JPS59129739A - Production of alloy - Google Patents

Production of alloy

Info

Publication number
JPS59129739A
JPS59129739A JP437683A JP437683A JPS59129739A JP S59129739 A JPS59129739 A JP S59129739A JP 437683 A JP437683 A JP 437683A JP 437683 A JP437683 A JP 437683A JP S59129739 A JPS59129739 A JP S59129739A
Authority
JP
Japan
Prior art keywords
alloy
flux
slag
electrode
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP437683A
Other languages
Japanese (ja)
Inventor
Hiroyuki Ichihashi
市橋 弘行
Ryuka Ikeda
池田 隆果
Akihiro Yamanaka
章裕 山中
Ryoji Baba
良治 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP437683A priority Critical patent/JPS59129739A/en
Publication of JPS59129739A publication Critical patent/JPS59129739A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To produce an ingot without variance in quality in the vertical direction and without the decrease in the content of Mg in the stage of refining an Al-Ti-Mg alloy by electroslag refining by charging additionaly slag having a specific compsn. into the alloy during operation. CONSTITUTION:A consumable electrode 4 consisting of an Al, Ti, Mg alloy is suspended in a water-cooled casting mold 1 formed of copper, and after the inside of the casting mold and a hopper 38 contg. a flux 5 is evacuated, gaseous Ar is supplied therein. A flux 5 composed of 20-60% CaF2, 10-40% MgO, 10- 30% Al2O3, 5-30% TiO2 and <20% CaO is put in the mold 1, and a voltage is impressed and conducted between the electrode 4 and a molding board 13 formed of copper in the bottom part to melt the flux and to form molten salg 6. The electrode 4 is dipped in the slag 6, and while the electrode 4 is gradually melted by the Joule heat of the slag 6, the flux 5 is additionally supplied. The decrease, by evaporation, of the Mg contained in the alloy is obviated and an alloy ingot 7 having no variance in quality in the vertical direction thereof is obtd.

Description

【発明の詳細な説明】 本発明はエレクトロスラグ溶解によるAl + Tiお
よびMgを含有する合金の製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing alloys containing Al + Ti and Mg by electroslag melting.

一般にエレクトロスラグ溶解(以下ESRと言う)法は
、Ni基、 Fe基合金またはその他の合金を製造する
際に使用される。ESRによる合金製造方法は、目標と
する合金成分を得るに必要な組成の消耗電極の先端を、
フラックスが溶融したスラグ中に位置せしめて、対向極
である水冷銅鋳型内の調定盤との間で課電し、消耗電極
の先端をスラグでのジュール熱によυ溶解してスラグ中
を滴下沈降させ、これを水冷銅鋳型内で連続的に冷却し
て鋳塊を製造する方法である。またESHに使用される
7ラツクスとしては、CaF2を主体としAl2O3、
CaOを適宜添加したものが用いられ、スラックス組成
は(1)高温において安定である(2)粘性が低い(3
)電気抵抗が大きい(4)化学反応が安定であるなどの
条件を満すように定められる。
Electroslag melting (hereinafter referred to as ESR) is generally used in the production of Ni-based, Fe-based alloys, or other alloys. In the alloy manufacturing method using ESR, the tip of a consumable electrode with the composition necessary to obtain the target alloy composition is
The flux is placed in the molten slag, and an electric current is applied between the counter electrode and the adjusting plate in the water-cooled copper mold. This is a method of producing an ingot by dropping it and cooling it continuously in a water-cooled copper mold. In addition, the 7lux used for ESH mainly consists of CaF2, Al2O3,
A slack with appropriate addition of CaO is used, and the slack composition is (1) stable at high temperatures (2) low viscosity (3)
) High electrical resistance (4) Stable chemical reaction.

さて、従来kl 、 TiおよびMgを含む合金をES
Rにて製造する場合、AI!、 Tiについては鋳塊中
で、特に高さ方向での成分偏析が著しく、品質および特
性が高さ方向にて均一な製品を得ることが困難である。
Now, conventionally, alloys containing kl, Ti and Mg are subjected to ES
When manufacturing at R, AI! As for Ti, component segregation in the ingot is particularly significant in the height direction, making it difficult to obtain a product with uniform quality and properties in the height direction.

