy to which calcium oxide (CaO) is added, characterized in that the gravity casting or continuous casting.
KR1020050016143A 2005-02-25 2005-02-25 CaO Added Magnesium and Magnesium Alloys and their Manufacturing Method Thereof KR100681539B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050016143A KR100681539B1 (en) 2005-02-25 2005-02-25 CaO Added Magnesium and Magnesium Alloys and their Manufacturing Method Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050016143A KR100681539B1 (en) 2005-02-25 2005-02-25 CaO Added Magnesium and Magnesium Alloys and their Manufacturing Method Thereof

Publications (2)

Publication Number Publication Date
KR20060094734A true KR20060094734A (en) 2006-08-30
KR100681539B1 KR100681539B1 (en) 2007-02-12

Family

ID=37602468

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050016143A KR100681539B1 (en) 2005-02-25 2005-02-25 CaO Added Magnesium and Magnesium Alloys and their Manufacturing Method Thereof

Country Status (1)

Country Link
KR (1) KR100681539B1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100959830B1 (en) * 2007-12-28 2010-05-28 한국생산기술연구원 CaX Chemical Compound Added Magnesium and Magnesium Alloys and their Manufacturing Method Thereof
KR101045218B1 (en) * 2008-09-18 2011-06-30 한국생산기술연구원 Magnesium alloy and manufacturing method thereof
CN102206781A (en) * 2010-03-29 2011-10-05 韩国生产技术研究院 Magnesium-based alloy for high temperature and manufacturing method thereof
WO2011122786A2 (en) * 2010-03-29 2011-10-06 Korea Institute Of Industrial Technology Magnesium-based alloy with superior fluidity and hot-tearing resistance and manufacturing method thereof
WO2011122784A2 (en) * 2010-03-29 2011-10-06 Korea Institute Of Industrial Technology Magnesium alloy for room temperature and manufacturing method thereof
WO2011122776A2 (en) * 2010-03-29 2011-10-06 Korea Institute Of Industrial Technology Melting method of magnesium-based metal and magnesium alloy manufactured using the same
KR101147671B1 (en) * 2010-03-29 2012-05-21 한국생산기술연구원 Magnesium alloy and manufacturing method thereof
KR101147655B1 (en) * 2010-03-29 2012-05-23 한국생산기술연구원 Magnesium alloy for normal temperature and manufacturing method thereof
KR101147650B1 (en) * 2010-03-29 2012-05-23 한국생산기술연구원 Magnesium alloy for high temperature and manufacturing method thereof
WO2012161485A2 (en) * 2011-05-20 2012-11-29 한국생산기술연구원 Magnesium-based alloy produced using a silicon compound and a calcium compound and method for producing same
WO2012161463A3 (en) * 2011-05-20 2013-03-21 한국생산기술연구원 Alloy manufacturing method and alloy manufactured by means of same
US9200348B2 (en) 2009-11-20 2015-12-01 Korea Institute Of Industrial Technology Aluminum alloy and manufacturing method thereof
CN107447153A (en) * 2017-08-10 2017-12-08 江苏理工学院 A kind of high intensity AZ31 CaO magnesium alloys and preparation method thereof
CN112662905A (en) * 2020-12-01 2021-04-16 吉林大学 Method for improving oxidation resistance of magnesium
WO2024027053A1 (en) * 2022-08-05 2024-02-08 广东汇天航空航天科技有限公司 Magnesium-based alloy and preparation method therefor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2721761C (en) * 2009-11-20 2016-04-19 Korea Institute Of Industrial Technology Aluminum alloy and manufacturing method thereof
KR101335010B1 (en) 2011-05-20 2013-12-02 한국생산기술연구원 Magnesium alloy and manufacturing method thereof using silicon oxide
KR101223045B1 (en) 2011-12-29 2013-01-17 한국기계연구원 Magnesium inactivating materal and method for manufacturing magnesium alloy using the magnesium inactivating materal
KR20140063959A (en) * 2012-11-19 2014-05-28 한국생산기술연구원 Magnesium alloy and its manufacturing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57126928A (en) 1981-01-31 1982-08-06 Daido Steel Co Ltd Fluxing agent and production of alloy
JPS59129739A (en) 1983-01-14 1984-07-26 Sumitomo Metal Ind Ltd Production of alloy
NO306169B1 (en) 1997-12-08 1999-09-27 Elkem Materials Cast iron grafting agent and method of making grafting agent
KR20010086358A (en) 1999-06-16 2001-09-10 아사무라 타카싯 Highly cleaned steel
KR100331154B1 (en) * 1999-10-22 2002-04-01 황해웅 Non-combustible Mg-Alloy

