JP2020033586A - MANUFACTURING METHOD OF Mg-CONTAINING HIGH Ni ALLOY - Google Patents

MANUFACTURING METHOD OF Mg-CONTAINING HIGH Ni ALLOY Download PDF

Info

Publication number
JP2020033586A
JP2020033586A JP2018159369A JP2018159369A JP2020033586A JP 2020033586 A JP2020033586 A JP 2020033586A JP 2018159369 A JP2018159369 A JP 2018159369A JP 2018159369 A JP2018159369 A JP 2018159369A JP 2020033586 A JP2020033586 A JP 2020033586A
Authority
JP
Japan
Prior art keywords
alloy
esr
slag
var
containing high
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018159369A
Other languages
Japanese (ja)
Other versions
JP7145411B2 (en
Inventor
駿介 成田
Shunsuke Narita
駿介 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2018159369A priority Critical patent/JP7145411B2/en
Publication of JP2020033586A publication Critical patent/JP2020033586A/en
Application granted granted Critical
Publication of JP7145411B2 publication Critical patent/JP7145411B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

To provide a manufacturing method of a Mg-containing high Ni alloy capable of an alloy ingot excellent in hot workability or machinability by stabilizing component amount of Mg.SOLUTION: There is provided a manufacturing method of a Mg-containing high Ni alloy for obtaining an alloy ingot through a vacuum arc remelting (VAR) process after an electroslag remelting (ESR) process by using an electrode obtained by a vacuum induction melting (VIM) process. In the ESR process, a slag having a component composition of, by mass%, CaF:20 to 45%, CaO:10 to 40%, AlO:10 to 40%, TiO:0 to 20%, and MgO:7 to 30% is used and the alloy ingot is obtained with melting rate of at least 5 kg/min. or more.SELECTED DRAWING: None

Description

本発明は、Mgを含有する高Ni合金の製造方法に関し、特に、真空誘導溶解(VIM)プロセス、エレクトロスラグ再溶解(ESR)プロセス、真空アーク再溶解(VAR)プロセスをこの順に施すトリプルメルトプロセスによるMg含有高Ni合金の製造方法に関する。   The present invention relates to a method for producing a high Ni alloy containing Mg, and more particularly to a triple melt process in which a vacuum induction melting (VIM) process, an electroslag remelting (ESR) process, and a vacuum arc remelting (VAR) process are performed in this order. And a method for producing a Mg-containing high Ni alloy by the method described above.

航空機用ジェットエンジンシャフトや火力発電用ディスクなどの品質要求の厳しい高Ni合金からなる金属製品の製造プロセスとして、VIM−ESR−VARのトリプルメルトプロセスが提案されている。このようなプロセスでは、ESRプロセスでの合金塊に鋳肌荒れが発生してしまうと、続く、VARプロセスでの操業安定性が低下し、得られる合金塊における内部性状の劣化、特に、偏析や空隙などを生じさせ易くなってしまう。   As a manufacturing process of a metal product made of a high Ni alloy with strict quality requirements, such as an aircraft jet engine shaft and a disk for thermal power generation, a triple melt process of VIM-ESR-VAR has been proposed. In such a process, when the casting surface roughness occurs in the alloy ingot in the ESR process, the operation stability in the subsequent VAR process is reduced, and the internal properties of the obtained alloy ingot are deteriorated, particularly, segregation and voids. And so on.

ここで、ESRプロセスにおける合金塊の鋳肌荒れは、用いられるスラグ成分組成や溶解速度などの操業条件に依存するとされる。   Here, the casting surface roughness of the alloy ingot in the ESR process is said to depend on operating conditions such as the slag component composition used and the dissolution rate.