またNi基合金等において、加工性の改善に効果がある
Mgについては、ESRの間にスラグ中へ酸化消耗し、
または溶解算囲気中へ蒸発し、製品に残留せず、その加
工性改善効果は期待できなかった。
In addition, Mg, which is effective in improving workability in Ni-based alloys, is oxidized and consumed into the slag during ESR.
Otherwise, it evaporated into the dissolved surrounding air and did not remain in the product, so that no improvement in processability could be expected.

更に詳述すると、第1図は横軸にNi浴中の元素濃度(
R)係をとりまた縦軸に浴中り骨素濃度〔00%をとっ
て、1873 KでのNiの脱酸等混線を示したグラフ
であり、Ni基合金においてはA7?、 Tll Mg
各元素で浴中酸素量が異なり、壕だ濃度によっても異な
ることがわかる。したがって、A/、 Ti、 Mgが
金属溶湯中に少ない場合は、浴中酸素が多量に含まれ、
凝固時にhe、 Tt+ Mgが酸化物として析出する
ため、合金中の不純物量が増加し、その結果鋳塊位置に
より品質にバラツキが発生し易い。
To explain in more detail, in Figure 1, the horizontal axis shows the element concentration in the Ni bath (
This is a graph showing the deoxidation etc. cross line of Ni at 1873 K, taking the bone concentration in the bath (00%) as the vertical axis, and in the case of Ni-based alloys, A7? , Tll Mg
It can be seen that the amount of oxygen in the bath differs for each element, and also varies depending on the concentration in the trench. Therefore, if A/, Ti, and Mg are small in the molten metal, a large amount of oxygen is contained in the bath,
Since he, Tt+ Mg precipitates as oxides during solidification, the amount of impurities in the alloy increases, and as a result, quality tends to vary depending on the position of the ingot.

また、第2図は横軸にMg量を、縦軸にはねじり回数を
とって、75Ni −15Cr (S :10ppm、
 O:10ppm)合金の熱間(1250℃)での、M
g量とねじり回数との関係を表わすグラフである。この
図より、Mgの入らない状態ではねじり回数は2回程度
であるが、Mgが約45ppm以上で急にねじ多回数の
増加がみられ、約75 ppmでピークとなり500回
程のねじりに耐えることがわかる。このように、Mgは
熱間加工性の改善に効果があるが、Mgは沸点が比較的
に低く 1107℃であり、まだ蒸気圧が高いだめ、E
SR中に激しく蒸発して鋳塊中でトレースとなる。
In addition, in Figure 2, the horizontal axis represents the amount of Mg, and the vertical axis represents the number of twists.
O: 10ppm) during hot (1250℃) alloy
It is a graph showing the relationship between the amount of g and the number of twists. From this figure, the number of twists is about 2 in the absence of Mg, but when the Mg content exceeds about 45 ppm, the number of twists increases suddenly, and reaches a peak at about 75 ppm, meaning that it can withstand about 500 twists. I understand. In this way, Mg is effective in improving hot workability, but Mg has a relatively low boiling point of 1107°C, and its vapor pressure is still high.
It evaporates violently during SR and becomes traces in the ingot.

本発明は、このような2つの問題点を解決するためにな
されるものであり、無酸化雰囲気でESRし、壕だスラ
グ組成を一定とすべぐ、スラグの組成変化に見合った量
の7ラツクスを追加装入することにより、上下方向の成
分のバラツキのない所望量のM、gを含有する合金を得
るこ吉ができる、ESRによる製造方法を提供すること
を目的とする。
The present invention has been made to solve these two problems, and is to perform ESR in a non-oxidizing atmosphere, to keep the trenched slag composition constant, and to apply 7 lac in an amount commensurate with the change in slag composition. It is an object of the present invention to provide a manufacturing method using ESR that allows obtaining an alloy containing desired amounts of M and g without vertical component variations by additionally charging .

