KR20060075363A - Method of forming a gate electrode pattern in flash memory device - Google Patents

Method of forming a gate electrode pattern in flash memory device Download PDF

Info

Publication number
KR20060075363A
KR20060075363A KR1020040114140A KR20040114140A KR20060075363A KR 20060075363 A KR20060075363 A KR 20060075363A KR 1020040114140 A KR1020040114140 A KR 1020040114140A KR 20040114140 A KR20040114140 A KR 20040114140A KR 20060075363 A KR20060075363 A KR 20060075363A
Authority
KR
South Korea
Prior art keywords
gate electrode
forming
floating gate
flash memory
memory device
Prior art date
Application number
KR1020040114140A
Other languages
Korean (ko)
Inventor
이원희
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1020040114140A priority Critical patent/KR20060075363A/en
Publication of KR20060075363A publication Critical patent/KR20060075363A/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/4234Gate electrodes for transistors with charge trapping gate insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66833Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a charge trapping gate insulator, e.g. MNOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

본 발명은 플래쉬 메모리소자의 게이트 전극 패턴 형성방법에 관한 것으로, 본 발명의 사상은 패터닝된 플로팅 게이트 전극용 실리콘막이 형성된 반도체 기판 상에 이온주입공정을 수행하여, 패터닝된 플로팅 게이트 전극 측벽에 이온주입영역을 형성하는 단계, 상기 결과물 전면에 산화공정을 수행하여, 상기 플로팅 게이트 전극용 폴리실리콘막의 경계를 따라 형성되되, 모서리 부분이 두껍게 라운딩된 산화막을 형성하는 단계 및 상기 결과물 상에 유전막을 형성하는 단계를 포함한다.
The present invention relates to a method of forming a gate electrode pattern of a flash memory device, and the idea of the present invention is to perform ion implantation on a semiconductor substrate on which a silicon film for a patterned floating gate electrode is formed, thereby implanting ions into the sidewall of the patterned floating gate electrode. Forming a region, and performing an oxidation process on the entire surface of the resultant to form an oxide film formed along a boundary of the polysilicon layer for the floating gate electrode and having a thick rounded corner; and forming a dielectric layer on the resultant. Steps.

ONO막ONO membrane

Description

플래쉬 메모리소자의 게이트 전극 패턴 형성방법{Method of forming a gate electrode pattern in flash memory device} Method of forming a gate electrode pattern in flash memory device             

도 1 내지 도 4는 본 발명에 따른 플래쉬 메모리소자의 게이트 전극 패턴 형성방법을 설명하기 위한 단면도들이다.
1 to 4 are cross-sectional views illustrating a method of forming a gate electrode pattern of a flash memory device according to the present invention.

*도면의 주요부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

10: 반도체 기판 12: 터널 산화막10 semiconductor substrate 12 tunnel oxide film

14: 제1 폴리 실리콘막 16: 제2 폴리 실리콘막14: first polysilicon film 16: second polysilicon film

18: 소자 분리막 20: SiO2가 이온주입된 영역18: device isolation layer 20: a region implanted with SiO 2

22: 산화막 24: ONO막
22: oxide film 24: ONO film

본 발명은 반도체 소자의 제조방법에 관한 것으로, 더욱 상세하게는 플래쉬 메모리소자의 게이트 전극 패턴 형성방법에 관한 것이다. The present invention relates to a method of manufacturing a semiconductor device, and more particularly, to a method of forming a gate electrode pattern of a flash memory device.

최근 반도체 소자의 고집적화 고밀도화됨에 따라 플로팅 게이트 전극 패턴과 콘트롤 게이트 전극 패턴 사이에 형성되는 ONO막질의 두께또한 감소하게 된다. In recent years, as the integration density of semiconductor devices increases, the thickness of the ONO film formed between the floating gate electrode pattern and the control gate electrode pattern is also reduced.

상기 ONO막의 두께가 얇아지게 됨으로써 게이트 전극 패턴들간의 간섭효과가 증가되어 소자의 디스터브(disturb)를 증가시키게 되는 문제점이 있다. As the thickness of the ONO film becomes thinner, there is a problem in that interference effects between gate electrode patterns are increased to increase the disturbance of the device.