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100959830B1 (en) * 2007-12-28 2010-05-28 한국생산기술연구원 CaX Chemical Compound Added Magnesium and Magnesium Alloys and their Manufacturing Method Thereof
KR101045218B1 (en) * 2008-09-18 2011-06-30 한국생산기술연구원 Magnesium alloy and manufacturing method thereof
US9200348B2 (en) 2009-11-20 2015-12-01 Korea Institute Of Industrial Technology Aluminum alloy and manufacturing method thereof
KR101147650B1 (en) * 2010-03-29 2012-05-23 한국생산기술연구원 Magnesium alloy for high temperature and manufacturing method thereof
KR101147671B1 (en) * 2010-03-29 2012-05-21 한국생산기술연구원 Magnesium alloy and manufacturing method thereof
WO2011122784A2 (en) * 2010-03-29 2011-10-06 Korea Institute Of Industrial Technology Magnesium alloy for room temperature and manufacturing method thereof
WO2011122776A2 (en) * 2010-03-29 2011-10-06 Korea Institute Of Industrial Technology Melting method of magnesium-based metal and magnesium alloy manufactured using the same
WO2011122776A3 (en) * 2010-03-29 2012-01-26 Korea Institute Of Industrial Technology Melting method of magnesium-based metal and magnesium alloy manufactured using the same
WO2011122784A3 (en) * 2010-03-29 2012-01-26 Korea Institute Of Industrial Technology Magnesium alloy for room temperature and manufacturing method thereof
WO2011122786A3 (en) * 2010-03-29 2012-01-26 Korea Institute Of Industrial Technology Magnesium-based alloy with superior fluidity and hot-tearing resistance and manufacturing method thereof
WO2011122785A3 (en) * 2010-03-29 2012-01-26 Korea Institute Of Industrial Technology Magnesium-based alloy for high temperature and manufacturing method thereof
KR101145124B1 (en) * 2010-03-29 2012-05-14 한국생산기술연구원 Melting method for magnesium alloy and manufacturing method thereof
US8808423B2 (en) 2010-03-29 2014-08-19 Korea Institute Of Industrial Technology Magnesium-based alloy for high temperature and manufacturing method thereof
KR101147655B1 (en) * 2010-03-29 2012-05-23 한국생산기술연구원 Magnesium alloy for normal temperature and manufacturing method thereof
WO2011122786A2 (en) * 2010-03-29 2011-10-06 Korea Institute Of Industrial Technology Magnesium-based alloy with superior fluidity and hot-tearing resistance and manufacturing method thereof
CN102206781A (en) * 2010-03-29 2011-10-05 韩国生产技术研究院 Magnesium-based alloy for high temperature and manufacturing method thereof
WO2011122785A2 (en) * 2010-03-29 2011-10-06 Korea Institute Of Industrial Technology Magnesium-based alloy for high temperature and manufacturing method thereof
US9085815B2 (en) 2010-03-29 2015-07-21 Korea Institute Of Industrial Technology Magnesium alloy for room temperature and manufacturing method thereof
AU2011233970B2 (en) * 2010-03-29 2014-11-20 Emk Co., Ltd. Magnesium-based alloy with superior fluidity and hot-tearing resistance and manufacturing method thereof
US8734564B2 (en) 2010-03-29 2014-05-27 Korea Institute Of Industrial Technology Magnesium-based alloy with superior fluidity and hot-tearing resistance and manufacturing method thereof
WO2012161463A3 (en) * 2011-05-20 2013-03-21 한국생산기술연구원 Alloy manufacturing method and alloy manufactured by means of same
EP2712941A2 (en) * 2011-05-20 2014-04-02 Korea Institute of Industrial Technology Alloy manufacturing method and alloy manufactured by means of same
EP2712941A4 (en) * 2011-05-20 2014-12-17 Korea Ind Tech Inst Alloy manufacturing method and alloy manufactured by means of same
WO2012161485A3 (en) * 2011-05-20 2013-03-21 한국생산기술연구원 Magnesium-based alloy produced using a silicon compound and a calcium compound and method for producing same
WO2012161485A2 (en) * 2011-05-20 2012-11-29 한국생산기술연구원 Magnesium-based alloy produced using a silicon compound and a calcium compound and method for producing same
US9901981B2 (en) 2011-05-20 2018-02-27 Korea Institute Of Industrial Technology Alloy production method and alloy produced by the same
CN107447153A (en) * 2017-08-10 2017-12-08 江苏理工学院 A kind of high intensity AZ31 CaO magnesium alloys and preparation method thereof
CN112662905A (en) * 2020-12-01 2021-04-16 吉林大学 Method for improving oxidation resistance of magnesium
WO2024027053A1 (en) * 2022-08-05 2024-02-08 广东汇天航空航天科技有限公司 Magnesium-based alloy and preparation method therefor