本発明に係る合金の製造方法は、重量係でCaF220
〜60係、Mg010〜40係、AI!20310〜3
0% 、TlO25〜30 %、CaO20%以下およ
びその他の不可避的不純物からなるフラックスを用い、
kl、 TiおよびMgを含有する消耗電極を無酸化雰
囲気中にてエレクトロスラグ溶解し、溶解中のスラグ組
成を一定とすべく前記フラックスを追加装入することを
゛特徴とする。
The method for producing the alloy according to the present invention is based on the weight ratio of CaF220.
~60 staff, Mg010~40 staff, AI! 20310-3
Using a flux consisting of 0%, TlO 25-30%, CaO 20% or less and other unavoidable impurities,
The present invention is characterized in that a consumable electrode containing Kl, Ti, and Mg is electroslag melted in a non-oxidizing atmosphere, and the above-mentioned flux is additionally charged in order to keep the slag composition constant during melting.

本発明に係る合金の製造方法をその実施状態を示す図面
に基づいて説明する。第3図は本発明方法の実施状態を
示す模式図である。図中1は例えば内径100mm  
の水冷銅鋳型を示してあり、該水冷銅鋳型は2重管構造
をなし上端のフランジ部1bにて架台2に支持され、下
端のフランジ部1aは電極としての機能を果す銅定盤1
3により密閉されている。内外の管11.12の内には
冷却水通流室16が形成されており、該冷却水通流室1
6の下部、上部にはそれぞれ給水管14.14および排
水管15.15が連通連結されている。さら゛に、上端
のフランジ部1bには真空装置3が連結されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The method for producing an alloy according to the present invention will be explained based on drawings showing its implementation state. FIG. 3 is a schematic diagram showing the implementation state of the method of the present invention. For example, 1 in the figure has an inner diameter of 100 mm.
The water-cooled copper mold has a double pipe structure and is supported by a pedestal 2 at an upper flange portion 1b, and a copper surface plate 1 whose lower end flange portion 1a functions as an electrode.
It is sealed by 3. A cooling water flow chamber 16 is formed in the inner and outer pipes 11 and 12, and the cooling water flow chamber 1
A water supply pipe 14.14 and a drain pipe 15.15 are connected to the lower and upper parts of the tank 6, respectively. Furthermore, a vacuum device 3 is connected to the flange portion 1b at the upper end.

該真空装置3は水冷銅鋳型1上端のフランジ部1bに取
り付けられたヘッダー399図示しない真空ポンプとヘ
ッダー39とを連結する真−空排気管31.該真空排気
管31の中途に連通連結した不活性ガス供給管32.ヘ
ッダー39に連結された排気管33等からなる。ヘッダ
ー39の上部開口はFe、 Ni+ Cr ’c主成分
とする外径50mmの消耗電極4が挿通可能な穴を有す
る蓋35にて閉塞され、前記穴にはシールリング34を
設けている。
The vacuum device 3 includes a header 399 attached to the flange portion 1b at the upper end of the water-cooled copper mold 1, and a vacuum exhaust pipe 31 that connects the header 39 with a vacuum pump (not shown). An inert gas supply pipe 32 connected to the middle of the vacuum exhaust pipe 31. It consists of an exhaust pipe 33 and the like connected to a header 39. The upper opening of the header 39 is closed with a lid 35 having a hole through which a consumable electrode 4 having an outer diameter of 50 mm mainly composed of Fe, Ni+Cr'c can be inserted, and a seal ring 34 is provided in the hole.

真空排気管3−1.不活性ガス供給’!732 +刊気
管33にはそれぞれ止め弁31V、32V、33Vを設
けており、真空排気管31には圧力計36゜真空用圧力
計37が取り付けられている。ヘッダー39にはフラッ
クス供給装置38が取付けられており、フラックス5を
収納したホッパー38aから7シツクスフイーダー38
bを介してフラックス5を供給するようKしである。ホ
ッパー38aの上部にはホッパー38a内を水冷銅鋳型
1内と同じ雰囲気上するために、真空排気管31の中途
に連通連結した管38eを接続している。またホッパー
38aの上端は蓋、38(1により密閉されている。
Vacuum exhaust pipe 3-1. Inert gas supply'! The trachea 33 is provided with stop valves 31V, 32V, and 33V, respectively, and the vacuum exhaust pipe 31 is equipped with a pressure gauge 36° and a vacuum pressure gauge 37. A flux supply device 38 is attached to the header 39, and a 7-six feeder 38 is connected to the hopper 38a containing the flux 5.
K is provided to supply flux 5 through b. A pipe 38e connected midway through the evacuation pipe 31 is connected to the upper part of the hopper 38a in order to maintain the same atmosphere inside the hopper 38a as the inside of the water-cooled copper mold 1. Further, the upper end of the hopper 38a is sealed by a lid 38 (1).