또한, 얇아진 ONO막으로 인해, 이후 형성될 콘트롤 게이트전극의 에지부분에서 강한 전계에 의해 발생되어 ONO막 측벽의 누설전류를 증가시키게 되는 문제점이 있다.
Further, due to the thinned ONO film, there is a problem in that it is generated by a strong electric field at the edge portion of the control gate electrode to be formed later, thereby increasing the leakage current of the sidewall of the ONO film.

상술한 문제점을 해결하기 위한 본 발명의 목적은 게이트 전극 패턴 간의 간섭효과를 감소시켜 소자의 디스터브를 감소시키고, ONO막 측벽의 누설전류를 감소시키게 하는 플래쉬 메모리소자의 게이트 전극 패턴 형성방법을 제공함에 있다.
SUMMARY OF THE INVENTION An object of the present invention is to provide a method of forming a gate electrode pattern of a flash memory device which reduces interference of the device by reducing interference between gate electrode patterns and reduces leakage current of the sidewall of the ONO film. have.

상술한 목적을 달성하기 위한 본 발명의 사상은 패터닝된 플로팅 게이트 전극용 실리콘막이 형성된 반도체 기판 상에 이온주입공정을 수행하여, 패터닝된 플로팅 게이트 전극 측벽에 이온주입영역을 형성하는 단계, 상기 결과물 전면에 산화공정을 수행하여, 상기 플로팅 게이트 전극용 폴리실리콘막의 경계를 따라 형성되되, 모서리 부분이 두껍게 라운딩된 산화막을 형성하는 단계 및 상기 결과물 상에 유전막을 형성하는 단계를 포함한다. The idea of the present invention for achieving the above object is to form an ion implantation region on the sidewall of the patterned floating gate electrode by performing an ion implantation process on the semiconductor substrate on which the silicon film for the patterned floating gate electrode is formed, the entire surface of the resultant And forming an oxide film formed along a boundary of the polysilicon film for the floating gate electrode and having a thick rounded corner, and forming a dielectric film on the resultant.

상기 이온주입영역은 산소이온이 주입된 상기 반도체 기판을 800℃의 온도인 챔버 내부로 주입한 후 챔버 내부를 900~ 1300℃의 온도로 유지하면서 산소 분위기하에 기판을 산화시킴으로써 형성하는 것이 바람직하다. The ion implantation region is preferably formed by injecting the semiconductor substrate into which oxygen ions are implanted into a chamber at a temperature of 800 ° C., and then oxidizing the substrate under an oxygen atmosphere while maintaining the chamber at a temperature of 900 to 1300 ° C.

상기 반도체 기판에 주입된 산소이온은 상기 플로팅 게이트 전극용 실리콘막 측벽 내부에 10~ 20Å 되도록 하기 위해, 10~ 50 KeV의 이온주입 에너지, 1.0~ 5.0E17의 도즈량을 갖는 공정조건에서 수행하는 이온주입공정을 통해 주입되는 것이 바람직하다. Oxygen ions implanted into the semiconductor substrate are ionized at a process condition having an ion implantation energy of 10 to 50 KeV and a dose amount of 1.0 to 5.0E17 so as to allow 10 to 20 kW inside the silicon film sidewall of the floating gate electrode. It is preferable to inject through the injection process.

상기 플로팅 게이트 전극용 실리콘막의 경계를 따라 형성되면서 동시에 모서리 부분이 두껍게 라운딩된 산화막은 20Å 정도의 두께를 가지도록 하는 것이 바람직하다.
It is preferable that the oxide film formed along the boundary of the floating gate electrode silicon film and at the same time the corner portion is thickly rounded has a thickness of about 20 GPa.

이하, 첨부 도면을 참조하여 본 발명의 실시 예를 상세히 설명한다. 그러나, 본 발명의 실시예들은 여러 가지 다른 형태로 변형될 수 있지만 본 발명의 범위가 아래에서 상술하는 실시예들로 인해 한정되어지는 것으로 해석되어져서는 안 된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되어지는 것이다. 또한 어떤 막이 다른 막 또는 반도체 기판의 '상'에 있다 또는 접촉하고 있다 라고 기재되는 경우에, 상기 어떤 막은 상기 다른 막 또는 반도체 기판에 직접 접촉하여 존재할 수 있고, 또는 그 사이에 제 3의 막이 개재되어질 수도 있다.
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, embodiments of the present invention may be modified in many different forms, but the scope of the present invention should not be construed as being limited by the embodiments described below. Embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art. In addition, when a film is described as being on or in contact with another film or semiconductor substrate, the film may be in direct contact with the other film or semiconductor substrate, or a third film is interposed therebetween. It may be done.