例えば、特許文献1では、高Ni合金のESRプロセスとして、CaFを主成分に、Al、CaO、TiO、MgOを所定量で配合したスラグを用い且つ低溶解速度で溶解させる方法を開示している。これによれば、偏析を防止し内部性状の良好な、且つ、鋳肌荒れの少ないESR合金塊を得られるとしている。溶解速度については、再溶解する電極の径によっても異なるが、直径100〜250mmの電極では260kg/時間未満、直径300〜450mmの電極では350kg/時間未満、直径500〜650mmの電極では650kg/時間未満であることを述べている。 For example, in Patent Literature 1, as a high Ni alloy ESR process, a method is used in which CaF 2 is used as a main component and Al 2 O 3 , CaO, TiO 2 , and MgO are mixed in a predetermined amount and slag is melted at a low melting rate. Is disclosed. According to this, segregation is prevented, and an ESR alloy lump having good internal properties and less casting surface roughness can be obtained. The dissolution rate varies depending on the diameter of the electrode to be re-dissolved. Is less than.

ところで、INCONEL(登録商標)718のような高Ni合金の熱間加工性や被削性を改善する方法として、合金成分に微量のMgを添加することが提案されている。例えば、特許文献1に開示のESRプロセスのように、スラグ成分にはMgも含まれ得るため、このスラグ成分の調整で合金中のMgの量を調整し得る。   Meanwhile, as a method for improving the hot workability and machinability of a high Ni alloy such as INCONEL (registered trademark) 718, it has been proposed to add a small amount of Mg to the alloy component. For example, as in the ESR process disclosed in Patent Literature 1, Mg can be included in the slag component, and thus the amount of Mg in the alloy can be adjusted by adjusting the slag component.

例えば、特許文献2では、Mgを含む高Ni合金のESRプロセスにおいて、スラグ成分を平衡式に基づいて調整し、合金成分の成分量、特に、Ti、Al、Mgの成分量を調整する方法を開示している。TiとAl、TiとMg、AlとMgのそれぞれ2元素の合金中の質量比率とスラグ中の対応するスラグ成分のモル分率との関係を規定し、ESRプロセスの初期から終期までの操業を安定化させ、Ti、Al、Mgにおいて安定した歩留まりを得られるとしている。   For example, Patent Document 2 discloses a method of adjusting a slag component based on an equilibrium equation and adjusting a component amount of an alloy component, particularly, a component amount of Ti, Al, and Mg in an ESR process of a high Ni alloy containing Mg. Has been disclosed. The relationship between the mass ratio in the alloy of each of the two elements Ti and Al, Ti and Mg, and Al and Mg and the molar fraction of the corresponding slag component in the slag is defined, and the operation from the initial to the end of the ESR process is performed It stabilizes and can obtain a stable yield in Ti, Al, and Mg.

特開平9−194962号公報JP-A-9-194962 特開昭63−219539号公報JP-A-63-21939

Mgを含む高Ni合金のトリプルメルトプロセスでは、ESRプロセスでの合金塊の鋳肌荒れがより顕著となり、結果として、VARプロセス後の合金塊でのMgの成分量が不安定になる傾向が見られた。   In the triple melt process of a high Ni alloy containing Mg, the casting surface roughness of the alloy ingot in the ESR process becomes more conspicuous, and as a result, the amount of Mg in the alloy ingot after the VAR process tends to be unstable. Was.

本発明は、以上のような状況に鑑みてなされたものであって、その目的とするところは、Mgの成分量を安定化させることで熱間加工性や被削性などに優れる合金塊を得ることのできるMg含有高Ni合金の製造方法を提供することにある。   The present invention has been made in view of the above situation, and an object of the present invention is to stabilize the amount of Mg to form an alloy lump having excellent hot workability and machinability. An object of the present invention is to provide a method for producing an Mg-containing high Ni alloy that can be obtained.

本発明によるMg含有高Ni合金の製造方法は、真空誘導溶解(VIM)プロセスにより得られた電極を用いてエレクトロスラグ再溶解(ESR)プロセス後に、真空アーク再溶解(VAR)プロセスを経て合金塊を得るMg含有高Ni合金の製造方法であって、前記ESRプロセスにおいて、質量%で、CaF:20〜45%、CaO:10〜40%、Al:10〜40%、TiO:0〜20%、MgO:7〜30%の成分組成を有するスラグを用い、少なくとも5kg/分以上の溶解速度で合金塊を得ることを特徴とする。 The method for producing a Mg-containing high Ni alloy according to the present invention comprises the steps of: using an electrode obtained by a vacuum induction melting (VIM) process; an electroslag remelting (ESR) process; and a vacuum arc remelting (VAR) process. Which is a method for producing a Mg-containing high Ni alloy for obtaining CaF 2 : 20 to 45%, CaO: 10 to 40%, Al 2 O 3 : 10 to 40%, and TiO 2 by mass% in the ESR process. : A slag having a composition of 0 to 20% and MgO: 7 to 30% is used to obtain an alloy lump at a melting rate of at least 5 kg / min or more.