次に、上述の如き構成の装置を用いて合金を製造する場
合の手順について説明する。Ae、 Ti、 Mgを含
有する消耗電極4の先端がヘッダー39上の蓋35を賀
通した、すなわち穴を塞いだ状態で止め弁32V、33
Vを閉じ、止め弁31Vを開いて図示しない真空ポンプ
により真空引きを行い、真空用圧力計37を用いて測定
して水冷鋼鋳型1内および予め組成選定されたフラック
ス5を適当量入れであるホッパー38a内を10−” 
Torrとし、次に止め弁31Vを閉じ、止め弁32V
を開くことによりArガスを水冷銅鋳型1内、ホッパー
38a内に送入し、圧力計36を用いて測定して900
Torrとする。これにより、酸素ポテンシャルの低い
Arガス加圧雰囲気が得られる。該雰囲気下でホラ・く
−38a内のフラックス5を7ラツクスフイーダー38
bにて、インゴットV景ITに対して50 kgの割合
で切り出し、供給管38cを介して水冷銅鋳型1内に初
期装入を行い、消耗電極4の先端を7ラツクス5中に入
れ、図示しない電源により消耗電極4と銅定盤13との
間に課電し、フラックス5を溶融してスラグ6を生成せ
しめる。スラグ6中に常時位置するよう制御された消耗
電極4の先端はスラグ6でのジュール熱により溶解され
るが、その際スラグ6と反応してスラグ6組成を変化さ
せる。スラグ6組成が変化することは後に詳述するが、
均一な合金を製造する上で好ましくないので、フラック
ス5をESR中に連続装入することにより防止される。
Next, a procedure for producing an alloy using the apparatus configured as described above will be explained. With the tip of the consumable electrode 4 containing Ae, Ti, and Mg passed through the lid 35 on the header 39, that is, with the hole closed, the stop valves 32V and 33
V is closed, the stop valve 31V is opened, a vacuum is drawn by a vacuum pump (not shown), and an appropriate amount of flux 5 whose composition has been selected in advance is poured into the water-cooled steel mold 1 by measuring it using a vacuum pressure gauge 37. 10-" inside the hopper 38a
Torr, then close the stop valve 31V, and then close the stop valve 32V.
By opening the door, Ar gas is introduced into the water-cooled copper mold 1 and into the hopper 38a, and the pressure is measured using the pressure gauge 36.
Torr. This provides a pressurized Ar gas atmosphere with a low oxygen potential. In this atmosphere, the flux 5 in the hole-ku-38a was transferred to the 7-lux feeder 38.
In b, the ingot V-shaped IT is cut out at a rate of 50 kg, and initially charged into the water-cooled copper mold 1 via the supply pipe 38c, and the tip of the consumable electrode 4 is placed in the 7 lux 5, as shown in the figure. Electricity is applied between the consumable electrode 4 and the copper surface plate 13 by a non-consumable power source, and the flux 5 is melted to generate slag 6. The tip of the consumable electrode 4, which is controlled to be always located in the slag 6, is melted by Joule heat in the slag 6, but at this time it reacts with the slag 6 and changes the composition of the slag 6. The change in slag 6 composition will be detailed later, but
Since this is undesirable in producing a uniform alloy, it is prevented by continuously charging flux 5 into the ESR.

また溶解された消耗電極4の先端はスラグ6中を滴下沈
降して、水冷銅鋳型1内の未凝固である溶湯プール8に
溜り、これが連続的に冷却されて鋳塊7を形成する。
Further, the tip of the melted consumable electrode 4 drips down into the slag 6 and accumulates in an unsolidified molten metal pool 8 in the water-cooled copper mold 1, which is continuously cooled to form an ingot 7.

なお、7ラツクス5を連続装入することの替りに、スラ
グ6組成が一定となるようなフラックス5の断続装入を
行っても良いことは勿論である。
It goes without saying that instead of continuously charging the 7 lux 5, the flux 5 may be charged intermittently so that the composition of the slag 6 remains constant.