도 1 내지 도 4는 본 발명에 따른 플래쉬 메모리소자의 게이트 전극 패턴 형성방법을 설명하기 위한 단면도들이다. 1 to 4 are cross-sectional views illustrating a method of forming a gate electrode pattern of a flash memory device according to the present invention.

도 1을 참조하면, 반도체 기판(10)상에 터널산화막(12), 플로팅 게이트전극용 제1 폴리실리콘막(14) 및 패드 질화막(미도시)을 순차적으로 형성한다.Referring to FIG. 1, a tunnel oxide film 12, a first polysilicon film 14 for floating gate electrodes 14, and a pad nitride film (not shown) are sequentially formed on the semiconductor substrate 10.

상기 결과물의 소정영역에 트렌치 형성용 포토레지스트 패턴(미도시)을 형성한 후 이를 식각마스크로 식각공정을 수행하여 트렌치(미도시)를 형성한다. 이 트렌치(미도시) 내부에 갭필(gap fill)특성이 우수한 HDP(HighDensity plasma)산화막과 같은 산화막이 채워지도록 증착한 후 화학적 기계적 연마(chemical mechanical polishing: CMP)공정 등의 평탄화 공정을 수행하여 소자 분리막(18)의 형성을 완료한다. 이어서, 상기 제1 폴리 실리콘막(14) 상에 형성된 패드 질화막(미도시)을 제거한다. After forming a photoresist pattern (not shown) for forming a trench in a predetermined region of the resultant, a trench (not shown) is formed by performing an etching process with an etching mask. The trench (not shown) is deposited to fill an oxide film such as a high density plasma (HDP) oxide film having excellent gap fill characteristics, and then a planarization process such as chemical mechanical polishing (CMP) process is performed. The formation of the separator 18 is completed. Subsequently, a pad nitride film (not shown) formed on the first polysilicon film 14 is removed.

상기 소자 분리막(18)이 형성된 결과물 전면에 플로팅 게이트전극용 제2 폴리 실리콘막을 형성하고, 상기 제2 폴리 실리콘막의 소정영역을 식각하여 패터닝된 제2 폴리 실리콘막(16)을 형성한다. A second polysilicon film for floating gate electrodes is formed on the entire surface of the resultant device on which the device isolation layer 18 is formed, and a predetermined region of the second polysilicon film is etched to form a patterned second polysilicon film 16.

도 2를 참조하면, 상기 패터닝된 플로팅 게이트전극용 제2 폴리 실리콘막(16) 상부에 이온주입공정을 수행하여, SiO2이온이 주입된 영역(20)을 형성한다. Referring to FIG. 2, an ion implantation process is performed on the patterned second polysilicon layer 16 for floating gate electrode to form a region 20 implanted with SiO 2 ions.

상기 이온주입공정은 SiO2 이온을 상기 제2 폴리 실리콘막의 측벽영역에 틸트되도록 주입함으로써 수행되는 데, 이로 인해 상기 제2 폴리 실리콘막의 측벽에 SiO2이온이 주입된 영역(20)이 형성된다. The ion implantation process is performed by implanting SiO 2 ions into the sidewall region of the second polysilicon film, thereby forming a region 20 in which SiO 2 ions are implanted in the sidewall of the second polysilicon film.

상기 SiO2이온이 주입된 영역(20)은 산소이온이 주입된 실리콘 기판을 800 ℃ 정도의 온도인 챔버 내부로 주입한 후 챔버 내부의 온도를 900~ 1300℃ 정도의 유지하면서 산소 분위기하에 기판을 산화시킴으로써 형성한다.The region 20 into which the SiO 2 ions are implanted is implanted into the chamber at which the oxygen ion is implanted into the chamber at a temperature of about 800 ° C., and then the substrate is maintained under an oxygen atmosphere while maintaining the temperature inside the chamber at about 900 to 1300 ° C. It is formed by oxidation.

상기 산소이온이 주입되는 이온주입공정은 상기 제2 폴리 실리콘막 측벽 내부에 10~ 20Å정도 되도록 하기 위해, 10~50 KeV 정도의 이온주입 에너지, 1.0~ 5.0E17 정도의 도즈량을 갖는 공정조건에서 수행한다. The ion implantation process in which the oxygen ions are implanted is performed under process conditions having an ion implantation energy of about 10 to 50 KeV and a dose amount of about 1.0 to 5.0E17 so as to be about 10 to about 20 kW into the sidewall of the second polysilicon film. Perform.