Also Published As

Publication number Publication date
KR100681539B1 (en) 2007-02-12

Similar Documents

Publication Publication Date Title
KR100681539B1 (en) CaO Added Magnesium and Magnesium Alloys and their Manufacturing Method Thereof
JP4974591B2 (en) Graphite spheroidizing agent and method for producing spheroidal graphite cast iron using the same
RU2213796C2 (en) High-temperature magnesium alloy
KR101258470B1 (en) High-Strength High-Ductility Ignition-Proof Magnesium Alloy
KR101066536B1 (en) Ignition-proof magnesium alloy with excellent mechanical properties and method for manufacturing the ignition-proof magnesium alloy
KR101133775B1 (en) Magnesium mother alloy, manufacturing method thereof, Metal alloy using the same, and Metal alloy manufacturing method thereof
KR101045218B1 (en) Magnesium alloy and manufacturing method thereof
JP2730847B2 (en) Magnesium alloy for castings with excellent high temperature creep strength
JP6852146B2 (en) Aluminum alloy for die casting and aluminum alloy die casting using this
KR100959830B1 (en) CaX Chemical Compound Added Magnesium and Magnesium Alloys and their Manufacturing Method Thereof
KR100883567B1 (en) SrO Added Magnesium and Magnesium Alloys and their Manufacturing Method Thereof
KR101214939B1 (en) Grain refiner of magnesium alloys and method for grain refining, method for manufacturing of magnesium alloys using the same, and magnesium alloys prepared thereby
Jin-Kyu Effect of CaO composition on oxidation and burning behaviors of AM50 Mg alloy
KR20180071361A (en) Low cost high thermal conductive die-cast magnesium alloy and method of making same
KR100760581B1 (en) Molten salts for the refining of mg alloys
RU2475334C2 (en) Method of making conditioning agent for hypoeutectic aluminium-silicon alloys
KR20120040650A (en) Aluminum alloy with improved fatigue properties and manufacturing method thereof
KR20090071898A (en) Alkaline-earth metals added magnesium and magnesium alloys and their manufacturing method thereof
EP2692883B1 (en) Mg-al-ca-based master alloy for mg alloys, and a production method therefor
CN109097614B (en) Method for refining grain size of magnesium alloy
KR101684300B1 (en) Method of the magnesium alloy castings produced using the calcium silicon alloy powder
CN109680179B (en) High-wear-resistance magnesium-based composite material and preparation method thereof
WO2018212024A1 (en) Magnesium alloy, magnesium alloy cast, and method for producing same
JP2011219820A (en) Heat resisting magnesium alloy
KR20170049082A (en) Mg casting alloy having High thermal conductivity and method of manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130111

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20131021

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150713

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170117

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180102

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20190102

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20191223

Year of fee payment: 14