次に、上記本発明に用いるフラックス5の組成限定理由
を述べる。まずMgOについて説明すると1、消耗電極
4に含まれるMgが(1)式によりスラグ6中の酸化物
と反応して酸化され、スラグ6中に捕われる。
Next, the reasons for limiting the composition of the flux 5 used in the present invention will be described. First, to explain MgO, Mg contained in the consumable electrode 4 reacts with the oxide in the slag 6 according to equation (1), is oxidized, and is trapped in the slag 6.

X+ eMxOy= X0ey+exM     −(
11但し  X  : Aj’、 TiおよびMgM 
ニスラグ中の金属 MXOyニスラグ中の酸化物 したがって、消耗電極4に含まれるMgとスラグ6中の
MgOとを平衡させるには、フラックス5中にMgOを
適宜添加する必要があり、消耗電極4に含まれるMgの
酸化ロスを有効に低減するために下限を10%とした。
X+ eMxOy= X0ey+exM −(
11 However, X: Aj', Ti and MgM
Metal MXOy in the varnish slag Oxide in the varnish slag Therefore, in order to balance the Mg contained in the consumable electrode 4 and the MgO in the slag 6, it is necessary to appropriately add MgO to the flux 5. In order to effectively reduce the oxidation loss of Mg, the lower limit was set to 10%.

また40%を超えると融点が上昇し、円滑な操業を妨げ
られるので10〜40係の範囲とした。
Moreover, if it exceeds 40%, the melting point will rise and smooth operation will be hindered, so it was set in the range of 10 to 40%.

AI!203の場合はMgOと同様の理由で、つまり消
耗電極4に含まれるA1g!の酸化ロスを有効に低減す
るため下限を10チとした。上限はAI!203の増加
により、電気伝導度の低下および融点の上昇をきたし、
円滑な操業を妨げることとなるので30チとした。
AI! 203 for the same reason as MgO, that is, A1g contained in the consumable electrode 4! In order to effectively reduce oxidation loss, the lower limit was set to 10 inches. The upper limit is AI! The increase in 203 causes a decrease in electrical conductivity and an increase in melting point,
Since it would interfere with smooth operations, it was set at 30 inches.

TiO2についても同様に、消耗電極4に含まれるTi
の酸化ロスを有効に低減するため下限を5%とした。ま
た上限は融点の上昇を抑制するために30係とした。
Similarly, regarding TiO2, Ti contained in the consumable electrode 4
In order to effectively reduce oxidation loss, the lower limit was set at 5%. Further, the upper limit was set at 30 in order to suppress the rise in melting point.

次に、CaF2はESR用7ラツクス5の基本成分であ
シ、融点、電気伝導度を保持させるために20〜60%
の範囲としだ。CaF2が20%以下である場合は、必
要な融点、電気伝導度が確保できず、またCaF、が6
0%を超える場合は、所要のAr、03゜TiO2+ 
CaOとのバランスで電気伝導度を増加させることにな
る。
Next, CaF2 is a basic component of 7lux 5 for ESR, and in order to maintain the melting point and electrical conductivity, CaF2 is 20 to 60%
The range of If CaF2 is less than 20%, the necessary melting point and electrical conductivity cannot be secured, and CaF2 is less than 6%.
If it exceeds 0%, the required Ar, 03°TiO2+
Electric conductivity increases in balance with CaO.

CaOは、フラックス5中に不可避的に混入するSが消
耗電極4に含まれるMgと反応して、所要製品成分を得
ることを妨げるので、このSを固定して反応を防止する
ために含有せしめられるものである。またCaOは適正
な融点および電気伝導度と粘性の保持のだめに用いられ
、これが多量となった場合にはフラックス5の融点が上
昇して、円滑な操業が妨げられるため、消耗電極4およ
びフラックス5中のSレベルに応じて20チまでの範囲
とした。
CaO is contained in order to fix this S and prevent the reaction, since S which is inevitably mixed in the flux 5 reacts with Mg contained in the consumable electrode 4 and prevents the required product components from being obtained. It is something that can be done. In addition, CaO is used to maintain appropriate melting point, electrical conductivity, and viscosity, and if a large amount of CaO is used, the melting point of flux 5 will rise and smooth operation will be hindered. The range was up to 20 inches depending on the S level.

斜上の如き本発明方法による場合は、鋳塊の高さ方向の
組成のバラツキが低減され、またMgを含有せしめて熱
間加工性を向上することができる。
When using the method of the present invention such as diagonal top-up, variations in composition in the height direction of the ingot can be reduced, and Mg can be included to improve hot workability.

すなわち、Fe+ Nt+ Crが主成分であり、また
合金中にAe、 Tit Mgを含有させるだめAl、
 ’rt、 Mgを含有する消耗電極を用いて、ESR
を行う場合において、従来の如<ESR中の溶解雰囲気
が02を20チも含む酸素ポテンシャルの高いものであ
ったり、該溶解雰囲気下で消耗電極が溶解点近くまで加
熱されるようなときには、Fe、 Nt+ Crを主成
分とする消耗電極の酸化が行われ、その結果Fe、 N
i、 Crの低級酸化物が生成し、これがスラグ中に混
入してスラグ組成に変化を生せしめ、合金品質の低下を
招来する。しかしながら、本発明の如く無酸化雰囲気に
てESRを行う場合には、上記低級酸化物の生成がなく
、スラグ組成の変化が少なくなる。
That is, Fe+Nt+Cr is the main component, and Al, Ti, and Mg must be included in the alloy.
'rt, ESR using Mg-containing consumable electrodes
When performing Fe , Nt+ The oxidation of the consumable electrode mainly composed of Cr is carried out, resulting in Fe, N
i. Lower oxides of Cr are produced and mixed into the slag, causing a change in the slag composition and resulting in a decrease in alloy quality. However, when ESR is performed in a non-oxidizing atmosphere as in the present invention, the above-mentioned lower oxides are not generated and changes in the slag composition are reduced.

また、消耗電極を構成する金属とスラグは、消耗電極の
溶鱗時、消耗電極が溶解後スラグ中を滴下沈降する時お
よび水冷銅鋳型内にあってまだ未凝固である溶湯プール
がスラグと接触している時にfi1式により反応するた
め、一般にはスラグ内のAl+ TiおよびMg(Da
度は多少バラツキが生じることになるのであるが、本発
明の場合はフラックスを追加装入してスラグが多量に存
在する状態としているので、反応の平衡はスラグ組成に
従うところとなり、結局鋳塊の組成のバラツキは抑制さ
れることになる。まだフラックスの追加装入により、蒸
発しやすいMgを補正するので、鋳塊中に必要量のMg
を含有させることができる。
In addition, the metal and slag that make up the consumable electrode come into contact with the slag when the consumable electrode melts, when the consumable electrode drips and settles in the slag after melting, and when the molten metal pool that is still unsolidified in the water-cooled copper mold comes into contact with the slag. Generally, Al + Ti and Mg (Da
However, in the case of the present invention, flux is additionally charged to create a state in which a large amount of slag exists, so the reaction equilibrium follows the slag composition, and eventually the ingot Variations in composition will be suppressed. By adding additional flux, the Mg that easily evaporates is compensated for, so the required amount of Mg is maintained in the ingot.
can be contained.

次に、本発明方法の実施例をNi基合金の場合について
説明する。本発明方法の実施例1,2.3のフラックス
組成および消耗電極、鋳塊の組成は第1表に表示してあ
り、比較例としては公知の代表的なフラックス(70%
CaF2−30’% A1203)を挙げた。この比較
例では、消耗↑し極に含まれているAlは鋳塊中に残留
するが、Tiおよび地はトレースとなり好ましくない。
Next, an example of the method of the present invention will be described in the case of a Ni-based alloy. The flux compositions, consumable electrodes, and ingot compositions of Examples 1, 2.3 of the method of the present invention are shown in Table 1. As a comparative example, a known typical flux (70%
CaF2-30'% A1203). In this comparative example, Al contained in the pole is consumed ↑ and remains in the ingot, but Ti and aluminum become traces, which is not preferable.

これに対′して、MgO,Al2O3゜TiO2を含有
するフラックスを用いた本発明実施例1.2.3では、
鋳塊中にMg、 kl: Tiが°残留する。
On the other hand, in Example 1.2.3 of the present invention using a flux containing MgO, Al2O3°TiO2,
Mg, kl: Ti remain in the ingot.

特に、各実施例にて含有量を相異せしめであるMgは、
無酸化雰囲気下で72ツクスを追加装入することにより
、消耗電極が酸化されず、またスラグ組成が変化しない
理想的状態が得られるだめ、効率よく消耗電極!のMg
量に略相当する量が鋳塊中に含有されることになる。こ
れはkl + Ttについても同様である。また前記理
由により、鋳塊底部。
In particular, Mg, whose content differs in each example,
By additionally charging 72 Tx in a non-oxidizing atmosphere, an ideal condition is obtained in which the consumable electrode is not oxidized and the slag composition does not change, making it an efficient consumable electrode! Mg of
The ingot will contain approximately the same amount as the above amount. The same applies to kl + Tt. Also, due to the above reasons, the bottom of the ingot.

中央部1頭部におけるMg、 AI!+ Tiの組成も
均一化されたことが第1表の実施例よシ明らかである。
Mg in central part 1 head, AI! It is clear from the examples shown in Table 1 that the composition of + Ti was also made uniform.

以上詳述したように、本発明方法は機械的性質と熱間加
工性の良好な含At?+ Ti、 Mg合金を均質に製
造する冶金学上理想的な製造方法であり、含AI!。
As described in detail above, the method of the present invention is an At-containing compound with good mechanical properties and hot workability. + It is a metallurgically ideal manufacturing method for homogeneously manufacturing Ti and Mg alloys, and it does not contain AI! .

Ti 、 Mg合金の製造上きわめて有用である。It is extremely useful in the production of Ti and Mg alloys.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1873にでのNiの脱酸等混線を示すグラフ
、第2図は75%Ni −15%Cr合釡のM、gtと
ねじり回数との関係を表すグラフ、第3図は本発明方法
の実施状態を示す模式図である。 l・・・水冷銅鋳型 2・り架台゛3・・・真空装買 
4・・・消耗電極 5・・・フラックス 6・・・スラ
グ 7・・・鋳塊または合金 38・・・フラックス供
給装置38b・・・フラックスフィーダー 特許出願人  住友金属工業株式会社 代理人弁理士 河  野  登  夫
Figure 1 is a graph showing the deoxidation equidistant line of Ni in 1873, Figure 2 is a graph showing the relationship between M, gt and the number of twists of a 75%Ni-15%Cr alloy, and Figure 3 is a graph showing the number of twists. FIG. 2 is a schematic diagram showing the implementation state of the invention method. 1...Water-cooled copper mold 2. Rack 3...Vacuum equipment
4... Consumable electrode 5... Flux 6... Slag 7... Ingot or alloy 38... Flux supply device 38b... Flux feeder Patent applicant Sumitomo Metal Industries Co., Ltd. Patent attorney Kawa Noboru No

Claims (1)

【特許請求の範囲】[Claims] 1、エレクトロスラグ溶解により合金を製造する方法に
おいて、重量係でCaF、 20〜60%、Mg010
〜40%、AI!、0310〜30チ、Ti025〜3
0チ、Cab’ 20 %以下およびその他の不可避的
不純物からなるスラックスを用い、kl + Tiおよ
び淘を含有する消耗電極を無酸化雰囲気中にてエレクト
ロスラグ溶解し、溶解中のスラグ組成を一定とすべく前
記スラックスを追加装入することを特徴とする合金の製
造方法。
1. In a method of producing an alloy by electroslag melting, CaF, 20-60%, Mg010 by weight
~40%, AI! , 0310~30chi, Ti025~3
Electroslag melting of a consumable electrode containing Kl + Ti and Ti in a non-oxidizing atmosphere is carried out using a slack consisting of 0% Ti, Cab' 20% or less and other unavoidable impurities, and the slag composition during melting is kept constant. A method for producing an alloy, characterized in that the slack is additionally charged as needed.
JP437683A 1983-01-14 1983-01-14 Production of alloy Pending JPS59129739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP437683A JPS59129739A (en) 1983-01-14 1983-01-14 Production of alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP437683A JPS59129739A (en) 1983-01-14 1983-01-14 Production of alloy

Publications (1)

Publication Number Publication Date
JPS59129739A true JPS59129739A (en) 1984-07-26

Family

ID=11582640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP437683A Pending JPS59129739A (en) 1983-01-14 1983-01-14 Production of alloy

Country Status (1)

Country Link
JP (1) JPS59129739A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0257644A (en) * 1988-08-22 1990-02-27 Sumitomo Metal Ind Ltd Electroslag remelting method
KR100681539B1 (en) 2005-02-25 2007-02-12 한국생산기술연구원 CaO Added Magnesium and Magnesium Alloys and their Manufacturing Method Thereof
JP2012241230A (en) * 2011-05-19 2012-12-10 Hitachi Metals Ltd Manufacturing method of ingot
CN105316487A (en) * 2015-04-10 2016-02-10 东北大学 Slag system for electroslag-remelted high-Ti and low-Al high-temperature alloy and using method of slag system
CN106834731A (en) * 2017-01-18 2017-06-13 东北大学 A kind of remelting slag system and smelting process for the low aluminium profiles steel grade of electroslag remelting titanium high
JP2020033586A (en) * 2018-08-28 2020-03-05 大同特殊鋼株式会社 MANUFACTURING METHOD OF Mg-CONTAINING HIGH Ni ALLOY

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0257644A (en) * 1988-08-22 1990-02-27 Sumitomo Metal Ind Ltd Electroslag remelting method
KR100681539B1 (en) 2005-02-25 2007-02-12 한국생산기술연구원 CaO Added Magnesium and Magnesium Alloys and their Manufacturing Method Thereof
JP2012241230A (en) * 2011-05-19 2012-12-10 Hitachi Metals Ltd Manufacturing method of ingot
CN105316487A (en) * 2015-04-10 2016-02-10 东北大学 Slag system for electroslag-remelted high-Ti and low-Al high-temperature alloy and using method of slag system
CN106834731A (en) * 2017-01-18 2017-06-13 东北大学 A kind of remelting slag system and smelting process for the low aluminium profiles steel grade of electroslag remelting titanium high
JP2020033586A (en) * 2018-08-28 2020-03-05 大同特殊鋼株式会社 MANUFACTURING METHOD OF Mg-CONTAINING HIGH Ni ALLOY

Similar Documents

Publication Publication Date Title
JP5048222B2 (en) Method for producing long ingots of active refractory metal alloys
CN113005259A (en) Vacuum induction melting method for controlling titanium element
CN112725659A (en) Nickel alloy casting process based on intermediate frequency furnace
JPS59129739A (en) Production of alloy
CN109468476B (en) Method for improving comprehensive performance of copper alloy by adopting magnetic suspension process
CN117230360B (en) Preparation method of single-vacuum 300M steel
CN109252084A (en) A kind of preparation process of high-purity GH825 alloy fine grain plate
JP2989060B2 (en) Low oxygen Ti-Al alloy and method for producing the same
DE2314843C2 (en) Process for the production of vacuum treated steel for forging billets
US3501291A (en) Method for introducing lithium into high melting alloys and steels
CN110951940B (en) Method for continuously casting nickel-based alloy by large-size round billet
JPWO2006093334A1 (en) Method for melting high vapor pressure metal-containing alloys
US3922166A (en) Alloying steel with highly reactive materials
US3193661A (en) Welding rod and electrode
US3891426A (en) Method of making copper-nickel alloys
CN112792323B (en) Electroslag remelting feeding process for nickel-based material
CN114717432B (en) Zinc-holmium alloy, method for producing same and use of container
US5974075A (en) Method of Magnetically-controllable, electroslag melting of titanium and titanium-based alloys and apparatus for carrying out same
US2804387A (en) Preparation of iron aluminum alloys
RU2557438C1 (en) Chrome-based heat resisting alloy and method of smelting of chrome-based alloy
US4375371A (en) Method for induction melting
CN103290277A (en) High-purity high-strength aluminum alloy for ship cooling system and preparation method thereof
CN109338034A (en) A kind of high reproducibility LF slag system of low cost and the method for smelting aluminum killed steel
JPH03197624A (en) Vacuum esr method for component control
CN114657420B (en) Light rare earth-zinc alloy, preparation method and application thereof and application of smelting container