도 3을 참조하면, 상기 SiO2이온이 주입된 영역(20)이 구비된 결과물 전면에 산화공정을 수행하여 상기 플로팅 게이트 전극용 제2 폴리실리콘막(16)의 경계를 따라 형성되되, 모서리 부분이 두껍게 라운딩된 산화막(22)을 형성한다. Referring to FIG. 3, an oxidation process is performed on the entire surface of the resultant having the region 20 into which the SiO 2 ions are implanted to be formed along a boundary of the second polysilicon layer 16 for the floating gate electrode, wherein the corner portion is formed. This thick rounded oxide film 22 is formed.

상기 제2 폴리 실리콘막 및 모서리부분에 라운딩된 산화막의 두께는 20Å 정도이다. The thickness of the oxide film rounded to the second polysilicon film and the corner portion is about 20Å.

상기 제2 폴리 실리콘막에 형성된 산화막은 상기 제1 폴리 실리콘막의 내부에 형성된 SiO2이온이 주입된 영역과 결합되어야 한다. The oxide film formed on the second polysilicon film should be combined with a region implanted with SiO 2 ions formed in the first polysilicon film.

즉, 상기 모서리 부분이 두껍게 라운딩된 산화막(22)은, 상기 제2 폴리 실리콘막의 측벽에 형성된 상기 SiO2이온이 주입된 영역(20)에 산화공정이 수행됨으로써 형성되는 데, 이때, 상기 이온이 주입된 영역(20)과 인접하지 않은 영역에 산화공정이 수행되어 형성된 산화막보다 상기 이온이 주입된 영역(20)에 산화공정이 수행 되어 형성된 산화막이 더 두껍게 형성되도록 한다. That is, the oxide layer 22 having a thick rounded corner portion is formed by performing an oxidation process on the region 20 in which the SiO 2 ions are formed on the sidewall of the second polysilicon layer. The oxidation process is performed on the region 20 which is not adjacent to the implanted region 20 so as to form a thicker oxide layer formed by the oxidation process.

상기 모서리 부분이 두껍게 라운딩된 산화막을 형성함으로써, 게이트 전극들간의 간섭효과를 줄여 소자의 디스터브(disturb)를 감소시키게 된다. By forming an oxide film having a thick rounded corner, the interference between the gate electrodes is reduced to reduce the disturbance of the device.

또한, 상기 모서리 부분이 두껍게 라운딩된 산화막이 플로팅 게이트 전극용 제2 폴리 실리콘막 상에 형성됨으로써, 이후 형성될 콘트롤 게이트전극의 에지부분에서 강한 전계에 의해 발생되는 누설전류를 감소시키게 된다. In addition, an oxide film having a thick rounded corner portion is formed on the second polysilicon film for the floating gate electrode, thereby reducing leakage current generated by a strong electric field at the edge portion of the control gate electrode to be formed later.

도 4를 참조하면, 상기 결과물인 모서리 부분이 두껍게 라운딩된 산화막(22) 상부에 유전막인 ONO막(24)을 형성함으로써, 본 공정을 완료한다. Referring to FIG. 4, the process is completed by forming an ONO film 24, which is a dielectric film, on the oxide film 22 in which the resulting corner portion is thickly rounded.

도면에는 도시되지 않았지만, 상기 결과물 상부에 콘트롤 게이트 전극용 제3 폴리실리콘막을 형성한 후 상기 막질들을 패터닝하여 플래쉬 메모리소자의 게이트 전극 패턴을 형성하게 된다. Although not shown in the drawing, a third polysilicon film for the control gate electrode is formed on the resultant, and then the films are patterned to form a gate electrode pattern of the flash memory device.

본 발명에 의하면, 상기 모서리 부분이 두껍게 라운딩된 산화막을 형성함으로써, 게이트 전극들간의 간섭효과를 줄여 소자의 디스터브(disturb)를 감소시키게 된다. According to the present invention, by forming an oxide film having a thick rounded corner, the interference between gate electrodes is reduced to reduce the disturbance of the device.