かかる発明によれば、ESR−VARプロセスを通じてMgの成分量を安定化させ、熱間加工性や被削性などに優れるMg含有高Ni合金からなる合金塊を得られるのである。   According to this invention, the amount of Mg is stabilized through the ESR-VAR process, and an alloy lump made of a Mg-containing high Ni alloy excellent in hot workability, machinability and the like can be obtained.

上記した発明において、前記VARプロセスでMg量を減じるように制御することを特徴としてもよい。かかる発明によれば、ESRプロセスでMgの歩留まりを高めて、続く、VARプロセスでMgの成分量を安定的に制御し、内部性状に優れ、熱間加工性や被削性などに優れるMg含有高Ni合金からなる合金塊を得られるのである。   In the above invention, the VAR process may be controlled to reduce the amount of Mg. According to the invention, the Mg content is improved by increasing the yield of Mg by the ESR process, and stably controlling the amount of Mg by the VAR process, and is excellent in internal properties and hot workability and machinability. An alloy lump made of a high Ni alloy can be obtained.

Mg含有高Ni合金の製造方法を示すフローチャートである。5 is a flowchart showing a method for producing a Mg-containing high Ni alloy. 製造試験により得られたESR合金塊の諸状態の一覧である。It is a list of various states of the ESR alloy lump obtained by the production test. (a)比較例3及び(b)実施例1によるESR合金塊の鋳肌の写真である。5A is a photograph of a casting surface of an ESR alloy lump according to Comparative Example 3 and Example 1;

本発明による1つの実施例としてのMg含有高Ni合金の製造方法について、図1に沿って説明する。   A method for producing a Mg-containing high Ni alloy as one embodiment according to the present invention will be described with reference to FIG.

ここで、トリプルメルトプロセスにより製造される合金は、少なくともMgを含有するNi量の高いNi基合金又はFe基合金であって、例えば、INCONEL(登録商標)718のような合金成分組成に、Mgを与えられた成分組成の合金である。Mgは、後述するように、熱間加工性や被削性等を向上させる目的で添加される。   Here, the alloy manufactured by the triple melt process is a Ni-based alloy or an Fe-based alloy containing at least Mg and having a high Ni content. For example, an alloy component composition such as INCONEL (registered trademark) 718 is made to contain Mg. Is an alloy having a component composition given by Mg is added for the purpose of improving hot workability, machinability, and the like, as described later.

図1に示すように、例えばVIM(真空誘導溶解)プロセスによってESR(エレクトロスラグ再溶解)プロセスに用いる電極を製造する(S1)。ESRプロセスに用いる電極の製造については、公知であるのでここでは詳細な説明を省略する。   As shown in FIG. 1, an electrode used for an ESR (electroslag remelting) process is manufactured by, for example, a VIM (vacuum induction melting) process (S1). Since the production of the electrodes used in the ESR process is well known, a detailed description is omitted here.

次に、ESRプロセスによってESR合金塊を得る(S2)。ここで用いるスラグの成分組成は、質量%で、CaF:20〜45%、CaO:10〜40%、Al:10〜40%、TiO:0〜20%、MgO:7〜30%とされる。特に、Mgは蒸気圧が低く、後述するVAR(真空アーク再溶解)プロセスでは合金溶湯中から揮発して減少しやすい。そこで、ESRプロセスでは、上記した成分組成のスラグを用いて合金中のMgの歩留まりを高めるように調整することで、VARプロセスにおいて揮発した後に所定量のMgを含有させるようにする。 Next, an ESR alloy lump is obtained by the ESR process (S2). Chemical composition of the slag, as used herein, in mass%, CaF 2: 20~45%, CaO: 10~40%, Al 2 O 3: 10~40%, TiO 2: 0~20%, MgO: 7~ 30%. In particular, Mg has a low vapor pressure, and is likely to volatilize from the molten alloy and decrease in a VAR (vacuum arc remelting) process described later. Therefore, in the ESR process, a predetermined amount of Mg is contained after volatilization in the VAR process by adjusting the yield of Mg in the alloy by using the slag having the above-described composition.

上記したスラグの成分組成について説明する。   The component composition of the above slag will be described.

特に、MgOについては、得られるESR合金塊においてMgの歩留まりを高めてその含有量を高めるよう、特許文献1や2に開示のCaO−MgO−Al−TiO系スラグよりも、比較的多く含有される。一方、過剰の含有はESRプロセスの安定した操業を阻害する。これらのことから、MgOは、その含有量を7〜30質量%とされ、より好ましくは7〜20質量%とされる。 In particular, for the MgO, to enhance the content thereof by increasing the yield of Mg in the obtained ESR alloy ingot, than CaO-MgO-Al 2 O 3 -TiO 2 slag disclosed in Patent Document 1 and 2, comparative Mostly contained. On the other hand, an excessive content hinders the stable operation of the ESR process. For these reasons, the content of MgO is set to 7 to 30% by mass, and more preferably 7 to 20% by mass.

その他のスラグ成分の含有量については、上記したMgOの含有量に合わせて、以下のように定められる。   The content of other slag components is determined as follows according to the content of MgO described above.

CaFは、良好な鋳肌を得られるようスラグの粘度を低くして流動性を確保する。一方、過剰の含有は、比電導度を大きくし過ぎてしまい、スラグの発熱量不足によって鋳肌を悪化させてしまう。これらのことから、CaFは、その含有量を20〜45質量%とされ、より好ましくは25〜35質量%とされる。 CaF 2 secures fluidity by lowering the viscosity of the slag so as to obtain a good casting surface. On the other hand, an excessive content causes the specific conductivity to be too large, and deteriorates the casting surface due to insufficient heat generation of the slag. For these reasons, CaF 2 is the content of 20 to 45 wt%, and more preferably, 25 to 35 mass%.

CaOは、Alとの含有量のバランスにおいてスラグの溶融点を低下させて鋳肌を良好に保つ。一方、過剰の含有は却って溶融点を上昇させてしまい、結果、鋳肌を悪化させる。これらのことから、CaOは、その含有量を10〜40質量%とされ、より好ましくは25〜30質量%とされる。 CaO lowers the melting point of slag in the balance of the content with Al 2 O 3, and keeps the casting surface in good condition. On the other hand, an excessive content rather raises the melting point and consequently worsens the casting surface. For these reasons, the content of CaO is set to 10 to 40% by mass, more preferably 25 to 30% by mass.

Alは、電気伝導度を低く保ちスラグの発熱量を確保し、CaOとの含有量のバランスにおいてスラグの溶融点を低下させて鋳肌を良好に保つ。一方、過剰の含有は、スラグの粘度及び溶融点を上昇させて鋳肌を悪化させてしまう。これらのことから、Alは、その含有量を10〜40質量%とされ、より好ましくは25〜30質量%とされる。 Al 2 O 3 keeps the electrical conductivity low, secures the calorific value of the slag, lowers the melting point of the slag in the balance of the content with CaO, and keeps the casting surface good. On the other hand, an excessive content increases the viscosity and melting point of the slag and deteriorates the casting surface. For these reasons, the content of Al 2 O 3 is set to 10 to 40% by mass, and more preferably 25 to 30% by mass.

TiOは、電極の合金にTiを含有するときにその歩留まりを安定的に向上させるので、選択的に配合され得る。一方、過剰の含有はTiを過剰に合金に供給して合金の成分組成の制御を困難としてしまう。これらのことから、TiOは、その含有量を0〜20質量%とされ、より好ましくは2.0〜5.0質量%とされる。 TiO 2 can be selectively compounded because it can stably improve the yield when Ti is contained in the alloy of the electrode. On the other hand, an excessive content causes excessive supply of Ti to the alloy, making it difficult to control the composition of the alloy. From these, TiO 2 is the content of 0 to 20 wt%, and more preferably, 2.0 to 5.0 mass%.

ESRプロセスでは、以上のようなスラグを用いるとともに、その溶解速度を5kg/分以上に高めて操業される。上記したような成分組成のスラグでMgを多く含む高Ni合金によるESR合金塊を得ようとすると、その溶解速度が低い場合、得られるESR合金塊の鋳肌が劣化してしまうことが見いだされた。そのため、このような溶解速度の下限値を設けて良好な鋳肌を得ようとするのである。   In the ESR process, the slag as described above is used, and the dissolution rate is increased to 5 kg / min or more. When it is attempted to obtain an ESR alloy ingot of a high Ni alloy containing a large amount of Mg with a slag having the above-described composition, it is found that when the dissolution rate is low, the casting surface of the obtained ESR alloy ingot is deteriorated. Was. Therefore, the lower limit of the dissolution rate is set to obtain a good casting surface.

最後に、ESR合金塊を消耗電極としたVARプロセスを経て、VAR合金塊を得る(S3)。これにより、VIM−ESR−VARのトリプルメルトプロセスを経て所望の合金塊が得られる。   Finally, a VAR alloy lump is obtained through a VAR process using the ESR alloy lump as a consumable electrode (S3). Thereby, a desired alloy ingot is obtained through the VIM-ESR-VAR triple melt process.

VIM−ESR−VARのトリプルメルトプロセスにおいて、VARプロセスにおけるMgの歩留まりを考慮して、ESRプロセスにおけるESR合金塊のMg量がスラグの成分組成により調整される。これとともに、VARプロセスにおいて得られる合金塊の内部性状とともにMgの歩留まりを安定的に制御できるよう、ESRプロセスにおけるESR合金塊の鋳肌を良好にする調整が必要となる。ここで、前記したスラグの成分組成では、溶解速度を高めてこれを達成し得ることを見いだした。なお、ESR合金塊の内部性状は、その後に、VARプロセスを経るため、過度な劣化でなければ影響を有しない。結果として、Mgを所定量含む内部性状に優れた合金塊を安定して製造できるのである   In the triple melt process of VIM-ESR-VAR, the Mg content of the ESR alloy ingot in the ESR process is adjusted by the component composition of the slag in consideration of the yield of Mg in the VAR process. At the same time, it is necessary to adjust the cast surface of the ESR alloy ingot in the ESR process so that the yield of Mg and the internal properties of the alloy ingot obtained in the VAR process can be stably controlled. Here, it has been found that the above-mentioned composition of the slag can achieve this by increasing the dissolution rate. Note that the internal properties of the ESR alloy ingot have no effect unless excessively deteriorated because they undergo a VAR process thereafter. As a result, it is possible to stably produce an alloy lump containing a predetermined amount of Mg and having excellent internal properties.

なお、得られるVAR合金塊におけるMg含有高Ni合金は、例えばNiを38質量%以上含むものとすることもできる。さらに、Ti及び/又はAlを含むものとすることもできる。このような偏析しやすい成分組成のMg含有高Ni合金においても、上記した製造方法によって、内部性状に優れ、熱間加工性や被削性などに優れるVAR合金塊を得ることができる。   The Mg-containing high Ni alloy in the obtained VAR alloy ingot may contain, for example, 38% by mass or more of Ni. Further, it may contain Ti and / or Al. Even in the Mg-containing high Ni alloy having a component composition that is easily segregated, a VAR alloy lump having excellent internal properties and excellent hot workability and machinability can be obtained by the above-described manufacturing method.

[製造試験]
INCONEL(登録商標)718相当材をMg含有高Ni合金として、ESR合金塊を製造する試験を行ったので、その結果について説明する。この試験は、上記したVIM−ESR−VARのトリプルメルトプロセスのうち、最終製品であるVAR合金塊の品質に最も影響を与える消耗電極であるESR合金塊を得るESRプロセスの試験である。
[Manufacturing test]
A test for producing an ESR alloy ingot was performed using a material equivalent to INCONEL (registered trademark) 718 as a Mg-containing high Ni alloy, and the results will be described. This test is a test of the above-described VIM-ESR-VAR triple melt process for obtaining an ESR alloy lump which is a consumable electrode which most affects the quality of the final product VAR alloy lump.

ESRプロセスは、図2に示す各操業条件に従った。使用したスラグは、質量分率で示された各スラグ成分で配合されたものである。また、各実施例及び比較例における溶解速度を示した。なお、各電極はVIMプロセスにより製造された。   The ESR process followed the operating conditions shown in FIG. The slag used was blended with each slag component indicated by mass fraction. In addition, the dissolution rates in the respective examples and comparative examples are shown. Each electrode was manufactured by a VIM process.

スラグ成分のMgOの含有量は、比較例1において0.0質量%、比較例2及び比較例3において5.0質量%、実施例1において7.0質量%、実施例2において15.0質量%とした。また、溶解速度は、比較例1及び比較例2において4.5kg/分、比較例3において4kg/分、実施例1において6kg/分、実施例2において7.5kg/分とした。   The MgO content of the slag component was 0.0% by mass in Comparative Example 1, 5.0% by mass in Comparative Examples 2 and 3, 7.0% by mass in Example 1, and 15.0 in Example 2. % By mass. The dissolution rate was 4.5 kg / min in Comparative Examples 1 and 2, 4 kg / min in Comparative Example 3, 6 kg / min in Example 1, and 7.5 kg / min in Example 2.

その結果、得られたESR合金塊の鋳肌は比較例1、比較例2及び比較例3において不良(×)であり、実施例1及び実施例2において良好(〇)であった。また、Mgの歩留まりは、比較例において低く、実施例において高かった。つまり、上記した成分組成のスラグを用いて溶解速度を5kg/分以上とするESRプロセスによって、良好な鋳肌を有するとともに、Mgの含有量の多いESR合金塊を得られるのである。なお、Mgの歩留まりは、ESRプロセスに用いる電極の合金中のMg濃度(B)に対するESR合金塊の合金中のMg濃度(A)の割合であってA/B×100%として算出されるものである。Aについては3か所以上で測定し、その値の範囲を図2に示した。   As a result, the cast surface of the obtained ESR alloy ingot was poor (x) in Comparative Example 1, Comparative Example 2 and Comparative Example 3, and good (1) in Example 1 and Example 2. Further, the yield of Mg was low in the comparative example and high in the example. In other words, an ESR process using a slag having the above-described composition and having a melting rate of 5 kg / min or more can provide an ESR alloy ingot having a good cast surface and a high Mg content. The yield of Mg is the ratio of the Mg concentration (A) in the alloy of the ESR alloy mass to the Mg concentration (B) in the alloy of the electrode used in the ESR process, and is calculated as A / B × 100%. It is. About A, it measured at three or more places, and the range of the value was shown in FIG.

なお、図3(a)に示すように、比較例3のESR合金塊において、その鋳肌は表面に複数の湯流れを伴って大きく荒れており、スラグスキンも10mm程度と非常に厚かった。   As shown in FIG. 3A, in the ESR alloy ingot of Comparative Example 3, the casting surface was greatly roughened with a plurality of molten metal flows on the surface, and the slag skin was very thick, about 10 mm.

これに対し、図3(b)に示すように、実施例1のESR合金塊において、その鋳肌は非常に平滑であり、スラグスキンも2mm以下と薄かった。   On the other hand, as shown in FIG. 3B, in the ESR alloy ingot of Example 1, the casting surface was very smooth, and the slag skin was as thin as 2 mm or less.

実施例1や実施例2に示すようなESR合金塊を消耗電極としてVARプロセスを経ることで、VIM−ESR−VARのトリプルメルトプロセスとなる。このVARプロセスにおいては、Mg量が揮発により減じるよう制御される。ここで、VARプロセスにおいて揮発される量を見込んだMgの含有量に調整された消耗電極をESRプロセスで得ているので、熱間加工性や被削性などに優れるVAR合金塊を得ることができる。   By performing the VAR process using the ESR alloy lump as the consumable electrode as shown in the first and second embodiments, a triple melt process of VIM-ESR-VAR is achieved. In the VAR process, control is performed so that the amount of Mg is reduced by volatilization. Here, since the consumable electrode adjusted to the content of Mg in consideration of the amount volatilized in the VAR process is obtained by the ESR process, it is possible to obtain a VAR alloy lump excellent in hot workability and machinability. it can.

以上、本発明の代表的な実施例及びこれに基づく改変例を説明したが、本発明は必ずしもこれらに限定されるものではなく、当業者であれば、本発明の主旨又は添付した特許請求の範囲を逸脱することなく、種々の代替実施例及び改変例を見出すことができるであろう。

The representative embodiments of the present invention and the modifications based thereon have been described above. However, the present invention is not necessarily limited to these embodiments, and those skilled in the art will appreciate the spirit of the present invention or the attached claims. Various alternatives and modifications could be found without departing from the scope.

Claims (2)

真空誘導溶解(VIM)プロセスにより得られた電極を用いてエレクトロスラグ再溶解(ESR)プロセス後に、真空アーク再溶解(VAR)プロセスを経て合金塊を得るMg含有高Ni合金の製造方法であって、
前記ESRプロセスにおいて、質量%で、
CaF:20〜45%、
CaO:10〜40%、
Al:10〜40%、
TiO:0〜20%、
MgO:7〜30%、
の成分組成を有するスラグを用い、少なくとも5kg/分以上の溶解速度で合金塊を得ることを特徴とするMg含有高Ni合金の製造方法
A method for producing a Mg-containing high Ni alloy, comprising obtaining an alloy lump through a vacuum arc remelting (VAR) process after an electroslag remelting (ESR) process using an electrode obtained by a vacuum induction melting (VIM) process. ,
In the ESR process, in mass%,
CaF 2: 20~45%,
CaO: 10 to 40%,
Al 2 O 3 : 10 to 40%,
TiO 2: 0~20%,
MgO: 7 to 30%,
A method for producing an Mg-containing high Ni alloy, comprising using a slag having the following composition to obtain an alloy lump at a melting rate of at least 5 kg / min or more:
前記VARプロセスでMg量を減じるように制御することを特徴とする請求項1記載のMg含有高Ni合金の製造方法。

2. The method according to claim 1, wherein the VAR process controls the amount of Mg to be reduced.

JP2018159369A 2018-08-28 2018-08-28 Method for producing Mg-containing high-Ni alloy Active JP7145411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018159369A JP7145411B2 (en) 2018-08-28 2018-08-28 Method for producing Mg-containing high-Ni alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018159369A JP7145411B2 (en) 2018-08-28 2018-08-28 Method for producing Mg-containing high-Ni alloy

Publications (2)

Publication Number Publication Date
JP2020033586A true JP2020033586A (en) 2020-03-05
JP7145411B2 JP7145411B2 (en) 2022-10-03

Family

ID=69669124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018159369A Active JP7145411B2 (en) 2018-08-28 2018-08-28 Method for producing Mg-containing high-Ni alloy

Country Status (1)

Country Link
JP (1) JP7145411B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112359218A (en) * 2021-01-13 2021-02-12 北京科技大学 Method for refining carbide in large-size GH4738 cast ingot

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59129739A (en) * 1983-01-14 1984-07-26 Sumitomo Metal Ind Ltd Production of alloy
JPH05271815A (en) * 1992-03-23 1993-10-19 Japan Steel Works Ltd:The Production of ni-fe based superheat resistant alloy ingot
JPH09194962A (en) * 1996-01-12 1997-07-29 Japan Steel Works Ltd:The Slag for electroslag remelting for ni base superalloy material and method for electroslag remelting for the same superalloy material
JP2005248187A (en) * 2004-02-05 2005-09-15 Hitachi Metals Ltd Method for manufacturing maraging steel, and maraging steel
JP2014043620A (en) * 2012-08-28 2014-03-13 Nippon Steel & Sumitomo Metal METHOD OF MANUFACTURING INGOT OF Ni-BASED SUPERALLOY
JP2016069726A (en) * 2014-09-29 2016-05-09 日立金属株式会社 PRODUCTION METHOD FOR Fe-Ni-BASED SUPERALLOY
WO2016209591A1 (en) * 2015-06-24 2016-12-29 Ati Properties, Inc. Alloy melting and refining method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59129739A (en) * 1983-01-14 1984-07-26 Sumitomo Metal Ind Ltd Production of alloy
JPH05271815A (en) * 1992-03-23 1993-10-19 Japan Steel Works Ltd:The Production of ni-fe based superheat resistant alloy ingot
JPH09194962A (en) * 1996-01-12 1997-07-29 Japan Steel Works Ltd:The Slag for electroslag remelting for ni base superalloy material and method for electroslag remelting for the same superalloy material
JP2005248187A (en) * 2004-02-05 2005-09-15 Hitachi Metals Ltd Method for manufacturing maraging steel, and maraging steel
JP2014043620A (en) * 2012-08-28 2014-03-13 Nippon Steel & Sumitomo Metal METHOD OF MANUFACTURING INGOT OF Ni-BASED SUPERALLOY
JP2016069726A (en) * 2014-09-29 2016-05-09 日立金属株式会社 PRODUCTION METHOD FOR Fe-Ni-BASED SUPERALLOY
WO2016209591A1 (en) * 2015-06-24 2016-12-29 Ati Properties, Inc. Alloy melting and refining method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
荻野和巳: "技術資料 エレクトロスラグ再溶解スラグについて", 日本金属学会会報, vol. 第18巻第10号, JPN7022002225, 1979, JP, pages 684 - 693, ISSN: 0004772998 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112359218A (en) * 2021-01-13 2021-02-12 北京科技大学 Method for refining carbide in large-size GH4738 cast ingot

Also Published As

Publication number Publication date
JP7145411B2 (en) 2022-10-03

Similar Documents

Publication Publication Date Title
CN106636707A (en) Nickel-base high-temperature alloy GH4720Li smelting technique
CN102534315B (en) Al-Mo intermediate alloy and preparing method thereof
JP5632343B2 (en) Electroslag overlay welding flux
CN102912152B (en) Vacuum arc remelting method for inhibiting macrosegregation of high-temperature alloy with high content of Nb
CN112267029B (en) Smelting method for controlling element burning loss of nickel-based alloy electroslag ingot of high-aluminum titanium
CN102534316B (en) Al-Mo-W-Ti intermediate alloy and preparing method thereof
CN104152710A (en) Refining slag for electroslag remelting, and smelting method and application of refining slag
CN105734302A (en) GH4169 alloy steel electroslag remelting refining slag and method for performing electroslag re-melting on GH4169 alloy steel
CN111961875A (en) Smelting method for controlling aluminum-titanium burning loss of iron-nickel-based high-temperature alloy electroslag ingot
CN105039733A (en) Electroslag remelting method for Ti-contained nickel-base superalloy
JP5818132B2 (en) Ingot manufacturing method
CN105950880A (en) Sulfur bearing steel electro-slag remelting process
JP2020033586A (en) MANUFACTURING METHOD OF Mg-CONTAINING HIGH Ni ALLOY
JP2022528180A (en) Die-cast aluminum alloy, its manufacturing method and application
CN105714134A (en) Vacuum smelting process for nickel-based alloy containing aluminium, titanium, boron and zirconium
RU2470084C1 (en) Foundry alloy for casting heat-resistant titanium alloy and method of its making
CN102560213B (en) Aluminum-niobium interalloy and preparation method thereof
JPH09194962A (en) Slag for electroslag remelting for ni base superalloy material and method for electroslag remelting for the same superalloy material
KR102283343B1 (en) Slag for electro slag remelting and the method for preparing ingot using the same
CN104498770A (en) WSTi2815SC flame-retardant titanium alloy and preparation method thereof
JP6513530B2 (en) Deoxidation method of Ti-Si alloy
JP2565448B2 (en) Method for producing Ni-Fe based super heat-resistant alloy ingot
JP6982795B2 (en) Manufacturing method of boron-containing stainless steel
JP2565447B2 (en) Method for producing ingot of Ni-base super heat-resistant alloy
CN106544532B (en) Vacuum induction controls the method for content of magnesium and the method for preparing nickel base superalloy in nickel base superalloy in smelting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220901

R150 Certificate of patent or registration of utility model

Ref document number: 7145411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150