또한, 본 발명에 의하면, 상기 모서리 부분이 두껍게 라운딩된 산화막이 플로팅 게이트 전극용 제2 폴리 실리콘막 상에 형성됨으로써, 이후 형성될 콘트롤 게이트전극의 에지부분에서 강한 전계에 의해 발생되는 누설전류를 감소시키게 된다.
Further, according to the present invention, an oxide film having a thick rounded corner portion is formed on the second polysilicon film for the floating gate electrode, thereby reducing leakage current generated by a strong electric field at the edge portion of the control gate electrode to be formed later. Let's go.

이상에서 살펴본 바와 같이 본 발명에 의하면, 상기 모서리 부분이 두껍게 라운딩된 산화막을 형성함으로써, 게이트 전극들간의 간섭효과를 줄여 소자의 디스터브(disturb)를 감소시키게 되는 효과가 있다. As described above, according to the present invention, an oxide film having a thick rounded corner portion is formed, thereby reducing interference between gate electrodes and reducing disturbance of the device.

또한, 본 발명에 의하면, 상기 모서리 부분이 두껍게 라운딩된 산화막이 플로팅 게이트 전극용 제2 폴리 실리콘막 상에 형성됨으로써, 이후 형성될 콘트롤 게이트전극의 에지부분에서 강한 전계에 의해 발생되는 누설전류를 감소시키게 되는 효과가 있다. Further, according to the present invention, an oxide film having a thick rounded corner portion is formed on the second polysilicon film for the floating gate electrode, thereby reducing leakage current generated by a strong electric field at the edge portion of the control gate electrode to be formed later. There is an effect made.

본 발명은 구체적인 실시 예에 대해서만 상세히 설명하였지만 본 발명의 기술적 사상의 범위 내에서 변형이나 변경할 수 있음은 본 발명이 속하는 분야의 당업자에게는 명백한 것이며, 그러한 변형이나 변경은 본 발명의 특허청구범위에 속한다 할 것이다.Although the present invention has been described in detail only with respect to specific embodiments, it is apparent to those skilled in the art that modifications or changes can be made within the scope of the technical idea of the present invention, and such modifications or changes belong to the claims of the present invention. something to do.

Claims (4)

패터닝된 플로팅 게이트 전극용 실리콘막이 형성된 반도체 기판 상에 이온주입공정을 수행하여, 패터닝된 플로팅 게이트 전극 측벽에 이온주입영역을 형성하는 단계;Forming an ion implantation region on a sidewall of the patterned floating gate electrode by performing an ion implantation process on the semiconductor substrate on which the silicon film for the patterned floating gate electrode is formed; 상기 결과물 전면에 산화공정을 수행하여, 상기 플로팅 게이트 전극용 실리콘막의 경계를 따라 형성되되, 모서리 부분이 두껍게 라운딩된 산화막을 형성하는 단계; 및 Performing an oxidation process on the entire surface of the resultant to form an oxide film formed along a boundary of the silicon film for the floating gate electrode and having a thick rounded corner; And 상기 결과물 상에 유전막을 형성하는 단계를 포함하는 플래쉬 메모리소자의 게이트 전극 패턴 형성방법. Forming a dielectric film on the resultant comprising a gate electrode pattern forming method of a flash memory device. 제1 항에 있어서, 상기 이온주입영역은 The method of claim 1, wherein the ion implantation region 산소이온이 주입된 상기 반도체 기판을 800℃의 온도인 챔버 내부로 주입한 후 챔버 내부를 900~ 1300℃의 온도로 유지하면서 산소 분위기하에 기판을 산화시킴으로써 형성하는 것을 특징으로 하는 플래쉬 메모리소자의 게이트 전극 패턴 형성방법. A gate of a flash memory device, characterized in that formed by injecting the semiconductor substrate into which the oxygen ion is implanted into a chamber at a temperature of 800 ° C. and then oxidizing the substrate in an oxygen atmosphere while maintaining the chamber at a temperature of 900 to 1300 ° C. Electrode pattern formation method. 제2 항에 있어서, 상기 반도체 기판에 주입된 산소이온은 The method of claim 2, wherein the oxygen ion implanted in the semiconductor substrate 상기 플로팅 게이트 전극용 실리콘막 측벽 내부에 10~ 20Å 되도록 하기 위해, 10~ 50 KeV의 이온주입 에너지, 1.0~ 5.0E17의 도즈량을 갖는 공정조건에서 수행하는 이온주입공정을 통해 주입되는 것을 특징으로 하는 플래쉬 메모리소자의 게이트 전극 패턴 형성방법. In order to make 10 ~ 20Å within the sidewall of the silicon film for the floating gate electrode, it is implanted through the ion implantation process performed under the process conditions having the ion implantation energy of 10 ~ 50 KeV, the dose amount of 1.0 ~ 5.0E17. A method of forming a gate electrode pattern of a flash memory device. 제1 항에 있어서, 상기 플로팅 게이트 전극용 실리콘막의 경계를 따라 형성되면서 동시에 모서리 부분이 두껍게 라운딩된 산화막은 The oxide film of claim 1, wherein the oxide film formed along the boundary of the floating gate electrode silicon film and at the same time has a thick rounded corner portion is formed. 20Å 정도의 두께를 가지도록 하는 것을 특징으로 하는 플래쉬 메모리소자의 게이트 전극 패턴 형성방법. A gate electrode pattern forming method of a flash memory device, characterized in that to have a thickness of about 20Å.
KR1020040114140A 2004-12-28 2004-12-28 Method of forming a gate electrode pattern in flash memory device KR20060075363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040114140A KR20060075363A (en) 2004-12-28 2004-12-28 Method of forming a gate electrode pattern in flash memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040114140A KR20060075363A (en) 2004-12-28 2004-12-28 Method of forming a gate electrode pattern in flash memory device

Publications (1)

Publication Number Publication Date
KR20060075363A true KR20060075363A (en) 2006-07-04

Family

ID=37167912

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040114140A KR20060075363A (en) 2004-12-28 2004-12-28 Method of forming a gate electrode pattern in flash memory device

Country Status (1)

Country Link
KR (1) KR20060075363A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100739988B1 (en) * 2006-06-28 2007-07-16 주식회사 하이닉스반도체 Method for fabricating flash memory device
US20110079839A1 (en) * 2009-09-30 2011-04-07 Fayrushin Albert Non-Volatile Memory Devices Having Reduced Susceptibility to Leakage of Stored Charges and Methods of Forming Same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100739988B1 (en) * 2006-06-28 2007-07-16 주식회사 하이닉스반도체 Method for fabricating flash memory device
US20110079839A1 (en) * 2009-09-30 2011-04-07 Fayrushin Albert Non-Volatile Memory Devices Having Reduced Susceptibility to Leakage of Stored Charges and Methods of Forming Same
KR101533447B1 (en) * 2009-09-30 2015-07-02 삼성전자주식회사 Semiconductor Device
US9082750B2 (en) 2009-09-30 2015-07-14 Samsung Electronics Co, Ltd. Non-volatile memory devices having reduced susceptibility to leakage of stored charges

Similar Documents

Publication Publication Date Title
TW200408071A (en) Method of manufacturing a flash memory cell
KR100538884B1 (en) Method of manufacturing in flash memory devices
US7759216B2 (en) Method for forming trench isolation
KR100363558B1 (en) Method of forming a trench isolation in an integrated circuit device
KR100841050B1 (en) Method for forming a isolation layer in semiconductor device
KR100554836B1 (en) Method of manufacturing flash memory device
US20090026581A1 (en) Flash memory device and method of manufacturing the same
KR100829612B1 (en) Method for forming a thin film and method for manufacturing a charge trap type non-volatile memory device
KR20060075363A (en) Method of forming a gate electrode pattern in flash memory device
KR20080079002A (en) Method of forming isolation film of semiconductor memory device
KR100511925B1 (en) Method for forming element isolating layer of semiconductor device
KR20100127154A (en) Gate pattern for nonvolatile memory device and manufacturing method of the same
KR100898656B1 (en) Method of manufacturing a flash memory device
KR100895382B1 (en) Method for manufacturing semiconductor device
KR20030050199A (en) Method of forming a isolation layer in a semiconductor device
KR20080060348A (en) Forming method of isolation layer in semiconductor device
KR20000045299A (en) Method for manufacturing semiconductor device
KR100348305B1 (en) Method for fabricating isolation film of semiconductor device
KR100822606B1 (en) Method of forming isolation film of semiconductor memory device
KR100927779B1 (en) Manufacturing Method of Flash Memory Device
KR100842507B1 (en) Method for manufacturing device isolation layer of semiconductor device
KR20110077715A (en) Manufacturing method of nonvolatile memory device
KR101145802B1 (en) Memory cell of nand type flash memory device and method for manufacturing the same
KR20050067822A (en) Method of manufacturing a semiconductor device
KR20080088680A (en) Method for forming shallow trench isolation of semiconductor device

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid